
Formalizing and Proving a Typing Result for
Security Protocols in Isabelle/HOL

Andreas Viktor Hess and Sebastian Mödersheim
DTU Compute

Technical University of Denmark
2800 Kongens Lyngby, Denmark

e-mails: {avhe,samo}@dtu.dk

Abstract—There are several works on the formalization of
security protocols and proofs of their security in Isabelle/HOL;
there have also been tools for automatically generating such
proofs. This is attractive since a proof in Isabelle gives a higher
assurance of the correctness than a pen-and-paper proof or the
positive output of a verification tool. However several of these
works have used a typed model, where the intruder is restricted
to “well-typed” attacks. There also have been several works that
show that this is actually not a restriction for a large class of
protocols, but all these results so far are again pen-and-paper
proofs. In this work we present a formalization of such a typing
result in Isabelle/HOL. We formalize a constraint-based approach
that is used in the proof argument of such typing results, and
prove its soundness, completeness and termination. We then
formalize and prove the typing result itself in Isabelle. Finally, to
illustrate the real-world feasibility, we prove that the standard
Transport Layer Security (TLS) handshake satisfies the main
condition of the typing result.

I. INTRODUCTION

Proof assistants like Isabelle [20] allow us to formalize
and check proofs with an almost “absolute” precision and
reliability: once a theorem is proved, the chance of a mistake
or hole in the proof is extremely low. This is very attractive
for proofs of security protocols since security protocols are
relatively small systems that are critical to our infrastructure
and often have very subtle flaws that are easily overlooked.
Paulson and Bella have proved security properties of numerous
protocols in Isabelle and established a general paradigm of
modeling protocols [21], [22], [5], [4].

Despite many automated proof tactics in Isabelle, conduct-
ing security proofs is still labor-intensive. There are many
automated tools like ProVerif [6] that can verify most of
the protocols of Paulson and Bella within minutes. However,
an implementation mistake in such a tool can easily lead to
a “false negative”: no attack is found even though there is
one. To get full reliability, one could directly model such a
method in Isabelle, using Isabelle as a kind of interpreter.
A more efficient way is to have automated tools generate
proofs that Isabelle can check as in the works of Brucker
and Mödersheim [8] and Meier et al. [16] (and by Goubault-
Larrecq [12] for Coq).

Many of the mentioned works [21], [22], [5], [4], [8] rely
on a typed protocol model that excludes that the attacker can
send any ill-typed messages and thereby rules out any type-
flaw attacks. In general, such a restriction to a typed model

makes many aspects of the analysis easier. Most notably, in
the abstract interpretation method used by [6], [8], protocol
security is still undecidable, but under the restriction to a typed
model the question becomes decidable.

There are in fact several results that show the relative
soundness of a typed model if the protocol satisfies certain
reasonable sufficient conditions: Heather et al. [13], Cortier
and Delaune [9], Mödersheim [19], Arapinis and Duflot [2],
and Almousa et al. [1]. Relative soundness means a result of
the form: if a protocol (that satisfies the sufficient conditions)
has an attack then it has a well-typed attack. So if we can
verify that the protocol has no attack in the typed model (with
whatever method), then it also has no attack in the untyped
model. Closely related are relative soundness results from
compositional reasoning, e.g., the mentioned works [9], [1]
rely on typing results to obtain parallel composition results.

All these relative soundness results are so far classical pen-
and-paper proofs. They contain complex proof arguments that,
despite not being formalized out to the last detail, span easily
ten pages (including all relevant formal definitions and lemmas
with their proofs). It is not unlikely that such a result can have
mistakes, from simple holes in a proof to wrong statements.
Relying on such results bears some similarity to relying on
unverified tools: we may wrongly accept a protocol as secure
that actually is not (in the considered model). “Checking” the
proof of such a result may be as complex a task as verifying a
verification tool. The final and third parallel to verification
tools is: there are often subtle differences in the protocol
models and in the sufficient conditions that a casual user (who
did not study the result in detail) may fail to notice. This bears
the risk that in a hand-wavy fashion, one may accidentally
apply a typing or compositionality result to protocols for which
it does not hold.

