Survey of Models for Acquiring the Optical Properties of Translucent Materials

J. R. Frisvad1, S. A. Jensen2, J. S. Madsen2, A. Correia3, L. Yang4, S. K. S. Gregersen1, Y. Meuret3, and P.-E. Hansen2

1Technical University of Denmark
2DFM A/S, Danish National Metrology Institute
KU Leuven, Belgium
4RISE - Research Institute of Sweden

Figure 1: Optical properties exist at different scales. At the nano/micro scale, geometric features are comparable in size to the wavelength. Field models are then needed to account for phase properties and multiple scattering, and the optical properties become the physical parameters in Maxwell's equations. At the micro/milli scale, we work with radiative transfer scattering properties and size/normal distributions. At the most macroscopic scale, we use collective bidirectional distribution functions (e.g. BRDF, BSSRDF) that model the net effect of scattering by an ensemble of microscopic features. The 3D printed bunny, the microscope image, and the corresponding BRDF lobe are courtesy of Luongo et al. [LFD$^{\ast}$20]. The BSSRDF slice in false colours (1 mm$^{3}$ cube lit by a ray of light at a 45$^{\circ}$ angle of incidence, false colour scale from 0.001 to 0.1) is based on fitting of optical properties to the red colour channel of the bunny image using the directional dipole [FHK14].

The outset of realistic rendering is a desire to reproduce the appearance of the real world. Rendering techniques therefore operate at a scale corresponding to the size of objects that we observe with our naked eyes. At the same time, rendering techniques must be able to deal with objects of nearly arbitrary shapes and materials. These requirements lead to techniques that oftentimes leave the task of setting the optical properties of the materials to the user. Matching the appearance of real objects by manual adjustment of optical properties is however nearly impossible. We can render objects with a plausible appearance in this way but cannot compare the appearance of a manufactured item to that of its digital twin. This is especially true in the case of translucent objects, where we need more than a goniometric measurement of the optical properties. In this survey, we provide an overview of forward and inverse models for acquiring the optical properties of translucent materials. We map out the efforts in graphics research in this area and describe techniques available in related fields. Our objective is to provide a better understanding of the tools currently available for appearance specification when it comes to digital representations of real translucent objects.

Frisvad, J. R., Jensen, S. A., Madsen, J. S., Correia, A., Yang, L., Gregersen, S. K. S., Meuret, Y., and Hansen, P.-E. Survey of models for acquiring the optical properties of translucent materials. Computer Graphics Forum (EG 2020) 39(2). 2020. To appear.

EG 2020: Overview of graphics models for acquiring the optical properties of translucent materials

Marker taxonomy (with associated markers in parentheses):

