

Measuring the appearance of translucent 3D objects

Søren K. S. Gregersen sorgre@dtu.dk, 25/05-2020

The EMPIR initiative is co-funded by the European Union's Horizon 2020 research and innovation programme and the EMPIR Participating States

Measuring appearance of 3D objects is hard

What we see is influenced by reflective properties and geometry

Observations depend on the geometric curvature

• Strong curvature introduces transparency!

Need to account for geometry and appearance – a **complicated problem!**

Methods for translucent 3D objects

- Simultaneously measure appearance and geometry
- Wrap all the complexity into **Bidirectional Texture Functions** (BTFs)

Bidirectional Texture Functions (BTFs)

BTFs can include the effects from:

- microgeometry and
- subsurface scattering

by replacing with a much simpler model

Great re-rendering, but hides the details of the object

Appearance and geometry acquisition

Simultaneous acquisition set up:

- Usually camera based
- Moving stage (camera) and light i.e. a bidirectional set up

Separating appearance and geometry

Geometry is estimated from different views, but appearance varies. In effect, the geometry is usually estimated with errors! **We think we are seeing something else entirely!**

Surface and subsurface separation

Accurate geometry from separating the surface and subsurface scattering Different methods have been studied:

- Polarization filtering
- Modulated or high frequency phase-shifting
- Light transport analysis

None of these are perfect!

Getting the appearance right is hard

No perfect method exists for scanning translucent 3D objects.

- The estimated geometry has errors
- Errors in the geometry affects the estimated appearance.

We can approach accurate 3D object scanning.

• Separate surface and subsurface scattering e.g. polarization filtering

Thank you

Eco3D The Cyber-Physical 3D Ecosystem *eco3d.compute.dtu.dk*

The EMPIR initiative is co-funded by the European Union's Horizon 2020 research and innovation programme and the EMPIR Participating States