This paper is a first step to overcome these problems of
relative soundness results, by formalizing them in Isabelle.
This allows us to use these results directly in security proofs
like any other proved theorem. For instance, we may use
any of the previous methods, manual or automatic, to prove
the security of a protocol in the typed model, and then
use the typing theorem to infer the result for the untyped
model as a theorem entirely proved within Isabelle. Also
this ensures that the theorem can only be applied if all the
sufficient conditions are indeed satisfied (otherwise they will



remain as open subgoals to prove). This therefore solves the
problem of overlooking incompatible assumptions. The long-
term goal is to establish a verification framework in Isabelle
where different proof methods, manual and automatic, can
be integrated with relative soundness results as far as they
are applicable. This is interesting since probably no single
verification approach is suited for all kinds of protocols.

In order to prove a typing result, one needs to make
arguments of the form “in every step of an attack where the
intruder sends something ill-typed, he may send something
well-typed instead and the attack would work similarly.” To
make such arguments in a clear and precise way—avoiding
handwavy and roundabout proofs—existing typing results [9],
[19], [2], [1] use a popular verification technique that uses
symbolic intruder constraints and that we simply refer to as
the lazy intruder. This idea is originally used to cope with
the infinity induced by the Dolev-Yao model in automated
verification [17], [23], [3]: the intruder is lazy in the sense
that he chooses parts of messages only in a demand-driven
way, i.e., if they are necessary for a particular attack. One can
use this technique in a different way for the typing results by
showing (for protocols that satisfy some requirements) that the
lazy intruder never makes ill-typed choices, and all type-flaw
attacks are ill-typed choices of message parts that the lazy
intruder did not instantiate. This allows one to conclude that,
if there is a solution to the constraints, then there is a well-
typed one. This is at the core of all typing results and we thus
formalize the lazy intruder in Isabelle, including the proof that
the reduction procedure for constraints is sound, complete, and
terminating, because the typing result relies on this.

The main contribution of the paper is the formalization and
proof in Isabelle/HOL of the relative typing result from [1].
Our entire Isabelle/HOL theory is approximately 8000 lines
of code and takes about two minutes for Isabelle/HOL to
load and verify on a standard machine. While some of the
formalization could be streamlined it shows the complexity of
formalizing and proving such a typing result when modeled
with absolute formal precision. During this formalization effort
we discovered a number of errors in [1]. We have fixed these
problems by imposing some additional conditions on the class
of protocols. We argue that these conditions are reasonable
restrictions and still more liberal then those of other typing
results. This is discussed in detail in Section VI. To illustrate
the feasibility of our requirements, as a real-world case study,
we prove in Isabelle that the Transport Layer Security (TLS)
protocol satisfies the requirement of the typing result, namely
type-flaw resistance.

In order to facilitate easier reasoning in Isabelle, we have
also made several simplifications to the lazy intruder, in
particular “out-sourcing” the analysis to the transition system.
We also prove in Isabelle that these simplifications are without
loss of generality, i.e., we prove the equivalence to a standard
transition system with a full intruder. We use the Isabelle
formalization of the lazy intruder in this paper only as a
means to prove the main typing result, however it can also
be employed directly to conduct lazy intruder-based proofs in

Isabelle. More generally, we believe that all tools that use the
lazy intruder technique can benefit from the simplification we
made to the technique here.

Since this work consists of many definitions and theorems,
including several variants of theorems, we here give a shortlist
of definitions and the main typing result, i.e., everything that
one needs to consider in order to apply our result:
• Given a protocol described as a countable set of closed

strands, we define a state transition system with con-
straints (Definition 9).

• We define the semantics of constraints using a standard
Dolev-Yao intruder deduction relation (in the free alge-
bra) (Section IV-B and Definition 1).

• We define the notion of type-flaw resistance for protocols
(Definition 8).

• We define a requirement on the use of operators in
the protocol, called analysis-invariance, needed to fix a
mistake in [1] (Definition 11).

• The main result is that for any reachable state of a
type-flaw resistant, analysis-invariant protocol, there is a
solution for the constraints if and only if there is a well-
typed solution (Theorem 4).

Throughout the paper we have chosen to use slightly sim-
plified Isabelle notation. The full Isabelle formalization (with
all proofs) is available at our website:

http://www2.compute.dtu.dk/~samo/typing-soundness/

II. EXPRESSING THE PRELIMINARIES IN ISABELLE

In this section we summarize some standard definitions
along with a discussion of how we model them in Is-
abelle/HOL whenever there are some differences. This also
gives us a chance to review a few features of Isabelle that are
relevant for following this paper in detail. In fact, we simplify
the Isabelle notation in several places.

