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Figure 1: Optical properties exist at different scales. At the nano/micro scale, geometric features are comparable in size to the wavelength.
Field models are then needed to account for phase properties and multiple scattering, and the optical properties become the physical param-
eters in Maxwell’s equations. At the micro/milli scale, we work with radiative transfer scattering properties and size/normal distributions. At
the most macroscopic scale, we use collective bidirectional distribution functions (e.g. BRDF, BSSRDF) that model the net effect of scattering
by an ensemble of microscopic features. The 3D printed bunny, the microscope image, and the corresponding BRDF lobe are courtesy of
Luongo et al. [LFD∗20]. The BSSRDF slice in false colours (1 mm3 cube lit by a ray of light at a 45◦ angle of incidence, false colour scale
from 0.001 to 0.1) is based on fitting of optical properties to the red colour channel of the bunny image using the directional dipole [FHK14].

Abstract
The outset of realistic rendering is a desire to reproduce the appearance of the real world. Rendering techniques therefore
operate at a scale corresponding to the size of objects that we observe with our naked eyes. At the same time, rendering
techniques must be able to deal with objects of nearly arbitrary shapes and materials. These requirements lead to techniques that
oftentimes leave the task of setting the optical properties of the materials to the user. Matching the appearance of real objects
by manual adjustment of optical properties is however nearly impossible. We can render objects with a plausible appearance
in this way but cannot compare the appearance of a manufactured item to that of its digital twin. This is especially true in the
case of translucent objects, where we need more than a goniometric measurement of the optical properties. In this survey, we
provide an overview of forward and inverse models for acquiring the optical properties of translucent materials. We map out
the efforts in graphics research in this area and describe techniques available in related fields. Our objective is to provide a
better understanding of the tools currently available for appearance specification when it comes to digital representations of
real translucent objects.

CCS Concepts
• Computing methodologies → Reflectance modeling; Appearance and texture representations;
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1. Introduction

The appearance of an object is a product of its geometrical shape
and the optical properties of its constituent materials. We consider
materials different when they are clearly separated by an interface.
We can then segment a given object into different parts each with a
set of optical properties that are functions (possibly spatially vary-
ing) of the wavelength of the light and also of the microgeometry of
the material. To get a proper understanding of material appearance,
we must therefore consider optical properties at different scales.
This is illustrated in Figure 1. In this work, we provide an overview
of models for acquiring optical properties and identify the different
scales they can operate at. We focus on translucent materials and
include both surface and subsurface scattering.

Conventional rendering techniques solve the rendering equa-
tion, which consists of a sum of emitted and reflected radi-
ance [Nic65, Kaj86]. This equation involves the transfer of radiant
flux between surfaces, and light-material interaction is described by
a bidirectional scattering distribution function (BSDF). This works
well for opaque and transparent objects. For light scattering vol-
umes (participating media), however, we need to solve the radia-
tive transfer equation (RTE) [Cha50, KV84]. The RTE models ab-
sorption, scattering, and emission of light as we move along a path
traversing the volume. Interestingly, if we consider a light scat-
tering volume with a refractive interface, we can use the render-
ing equation to specify boundary conditions for the radiative trans-
fer equation [Arv93]. In turn, this enables us to render a medium
that exhibits both surface and subsurface scattering using path trac-
ing techniques [PKK00, RSK08], and path tracing is currently the
method of choice in production rendering [FHP∗18].

Translucency means that light not only scatters at the surface
but also propagates from one point of incidence through the inte-
rior of the object and emerges at other positions. Since a translu-
cent object exhibits both surface and subsurface scattering, it is
challenging to fully describe its optical properties. While sur-
veys are available on models for light propagation in scattering
media [CPP∗05, NGHJ18], the acquisition of optical properties
(BSDF, absorption, scattering, emission) is rarely discussed. This
leaves a hole in cases where our objective is to render the appear-
ance of real world objects. Regardless of the virtues of the ren-
dering technique and the light propagation model, a rendering can
only be as accurate as the input optical properties. This survey is
focused specifically on acquisition of optical properties of translu-
cent objects. We discuss models that are useful for computing or
deriving scattering functions and include inverse techniques useful
for estimating apparent or intrinsic optical properties of translu-
cent materials. We find this to be an important endeavour if we
are to increase the relevance of graphics in the context of product
appearance specification and comparison of photographed appear-
ance with renderings of a digital twin (e.g. for quality assessment).

The fact that optical properties exist at different scales (Figure 1)
is important for identifying the differences between models for ac-
quiring optical properties. We can use light scattering simulation
to go from optical properties at a microscopic scale to observable
scattering at a more macroscopic scale. Conversely, we can use in-
verse models to go from observation to sample properties, where
different models may be better suited to estimate different sample

properties (surface or volume). Section 2 provides an overview of
graphics research on forward and inverse models. This has mul-
tiple uses: tracking the development of the field, finding previous
work on passage from one scale to another, identifying uncharted
research territory. Sections 3–4 then provide an explanation of the
different scales and how they connect. This serves to introduce ter-
minology and more theoretical aspects. In the remaining sections,
we cover techniques for acquisition of optical properties at different
scales. We include discussion of techniques available in other re-
search fields to inspire future development of graphics techniques.

Two books on material appearance modelling [DRS07, DLG13]
seem to be the work most closely related to ours. These books are
however broader in scope and make no attempt at relating graphics
research to models often employed in other areas.

2. Model Classification

We find that a chronologically sorted list of references with markers
for different scales and approximations provides a useful overview.
Our version of such a list is in Table 1. We divide the microscopic
scale into nano/micro and micro/milli. The nano/micro scale is for
models that consider explicit microgeometry, like a patch of ge-
ometry observed in a microscope image or the shape of a light
scattering fibre or particle. The micro/milli scale is for models
considering microfacet normal distributions or particle size dis-
tributions. We divide the macroscopic scale into two categories:
one for the bidirectional scattering-surface reflectance distribution
function (BSSRDF) and one for the more approximate bidirec-
tional reflectance/transmittance function (BRDF/BTDF). The point
of making this distinction is that many models do not account for
the fact that light may be incident at one surface point but emerge
at another. The BSSRDF models take this into account while the
BRDF/BTDF models do not (Figure 2). The BSDF mentioned pre-
viously is a function including both reflectance and transmittance
(both BRDF and BTDF).

The marker system described in Table 1 is used to distinguish
between the different types of research on acquiring optical prop-
erties. We have a marker for theoretical work and three for exper-
imental work, and we distinguish between models operating with
colour vectors and models operating with wavelength dependency.
We use other markers too. In cases of brushed surfaces or fibrous
materials, the light scattering depends on the orientation of the ob-
ject. This is called anisotropy. Models that can account for this are
referred to as anisotropic, while models that are invariant to object
orientation are called isotropic. Some models assume a homoge-
neous material. The material is then the same in all surface points
and the same in all interior points, whereas objects with spatially
varying optical properties are referred to as heterogeneous. Fi-
nally, subsurface scattering is sometimes considered diffuse, which
means that it does not depend on the directions of incidence and
emergence of the light. We include a marker showing whether a
model considers subsurface scattering to be diffuse or dependent
on the directions of incident and/or emergent light.

We use the seminal work of Torrance and Sparrow [TS66,TS67]
as a starting point. One reason for this choice is that they include
magnesium oxide ceramic, which is a translucent material. The
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Table 1: Overview of graphics models for acquiring the optical
properties of translucent materials. We use the listed markers for
classification of the research. Sections 2–3 explain the scales in
the four columns with markers. An online version of the table is
available at https://people.compute.dtu.dk/jerf/cg-opt-props.html.

Marker taxonomy (with associated markers in parentheses):
• Formal model based on theory(t).
• Experimental(x) measurements with fibres(1), flat or spherical

or cylindrical surfaces(2), or arbitrary 3D surfaces(3).
• Colour/density(c) or wavelength(λ).
• Isotropic(i) or anisotropic(a) surface reflectance.
• Homogeneous(·) or heterogeneous(⋆) material.
• Diffuse(|) or directional(\) subsurface scattering.
• Forward simulation(→) and/or inverse technique(←).

Paper nano/micro micro/milli BSSRDF BRDF/BTDF
[TS66] x2λi·|
[TS67] tλi·| → tλi·|
[Bli77] tci·| → tci·|
[CT81] tλi·| → tci·|
[Bli82] tci⋆\
[KV84] tci⋆\
[Kaj85] tλa⋆|→ tλa⋆|
[CMS87] tca⋆|→ tca·|
[KK89] tca⋆\→ tca⋆\
[HTSG91] tλi·| → tλi·|
[WAT92] tca⋆|→ tca·|
[War92] tx2ca·|
[HM92] tλi·| → tci⋆|
[HK93] tci⋆\
[GMN94] tλa⋆\→ tλa·\
[Cal96] tλi·\→ tλi·| → tci⋆|
[NIDN97] tci⋆\
[BR97] tλi·|
[JW97] tλi·\→ tλi·\
[DVGNK99] x2ca⋆|
[MWL∗99] x3ci·|
[Sta99] tλa⋆|→ tλa⋆|→ tλa⋆|
[DEJ∗99] tci⋆\
[PH00] tλi⋆\
[APS00] tca·| → tca·|
[DHT∗00] x3ci⋆|
[Sta01] tci·\→ tci·\
[EKM01] tci·\→ tci⋆\
[LKG∗01] x3ci⋆|
[LYS01] tca⋆|
[JMLH01] tci⋆|→ ←tx2ci·|
[MPBM03] x2ci·|
[MJC∗03] tca·\→ tx1ca⋆|
[GLL∗04] tci⋆| ←x3ci⋆|
[EĎKM04] tci·\ ←x2ci·|
[BKK05] tx2λi·\
[NDM05] tca·| ←x2ca·|
[TWL∗05] tci⋆\ ←x2ci⋆\
[DJ05] tci⋆|
[DJ06] tλi⋆|
[PVBM∗06] tci⋆| ←x2ci⋆|
[NGD∗06] tci·\ ←x2ci·\

Paper nano/micro micro/milli BSSRDF BRDF/BTDF
[WMP∗06] tci⋆| ←x3ci⋆|
[ZW07] tca⋆\→ tca⋆|
[WMLT07] tci·| → ←tx2ci·|
[DJ07] tci·\
[FCJ07] tλi·\→ tλi·\ → tci·\
[WZT∗08] tci⋆| ←x2ci⋆|
[MWM08] tca⋆\→ tca⋆\
[GHP∗08] tci⋆| ←x3ci⋆|
[DWd∗08] tλi⋆| ←x2λi⋆|
[GCP∗09] x3ca⋆|
[DLR∗09] tci·\
[JMM09] tca⋆| ←x1ca⋆|
[ZRL∗09] x1ca·|
[JAM∗10] tca⋆\ → tca⋆\
[HLZ10] x3ci⋆|
[SKZ11] tca⋆\→ tca⋆\
[ZJMB11] x3ci⋆|→ tca·\ ←x2ci·|
[dI11] tci⋆|
[MES∗11] tci·| ←x3ci·|
[SML∗12] tλa·\→ tλa·\
[LKYU12] tλi·| → ←tx2ci·|
[IM12] tca·\→ tx2ca⋆|
[BSH12] tci·| ←x2ci·|
[YZXW12] tci·\
[ITM∗13] x2ca·\
[SBDDJ13] tx1ci·|
[TFG∗13] x3ca⋆|
[GZB∗13] tci·\ ←x2ci·\
[HCJ13] tci·\
[SKL14] tci⋆| ←x2ci⋆|
[PdMJ14] tx2ci·\
[JdJM14] tci·\
[FV14] x2ca·|
[FHK14] tci·\
[DWMG15] x2λa⋆|→ tλa·| → tλa⋆|
[IGAJG15] tci·| → tci⋆|
[MPH∗15] tca⋆\→ tca·\ → tci·\
[KSZ∗15] tx3ca⋆|→ tca·\ ←x2ca·|
[YHMR16] tca⋆| → tca⋆|
[YX16] tci⋆| ←x2ci⋆|
[NLW∗16] x2ca⋆|→ tca⋆|
[ZIK∗17] tci·\ ←x2ci·\
[HP17] tλa·| → tλa·|
[FD17] tci·\
[ACG∗17] tx1ca⋆\→ tca·\ → tca⋆\
[WVJH17] tλa⋆| → tλa⋆|
[YSJR17] tca·\→ tca⋆|
[Bel18] tci⋆\
[JAG18] tλa⋆\→ tca·\
[ZJ18] tca·\
[YHW∗18] tλa⋆| → tλa⋆|
[AHB18] tx2λi⋆|→ ←tx2ci·|
[DJ18] x2λa·|
[VPB∗18] tx3ci⋆|→ ← tci⋆\ ←x3ca⋆\
[RBSM19] tx2ca·|→ ← tca·| → ←tca·|
[VKJ19] tci·\
[KHZ∗19] tλa⋆| → ←tx2λa⋆|
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Torrance-Sparrow BRDF model [TS67] is based on a distribution
of surface microfacets consisting of specular v-grooves. This is
an example of a forward model going from a normal distribution
(micro/milli scale) to a macroscopic BRDF. In early work such
as that of Torrance and Sparrow, subsurface scattering is approx-
imated by a diffuse reflectance term in the BRDF [Lea79]. Scatter-
ing by particles was in graphics first considered by Blinn [Bli82],
and subsurface scattering was first considered by Hanrahan and
Krueger [HK93]. These efforts resulted in more advanced BSDFs.