Paper title author-year ref. marker nano/micro micro/milli BSSRDF BRDF/BTDF
Off-specular peaks in the directional distribution of reflected thermal radiation Torrance and Sparrow [1966] [TS66] x2$\lambda$i$\cdot|$
Theory for off-specular reflection from roughened surfaces Torrance and Sparrow [1967] [TS67] t$\lambda$i$\cdot|\rightarrow$ t$\lambda$i$\cdot|$
Models of light reflections for computer synthesized pictures Blinn [1977] [Bli77] tci$\cdot|\rightarrow$ tci$\cdot|$
A reflectance model for computer graphics Cook and Torrance [1981] [CT81] t$\lambda$i$\cdot|\rightarrow$ tci$\cdot|$
Light reflection functions for simulation of clouds and dusty surfaces Blinn [1982] [Bli82] tci$\star\backslash$
Ray tracing volume densities Kajiya and Von Herzen [1984] [KV84] tci$\star\backslash$
Anisotropic reflection models Kajiya [1985] [Kaj85] t$\lambda$a$\star|\rightarrow$ t$\lambda$a$\star|$
Bidirectional reflection functions from surface bump maps Cabral et al. [1987] [CMS87] tca$\star|\rightarrow$ tca$\cdot|$
Rendering fur with three dimensional textures Kajiya and Kay [1989] [KK89] tca$\star\backslash\rightarrow$ tca$\star\backslash$
A comprehensive physical model for light reflection He et al. [1991] [HTSG91] t$\lambda$i$\cdot|\rightarrow$ t$\lambda$i$\cdot|$
Predicting reflectance functions from complex surfaces Westin et al. [1992] [WAT92] tca$\star|\rightarrow$ tca$\cdot|$
Measuring and modeling anisotropic reflection Ward [1992] [War92] tx2ca$\cdot|$
Modeling pigmented materials for realistic image synthesis Haase and Meyer [1992] [HM92] t$\lambda$i$\cdot|\rightarrow$ tci$\star|$
Reflection from layered surfaces due to subsurface scattering Hanrahan and Krueger [1993] [HK93] tci$\star\backslash$
Wavelength dependent reflectance functions Gondek et al. [1994] [GMN94] t$\lambda$a$\star\backslash\rightarrow$ t$\lambda$a$\cdot\backslash$
Pertinent data for modelling pigmented materials in realistic rendering Callet [1996] [Cal96] t$\lambda$i$\cdot\backslash\rightarrow$ t$\lambda$i$\cdot|\rightarrow$ tci$\star|$
A modeling and rendering method for snow by using metaballs Nishita et al. [1997] [NIDN97] tci$\star\backslash$
An algorithmic reflectance and transmittance model for plant tissue Baranoski and Rokne [1997] [BR97] t$\lambda$i$\cdot|$
Modeling and rendering of the atmosphere using Mie-scattering Jackèl and Walter [1997] [JW97] t$\lambda$i$\cdot\backslash\rightarrow$ t$\lambda$i$\cdot\backslash$
Reflectance and texture of real-world surfaces Dana et al. [1999] [DVGNK99] x2ca$\star|$
Image-based BRDF measurement including human skin Marschner et al. [1999] [MWL$^{\ast}$99] x3ci$\cdot|$
Diffraction shaders Stam [1999] [Sta99] t$\lambda$a$\star|\rightarrow$ t$\lambda$a$\star|\rightarrow$ t$\lambda$a$\star|$
Modeling and rendering of weathered stone Dorsey et al. [1999] [DEJ$^{\ast}$99] tci$\star\backslash$
Monte Carlo evaluation of nonlinear scattering equations for subsurface reflection Pharr and Hanrahan [2000] [PH00] t$\lambda$i$\star\backslash$
A microfacetbased BRDF generator Ashikmin et al. [2000] [APS00] tca$\cdot|\rightarrow$ tca$\cdot|$
Acquiring the reflectance field of a human face Debevec et al. [2000] [DHT$^{\ast}$00] x3ci$\star|$
An illumination model for a skin layer bounded by rough surfaces Stam [2001] [Sta01] tci$\cdot\backslash\rightarrow$ tci$\cdot\backslash$
Rendering pearlescent appearance based on paint-composition modelling Ershov et al. [2001] [EKM01] tci$\cdot\backslash\rightarrow$ tci$\star\backslash$
Image-based reconstruction of spatially varying materials Lensch et al. [2001] [LKG$^{\ast}$01] x3ci$\star|$
Synthesizing bidirectional texture functions for real-world surfaces Liu et al. [2001] [LYS01] tca$\star|$
A practical model for subsurface light transport Jensen et al. [2001] [JMLH01] tci$\star|\rightarrow$ $\leftarrow$tx2ci$\cdot|$
A data-driven reflectance model Matusik et al. [2003] [MPBM03] x2ci$\cdot|$
Light scattering from human hair fibers Marschner et al. [2003] [MJC$^{\ast}$03] tca$\cdot\backslash\rightarrow$ tx1ca$\star|$
DISCO: acquisition of translucent objects Goesele et al. [2004] [GLL${\ast}$04] tci$\star|$ $\leftarrow$x3ci$\star|$
Reverse engineering approach to appearance-based design of metallic and pearlescent paints Ershov et al. [2004] [EĎKM04] tci$\cdot\backslash$ $\leftarrow$x2ci$\cdot|$
Increasing the predictability of tissue subsurface scattering simulations Baranoski et al. [2005] [BKK05] tx2$\lambda$i$\cdot\backslash$