A. Term Algebra
At the core of all definitions are the protocol messages that

we model in a free first-order term algebra as is often done.
The standard notions like unification are already part of several
Isabelle libraries namely the Unification example theory that
ships with Isabelle and the IsaFoR/CeTA library [26], and we
point out only where our definitions augment them.

Our definitions are parameterized over a set V of vari-
ables (typically denoted with letters x, y, z) and a set Σ of
function symbols (typically denoted with letters f, g, h). We
also assume a function arity : Σ → N that assigns each
function symbol its arity. We denote by C the subset of Σ
of constants, i.e., the function symbols of arity 0 (typically
denoted with letters a, b, c). By Σn we then denote the subset
of Σ containing all symbols of arity n. We further partition
C into the disjoint sets Cpub of public and Cpriv of private
constants. We later define that the intruder has access to all
constants in Cpub.

We now define the set of terms over Σ, V in Isabelle as an
inductive datatype:

datatype (Σ,V) term = Var V | Fun Σ ((Σ,V) term list)
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Here we have slightly changed the Isabelle notation that would
have instead of Σ and V two type variables, which we for
ease of notation do not distinguish from the universes of those
values.1 For instance the expression Fun f [Var x, Fun c []]
represents the term f(x, c) in more conventional notation,
and we will use that notation whenever possible. Note that
because this definition introduces the data constructors Var

and Fun as injective functions, we obtain a free term algebra,
i.e. f(t1, . . . , tn) = g(s1, . . . , sm) iff f = g and ti = si for
1 ≤ i ≤ n = m.

Typically there is only a small finite set of non-constant
function symbols representing the cryptographic primitives
and the like; therefore this set is actually fixed in several
other works on protocol security [21], [4], [16] with one
data constructor for each function symbol. Our parameterized
version has the advantage that our proofs do not depend on the
particular set of operators used, so we do not have to update
our proofs when adding a new operator. A slight disadvantage
is that we cannot control as part of the data-type definition
that a function symbol f with arity f = n is only applied
to a list of exactly n arguments. We can fix this however by
the following notion of well-formed terms (where v is the
subterm relation that is defined as expected):

wftrm t ≡ ∀f T. Fun f T v t −→ length T = arity f

We deal only with well-formed terms and for simplicity omit
writing it as a side-condition on all terms we use in the rest
of the paper. We further define the function FV for the free
variables of a term as standard, and say that a term t is ground
if FV t = ∅. Additionally, the set of subterms of a term t is
written subterms t. Both functions are extended to sets as
expected.

B. Substitutions and Interpretations

We use for substitutions and unifications the definitions
and theorems of the IsaFoR/CeTA library where substitutions
(typically denoted with letters θ, δ) are functions from vari-
ables V to terms (Σ,V) term. They are homomorphically
extended to functions on terms as expected, and we simply
write θ t for applying substitution θ to term t (omitting the
extensions function). The composition θ · δ of substitutions θ
and δ is defined as (θ · δ) t = δ (θ t). (This is following
the convention of IsaFoR/CeTA.) The substitution domain
domsubst : (Σ,V) subst→ V set of a substitution is the set of
variables that are not mapped to themselves:

domsubst θ ≡ {x | θ x 6= Var x}

For substitutions with finite domain we will use the common
notation of value mappings, like θ = [x 7→ s, y 7→ t] for the
substitution θ with substitution domain {x, y} sending x to s
and y to t. Thus, [] denotes the identity substitution.

The substitution image imgsubst : (Σ,V) subst →
(Σ,V) term set is defined in terms of the domain by applying

1In Isabelle, one has to rather write UNIV to refer to the set of values that
belong to a particular type.

the substitution to every element of the domain (where f 8 S
denotes the image of f under the set S):

imgsubst θ ≡ θ 8 domsubst θ

Every substitution we use in this paper has either a finite
domain or its domain are all variables of V and it maps them
to ground terms. The latter kind we call interpretations. We
thus divert here from the common convention that substitution
and interpretation are two disjoint notions, because they are
conceptually so similar (e.g. they can be applied to all term-
based data-structures) that having them separated would lead
to two similar versions of many definitions and lemmas.