Some models provide optical properties to be used in simulation
of volumetric light transport. An early example is the ray tracing
of volume densities by Kajiya and Von Herzen [KV84]. However,
many such models were specifically developed for rendering of op-
tically thin volumes without a refractive interface (participating me-
dia: clouds, smoke, atmosphere, etc.). In our table, these models
have markers at the micro/milli scale without an arrow pointing to
a more macroscopic scale.

While Hanrahan and Krueger [HK93] described simulation of
subsurface scattering, they still ended up with a local BSDF model.
The first graphics model to include the subsurface scattering effects
resulting from different points of incidence and emergence (BSS-
RDF effects) is seemingly that of Dorsey et al. [DEJ∗99]. These au-
thors acquire optical properties of stone by using procedural mod-
els to generate colours and densities in volumetric texture slabs.
The slabs are in turn modified by simulation of weathering effects.

An analytic BSSRDF model by Farrell et al. [FPW92] was intro-
duced to graphics by Jensen et al. [JMLH01]. This model is often
referred to as the standard dipole. Analytical models ease the devel-
opment of inverse techniques. Given a flat, homogeneous sample of
a translucent material, the work of Jensen et al. [JMLH01] includes
an inverse technique for photographic estimation of its apparent
optical properties. This was extended to work for heterogeneous
materials by Peers et al. [PVBM∗06]. More recently, a solution for
the diffusion equation including the directionality of the incident il-
lumination [MSG05] was used for deriving an analytic directional
dipole BSSRDF model [FHK14]. This also led to an inverse tech-
nique [ZIK∗17]. Inverse techniques have also been based on single
scattering [NGD∗06] or full Monte Carlo ray tracing of the scat-
tering volume [GZB∗13]. We place the markers for experimental
techniques based on photographs at the BRDF/BTDF level. On the
other hand, we place markers for techniques based on micro CT
scans or profilometry at the nano/micro scale.

Many BRDF models are available in the literature, a survey is
available from Guarnera et al. [GGG∗16]. We cannot include all of
them here and keep our focus on models with relevance for translu-
cent materials and a relation to more microscopic scales. Examples
of models starting at the nano/micro scale are those for comput-
ing a BRDF based on a patch of microgeometry [Kaj85, CMS87,
WAT92,Sta99]. An example of a corresponding experimental tech-
nique based on a patch of microgeometry is the work of Dong
et al. [DWMG15]. They acquire normal distributions from micro-
scope depth images (profilometry). Similarly, models for comput-
ing intrinsic optical properties based on the scattering of a plane
wave of light by a spherical particle (Lorenz-Mie theory) also start
from the nano/micro scale [Cal96,JW97,FCJ07]. When models in-

clude wave effects like diffraction, they become wavelength depen-
dent and are marked by a λ.

The reference descriptions in this section serve as a help for
interpreting the information provided in Table 1. When explor-
ing the table, we recommend use of a pdf reader with a short-
cut for going back after following a link (e.g. the alt and left ar-
row shortcut in Acrobat Reader). The list of references we pro-
vide is non-exhaustive. We have selected references that we find
useful in terms of getting an overview of graphics techniques for
determining the optical properties of translucent materials. We en-
courage the reader to use the marker system for categorising pa-
pers appearing in related fields such as optics and computer vi-
sion. For an overview of more specific areas, we refer the reader
to other surveys. A significant portion of the relevant research
is concerned with the appearance of human faces and fibrous
materials (hair, fabrics). We include some work on skin appear-
ance [HK93, MWL∗99, DHT∗00, Sta01, JMLH01, BKK05, DJ05,
DJ06, WMP∗06, GHP∗08, DWd∗08, IGAJG15], while more com-
plete surveys are available on facial appearance capture [KRP∗15]
and human tissue appearance [NMM∗19]. We also include some
work on the optical properties of hair and fibres [KK89, MJC∗03,
ZW07, MWM08, JMM09, ZRL∗09, SKZ11, ZJMB11, IM12, SB-
DDJ13, KSZ∗15, ACG∗17, YSJR17]. Again, a more complete sur-
vey is available on fabric appearance reproduction [CLMA19].

With this overview of graphics models, we dive into the details
of optical properties and how to determine them by means of for-
ward and inverse models. Optical properties describe light-matter
interaction, that is, scattering and absorption of light. In the next
section, we look into the relations between light scattering at dif-
ferent scales. The employed nomenclature is listed in Table 2.

3. Multi-Scale Modeling of the Scattering of Light

Scattering functions describe light-matter interactions at the most
macroscopic physical level. Given a number of arguments, a scat-
tering function is a factor of proportionality between incident and
scattered light. To derive such a function, we need to go to a smaller
scale. At the smallest scale, everything is quantum particles. Pho-
tons have a probability of being found in one place or another and
a probability of being absorbed or emitted by an atomic system.
These probabilities are the same as the amplitude of properly nor-
malized electromagnetic waves [Fey98]. Considering the mean ef-
fects of a continuum of photons, the wave amplitudes transition to
the classical field vectors. Conceptually, a scattering function then
describes the different outcomes of photon-electron interactions. In
X-ray physics, quantum effects are sometimes important [Men18].
In the visible part of the spectrum, we usually need to know about
photons only to estimate emission spectra or refractive indices. To
derive scattering functions, we need a passage from microscopic
scales to macroscopic scale.

The work of Feynman [FLS64, FLS65, Fey98] is an excel-
lent source on the relations between quantum and wave theories.
Mishchenko et al. [MTL06] provide a passage from Maxwell’s
equations to the vector radiative transfer equation (where vectors
represent polarization). However, a passage to radiative transfer
theory involves a number of ambiguities [Mis13], which we will
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Table 2: Selected symbols and abbreviations.

BSDF Bidirectional Scattering Distribution Function
BSSRDF Bidirectional Scattering-Surface Reflectance Distri-

bution Function
BRDF Bidirectional Reflectance Distribution Function
BTDF Bidirectional Transmittance Distribution Function
fm microfacet BSDF
fs BSDF
S BSSRDF
fr BRDF
ft BTDF
λ wavelength
nxx (complex) index of refraction of medium xx
Φ radiant flux
L radiance
Lv spectral radiance
E irradiance
σs scattering coefficient
σa absorption coefficient
σt extinction coefficient (σt = σs +σa)
g asymmetry parameter
p phase function
pm particle phase function
Cs particle scattering cross section
Ca particle absorption cross section
τ optical depth
Rq Root-Mean-Square (RMS) roughness
Rdq RMS slope
R̂q,rel band limited RMS roughness
Rq,tot total RMS roughness
F Fourier transform
BTF Bidirectional Texture Function
RTE Radiative Transfer Equation
KM Kubelka-Munk
RCWA Rigorous Coupled-Wave Analysis
FEM Finite Element Method
FDTD Finite Difference Time Domain
RR Rayleigh-Rice
ACF Auto-Correlation Function
GHS Generalised Harvey Shack
PSD Power Spectral Density

not consider in this work. We will also not consider models from
quantum optics.

Instead of counting photons, which are extremely numerous in
the visible part of the spectrum, we may consider electromagnetic
waves. The number of photons per second is proportional to the en-
ergy flux of the electromagnetic field, in which the wave frequency
corresponds to the photon energy. The material properties entering
into more macroscopic versions of Maxwell’s equations are per-
mittivity, permeability, and conductivity. A nice way to summarize
these material properties is by means of the (complex) index of re-
fraction nmed. Given this material property, which depends on the
frequency of the electromagnetic wave and thus the wavelength, we
can derive how electromagnetic waves scatter at interfaces between

media of different indices of refraction. In this regime of wave the-
ory, all geometric features around the size of a wavelength should
be defined. We can use this scale for computing the scattering at a
position x in a more macroscopic model. The microgeometry used
for computing such a scattering function then represents a differen-
tial area dA or volume dV around a position x.

The scattering functions that we can compute by considering
electromagnetic wave propagation are extremely useful. Consider
a plane wave incident on a surface between two half-space me-
dia (of refractive indices ni and nt ). By requiring continuity across
the interface of the components of the electric field vector (E)
and the magnetic vector (H) that are tangent to the surface, we
can derive the laws of reflection and refraction and Fresnel’s equa-
tions [Bel67]. This provides us with the bidirectional scattering dis-
tribution function (BSDF) of a perfectly smooth interface. We can
also consider a plane wave in a medium of refractive index nmed
incident on a spherical particle of refractive index np. This gives
rise to a spherical wave that provides a directional distribution of
the scattered light (a phase function) [BH83]. These functions are
essential, but we need a yet more macroscopic scale to describe the
scattering function of a translucent material.

At the next scale, we consider an ensemble of surface micro-
facets or an ensemble of small particles in a volume. Each micro-
facet has a BSDF fm [TS67, Bli77, WMLT07] and each particle
a phase function from the microscale pm [Bli82, Cal96, FCJ07].
Based on an ensemble, defined by a distribution of microfacet nor-
mals or a size distribution of small particles, we can derive or com-
pute the bulk scattering properties of a material at a more macro-
scopic scale. The scale is then significantly larger than the wave-
length of visible light, and it then makes sense to use geomet-
rical optics and thus ray tracing as the model of light propaga-
tion [WAT92, MPH∗15]. To keep track of the flow of energy, we
turn to radiometry [Nic63] and radiative transfer theory [Cha50]. At
this scale, we can use path tracing [Rus88,PH00,FCJ12,PJH16] to
compute the appearance or the global scattering effect of a translu-
cent object.

Path tracing operates locally. We probabilistically consider scat-
tering and absorption events as we trace a path through an ob-
ject or between object surfaces. Macroscopic scattering functions
represent the global scattering effect. Given the surface X of a
translucent object and its optical properties, a macroscopic scat-
tering function represents the net effect of all in-surface and sub-
surface scattering. The theoretical link between the local and the
global formulation is provided by Preisendorfer [Pre65]. Venable
and Hsia [VH74] presented a technical report on the measure-
ment of such a complicated scattering function, while Nicodemus
et al. [NRH∗77] provided a seminal report defining various sim-
plified versions of the scattering function, namely the well-known
bidirectional distribution functions.

4. Local to Global Models and Optical Properties

Consider a point x along a ray of light traveling in the direction ω⃗.
We use boldface to denote position vectors and arrow overline to
denote a direction vector of unit length. In the local formulation,
we can consider the change in radiance L as we take an infinitesi-
mal step along the ray. This change is written mathematically as an
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integro-differential equation, where the derivative is with respect
to the distance s travelled along the ray. Writing this in terms of a
directional derivative, we have the radiative transfer equation in its
differential form [Cha50]:

(⃗ω ·∇)L(x, ω⃗) = −(σa(x)+σs(x))L(x, ω⃗)+ ℓe(x, ω⃗)

+σs(x)
∫

4π

p(x, ω⃗′, ω⃗)L(x, ω⃗′)dω
′ , (1)

where ℓe is radiance emitted in the direction of interest per unit dis-
tance travelled through the medium. The scattering coefficient σs
denotes the amount of scattering per unit distance travelled through
the medium. The absorption coefficient σa is similar but denotes the
amount of absorption. In the case of anisotropic materials, these co-
efficients depend on the direction of light propagation ω⃗ [JAM∗10].
The first term of the RTE then describes the loss of radiance due to
absorption and out-scattering. The second term describes emission
of radiance per unit distance travelled through the medium and the
third term describes in-scattering of radiance per unit distance. The
integral is over all directions ω⃗

′, that is, all 4π solid angles in the
unit sphere, and p is the phase function. The phase function is thus
used here to find the part of the radiance incident from all directions
that is scattered into the direction of interest ω⃗. The phase function
can be isotropic or anisotropic. For real materials, the latter is usu-
ally the case, and this is referred to as scattering anisotropy (not to
be confused with the material anisotropy discussed above).

Radiance is defined in terms of radiant flux Φ (radiant energy per
unit time) at an element of surface area dA. The energy flows in a
directional cone described by an element of solid angle dω, and the
radiance is the part of the energy flow that projects to the area dA.
Mathematically, radiance is defined by [Nic63]

L =
d2

Φ

dA⊥ dω
=

d2
Φ

cosθdAdω
, (2)

where dA⊥ is projected area and θ is the angle between the sur-
face normal n⃗ of dA and the direction ω⃗ of dω. This definition of
radiance works well when light scatters between surface elements.
However, if light scatters in a volume, there is no surface normal to
describe the projected area. As the element of area, we instead use
the total scattering cross section of the particles that scatter light in
an element of volume dV .

The scattering coefficient σs is the total scattering cross section
per unit volume. For a group of particles scattering light indepen-
dently, we have [vdH57]

σs =
∫ ∞

0
Cs(r)dN(r) , (3)

where r is the size (radius) while Cs is the scattering cross section of
a light scattering particle, and dN is the number density. This means
that we can define the total scattering cross section by [SH02]

dAs = σs dV (4)

and this is used in place of the element of projected area in the defi-
nition of radiance (dA⊥ becomes dAs) in order to describe scattered
radiance in a volume. The scattering cross section of a particle as
well as its phase function pm and absorption cross section Ca can
be calculated using Maxwell’s equations, where Poynting’s vector
provides the direction and magnitude of the energy in the field. We

thereby have a link in these optical properties to light scattering at
a more microscopic scale.