Experimental analysis of BRDF models Ngan et al. [2005] [NDM05] tca$\cdot|$ $\leftarrow$x2ca$\cdot|$
Modeling and rendering of quasi-homogeneous materials Tong et al. [2005] [TWL$^{\ast}$05] tci$\star\backslash$ $\leftarrow$x2ci$\star\backslash$
Light diffusion in multi-layered translucent materials Donner and Jensen [2005] [DJ05] tci$\star|$
A spectral BSSRDF for shading human skin Donner and Jensen [2006] [DJ06] t$\lambda$i$\star|$
A compact factored representation of heterogeneous subsurface scattering Peers et al. [2006] [PVBM$^{\ast}$06] tci$\star|$ $\leftarrow$x2ci$\star|$
Acquiring scattering properties of participating media by dilution Narasimhan et al. [2006] [NGD$^{\ast}$06] tci$\cdot\backslash$ $\leftarrow$x2ci$\cdot\backslash$
Analysis of human faces using a measurement-based skin reflectance model Weyrich et al. [2006] [WMP$^{\ast}$06] tci$\star|$ $\leftarrow$x3ci$\star|$
Light scattering from filaments Zinke and Weber [2007] [ZW07] tca$\star\backslash\rightarrow$ tca$\star|$
Microfacet models for refraction through rough surfaces Walter et al. [2007] [WMLT07] tci$\cdot|\rightarrow$ $\leftarrow$tx2ci$\cdot|$
Rendering translucent materials using photon diffusion Donner and Jensen [2007] [DJ07] tci$\cdot\backslash$
Computing the scattering properties of participating media using Lorenz-Mie theory Frisvad et al. [2007] [FCJ07] t$\lambda$i$\cdot\backslash\rightarrow$ t$\lambda$i$\cdot\backslash\rightarrow$ tci$\cdot\backslash$
Modeling and rendering of heterogeneous translucent materials using the diffusion equation Wang et al. [2008] [WZT$^{\ast}$08] tci$\star|$ $\leftarrow$x2ci$\star|$
Efficient multiple scattering in hair using spherical harmonics Moon et al. [2008] [MWM08] tca$\star\backslash\rightarrow$ tca$\star\backslash$
Practical modeling and acquisition of layered facial reflectance Ghosh et al. [2008] [GHP$^{\ast}$08] tci$\star|$ $\leftarrow$x3ci$\star|$
A layered, heterogeneous reflectance model for acquiring and rendering human skin Donner et al. [2008] [DWd$^{\ast}$08] t$\lambda$i$\star|$ $\leftarrow$x2$\lambda$i$\star|$
Estimating specular roughness and anisotropy from second order spherical gradient illumination Ghosh et al. [2009] [GCP$^{\ast}$09] x3ca$\star|$
An empirical BSSRDF model Donner et al. [2009] [DLR$^{\ast}$09] tci$\cdot\backslash$
Capturing hair assemblies fiber by fiber Jakob et al. [2009] [JMM09] tca$\star|$ $\leftarrow$x1ca$\star|$
A practical approach for photometric acquisition of hair color Zinke et al. [2009] [ZRL$^{\ast}$09] x1ca$\cdot|$
A radiative transfer framework for rendering materials with anisotropic structure Jakob et al. [2010] [JAM$^{\ast}$10] tca$\star\backslash\rightarrow$ tca$\star\backslash$
A coaxial optical scanner for synchronous acquisition of 3D geometry and surface reflectance Holroyd et al. [2010] [HLZ10] x3ci$\star|$
A volumetric approach to predictive rendering of fabrics Schröder et al. [2011] [SKZ11] tca$\star\backslash\rightarrow$ tca$\star\backslash$
Building volumetric appearance models of fabric using micro CT imaging Zhao et al. [2011] [ZJMB11] x3ci$\star|\rightarrow$ tca$\cdot\backslash$ $\leftarrow$x2ci$\cdot|$
A quantized-diffusion model for rendering translucent materials d'Eon and Irving [2011] [dI11] tci$\star|$
BSSRDF estimation from single images Munoz et al. [2011] [MES$^{\ast}$11] tci$\cdot|$ $\leftarrow$x3ci$\cdot|$
Physically-based simulation of rainbows Sadeghi et al. [2012] [SML$^{\ast}$12] t$\lambda$a$\cdot\backslash\rightarrow$ t$\lambda$a$\cdot\backslash$
BRDF models for accurate and efficient rendering of glossy surfaces Löw et al. [2012] [LKYU12] t$\lambda$i$\cdot|\rightarrow$ $\leftarrow$tx2ci$\cdot|$
Specular reflection from woven cloth Irawan and Marschner [2012] [IM12] tca$\cdot\backslash\rightarrow$ tx2ca$\star|$
Accurate fitting of measured reflectances using a shifted gamma micro-facet distribution Bagher et al. [2012] [BSH12] tci$\cdot|$ $\leftarrow$x2ci$\cdot|$
Accurate translucent material rendering under spherical Gaussian lights Yan et al. [2012] [YZXW12] tci$\cdot\backslash$
Full-dimensional sampling and analysis of BSSRDF Inoshita et al. [2013] [ITM$^{\ast}$13] x2ca$\cdot\backslash$
A practical microcylinder appearance model for cloth rendering Sadeghi et al. [2013] [SBDDJ13] tx1ci$\cdot|$
Acquiring reflectance and shape from continuous spherical harmonic illumination Tunwattanapong et al. [2013] [TFG$^{\ast}$13] x3ca$\star|$