It is cumbersome to work with substitutions where some
variable occurs both in the domain and the image like [x 7→
f(x)] as they are, for instance, not idempotent. Thus, we
introduce a notion of well-formedness of substitutions that
excludes any variable to occur both in domain and image and
that requires a finite domain (because we will not use this
notion on interpretations):

wfsubst θ ≡ domsubst θ ∩ FV (imgsubst θ) = ∅ ∧
finite (domsubst θ)

Intuitively, a well-formed substitution represents a set of
solutions (e.g. all solutions to a unification problem). We
can prove the following lemma that is useful later when we
compose substitutions in constraint reduction:

Lemma 1 (Well-formedness preservation of substitution
composition): If θ1 and θ2 are well-formed substitutions such
that domsubst θ1 ∩ domsubst θ2 = ∅ and domsubst θ1 ∩
FV (imgsubst θ2) = ∅ then the composition θ1 · θ2 is also
well-formed.

An interpretation (typically denoted by letter I) is a sub-
stitution that represents one single solution, mapping every
variable to a ground term:

interpretationsubst I ≡ domsubst I = V ∧
ground (imgsubst I)

We define that a substitution θ supports an interpretation I
iff I is a solution represented by θ:

θ supports I ≡ ∀x. I (θ x) = I x

C. Unification

A most general unifier (mgu) θ between two terms, t1 and
t2, is defined as a substitution satisfying the following standard
definition:

MGU θ t1 t2 ≡ θ t1 = θ t2∧(∀δ. δ t1 = δ t2 −→ (∃γ. δ = θ·γ))

In other words, θ is a unifier which can be used to construct
any other unifier δ of t1 and t2 using composition with a third
substitution γ. Well-formed mgus are furthermore restricted to
the variables of the terms being unified. That is:

wfMGU θ s t ≡ wfsubst θ ∧ MGU θ s t ∧
domsubst θ ∪ FV (imgsubst θ) ⊆ FV s ∪ FV t

The library of IsaFoR/CeTA provides the function

mgu :: (Σ,V) term⇒ (Σ,V) term⇒ (Σ,V) subst option

3



that computes the most general unifier of two terms if one
exists. We proved that this unifier is always well-formed.

III. DOLEV-YAO STYLE INTRUDER MODEL

We define a standard symbolic Dolev-Yao style intruder
deduction relation M ` t to formalize that the intruder can
derive term t from the set of terms M , his knowledge. We
define ` inductively as the least relation closed under the
following rules:

Definition 1 (The Intruder Model):

M ` t
(Axiom),
t ∈M

M ` t1 · · · M ` tn
M ` f (t1, . . . , tn)

(Compose),
f ∈ Σn,
public f

M ` t M ` k1 · · · M ` kn
M ` ti

(Decompose),
Ana t = (K,T ), ti ∈ T,
K = {k1, . . . , kn}

Here, all terms are at first ground terms without variables (as
we are not performing any substitutions); later we will use
constraints with variables in terms. For later we also define a
restricted variant `c that is the closure only under (Axiom)
and (Compose), but omitting (Decompose).

The first rule expresses that the intruder can derive every-
thing in his knowledge. The second rule allows the intruder
to compose messages by applying public function symbols to
messages he can already derive. (Note that f might have arity
n = 0, in which case it is a constant.) To that end, we define
the function public that yields true for all public constants
and any function with arity greater than zero (i.e., all symbols
of Σn\Cpriv). The third rule allows the intruder to decompose
(i.e. analyze) messages. To avoid that we have to write a
special decryption rule for each operator to consider, we define
a function Ana as an interface. Intuitively, Ana t = (K,T )
means that the intruder can analyze the term t provided that he
knows the “keys” in K and then obtain as the result of analysis
the terms of T . The advantage of this interface function is that
in order to add a new operator to the model, one simply has
to specify the Ana function for it, but none of the following
definitions or theorems require an update. We will require
some restrictions on the Ana function in Section VI-B.