In the case of a translucent object, we are not so interested in the
local scattering events along a ray of light traversing the medium.
We would rather like to determine the light emerging at the surface
of the object. The emergent radiant flux is the observable quantity.
We thus introduce an object boundary X , which would commonly
be defined by a triangle mesh. At a surface area element dA, the
amount of radiant flux incident per unit area is called irradiance
(E = dΦ/dA). We can then specify a function fs that describes the
factor of proportionality between an element of outgoing radiance
dLo and an element of irradiance dE [BDW81]:

fs(x, ω⃗i, ω⃗o) =
dLo(x, ω⃗o)

dE(x, ω⃗i)
, (5)

where dE is a differential element of irradiance incident from a
solid angle that in the limit is only one direction ω⃗i. Note that fs
is a mesoscopic BSDF that (like p, σs, σa) can be calculated for
a given surface microgeometry by resorting to scattering at a more
microscopic scale. The boundary conditions for a translucent object
with surface points xo ∈ X are then

Lo(xo, ω⃗o) =
∫

4π

fs(xo, ω⃗i, ω⃗o)dE(xo, ω⃗i)

=
∫

4π

fs(xo, ω⃗i, ω⃗o)Li(x, ω⃗i)|cosθi|dωi . (6)

We have now reached a level of theoretical development where
we can start deriving the macroscopic scattering functions known
as bidirectional distribution functions. This is done by solving
the RTE with given boundary conditions. Taking a non-emissive
medium (ℓe = 0) and reformulating the directional derivative in
Eq. (1) as a derivative with respect to distance s traveled along the
ray x(s) = xo + s⃗ω, we find the RTE in integral form [Cha50]

L(s, ω⃗) = L(0, ω⃗)e−τ(0,s)

+
∫ s

0
σs(s′)

∫
4π

p(s′, ω⃗′, ω⃗)L(s′, ω⃗′)dω
′ e−τ(s′,s) ds′ (7)

where τ is optical depth:

τ(s′,s) =
∫ s

s′
σt(t)dt =

∫ s

s′
(σa(t)+σs(t))dt , (8)

and σt = σa +σs is referred to as the extinction coefficient.

The first term in Eq. (7) is called the beam-transmitted radi-
ance [Pre65] or the reduced intensity term [Ish78]. This is the radi-
ance that passes through the interior of the medium without being
scattered or absorbed. The second term is the path radiance [Pre65]
or the diffuse intensity term [Ish78]. For radiance entering the
medium L(0, ω⃗) = Lo(xo, ω⃗), let us make an operator S0 that re-
turns the reduced intensity term, and an integral operator S1 return-
ing the diffuse intensity term for a given ray. We can now repeatedly
apply S1 to get the effect of multiple scattering events and construct
an operator that represents the net effect of the subsurface scatter-
ing in the medium [Pre65]

S0 +
∞
∑
j=1

S j =
∞
∑
j=0

S j . (9)
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If we similarly construct an integral operator Fs that given inci-
dent radiance Li uses the boundary conditions in Eq. (6) to obtain
the radiance Lo scattered from a surface element, we can write

S = Fs

∞
∑
j=0

S jFs . (10)

The operator then applies to radiance incident in positions xi every-
where on the surface X of an object and returns reflected radiance,
so that Lr = LiS. Following Preisendorfer [Pre65], we can then de-
fine a function based on this scattering operator

S(X ;xi, ω⃗i;xo, ω⃗o) = lim
Xi → xi
Ωi → ω⃗i

LiS(xo, ω⃗o)

Li(Xi,Ωi)Ai⊥(Xi)ωi(Ωi)

=
dLr(xo, ω⃗o)

Li(xi, ω⃗i)dAi⊥ dωi
=

dLr(xo, ω⃗o)

dΦi(xi, ω⃗i)
. (11)

This is the bidirectional scattering-surface reflectance distribution
function (BSSRDF) defined by Nicodemus et al. [NRH∗77] using
the latter expression. By means of the scattering operator, Eq. (11)
provides a link between a scattering function at the most macro-
scopic level and a level where we can employ path tracing.

We can also work with path tracing at the most macroscopic
level. We would then render images by solving the following (ex-
tended rendering) equation instead of solving the RTE with bound-
ary conditions [Pre65, JMLH01, FHK14]:

Lo(xo, ω⃗o) = Le(xo, ω⃗o)

+
∫

A

∫
2π

S(X ;xi, ω⃗i;xo, ω⃗o)Li(xi, ω⃗i)cosθi dωi dA . (12)

Here, Le is radiance emitted at the surface, which is a consequence
of the volume emission term ℓe in Eq. (1). This term was not in-
cluded in the BSSRDF as we assumed a non-emissive medium.

Chandrasekhar [Cha58] showed that a scattering function like S
is reciprocal, meaning that

S(X ;xi, ω⃗i;xo, ω⃗o) = S(X ;xo, ω⃗o;xi, ω⃗i) . (13)

This is also clear from the scattering operator as phase functions p
and BSDFs fs are likewise reciprocal. Venable and Hsia [VH74]
provide measurement equations for the S-function including the
spectral dependency that we can include with all radiometric quan-
tities and optical properties if we want to be explicit about it.
Nicodemus et al. [NRH∗77] further simplified the BSSRDF by in-
tegrating it over a uniformly irradiated area around the point of the
emergent radiance. This led to the bidirectional reflectance distri-
bution function (BRDF):

fr(x, ω⃗i, ω⃗o) =
∫

Ai

S(X ;xi, ω⃗i;x, ω⃗o)dAi =
dLr(x, ω⃗o)

dE(x, ω⃗i)
. (14)

Note the difference in scale between the BSDF in Eq. (5) and this
BRDF approximation of the BSSRDF. The former is concerned
with surface scattering only. The latter includes any local subsur-
face scattering that an observed object might exhibit. If we use the
approximate BRDF in Eq. (12), so that fr replaces

∫
A SdA, we have

the conventional rendering equation [Nic65, Kaj86].

BSDF

BTDF

BSSRDF

BRDF

Figure 2: Illustration of collective scattering distribution functions.
The BSSRDF includes both surface and subsurface scattering and
models that light can be incident and emergent at different surface
positions. The macroscopic BSDF is an approximation of the BSS-
RDF that assumes scattering to be local with light incident and
emergent in the same macroscopic surface position.

5. Collective Scattering Distribution Functions

The BSSRDF, S in Eq. (11), is a very general scattering function
that describes the relationship between any configuration of incom-
ing and outgoing light and the net scattering effect of an object. Fig-
ure 2 illustrates how the BSSRDF allows for both in-surface and
subsurface scattering throughout a translucent object. The BSS-
RDF is a function of the object geometry and, given a parametriza-
tion of the object surface, four spatial and four angular variables.

As the BRDF is local and considers light to be incident and emer-
gent in the same macroscopic surface position with directions in
the same hemisphere, we need a different function for specifying
bidirectional transmittance. The bidirectional transmittance distri-
bution function (BTDF) is like the BRDF, but describes the trans-
mittance properties of a thin scattering film. The BTDF has light
emerging with a direction in the opposite hemisphere from a point
on the opposite side of the film that is not significantly separated
from the point of incidence, see Figure 2. Like the BRDF, the BTDF
is a function of four angular variables.

With macroscopic BRDF and BTDF functions, we can also de-
fine a macroscopic BSDF by combining these two [BDW81]. This
is conceptually different from the mesoscopic BSDF defined in
Eq. (5), which specifically describes the scattering at an interface.
The macroscopic BSDF is illustrated in Figure 2 and describes the
scattering of light in materials where volume scattering is not sig-
nificant. If we consider the differential element of surface area with
relevant scattering dA to be the same both for incident, reflected,
and transmitted light, we can measure the BSDF using

fs(⃗ωi, ω⃗o) =
dLo

dE
=

d2
Φo

cosθo dAdωo

/
dΦi

dA
≈ Φo/Ωo

Φi cosθo
, (15)

where Φi is radiant flux incident from approximately one direc-
tion ω⃗i and Φo is the outgoing flux scattered through solid angle
Ωo around ω⃗o at scattering angle θo relative to the surface normal.
The cosθo factor corrects for the projection of the illuminated area
when viewed from the scattering direction, this is sometimes omit-
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Figure 3: Schematic of the goniometric approach to measure the
BRDF and the BSSRDF. Samples are rotated with respect to both
light source and detector and can also be translated to capture spa-
tially varying properties. In case of anisotropic samples, the rota-
tions may also occur out of plane.

ted from the expression, resulting in the so-called cosine-corrected
BSDF, also known as angle resolved scatter (ARS) [Sto12].

When discussing measurements, we specify scattering functions
in terms of radiant flux. The reason for this is that not all radio-
metric quantities are directly measurable. A photodetector converts
photons into current and thus responds to the radiant energy en-
tering the volume of the detector through its surface. The detector
responsivity is thus a function of position, direction, wavelength,
time, and polarization of the incident radiation [VH74, NKH76].
To describe an optical radiation measurement mathematically, we
should define a measurement equation. This is an equation relat-
ing detector signal to responsivity-weighted incident radiance inte-
grated over exposure time and wavelength interval as well as sur-
face area and solid angle of the detector [VH74, KN78]. We can
convert the signal into radiometric quantities such as radiant flux
(through division by calibration measurement and exposure time).
Specification of a measurement equation is important for forward
and inverse models, as we can use it to convert simulation of re-
flected or scattered radiance into the quantities that would be used
for measurement of the collective scattering distribution functions.

6. Experimental Methodologies

As indicated in the previous section, experimental instrumentation
used for measuring a collective scattering distribution function has
finite limits on resolution and accuracy. This leads to differences
between the measured and the ‘true’ functions [Sto12]. BSDF mea-
surements are typically performed with a goniometric approach
where a light source illuminates the sample under study (produc-
ing irradiance), and a moving detector records the outgoing light
intensity versus scattering direction ω⃗o by scanning in one or two
dimensions [E2311]. The setup is illustrated in Figure 3. One way
to characterize the irradiance is to use a reference measurement
where the sample is either absent or replaced by a reference sample
with known reflectance properties. Additionally, knowledge of the
detector aperture size and distance from the sample is necessary for

calculating the BSDF (as we need Ωo). The direction of incidence
ω⃗i can be varied by either moving the light source or rotating the
sample. Lasers are often used as light sources, but other sources can
also be applied, especially when employing multiple wavelengths.
Naturally, the wavelengths employed in visual appearance mea-
surements are confined to the visible part of the spectrum. Outside
this region, technical difficulties arise when going below 200 nm or
above 15,000 nm. Further, when using a coherent light source com-
bined with small acceptance apertures, speckle can occur, causing
erratic variations in the scattered light [E2311]. This can be helped
by averaging over larger areas or over several positions. The BRDF
is obtained by measuring the BSDF in a reflective geometry, and
the BTDF is obtained by measuring in a transmissive geometry.

In contrast to the BSDF, no standard sampling method is avail-
able for the 8-dimensional BSSRDF owing to its high dimension-
ality, and no primary equipment exists for BSSRDF measurements.
A common way to estimate the BSSRDF is using a camera-based
approach as proposed by Jensen et al. [JMLH01]. Here, a tightly fo-
cused beam illuminates the sample with a very narrow spatial distri-
bution (xi in Eq. (11)) while a camera records emergent light from
a fixed angle but at multiple positions (xo in Eq. (11)) simultane-
ously. A reference measurement with an ideal diffuser was used to
determine the irradiance. Jensen et al. [JMLH01] divide their BSS-
RDF model into a directionally dependent single scattering term
and a directionally independent multiple scattering term. The latter
is accessible by their experimental method as it depends only on the
distance between xi and xo. Gkioulekas et al. [GZB∗13] presented
camera-based measurement of a more complete set of optical prop-
erties (σs, σa, p) where the incoming and outgoing light directions
(⃗ωi and ω⃗o) were varied within a plane using two motorized rota-
tion stages. Inoshita et al. [ITM∗13] presented a method for sam-
pling the full BSSRDF. They employed a polyhedral mirror system
to illuminate and observe an object from multiple directions.

If we consider large objects of arbitrary shape, and possibly het-
erogeneous materials, geometry and appearance become intricately
intertwined. This makes it particularly difficult to estimate the ap-
parent optical properties of such objects. There are two ways to go
about arbitrary shapes: measure both the appearance and geometry
simultaneously and separate the optical properties from the geo-
metrical influence, or ignore all the complexity of inhomogeneities
and geometry and represent the reflectances using bidirectional
texture functions (BTFs) [DVGNK99,DHT∗00,LYS01,TWL∗05].
BTFs include the effects of microgeometry and subsurface scat-
tering without actually modelling the behaviour. It boils down to a
bidirectionally dependent texture on a macroscopic 3D model, such
as a triangle mesh. This is great for the purpose of re-rendering the
original object. However, it hides most details of the material and
optical properties, making parameterization or appearance transfer
very difficult.