Inverse volume rendering with material dictionaries Gkioulekas et al. [2013] [GZB$^{\ast}$13] tci$\cdot\backslash$ $\leftarrow$x2ci$\cdot\backslash$
Photon beam diffusion: A hybrid Monte Carlo method for subsurface scattering Habel et al. [2013] [HBJ13] tci$\cdot\backslash$
Solid texture synthesis for heterogeneous translucent materials Seo et al. [2014] [SKL14] tci$\star|$ $\leftarrow$x2ci$\star|$
A physically-based BSDF for modeling the appearance of paper Papas et al. [2014] [PdMJ14] tx2ci$\cdot\backslash$
A comprehensive framework for rendering layered materials Jakob et al. [2014] [JdJM14] tci$\cdot\backslash$
Template-based sampling of anisotropic BRDFs Filip and Vavra [2014] [FV14] x2ca$\cdot|$
Directional dipole model for subsurface scattering Frisvad et al. [2014] [FHK14] tci$\cdot\backslash$
Predicting appearance from measured microgeometry of metal surfaces Dong et al. [2015] [DWMG15] x2$\lambda$a$\star|\rightarrow$ t$\lambda$a$\cdot|\rightarrow$ t$\lambda$a$\star|$
A biophysically-based model of the optical properties of skin aging Iglesias-Guitian et al. [2015] [IGAJG15] tci$\cdot|\rightarrow$ tci$\star|$
Multi-scale modeling and rendering of granular materials Meng et al. [2015] [MPH$^{\ast}$15] tca$\star\backslash\rightarrow$ tca$\cdot\backslash\rightarrow$ tci$\cdot\backslash$
Matching real fabrics with micro-appearance models Khungurn et al. [2015] [KSZ$^{\ast}$15] tx3ca$\star|\rightarrow$ tca$\cdot\backslash$ $\leftarrow$x2ca$\cdot|$
Position-normal distributions for efficient rendering of specular microstructure Yan et al. [2016] [YHMR16] tca$\star|\rightarrow$ tca$\star|$
An inverse rendering approach for heterogeneous translucent materials Yang and Xiao [2016] [YX16] tci$\star|$ $\leftarrow$x2ci$\star|$
Simultaneous acquisition of microscale reflectance and normals Nam et al. [2016] [NLW$^{\ast}$16] x2ca$\star|\rightarrow$ tca$\star|$
Estimating parameters of subsurface scattering using directional dipole model Zeng et al. [2017] [ZIK$^{\ast}$17] tci$\cdot\backslash$ $\leftarrow$x2ci$\cdot\backslash$
A two-scale microfacet reflectance model combining reflection and diffraction Holzschuch and Pacanowski [2017] [HP17] t$\lambda$a$\cdot|\rightarrow$ t$\lambda$a$\cdot|$
A forward scattering dipole model from a functional integral approximation Frederickx and Dutré [2017] [FD17] tci$\cdot\backslash$
An appearance model for textile fibers Aliaga et al. [2017] [ACG$^{\ast}$17] tx1ca$\star\backslash\rightarrow$ tca$\cdot\backslash\rightarrow$ tca$\star\backslash$
Scratch iridescence: Wave-optical rendering of diffractive surface structure Werner et al. [2017] [WVJH17] t$\lambda$a$\star|\rightarrow$ t$\lambda$a$\star|$
A BSSRDF model for efficient rendering of fur with global illumination Yan et al. [2017] [YSJR17] tca$\cdot\backslash\rightarrow$ tca$\star|$
Efficient rendering of layered materials using an atomic decomposition with statistical operators Belcour [2018] [Bel18] tci$\star\backslash$
A radiative transfer framework for spatially-correlated materials Jarabo et al. [2018] [JAG18] t$\lambda$a$\star\backslash\rightarrow$ tca$\cdot\backslash$
The layer laboratory: a calculus for additive and subtractive composition of anisotropic surface reflectance Zeltner and Jakob [2018] [ZJ18] tca$\cdot\backslash$
Rendering specular microgeometry with wave optics Yan et al. [2018] [YHW$^{\ast}$18] t$\lambda$a$\star|\rightarrow$ t$\lambda$a$\star|$
Computational design of nanostructural color for additive manufacturing Auzinger et al. [2018] [AHB18] tx2$\lambda$i$\star|\rightarrow$ $\leftarrow$tx2ci$\cdot|$
An adaptive parameterization for efficient material acquisition and rendering Dupuy and Jakob [2018] [DJ18] x2$\lambda$a$\cdot|$
Appearance capture and modeling of human teeth Velinov et al. [2018] [VPB*18] tx3ci$\star|\rightarrow$ $\leftarrow$tci$\star\backslash$ $\leftarrow$x3ca$\star\backslash$
Microfacet BSDFs generated from NDFs and explicit microgeometry Ribardière et al. [2019] [RBSM19] tx2ca$\cdot|\rightarrow$ $\leftarrow$tca$\cdot|\rightarrow$ $\leftarrow$tca$\cdot|$
A learned shape-adaptive subsurface scattering model Vicini et al. [2019] [VKJ19] tci$\cdot\backslash$
Learning generative models for rendering specular microgeometry Kuznetsov et al. [2019] [KHZ$^{\ast}$19] t$\lambda$a$\star|\rightarrow$ $\leftarrow$tx2$\lambda$a$\star|$

This is the table as it appeared in the state of the art report at Eurographics 2020.