In order to estimate the apparent optical properties of objects,
we need to measure and account for their geometries. The simul-
taneous measurement of appearance and geometry is often per-
formed straightforwardly by extending the camera-based methods
mentioned above. Using cameras for appearance and optical 3D
scanners for geometry has been demonstrated to estimate BRDFs
of homogeneous [MWL∗99] and inhomogeneous [LKG∗01] ma-
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terials and even extended to infer BSSRDFs [GLL∗04, WMP∗06,
GHP∗08]. A few studies [HLZ10, TFG∗13] measured geometry
and appearance from the same underlying data (images), thus re-
moving the complications from combining the data afterwards. Ad-
ditionally, for convex geometry, Munoz et al. [MES∗11] inferred
homogeneous BSSRDFs using only single images.

It is important to note that the accuracy of geometrical measure-
ments may be, and often is, poor when the local curvature is compa-
rable to the depth of the subsurface light transport. In fact, subsur-
face scattering often results in blurring of the light and, in turn, er-
rors in geometric estimations. Godin et al. [GBR∗01] demonstrated
the errors that arise when scanning translucent objects, and a recent
study highlights similar errors in state-of-the-art commercial 3D
scanners [GGF∗19]. It is therefore critical to consider optical scan-
ning methods designed specifically for the scanning of translucent
materials [IKL∗10]. The preferred approach is currently to separate
surface and subsurface scattering and try to eliminate or reduce the
geometric errors. Various schemes have been proposed such as po-
larization filtering [CLFS07], modulated phase-shifting [CSL08],
high frequency (micro) phase-shifting [GN12], and light transport
analysis [OMK14]. An alternative is to coat the object with a fine
layer of optically diffuse dust [GLL∗04]. Unlike the other non-
contact methods, coating requires full contact and directly modi-
fies the object surface. The appearance of a translucent object with
an arbitrary shape is still difficult to acquire, especially when the
optical penetration depth is on the same order as the geometrical
estimation errors.

7. Radiometric Models

When considering optical simulation models for how light inter-
acts with scattering surfaces and scattering media, there are two
main categories. One category is based on a complete description
of how electromagnetic fields interact with materials. An appropri-
ate name for such models is thus field models. These models pro-
vide the most realistic, physics-based description of how light is
scattered by considering Maxwell’s equations. All coherent wave
phenomena are then accounted for, which permits accurate mod-
elling of effects such as interference and diffraction.

Another approach is to describe how radiant energy is redis-
tributed by dissipative (absorption) and non-dissipative (scattering)
effects inside a material. These radiometric models are employed
in diverse fields such as optical molecular imaging, infrared and
visible light photography in space and atmosphere, heat transfer,
astrophysics, lighting design, and atmospheric science [THH13].

By focusing solely on the power distribution and ignoring phase
information, radiometric models lack the capability of directly
modelling effects that require a field representation, such as diffrac-
tion and interference. It is however important to realize that such
field effects can at least partially be implemented in a radiometric
model via the optical properties of the considered scattering mate-
rials and scattering surfaces, as explained in Section 3.

In essence, all radiometric models rely on the radiative transfer
equation (1) in order to describe how radiant flux is redistributed
inside a domain due to absorption, elastic scattering and emission.
Furthermore, Eq. (6) is used in order to model how radiant flux is

redistributed at a surface between two different materials, includ-
ing smooth surfaces with specular reflection and transmission. This
implies that in order to model an optical system reliably, radiomet-
ric models need three input properties for all considered media: the
absorption coefficient, scatter coefficient and phase function (σa,
σs, p), and the BSDF ( fs) for all considered surfaces. When there
is a significant wavelength dependence in these optical properties,
the spectral radiance should be considered, which extends the defi-
nition of radiance to include wavelength information:

Lv =
dL
dλ

. (16)

Solving the radiative transfer equation for a certain material and
a certain illumination source permits obtaining the spectral radi-
ance at the boundaries of the material, from which any related ra-
diometric or photometric quantity can then be derived, such as the
radiant intensity or the illuminance. In addition, due to Preisendor-
fer’s link between the RTE and the BSSRDF (see Section 4), values
of the collective scattering distribution functions (BSSRDF, BRDF,
BTDF) can be simulated for different wavelengths.

Many different methods are available for solving the radiative
transfer equation [vdH80, VHWF13], such as discrete ordinate or
Sn methods [FYH∗18] and spherical harmonics or Pn methods
[CSY∗15, DBL10]. Of interest are methods such as the Kubelka-
Munk model, widely adopted in papermaking and colour indus-
tries [All80], methods based on the adding-doubling method, used
in biomedical research [LCH∗18, Pra95] and lighting [LMD∗14,
CCL∗16], and Monte Carlo methods [WJZ95, FB09, CHCM17,
NGHJ18] which are ubiquitous in many fields.

Importantly, there is some overlap between the numerical meth-
ods used to solve either radiometric models or field models. Finite
element methods (described in Section 8) can be used to solve both
the RTE and Maxwell’s equations and ray-tracing techniques can
be extended to include field effects [SBW03]. Thus, it is impor-
tant to stress that the main distinction between field models and
radiometric models is conceptual: field models describe the in-
teractions between electromagnetic waves and the material using
Maxwell’s equations, while radiometric models describe how ra-
diometric quantities are redistributed. Both models are essentially
direct or forward methods as they permit simulating from intrinsic
material properties how light is scattered. While we can use either
approach at any scale, one should note that the smaller the geo-
metric features in question, the more important the wave effects
included with the field models.

7.1. Kubelka-Munk Model

The Kubelka-Munk (KM) model [KM31] is a useful way of ac-
quiring the diffuse reflectance of a material [HM92, DH96]. It is a
1D radiative transfer model assuming incidence on one side of a
plane-parallel turbid medium, so that we have only two light fluxes
propagating either upwards or downwards. When applied to homo-
geneous media, the theory relates the rates of change of light fluxes
in two opposing directions at a position z to the local degrees of
absorption and forward and backward scattering. These in turn are
stipulated to be proportional to the local flux intensities themselves,
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Φ
−(z) and Φ

+(z), namely

−dΦ
−

dz
= −(ηs +ηa)Φ

−+ηsΦ
+ , (17)

dΦ
+

dz
= −(ηs +ηa)Φ

++ηsΦ
− , (18)

where the proportionality constants are phenomenological coeffi-
cients of absorption and scattering, ηa and ηs.

These phenomenological coefficients, ηa and ηs, are linear func-
tions of the intrinsic coefficients of absorption and scattering of the
medium, σa and σs, i.e. [Nob85]

ηa = ασa, ηs =
α

2
σs , (19)

where

α =
∫ π

2

0

1
Φ
−
0

∂Φ
−

∂θ

dθ

cosθ
. (20)

The factor α ∈ [1,2] is equal to unity for collimated incident light
normal to a non-diffusing medium and equal to 2 when the light
distribution is perfectly diffuse as in the case of the original KM
model. For other types of light distributions, α takes a value be-
tween these two extremes, depending on their respective diffuse-
ness grades [YH08].

For a diffuse medium layer of thickness D immersed in air, its
reflectance and transmittance values can be expressed as [YH08]

R = Kr0 +(1− r0)(1− r1)
(R∞− r1)e

−2βD−R∞(1−R∞r1)

(R∞− r1)2e−2βD− (1−R∞r1)2

(21)
and

T = (1− r0)(1− r1)
(1−R2

∞)e−βD

(1− r1R2∞)− (R∞− r1)2e−2βD
, (22)

where K is a factor depending on the measurement geometry, r0 and
r1 account for the external and internal reflections at the air/medium
interfaces, and β =

√
η2

a +2ηaηs. The quantity R∞ is the intrinsic
reflection of the medium, that is,

R∞ = 1+
ηa

ηs
− β

ηs
. (23)

In addition to the original two flux approximation, the KM model
has been further extended to four fluxes, namely two for the up-
ward and downward collimated radiant fluxes, and another two
corresponding diffuse fluxes. It was reported that the four-flux
model compares well with numerical solutions of the radiative
transfer equation and with highly accurate Monte Carlo simula-
tions [VN97].

In combination with a multipole BSSRDF model for thin lay-
ers [Wan98], the Kubelka-Munk theory can be used in frequency
space to combine several different layers into one BSSRDF model
for a multi-layered material [DJ05, DJ06, DWd∗08]. This model
is used extensively in modelling of the appearance of human
skin [NMM∗19], which is an indicator that the Kubelka-Munk the-
ory is still highly relevant.

T(�',�)

R(�',�)

I(�')

Figure 4: Illustration of how light is described in the adding-
doubling method.

7.2. Adding-Doubling Method

The adding-doubling method solves the radiative transfer equa-
tion for time-independent, one-dimensional, azimuthally-averaged
problems and homogeneous optical properties [vdH68,Pra95]. This
means that the light scattering distribution in adding-doubling can
be described using the inclination angle θ. For brevity in equations,
we use µ = cosθ. Figure 4 illustrates the directional discretiza-
tion employed by adding-doubling. Thus, adding-doubling is well
suited for quickly estimating the radiant intensity distribution or the
BSDF of a material slab with known volume scattering properties.

In adding-doubling, the problem domain is first reduced to a
layer with infinitesimal thickness, so that only a single scattering
event can occur when a beam of light interacts with the material.
This enables calculation of a reflection distribution R(µ′,µ) and a
transmission distribution T (µ′,µ) describing the radiance normal-
ized to an incident diffuse flux from the direction of incidence ω⃗i
which is reflected or transmitted towards the outgoing direction ω⃗o.

With vectorized single-event layer distributions, adding-
doubling proceeds with the doubling method. A given layer with
surfaces 0 and 1 is doubled by positioning a layer 2 with the
same properties on top. New transmission and reflection distribu-
tion functions for the combined layer are calculated using

T i j = T 1 j
(

I−R1iR1 j
)−1

T i1

R ji = T 1 j
(

I−R1iR1 j
)−1

R1iT j1 +R j1 ,

(24)

These are 2D matrix expressions in which I is the identity matrix,
and i = 0 and j = 2 or conversely. The doubling process is iterated
until the thickness of the combined layers is the same as the sample
being modelled.

If necessary, e.g. in the case of a liquid sample inside a glass
container, different layers can be added at the boundaries using the
adding method. This uses expressions similar to Eqs. (24) to update
the scattering distributions but accounts for the different refractive
index of the added boundary layers. The resulting scattering func-
tions can be used to predict how a distribution of incident light I(µ)
is scattered backwards or forward. The radiant intensity of light
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scattered forward is, for example,

It(µ) =
∫ 1

0
T (µ′,µ) I(µ′)2µ′ dµ′

Other important radiometric quantities, such as the total reflection
or transmission, can be calculated from the radiant intensity.

Importantly, the adding-doubling method imposes little restric-
tions on the properties of the scattering materials that can be used
with it [Pra95]. It supports anisotropic phase functions and imposes
virtually no limit on the size parameter (particle size to wavelength
ratio). The key advantage of adding-doubling is its efficiency, mak-
ing it well suited for solving the inverse problem of extracting the
(spectral) volume scattering properties from total transmission and
reflection, or radiant intensity measurements of samples, assuming
these are homogeneous and planar [PvGW93, LMD∗14, CCL∗16].
Additionally, adding-doubling permits calculation of internal radio-
metric quantities, e.g. fluence. However, the method is not partic-
ularly well suited for this task and alternative methods based on
discrete ordinates can be used instead.

The adding-doubling method is used in graphics as a forward
model for computing the BRDF or the BSDF of multi-layered ma-
terials that include scattering within the layers [EKM01, JdJM14,
Bel18, ZJ18]. However, to the best of our knowledge, the inverse
technique has not been used in the graphics community. Inverse
adding-doubling is dismissed by Gkioulekas et al. [GZB∗13] as
being too limited in terms of angular scattering information and
thus restricted to inversion based on low-parameter phase function
models. Even so, inverse adding-doubling is the reference method
for acquiring the wavelength-dependent scattering properties of
translucent materials (σs(λ),σa(λ), p(µ,λ)) in many other fields.

7.3. Monte Carlo Methods

Monte Carlo ray tracing is one of the most widely used methods
for solving the radiative transfer equation (RTE). In rendering, the
purpose is commonly to obtain realistic depictions of scenes with
participating media [NGHJ18]. In other fields, such as lighting and
biomedicine, the focus is usually on estimating a wide range of ex-
ternal and internal radiometric quantities or on modelling specific
biomedical imaging devices [ZL13, PP17]. It is important to note
that a Monte Carlo method is really applying Monte Carlo integra-
tion to the measurement equation for the detector that we are mod-
elling (most often pixels of a camera). Any radiance term appearing
in the measurement equation is then obtained through Monte Carlo
integration of the integral version of the RTE including boundary
conditions (6–8). Alternatively, if a BSSRDF is available, we would
Monte Carlo integrate Eq. (12) instead.

Unlike the other radiometric models, Monte Carlo ray tracing
follows a probabilistic view of the light scattering process [Kaj86,
Rus88,WJZ95]. The redistribution of energy through scattering and
absorption is individualized into eye rays or light rays or photon
packets which interact with the material independently from one
another. In this way, we can describe a light path (or eye path) be-
fore and after interacting with the material using solely geometric
principles. The flexibility afforded by this approach is significant
because, unlike the other radiometric models, any sample geom-
etry and boundary condition can be readily used with, or closely

approximated by, Monte Carlo ray tracing. With Monte Carlo, the
three-dimensional radiative transfer problem can be solved for het-
erogeneous materials under arbitrary illumination conditions. Fur-
thermore, Monte Carlo ray tracing provides a very straightforward
way of modelling materials that exhibit inelastic scattering such as
bioluminescent samples or fluorescent phosphors.

In Monte Carlo ray tracing, interactions between light rays and
material volumes are modelled stochastically. For instance, the di-
rection in which a light ray is scattered after interacting with a
volume can be determined by sampling the phase function us-
ing a pseudo-random, a low discrepancy, or a quasi-random num-
ber [KTB11]. Similarly, we can decide whether to scatter or absorb
a light ray, or whether to reflect or refract the ray at the surface,
using the Russian roulette sampling technique [AK90].

After a sufficiently large number of paths have been traced
through a translucent object and terminated, they are aggre-
gated and their combined information is useful for simulating
any radiometric quantities of interest. One option is to evaluate
BRDF [PH00] or BSSRDF [DLR∗09] for various optical proper-
ties. For lighting, important quantities such as the luminance or the
radiant intensity distribution (beam pattern) are typically calculated
using Monte Carlo ray tracing [CHCM17], while in biomedicine
the same methods are used for calculating internal radiometric
quantities such as the fluence distribution [FB09, WJZ95].

The flexibility of Monte Carlo ray tracing comes at the expense
of computational efficiency or simulation time. The accuracy of a
simulation depends on the number of light paths (and/or eye paths)
that we trace, and generally millions of different light rays need
to be traced to decrease stochastic noise and obtain a reasonably
accurate simulation. Depending on the radiometric quantity being
simulated and the necessary accuracy, it may be necessary to trace a
greatly varying number of rays, which impacts the simulation time.
For instance, accurate estimates of the transmission and the reflec-
tion of a scattering sample are substantially faster to obtain than an
accurate simulation of the spectral radiance distribution.

The lower computational efficiency of Monte Carlo ray tracing
in simulating a scattering distribution may make it a poor match
to solve the inverse problem, which typically requires performing
several simulations to obtain an accurate solution. In most cases,
the flexibility afforded by Monte Carlo ray tracing overcomes this
limitation. In addition, the recent development in graphics process-
ing hardware has significantly improved the performance of Monte
Carlo ray tracing and made it a competitive approach to solving the
inverse problem [MZL∗16, NDVZJ19, LHJ19].

8. Field Models

The collective scattering distribution functions (BSSRDF, BRDF,
and BTDF) are good candidates for real time monitoring of the
surface finishing in industrial processes since they describe the ap-
pearance on a macroscopic scale, and the measurements are typ-
ically vibration insensitive. We will in this section describe how
appearance can be linked to direct physical measurands of the ob-
ject using a physical model of the interaction between light and
matter. This model may be a solution to Maxwell’s equations, the
Helmholtz equations or approximations hereof.
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No field interference
I = |E1|2 + |E2|2

With field interference
I = |E1 + E2|2

Figure 5: Schematic of the emission from two coherent point
sources separated by a small distance. The intensity patterns on
the screens to the right clearly show the effect of accounting for the
interference between the (complex) electric fields E.

A rigorous solution to Maxwell’s equations, found by methods
like Lorenz-Mie theory, finite elements, finite difference time do-
main, and the rigorous coupled-wave analysis, gives the full scat-
tering solution including polarization and coherence properties. As
illustrated in Figure 5, the field interference between coherent light
waves can have a dramatic effect on the intensity distribution of
the scattered light when the critical dimension of the object is com-
parable to the wavelength. Clearly, these methods should be used
for structure and elements with sub-wavelength features. These are
becoming increasingly important within many fields such as ad-
vanced process control in the semiconductor device manufacturing
industry and size determination of nanoparticles within the particle
sizing industry. However, real world problems are very often too
complex to be solved using rigorous solutions. The scalar solution
to the Helmholtz equation is therefore the workhorse for establish-
ing the link between appearance and the direct physical parameters
that can be used to characterize an object.

Collective scattering distribution functions are directly linked to
optical properties through an inverse relation. Inverse problems are
in general ill-posed, but are solvable if we have enough a priori
information. We will show that in the smooth Root-Mean-Square
(RMS) roughness limit, we do not need any a priori knowledge to
handle surface scattering, but as the RMS roughness increases, the
need for a priori information increases. The last part of this section
describes how the volume scattering and substrate scattering may
be incorporated into the description. The incorporation of substrate
scattering is the simpler of the two since the substrate can be in-
vestigated as a surface by sample turning. Non-destructive direct
physical measurements of volume scatterers are not accessible, and
we will therefore handle the volume scatterers as a statistical distri-
bution of scatter sizes that may be represented as interface layer(s)
within the volume when using scalar diffraction.

8.1. Lorenz-Mie Theory

The scattering of a plane wave of light by a sphere was fully de-
scribed by Lorenz [Lor90]. Later, Mie [Mie08] found the same
solution with an outset in Maxwell’s equations and included the
case of an absorbing sphere. This rigorous solution for scatter-
ing of light by a sphere is remarkably useful when it comes to
computation of the far field scattering properties (σa, σs, p) of
a medium containing a random distribution of scattering parti-
cles [Cal96, JW97, FCJ07, DFKB16, FK19].

The Lorenz-Mie solution for Maxwell’s equations is a series ex-
pansion, which is fairly inexpensive to evaluate numerically. The
expansion coefficients are referred to as Lorenz-Mie coefficients
(an and bn). These coefficients depend on size parameters that are
simple functions of particle radius, wavelength, and refractive in-
dices of host medium and particle. The scattering cross section in
Eq. (3) is then

Cs =
λ

2

2π|nmed|2
∞
∑
n=1

(2n+1)(|an|2 + |bn|2) , (25)

where nmed is the refractive index of the host medium. Similarly, we
can find the absorption cross section Ca =Ct−Cs by computing the
extinction cross section Ct using

Ct =
λ

2

2π

∞
∑
n=1

(2n+1)Re

(
an +bn

n2
med

)
, (26)

where Re takes the real part of a complex number. Assuming in-
dependent scattering by the particles in a medium, which is a rea-
sonable assumption for a volume fraction of particulate inclusions
below 0.1, and given a particle number density (a size distribution),
we can derive σs and σa from these cross sections using Eq. (3).

We can also use the Lorenz-Mie coefficients for computing the
phase function of a spherical particle. As an example, this works
well for droplets up to a radius of 0.4 mm after which deformations
due to gravity start resulting in visible deviations in the distribution
of the scattered light [SML∗12]. Another option is to directly cal-
culate the asymmetry parameter, which is the mean cosine of the
scattering angle defined by

g =
∫

4π

p(⃗ω′ · ω⃗) (⃗ω′ · ω⃗)dω
′ . (27)

For the phase function of a spherical particle, we have [vdH57]

g =
∑
∞
n=1

{
n(n+2)

n+1 Re(ana∗n+1 +bnb∗n+1)+
2n+1

n(n+1)Re(anb∗n )
}

1
2 ∑

∞
n=1(2n+1)

(
|an|2 + |bn|2

) ,

(28)
where an asterisk ∗ denotes the complex conjugate.

Clearly, Lorenz-Mie theory provides a fairly straightforward way
of computing the scattering properties of materials composed of
low concentrations of randomly distributed particles that are rea-
sonably spherical. However, the Lorenz-Mie theory provides no in-
formation regarding the surface scattering of a translucent material.
To deal with this, and in cases where the scatterers are more tightly
packed or spatially-correlated [JAG18], we need more general nu-
merical field models. In the following, we discuss field models
providing solutions for more arbitrary geometry. This means that
we can include interference of waves scattered by different geo-
metric features and multiple scattering between the features. How-
ever, these models require precise specification of the micro- or
nanoscopic features and are not as easily connected to more macro-
scopic apparent particle size distributions.

8.2. Finite Element Methods

The finite element method (FEM) is a technique for numerically
solving partial differential equations (PDEs) [Red06]. It is flexible
and used among many physical disciplines such as optics [DM93],
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mechanical engineering [Hug00], and fluid dynamics [ZTN14]. In
graphics, the finite element method is commonly referred to as
the radiosity method [TM93]. Starting with Rushmeier and Tor-
rance [RT87], it has often been used for solving the radiative trans-
fer equation (1). Sheng et al. [SSWN13] used this kind of solu-
tion for computing the BSSRDF of a discretized translucent object.
However, no work in graphics seems to use FEM for computing
optical properties by solving Maxwell’s equations.

Three fundamental steps are employed in FEM:
1) Meshing: discretizing the continuous sample by dividing the
structure into N smaller sub-domains or elements defined by a
mesh.
2) Approximating a solution for each of the N elements ui, as a
local value, ci multiplied by a polynomial ψi, describing how the
solution varies in the parameter space across the element. These are
referred to as element equations.
3) Assembling the global system matrix as a linear combination
of the element equations, finding the local solutions ui by insert-
ing into the original PDEs and applying boundary conditions, and
finally solving for the global solution.

The FEM method controls the numerical accuracy through mesh
refinement (N) and the polynomial degree of ψi on the individual
patches of the mesh. The system matrix size increases with N and
the order of the polynomials ψi. This becomes (as always) a trade-
off between accuracy and a high computation time.

The finite element method allows for very complex geometries.
Some software packages allow for geometries to be defined by
CAD files (COMSOL), and some are specifically designed for op-
tical simulations (JCMWave).

8.3. Finite Difference Time Domain

The finite difference time domain (FDTD) method calculates the
electric and magnetic fields at a given point in space, and advances
them in small time steps, ∆t, and spatial steps, ∆x,∆y,∆z, accord-
ing to Maxwells equations [TH05]. By using a Yee grid scheme
[Yee66], where the fields are stored inside the resulting unit cells,
Maxwell’s divergence equations are naturally satisfied, and we are
left with

∂H

∂t
=−1

µ
∇×E and

∂E

∂t
=

1
ε
∇×H . (29)

For simplicity, we have here assumed a sample with permeability µ
and permittivity ε but no conductivity. Since a change in H implies
a change in E, the E field is found from H , and H is found from
E in each time step, ∆t. Thus, the numerical calculations of the
individual fields are performed in steps of ∆t

2 . One can then evaluate
H(t + ∆ t

2 ) from E(t), E(t +∆ t) from H(t + ∆ t
2 ), H(t + 3∆ t

2 )
from E(t+∆ t) and so forth. This is done for grid points defined by
unit cells of volume: V = ∆x ·∆y ·∆z. A dense grid gives a higher
accuracy at the cost of computation time. For light, ∆t is further
restricted by: ∆t≪ ∆x

c , to satisfy the CFL condition [CFL67].

Since the calculations are performed in the time domain for all
points, it is trivial to graphically represent the system at a given time
step, which makes it intuitive to study an impulse response of the
electromagnetic system. The method is most efficient when the di-
mensions of the examined structures are similar to the wavelength

of the light used [Sch17]. This technique can handle multiple wave-
lengths simultaneously, but requires a very large grid if one wants
to calculate diffraction efficiencies in the far field, which in turn
increases the computation time.

FDTD was introduced to the graphics community by Musbach
et al. [MMRO13]. They used it for computing a tabulated BRDF. In
particular, they modelled the blue iridescent appearance of the mor-
pho butterfly. This species of butterfly has been used as a case study
by others as well (Sun [Sun06], for example). Another use of FDTD
in graphics is to compute a nanostructure that exhibits a particular
reflectance colour and fabricating a surface with this structure us-
ing additive manufacturing [AHB18]. The main objection to FDTD
seems to be that it would be extremely time consuming to compute
a collective scattering distribution function if the microgeometry of
interest has an extent of a cubic millimetre or more [WVJH17].

8.4. Aperiodic Rigorous Coupled-Wave Analysis

The concept of RCWA relies on solving Maxwell’s equations in-
side a medium that is uniform in the z-direction (normal to the sur-
face) so that the light propagating in the medium can be regarded
as plane waves; and subsequently performing Fourier expansion
of Maxwell’s equation along the x- and y- directions. Analytical
treatment of the wave equation in the z-direction enables RCWA to
model uniform structures of arbitrary heights. General structures,
that are not uniform in the z-direction, are subdivided into layers
that are uniform in the z-direction, and the boundary condition may
be solved using the enhanced transmittance matrix approach as ex-
plained in great detail in a recent review paper [MH16]. The RCWA
was originally developed for periodic structures [MGPG95] and
contained a wrong treatment of the Fourier expansion for transverse
magnetic (TM) waves. However, the TM error was later corrected
with the introduction of the normal vector method [SRK∗07].

Any computer program works, in practice, in a finite-size vir-
tual space. The propagation of electromagnetic waves is confined
to this region and can be further restricted to a specific region of
interest by introducing a perfectly matched layer (PML). A PML
is an artificial layer that enables accurate calculation of the electro-
magnetic field inside the region of interest by isolating this region
from neighbouring areas. The combination of RCWA with a PML
is called aperiodic RCWA (aRCWA). Today, aRCWA is a mature
technology for evaluation of the electromagnetic field that offers
great flexibility and short computation times. Among the popular
computational methods, FEM, FDTD, and aRCWA, in electromag-
netic analysis, aRCWA is the youngest and most unknown. How-
ever, the method is very well adapted for nanophotonics and capa-
ble of providing solutions to problems that cannot be solved with
the other methods [HMLN17]. The output from the rigorous meth-
ods are the scattered power over the incident power (diffraction ef-
ficiency), which may be transformed into a BSDF by the use of
Eq. (15). To the best of our knowledge, this approach has not yet
been applied in graphics.

8.5. Scalar Diffraction Models

The Kirchhoff integral of scalar diffraction theory was introduced
to graphics by Kajiya [Kaj85] and again by He et al. [HTSG91].
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Kajiya’s BRDF model takes a surface microstructure as input.
The BRDF of He et al. is based on normal distribution functions
and includes subsurface scattering as a wavelength-dependent dif-
fuse reflectance. Stam [Sta99] connected the Kirchhoff integral to
Fourier transformation of a given microsurface height map. Dong
et al. [DWMG15] followed up on Stam’s work and used it for
profilometer-based BRDF acquisition. The scalar diffraction BRDF
models to be discussed in the following (generalized Harvey-
Shack, Rayleigh-Rice) were introduced to graphics by Löw et
al. [LKYU12] and further investigated by others [HP17, WVJH17,
YHW∗18]. Löw et al. [LKYU12] derived a BRDF model indepen-
dent of wavelength and fitted it to BRDFs measured by Matusik et
al. [MPBM03]. Apart from this, the scalar diffraction models seem
to be used in graphics only as forward models.

The rigorous electromagnetic solvers (FDTD, FEM, aRCWA)
are forward solvers too, since they produce an electromagnetic field
from a predefined structure. Sometimes, however, we are interested
in the inverse problem: determining the structure given an electro-
magnetic field or intensity. This problem is solved by formulating
an optimization problem, as described in Section 10, that finds the
best matching solution through variation of the structure geome-
try. This approach needs a global optimization method or good
initial a priori knowledge of the surface structure. Scalar diffrac-
tion theory (SDT) can provide this initial information [HN09]
since SDT generally is so simple that it can be formulated as
a true inverse problem, without traditional forward calculations.
The scalar Helmholtz equation may be rewritten as the Lippmann-
Schwinger equation, which together with regularization by Neu-
mann series provides a very general method for solving the inverse
problem [LKK13, CK13]. Some of the most widely used inverse
scattering solutions are Rayleigh-Rice (RR) light scattering the-
ory and microfacet theory. Both methods connect the BRDF to the
power spectral density (PSD) [Sto12, GGG∗16]. This can be done
for a field formulation [LH13, JRHH17] or for a radiometric for-
mulation by

fr(θi,φi;θo,φo) = Q
16π

2

λ4 cosθi cosθo PSD(ν) (30)

where Q is a factor dependent on the polarization state of the light
source, the optical properties, and the wavelength λ [Sto12]. The
spatial frequency ν is related to the in-plane scattering angle θo, the
azimuthal scattering angle φo, and the in-plane angle of incidence
θi by the following formula:

ν =
sinθo cosφo− sinθi

λ
. (31)

The PSD describes surface statistics in terms of spatial frequen-
cies ν. We can get the root-mean-square (RMS) roughness (Rq)
from the PSD by integrating over the spatial frequencies, and the
RMS slope (Rdq) by multiplying the PSD by (2πν)2 before inte-
grating over the spatial frequencies. The physical surface slope may
be obtained by scanning the measurement area over the sample and
monitoring the deflection of the specular position in the distribu-
tion function [BBG∗08]. A resolution limited surface profile with
the correct RMS roughness and RMS slope can be constructed from
the deflection measurements, and this surface profile may be used
as input to the rigorous and scalar electromagnetic solvers.

For larger surface roughness, another method called Gener-
alised Harvey-Shack (GHS) has been developed by Krywonos et
al. [KHC11]. GHS is a transfer function describing the interaction
between light and a rough surface, provided that the surface PSD
(or alternatively the auto-correlation function, ACF) is known, and
that the surface has a Gaussian height distribution. Then

fr(θi,φi;θo,φo) = QF(Hs(x̂;µi,µo)) (32)

Hs(x̂;µi,µs) = exp
[
−(2πR̂q,rel(µi +µs))

2
(

1− ACF(x̂)
R2

q,tot

)]
, (33)

where F is the Fourier transform, x̂ = x
λ

, µi = cosθi, µo = cosθo,

R̂q,rel =
Rq,rel

λ
is the band limited RMS roughness found by integrat-

ing the PSD curve over the frequency interval 1
d < ν < 1

λ
. Here,

d is the diameter of the measurement spot, 1
λ

is the spatial fre-
quency limit for propagation modes and Rq,tot is the total RMS
roughness found by integrating the experimental PSD curve over
the entire positive frequency range 1

d < ν < 1
λcut

, where νmin = 1
d

and νmax =
1

λcut
are the experimental cutoff frequencies of the in-

strument. Consequently,

R2
q = 4

∫ νmax

νmin

PSD(ν)dν (34)

R2
dq = 4

∫ νmax

νmin

(2πν)2 PSD(ν)dν . (35)

The two-dimensional PSD from a physical surface may be ob-
tained from microscope images of a surface and turned into the
one-dimensional PSD considered here by image averaging along
the sample BRDF measurement direction [FHP∗15]. It is advis-
able to use a PSD curve with a wider frequency range than the
frequency range obtained by transforming the BRDF angles into
frequency space [Sto12]. This can be achieved by making confo-
cal microscope images of the same area with different numerical
apertures and plotting them together as one PSD plot. The PSD
plot is then fitted using the ABC model [CTL90] (the K-correlation
model) over the entire frequency space. The ACF may be obtained
as the inverse Fourier transform of the PSD curve and the roughness
parameters by integrating the PSD curve in Eqs. (34) and (35).

It is very important to realize that the presented PSD formalism
enables us to link the nano/micro length scale with the macroscopic
mm/cm length scale. The PSD method thus provides a uniform,
scale-independent method for scattering estimation. Here, we show
the results for the ABC model with C = 2, which is typically a good
approximation:

PSDk(ν) =
A

1+(Bν)2 (36)

ACF(x̂) =
πA
B

e−
2πx̂
B (37)

R2
q =

4A
B

arctan(B f )
∣∣∣ f=νmax

f=νmin
(38)

R2
dq =

16π
2A

B3 (B f − arctan(B f ))
∣∣∣ f=νmax

f=νmin
. (39)

The use of the ABC model enables us to perform the inverse Fourier
transformation and the integration analytically, which is a great
help in fitting the GHS to an observed BRDF and thereby obtain-
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𝑓r

𝑆vol
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Figure 6: One incident ray (yellow) is scattered into multiple re-
flected (red) and transmitted (blue) rays when it interacts with the
surface. Each of the transmitted waves are again scattered into re-
flected (red) and transmitted (blue) rays.

ing the resolution-limited surface information from the data. The
interested reader is referred to [KHC11] for more details.

The ABC model gives an incomplete description of the PSD if
periodic surface structure contributions have large amplitudes in
the PSD spectra. The solution is to perform the ACF calculation
numerically or alternatively incorporate the periodic contribution
in the PSD expression. We will treat the periodic contribution in
the PSD spectra as a delta function, occurring at frequency νi, with
an amplitude given by the difference in the experimental (PSDexp)
and ABC PSD value (PSDk). Then

PSD(ν) = PSDk(ν)+∑
i
(PSDexp(νi)−PSDk(νi))δ(ν−νi) . (40)

The periodic contribution in the PSD amplitudes arises from si-
nusoidal waves (sinusoidal gratings). The amplitudes of sinusoidal
gratings have been calculated by many authors and may be found
in the following references [Sto12, Goo05, HKB06].

Comparisons of the GHS model with more rigorous methods
have found good overall agreement [CH13, SDC∗11, HN09]. The
GHS algorithm is based on the angular spectrum method, which
has a computational complexity of O(N2 log(N)), whereas the rig-
orous solver has a best-case complexity of O(N3). A BRDF from
the GHS theory thus serves as an excellent starting point for a more
rigorous treatment, when higher accuracy is needed.

8.6. Inclusion of Subsurface Scatterers and Substrate Surface

We can use rigorous solvers for simulating light scattering by the
entire sample provided that the computational domain is not too big
and that the scattering by surface, substrate, and volume are known
with sufficient precision. However, this is often not the case, so we
have to consider other methods. One approach is to approximate
the entire system by three independent subsystems consisting of a
subsystem for surface scattering fr, a subsystem for back surface
scattering Sback, and a subsystem for subsurface scattering Svol as
shown in Figure 6. In order to calculate BSSRDF and BTDF ex-
pressions, we need knowledge of the three subsystems.

To describe surface and back surface scattering, we may use
nearly the same procedure. The substrate surface is investigated
first using imaging methods like confocal microscopy. Next, the

sample is inverted and an image is acquired, the negative of this
image is the back surface facing the sample. The PSD is now cal-
culated for the back surface image and inserted in either the GHS or
the RR method described in Section 8.5. Subsurface scatterers play
a role when the experimentally observed scattering field cannot be
explained by the surface and the back surface scattering methods.
In cases where the contribution from subsurface scatterers is much
smaller than the surface scattering, the subsurface may be handled
as a perturbation to the surface scattering. The most straightforward
way of including subsurface scattering is by adding an empirical
formula for the subsurface scattering [HGP14]. Here, we will for
the first time show how the GHS model can be used to model sub-
surface scatterers.

GHS calculation is much faster than rigorous calculations and
therefore much more well-suited for the regression method for
solving the inverse problem (discussed in Section 10). For the BSS-
RDF, we have

S(θo) = fr(θo)+Svol(θo)+Sback(θo)+ ft(θo) (41)

fr(θo) = ∑
j

Qref, jF(Hs(x̂;µi, j,µo)) , (42)

where we have neglected higher order contributions, Qref is given
by Q in Eq. (32) and the subscript ref is for reflection. Similarly,
we will use the subscript trans for transmission.

The transmittance through the surface dividing the incident
medium 1 with refractive index n1 and the volume medium 2 with
refractive index n2 is given by QtransF(Hs(x̂;µi,µo)), which may
be written out as

QtransF

(
exp

[
−(2πR̂q,rel(n1µi−n2µs))

2

(
1− ACF(x̂)

R2
q,tot

)])
.

This expression tells us the amount of light scattered into a speci-
fied scattering angle for a given incident angle. This process may
be repeated until the angular 2D scattering function has been put
together, see Figure 6. The scattered light is propagated along the
scattered angle in the homogeneous medium, with real or com-
plex refractive index, until it interacts with an interface layer with
a known PSD, embedded in the volume. One incident wave on
the surface may create several transmitted scattered waves. All the
transmitted scattered waves are incident waves, with incident an-
gles (θi, j, j = 1, ...), on the interface layer embedded in the volume
and the reflected scattered waves from the embedded interface layer
are propagating upwards through the surface layer where they scat-
ter once more before entering the incident medium as the volume
scattering term (Svol). Calculations of BRDF using GHS therefore
require a separate 2D numerical Fourier transform for each scatter-
ing angle. This is manageable if analytic PSD functions exist for all
layers (surface, interface, and back surface), and we may write

Svol(θo) = ∑
j,k

Qref, jkTjkF(Hs(x̂;µi, jk,µo)) . (43)

The summation over incident angles (µi, jk = cos(θi, jk)) is per-
formed for all incident light on the embedded interface layer gener-
ated by an incident angle (θi, j) on the surface layer. The subscript
jk on Qref indicates that the factor depends on angle of incidence.
Tjk is a damping factor for the k’th incident angle on the embedded
interface.
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Figure 7: Schematic representation of forward and inverse methods
for light scattering problems and related material model properties.

The back surface contribution to the BSSRDF may be deduced
in the same way and may be written as

Sback(θo) = ∑
j,k,m,n

Qref, jkmnTjkmnF(Hs(x̂;µi, jkmn,µo)) . (44)

The sub index jkmn indicates that multiple scattering has occurred
before the light is incident on the back surface of the substrate, see
Figure 6. The BTDF can be calculated in a similar manner. We have

ft = ∑
j,k

Qtrans, jkTjkF(Hs(x̂;µi, jk,µo)) . (45)

9. Inverse Methods

In some cases, both intrinsic (microscopic) and bulk (macroscopic)
properties are not known with great precision and cannot easily be
measured. This means that neither radiometric nor field models can
be directly used to make reliable predictions of how light is scat-
tered for those materials. To solve this problem, we need an inverse
method where a change in the behaviour of light (effect) is used to
predict the scattering properties of the sample (cause). This is, in
essence, the reverse process of a direct or forward method [BH83].
Figure 7 is an illustration of the conceptual differences between
forward and inverse methods.

An inverse approach has two requirements. First, we need a way
of measuring the light scattered by a sample. Secondly, we need
a method for simulating the scattering of light by the sample. The
first requirement is satisfied by a wide variety of instrumentation
devices such as integrating spheres, goniometers, and cameras, as
described in Section 6. The second requirement is fulfilled using
an implementation of either a field or a radiometric model, as dis-
cussed in Sections 7 and 8. Having met the two requirements, the
inverse approach is usually framed as a numerical optimization
problem. The goal is to find the set of scattering model parameters
x that minimizes the difference between the simulated and exper-
imentally measured distribution of scattered light under a suitable
metric E . Generally, this is described by an objective function F , so
that

F(x) = E
(

Data−Model(x)
Weight

)
. (46)

Objective functions are usually different for different inverse
problems. An objective function is oftentimes formulated so that
it includes multiple sets of measurements and simulations, incor-
porates a priori information about the inverse problem, or uses dif-
ferent metrics for the similarity between the experimental data and
the simulation data.

The problem then becomes finding specific scattering parameters
x (these are different for intensity and field models) such that

argmin
x

F(x) . (47)

One should carefully consider which of the many methods cur-
rently available for numerical optimization are best suited for the
problem at hand. Different types of least-squares, convex optimiza-
tion, and metaheuristic methods have been successfully applied to
solve the inverse problem for scattering materials. Solving the in-
verse scattering problem is complicated by the fact that the problem
is often nonlinear and improperly posed, meaning that the mea-
sured data is not perfect, and an exact solution does not exist. The
job then becomes to find approximate solutions to the stabilized
problem. A general discussion of such issues in inverse scattering
theory can found in [CK13]. The following subsections will pro-
vide an overview of different considerations and methods used for
solving the inverse problem when using either radiometric or field
models as the forward model.

9.1. Inverse Radiometric Models

Inverse methods that are based on a forward radiometric model are
usually applied to estimate three different optical properties from
measurements: the absorption coefficient σa, the scattering coef-
ficient σs, and the phase function p. Their effect is illustrated in
Figure 8. The geometry of the scattering sample and its refractive
index over the wavelength range of interest are typically assumed to
be known with a high degree of accuracy. This means that in most
scenarios, an inverse radiometric model is applied to estimate the
volume scattering properties of a translucent material and not its
surface scattering properties. While the scattering and absorption
coefficients are scalars (at least for an isotropic homogeneous ma-
terial and a fixed wavelength), the phase function is a distribution
that can take a wide variety of different shapes. For most problems,
it is assumed that the phase function only depends on the angular
difference between the incident and scattered direction, reducing it
to p(θ). In some cases, the full phase function distribution is es-
timated with an inverse method, for instance by optimizing a dis-
cretized form of the distribution [GZB∗13]. More commonly how-
ever, we use phase function models [LMD∗14] that try to strike a
balance between complete flexibility (arbitrary phase function) and
simplicity (few model parameters).

For particles smaller than the wavelength of the light, the
Rayleigh phase function is a good choice with no directional pa-
rameters. The definition is [Cha50]

pR(θ) =
1

4π

3
4
(1+ cos2

θ) . (48)

The Rayleigh phase function even comes with simple importance
sampling and a well-defined particle scattering cross section Cs that
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Figure 8: Renderings of flat samples (1 mm thick) placed on check-
ered paper and illuminated from above. The samples have the listed
scattering properties, which result in the plotted radiant intensity
distributions for light incident from below the sample. The insets
illustrate the effect of the phase function. Information from a mea-
sured radiance distribution can improve the accuracy of estimated
scattering properties as compared to using a measured radiant in-
tensity distribution or only the total reflection and transmission.

depends on wavelength, particle size (radius), and index of refrac-
tion [Fri11]. Thus, given a material consisting of very small parti-
cles, we have a phase function and can use an inverse model to get
the apparent size distribution of the particle inclusion instead.

For larger particles, the Henyey-Greenstein (HG) phase func-
tion and the Gegenbauer kernel (GK) or Reynold and McCormick
model are two of the most widely used phase functions. The
Henyey-Greenstein phase function is [HG40]

pHG(θ) =
1

4π

1−g2(
1+g2−2gcos(θ)

)3/2
. (49)

Hanrahan and Krueger [HK93] described importance sampling of
the Henyey-Greenstein phase function to enable efficient use of it in
a Monte Carlo ray tracing. The Gegenbauer kernel phase function
is [RM80]

pGK(θ) =
γg
π

(
1−g2

)2γ

(1+g)2γ−
(
1−g2γ

) (1+g2−2gcosθ

)−γ−1
.

(50)
The asymmetry parameter g (defined by Eq. (27)) is a common pa-
rameter appearing in many phase function models. It describes the
directional tendency of the phase function (see Figure 8): g = 1
is perfect forward scattering, g = −1 is perfect back scattering,
and g = 0 is symmetric scattering. The shape factor γ of the GK
phase function permits capturing a wider diversity of scattering
anisotropy, with γ = 0.5 reverting the GK phase function to the
Henyey-Greenstein model.

For materials with both large and small particles, Cornette and
Shanks [CS92] proposed a model that combines the Rayleigh and
the Henyey-Greenstein models into one phase function. For some
materials, yet another phase function can be a better match, such
as for example the von Mises-Fisher distribution model [GXZ∗13,
KSZ∗15]. This model is typically needed when the sample ex-
hibits significant backscattering lobes, which the single peak
HG and GK phase function models are unable to reproduce.
One widely employed solution is to build phase function mod-

els that are linear combinations of single peak phase functions,
such as two-term Henyey-Greenstein or two-term Gegenbauer ker-
nel models [WXN∗19]. With a phase function model, the in-
verse problem is significantly simplified from trying to estimate
x = [σs, σa, p(θ0), p(θ1), . . . , p(θn)] to instead solving for x =
[σs, σa, g, γ] (when using a GK phase function). This is a very sig-
nificant reduction of the search space for the optimization problem.

Although the three main model properties are the same for
most fields working on scattering characterization using radiomet-
ric models, there are many different inverse methods for estimating
these model properties. An inverse model is typically designed by
the following considerations: what is the measured data, which for-
ward model is best suited for simulating the scattered light distribu-
tion of interest, what objective function represents the best match of
simulations and measurements, and which numerical optimization
method can most efficiently minimize the objective function.

In a typical experiment, we measure the combined effect of mul-
tiple scattering and absorption events. A way to overcome this issue
is using samples with isolated single scattering effects [NGD∗06].
Such samples, however, are often not available or difficult to pro-
duce [GZB∗13]. When we consider multiple scattering, the type of
measurement data is quite essential (Fig. 8). We can choose to mea-
sure the total (spectral) signal or the radiant intensity of the trans-
mitted and/or reflected light. Alternatively, we can use a more com-
plete measurement of the scattered spectral radiance. Studies have
shown that the fitting accuracy is usually better if a more complete
measurement of the scattered light is used [LLA∗13,CHCM17]. So
fitting to a measured BSSRDF, a measured spectral radiance dis-
tribution, or multiple camera images [GZB∗13, HLC18] will pro-
vide more accurate results than fitting to radiant intensity or only
total transmission/reflection. However, as found in similarity the-
ory [WPW89], two distinct sets of optical properties can produce
indistinguishable optical performance. This is potentially an issue,
but can also be turned to an advantage [ZRB14].

The choice of the forward model is heavily influenced by the
type of measurements being used. The Kubelka-Munk model can
be a good match if measurements of the diffuse reflectance are
available for a coated paint sample, while the adding-doubling
method could be better suited for transmitted and reflected radiant
intensity measurements of liquid samples. For measurements with
more degrees of freedom, more flexible methods such as Monte
Carlo ray tracing make more attractive forward models. An impor-
tant aspect when choosing a forward model is of course its com-
putational efficiency. Most optimization methods require several
iterations to solve Eq. (46), which means that an inefficient/slow
forward model significantly influences the time it takes to obtain
an estimate of the volume scattering properties.

With a suitable forward model, the next step is to define an ob-
jective function that describes how well the simulations for the
scattered light distribution approximate the measurements. Gen-
erally, a least-squares-like formulation is used for the objective
function [GZB∗13, MSY09], with an adequate choice of weight-
ing factors to avoid overfitting. Objective functions based on cal-
culating a norm between measurements and simulations are also
found in practice, especially for inverse adding-doubling meth-
ods [PvGW93,LMD∗14]. Other types of objective functions which
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focus on minimizing the differences between the shape of the sim-
ulated and measured scattered distributions have also been de-
scribed, using the normalized cross-correlation [LLA∗13,CCL∗16]
or the cosine distance [CHCM17]. Similarly, when using measure-
ments that can include a significant amount of variance or are very
dense, it can be useful to define the objective function so that it
minimizes the difference of aggregate data such as a histogram of
the measured and simulated distributions [YX16].

The final consideration in developing an inverse model is choos-
ing a numerical optimization method. The choice of optimiza-
tion method can significantly influence the accuracy of the inverse
model. In cases where the search space of the inverse problem is
small or can be adequately constrained, it is possible to exhaus-
tively search the entire space [MSY09], but the search space is more
often too large for this approach. Furthermore, the objective func-
tion chosen for the inverse problem can return the same value for
different combinations of scattering model parameters, that is, the
inverse problem can be ill-conditioned. Despite this, convex op-
timization methods [NW06], direct search methods [Wes19] and
metaheuristic methods [GP10] have all been successfully used to
solve the inverse problem.

The choice of optimization method can be deeply influenced
by the type of forward model used, as the objective function can
be stochastic (e.g. when using Monte Carlo ray tracing) or de-
terministic (e.g. using adding-doubling). Trust-region algorithms
and other convex optimization methods and direct search meth-
ods have successfully been used to solve the inverse problem
when using deterministic objective functions [PvGW93, LLA∗13,
LMD∗14, CCL∗16]. For stochastic objective functions, evaluating
first- and second-order derivatives may become infeasible, decreas-
ing the efficiency of least-squares and convex optimization meth-
ods. This can be tackled by considering stochastic gradient descent
approaches [GZB∗13, ZRB14, KSZ∗15, VPB∗18], for instance.

Optimization algorithms based on metaheuristic principles use
an entirely different approach. Different metaheuristic methods
such as genetic algorithms [Kur20], simulated annealing [ZRL∗09,
MES∗11], or particle swarm methods [MZL∗16] impose virtually
no constraints on the objective function. Furthermore, they can be
parameterized to search the parameter space globally, which can
help to minimize the ill-conditioning of the inverse problem albeit
at the cost of longer search times.

9.2. Inverse Field Models

When the surface under investigation is patterned with nanostruc-
tures, our model must consider the wave nature of light if we desire
accurate information regarding the sample. This is done by using
field models for the simulation of the optical signal. Conversely,
this also means that we can use accurate simulations together with
measured data to break the Abbé diffraction limit of conventional
microscopes and achieve information about the physical morphol-
ogy of the surface, provided that the material properties of the sam-
ple are known.

This approach is used in the field of scatterometry, the inverse
problem is solved to find the physical parameters of a sample based
on an optical fingerprint [MH16]. The technique is utilized in the

semiconductor industry, where it provides a fast and accurate mea-
surement of nanostructures. With scatterometry, an overlay accu-
racy between two lithography steps with an error better than 0.5 nm
(within three standard deviations) has been demonstrated with com-
mercial instruments [SdBK∗12]. Often, when scatterometry is used
for in-line inspection, a library of simulated optical signals is gen-
erated beforehand. This method allows for the large computational
burden to be managed by a one time execution. At the production
line, the optical signal is measured, and a simple database look up
is performed to find the best match between model and data. If suf-
ficient computational power or time is available, the inverse model-
ing can also be performed by a direct optimization algorithm where
a series of simulations is performed. For each simulation, the sam-
ple parameters are changed based on the results from the previous
simulation. To model the optical response from a sample, several
models can be used as described in Section 8. The different mod-
els provide varying degrees of flexibility, accuracy, and speed. It is
therefore, again, essential to consider which model is best suited
for a given problem.

10. Inverse Model Validation and Parameter Extraction

In order to validate optical models, they must be compared with
physical measurements. First, when choosing a model, it is impor-
tant to consider the underlying physics of the measurement. Sec-
ondly, the model should describe the data well. We can simulate
a physical signal using a model f that estimates the signal as a
function of a set of parameters describing the illuminated sample
ϒS (optical constants of the material, distribution and form of ma-
terial, surface parameters) and a set of parameters describing the
lighting conditions ϒL (intensity of incoming light, angle of inci-
dence, angle of observation, polarization, wavelength).

The simulated signal is usually compared with measured values
M while incorporating their corresponding measurement uncertain-
ties U . This is done, in a way similar to Eq. (46), by computing the
χ

2 quantity:

χ
2 =

1
N

N

∑
j=0

(M j− f j(ϒS,ϒL)

U j

)2
, (51)

where N is the number of measurements (the length of the vector
M). A good model function f finds a minimum χ

2 when the model
input parameters ϒS and ϒL describe the physical experiment.

As an example, we look at the in-plane BRDF from a reflective
surface characterized by a surface roughness Rq. Here, the measur-
and is commonly the intensity of the reflected light I as a function
of the incoming angle θi and the outgoing angle θo. Conventionally,
θi is kept constant, so the model can be evaluated using:

χ
2 =

1
N

N

∑
j=0

( I j(θi,θo)− f j(Rq,ns,θi,θo)

U j(I(θi,θo))

)2
. (52)

The uncertainty U(I(θi,θo)) is usually evaluated using Poisson
statistics, which results in U(I(θi,θo)) =

√
I(θi,θo). The model

f (Rq,ns,θi,θo) is a function of the surface roughness Rq and the
refractive index ns of the sample. Information about the surface is
also commonly obtained by measuring the intensity as a function
of wavelength and/or polarization [RHBB11, MJN∗18].
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The initial guess for the sample parameters ϒS is often found
using other techniques such as optical profilometry or atomic force
microscopy as well as a priori information regarding the sample. If
measurements are available, one may calculate the associated PSD
curve, which may be used as a guideline for selecting either the
scalar diffraction method or more rigorous methods for the inverse
modelling. The scalar diffraction will, in general, be a good method
if the PSD curve does not contain large amplitudes from periodic
surface structure contributions, and if the ABC model mentioned in
Section 8.5 gives a good description of the PSD curve. The scalar
diffraction method may also be used as a first attempt if the a priori
information justifies its use. However, optimization without a priori
knowledge or measurement should be avoided.

Using a standardized chi-square (χ2) method, one gains relevant
statistics for the evaluation of a model. A good model should con-
verge towards the best parameter set, which has a normalised chi-
square value close to 1. It may be necessary to replace the scalar
diffraction model with more rigorous modelling in the final iter-
ations. By using the physical measurement uncertainties for the
weights, one can assure that the model is not drastically biased by
noisy measurements. Various ways of minimizing χ

2 exist. We de-
scribe a couple of ways of using direct optimization in the following
subsections. Other methods for optimization not discussed in detail
here include Bayesian approaches, which allow for a priori like-
lihood distributions of parameters in the model [ZC15, HWS∗17],
and neural networks, where an empirical model is trained from a
large amount of data [RMRL02, GRT∗08, MJNH18].

10.1. Levenberg-Marquardt

The Levenberg-Marquardt algorithm is a combination of the gradi-
ent descend method and the Gauss-Newton method. Optimization
can always be rephrased as a minimization problem for a cost func-
tion h(ϒS). In the gradient descent method, the change in ϒS is sim-
ply given by the gradient −∂h/∂ϒS, whereas in the Gauss-Newton
method, the value of ϒS is iteratively changed according to

ϒS,i+1 = ϒS,i−
(
JTJ

)−1 ∂h
∂ϒS

, (53)

where i is an iteration parameter. To avoid overshooting, the step
size is scaled with respect to the second derivative ∂

2h/∂
2
ϒS, which

is numerically estimated by the approximated Hessian JTJ , where
J is the Jacobian of the cost function h. This makes intuitive sense
when considering that a larger second derivative would correspond
to a quickly changing function, and smaller steps are then better.

The Levenberg-Marquardt algorithm is skeptical regarding the
stability of the Hessian and therefore adds a dampening term ζ:

ϒS,i+1 = ϒS,i−
(
JTJ +ζ (JTJ)◦I

)−1 ∂h
∂ϒS

, (54)

where ◦ is the Hadamard product. A large initial value is typically
used for ζ. If a step t causes h to increase, ζ is increased, otherwise
ζ is decreased to approach the Gauss-Newton method. For small di-
agonal elements of JTJ , larger steps are preferred for speed. Once
a solution has been found, we can estimate the uncertainties of the
evaluated parameters using

U(ϒS) =

√
I ◦
(
JT [U2(M)]−1J

)−1
, (55)

where U2(M) is a matrix containing all the squared measurement
uncertainties U2

j in the diagonal.

Bagher et al. [BSH12] used the Levenberg-Marquardt algorithm
to evaluate how well different BRDF models fitted the BRDFs mea-
sured by Matusik et al. [MPBM03].

10.2. General Least Square

In most models, the input parameters ϒS and ϒL are assumed to
be known and exact. In the real world, we are however only able
to measure an estimate of the “true” value. These estimated val-
ues have corresponding uncertainties, which can be included in the
model evaluation by employing a least squares method in its gen-
eral form [Nie02]. This method however suffers from slow conver-
gence, and it is therefore mostly useful if the model function can be
evaluated quickly or if one has a sufficiently good initial guess.

10.3. Bootstrap

A common assumption is that the experimental data follows a nor-
mal distribution. This is however not always the case. Fully deter-
mining the underlying distribution requires measurements of the
entire distribution, which ranges from inconvenient to impossible.
In a sense, the empirical distribution is the least prejudiced esti-
mate possible of the underlying distribution. This is utilized in the
bootstrap method by Efron [Efr82]. The bootstrap method is used
to estimate parameters of a large population based on a measured
subset of the population. With a set of observations POP from a
population, one can make a subset of surrogate observations pop
containing a random selection of elements from POP. By making
several subsets, popi, and calculating their averages popi, one can
use these calculated means to describe the entire population using
only the subset POP with respect to mean, standard deviation, and
confidence intervals.

10.4. Hybrid Metrology

As mentioned in Section 7, the model function f , should be chosen
to contain as much information as possible. However, measurement
setups are typically designed to give information about specific pa-
rameters (reflected intensity, depolarization, sample structure, sam-
ple material properties, etc.). It is therefore ideal to use several
different instruments to obtain different properties and incorporate
them into the evaluation of f through parameters ϒS and/or ϒL.

When the inverse problem does not have a unique best solu-
tion, the problem is considered ill-posed [Had02]. The most com-
mon way to deal with ill-posed problems is Tikhonov regulariza-
tion [GHO99]. This is also known as “ridge regression” in the field
of statistics [HK70] and goes by the name of “weight decay” in
modern machine learning [Bis95]. Tikhonov regularization is used
to penalize overly complex models and to include additional mea-
surement data in the cost function for model validation. As an ex-
ample, one could have alternative ways of measuring a subset of
the parameters describing the sample, b⊆ ϒS, and (51) becomes

χ
2 =

n

∑
i=1

(bm,i−bc,i

Ub,i

)2
+

1
N

N

∑
j=0

(M j− f j(ϒS,ϒL)

U j

)2
, (56)
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where n is the number of supplementary measurements, bm,i is the
ith measured value, bc,i is the ith calculated value, which is taken
to be the value of the corresponding parameter in ϒS used in f j,
and Ub,i is the uncertainty associated with the measurement of the
parameter bm,i.

11. Discussion and Conclusions

For several decades, the foci of computer graphics have been shape,
animation, light transport, processing hardware, and interaction in-
terfaces. This has led to graphics programs with an ability to render
very believable imagery, and to do this not only for motion pic-
tures but also for interactive applications. However, realistic ren-
dering of specific real objects based on their intrinsic optical prop-
erties, so-called predictive rendering [UWP06], is still a significant
challenge. Setting up a pipeline for acquiring the shape and optical
properties of a non-opaque object in order to perform quantitative
comparison of photographs with rendered images is not straight-
forward. The comprehensive pipeline needed to do this for glass
objects [SDN∗17] clearly underlines that validation of predictive
rendering is a challenge. While shape acquisition is one important
part of the challenge, acquisition of optical properties is equally im-
portant. The key issue is that a full global light transport simulation
can only be as accurate as the optical properties provided as input
for the rendering. Rushmeier [Rus95] referred to this as the input
problem. We have provided a survey of techniques that address this
input challenge.

Material appearance is most commonly described by texture
images combined with parsimonious analytic reflectance models.
When this is the case, the connection to physics is almost exclu-
sively phenomonological (connection to macroscopic observations,
but no obvious connection to first principles). The problem in such
an approach is that it misses a link to the material microstructure,
which usually determines the physical properties of the material.
With the advent of additive manufacturing and digital twins of
industrial products, a need is emerging for connections between
phenomenological graphics techniques and the properties of real
world materials. We provide a map of existing work in graphics
that brings us closer to material appearance modelling based on the
physical microscale or nanoscale properties of real materials. We
find that such a map is an excellent outset for addressing the input
challenge and thereby building predictive rendering models.

An interesting aspect of predictive rendering is that it enables
rendering of synthetic data sets for machine learning. The mi-
crostructure of a material is usually a key indicator of the quality
of the material. Thus, if we ensure a connection between physical
microstructure and the optical properties used in a predictive ren-
dering, we can build a system for vision-based quality control using
machine learning based on synthetic data.

We provided a review of different models for computing or in-
ferring the collective scattering distribution functions (BSSRDF,
BRDF, BTDF, BSDF) of an object. These models are divided into
radiometric models and field models. Radiometric models are well
suited for efficiently simulating the scattering distribution from
samples with known volume scattering properties (forward model)
and to extract these properties from measurements (inverse model).

Depending on the scattering properties and geometry of a mate-
rial, different radiometric models are available to simulate the col-
lective scattering distribution functions. When using these models
for the inverse problem, their computational efficiency and stochas-
tic or deterministic nature determines both their suitability and the
type of optimization method that is best used. While there are cur-
rently many inverse radiometric models available to extract the vol-
ume scattering properties of translucent materials, there is limited
work done on estimating the surface scattering properties or com-
bined surface and bulk scattering properties of translucent material
samples. For this, a hybrid approach that uses field models for sur-
face properties and radiometric models for volume properties could
merge the best features from both types in order to extract all rel-
evant optical properties that are needed for realistic rendering of
translucent objects.

The field models have been divided into two subcategories called
scalar diffraction theory (RR, GHS) and rigorous modelling (FEM,
FDTD, aRCWA). The scalar diffraction theory is a solution to the
Helmholtz equation, which is a 2D partial differential equation. The
third dimension (the surface normal) is treated as a mathematical
layer of no physical extent. The scalar methods we presented are
wide field scattering methods not limited by the paraxial approxi-
mation often used in textbooks. The main limitation of these meth-
ods is how well the mathematical layer represents the third dimen-
sion in the physical 3D problem to be solved. Another limitation
of the scalar model is its missing ability to treat the polarization
component along the third dimension. These limitations prevent the
scalar methods from handling physical problems with typical extent
of more than a few wavelengths in the third dimension. The rigor-
ous solutions, on the other hand, are full 3D solutions of Maxwell’s
equations which theoretically have no upper limit, and are only lim-
ited by the quantum limit, which typically becomes important when
the dimensions approach atomic sizes. However, in practice there
is also an upper limit on the computational domain that can be han-
dled. This is typically about 100 µm in each dimension.

A multitude of approaches have been invented to solve rough-
ness scattering problems, all with their advantages and disadvan-
tages. Often used methods are based on geometrical optics and sin-
gle scattering theories, which historically have been popular due
to their simplicity. However, there is a natural limit to the scat-
tering problems that these theories can represent, since multiple
scattering will occur when the surface roughness amplitude and
frequency increases. The upper frequency limit is generally set
by the Rayleigh criterion. Several models have been introduced
lately in order to deal with multiple scattering in a geometrical op-
tics setting [HHdD16, LJJ∗18, XH18]. An approach to overcome
these issues, while keeping wave effects and a relatively simple
formulation, is the GHS method. This is based on the principle of
non-paraxial scalar diffraction theory, which significantly improves
scattering predictions for large angle scattering compared to single
scattering rough surface theories, and has a relatively low compu-
tational cost compared to simple scalar methods like RR (low ac-
curacy, no energy conservation) and rigorous methods like FEM,
FDTD and aRCWA (high computational cost).

The mentioned methods are all forward methods that calculate
the scattering output for an object with a given distribution of scat-
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terers and known material properties. The reason for not using a
true inverse model is that the experimental BRDF and BSSRDF
data are angular distributions of light with no phase information. A
true inverse problem propagating from the experimental data points
would therefore be very ill-posed. Consequently, inverse modeling
is done by minimizing the difference between computed and exper-
imental radiance distributions through adjustment of the optimiza-
tion parameters in the computational model (analysis by synthesis).
This is an approach that requires many computations before it con-
verges to a solution. The associated parameter uncertainties may be
found by using the Jacobian of the cost function together with the
physical uncertainties of the measurements.

If a solution obtained through analysis by synthesis is not ac-
ceptable, a more advanced hybrid metrology approach may be at-
tempted by including measurement(s) from other instrument(s) or
a priori knowledge from other sources. Upon convergence, we may
extract the parameters of interest. This field of hybrid metrology is
still developing. In the future, more advanced methods to combine
data from different sources will certainly be developed and used to
increase the robustness of ill-posed inverse problems.

Despite the fairly advanced state of affairs in the graphics com-
munity regarding acquisition of optical properties (Table 1), the in-
put challenge still stands. We have very advanced techniques for
Monte Carlo ray tracing [NGHJ18, NDVZJ19]. On the other hand,
we only just started looking into inverse techniques for reconstruct-
ing microgeometry [JMM09, RBSM19], and this work does not
exploit the field models. We so far seem to use the field mod-
els only as forward models, perhaps with the important exception
of procedural models that generate new similar normal distribu-
tions [DWMG15, KHZ∗19]. The possibility of tackling the inverse
problem using the more rigorous field models to estimate the sur-
face material properties and radiometric models to estimate the
bulk scattering properties can lead to very interesting areas of fu-
ture research. Some of the field models that we have presented can
perhaps serve as inspiration for future forward and inverse mod-
els. We should aim at predictive rendering to improve the industrial
relevance of graphics techniques. This is accomplished by further
research in general techniques for acquiring the intrinsic optical
properties of real objects and their materials.
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