Example 1: Consider the following set of non-constant
operators (with their arities): asymmetric encryption crypt/2,
symmetric encryption scrypt/2, signatures sign/2, a function
pub/1 that yields the public key for a given private key, hash
function hash/1, a key derivation function kdf/2 and message
structuring formats fi/i (i ∈ N), together with the following
Ana function:

Ana scrypt(k,m) = ({k}, {m})
Ana crypt(pub(k),m) = ({k}, {m})
Ana sign(k,m) = (∅, {m})
Ana fi(t1, . . . , ti) = (∅, {t1, . . . , ti})

and in all other cases: Ana t = (∅, ∅)

This describes the decryption of symmetric and asymmetric
encryptions as expected; the contents of signatures we assume
can be obtained without knowing the signing key (i.e., the

signature primitive includes the signed text in clear). The func-
tions pub, hash, and kdf are one-way in the sense that they do
not yield any information in analysis. The non-cryptographic
message structuring formats fi exist only to structure clear-
text messages (other than pure concatenation). Like [1] we use
these formats instead of the classical “concatenate” operator:
this allows for modeling abstractly the actual mechanisms
of the implementation to structure messages unambiguously,
such as tags, length information, or character encodings;
compare for instance the TLS example in Section V-B. The
formats are transparent, i.e., the analysis function yields all
direct subterms without requiring any key. For signatures,
we similarly allow the intruder to obtain the signed message
without any key. This models a signature scheme where the
message being signed is given along with a signature on a hash
of that message; thus one does not need any key to obtain the
message, but only to verify the signature. More on signature
verification below.

Let M = {scrypt(kdf(n1, n2), secret), n1, n2} then for
instance M ` secret since the intruder can first compose the
key kdf(n1, n2) and then decrypt the encrypted message.

A. Free Algebra

Recall that our definition of terms yields a free term algebra,
i.e., two terms are equal only if they are syntactically equal.
This prevents many interesting properties of operators like the
property gxy = gyx that is needed for all Diffie-Hellman-
based protocols. Modeling algebraic properties in Isabelle is
not trivial: one has to work with a quotient algebra (every term
represents the set of terms that are algebraically equal) and
thus everything becomes more complex, see for instance [24],
[14]. Therefore all protocol verification in Isabelle that we
know of uses the free algebra. Most typing results also are
limited to the free algebra (an exception being [18]).

One may wonder, however, how this free algebra model
compares to other protocol models like the Applied-π calculus
model of ProVerif that supports algebraic properties to some
extent. As an example, to describe signature verification,
one may specify a destructor function verify that takes as
arguments a signed message and a public key and yields true if
the signature is correct w.r.t. that public key. This is expressed
by the rewrite rule:

verify(sign(privkey ,msg), pub(privkey))→ true

(Similar rewrite rules we have for decryption functions and
the like.) This is in fact an algebraic property and it cannot
be directly expressed in a free algebra term model. Note
that internally, ProVerif works with Horn clauses in the free
algebra as well. Therefore a transformation step is taken when
translating a given Applied-π-calculus specification into Horn
clauses. In the example of signature verification or similar
theories of constructors and destructors, this would amount to
pattern matching. Consider for instance an honest agent who
receives an arbitrary message x and checks that applying verify
with a particular key pub(privkey) yields true; ProVerif’s
transformation would yield an agent who now receives only
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messages of pattern sign(privkey , y) where y is a variable to
which the content of the signature is bound. This is precisely
how free algebra approaches handle constructors—having no
explicit destructors anymore.

Furthermore, ProVerif also allows for equations and it
similarly applies a completion procedure to the Horn clauses to
take into account all algebraic variants of a term. Note this fea-
ture may easily lead to non-termination and one must carefully
craft the algebraic properties for this, see for instance [15]. In
principle one can apply the same transformation also to strands
in order to handle some algebraic properties, but we leave this
external to our approach.

IV. MODELING THE LAZY INTRUDER IN ISABELLE/HOL
A naïve approach to model checking security protocols

would be to devise a transition system that contains transitions
for honest agents and composition/decomposition steps for
the intruder. Since composition is infinite, one would not
only bound the number of honest agents and the number of
protocol runs they can participate in, but also the complexity
of messages that the intruder can compose. (In fact, the typing
result shows that for a large class of protocols this bounding of
the intruder would be without loss of attacks.) But even under
tight bounds, the search space is infeasibly large. Therefore a
technique has emerged that replaces this “eager” exploration
of what the intruder can do by a symbolic approach with
constraints and a demand-driven, “lazy” evaluation of these
constraints [17], [23], [3]. We thus like to call this technique
the lazy intruder. While a successful method in the analysis
and verification (for a bounded number of sessions) of security
protocols, it has also been used as a proof argument for
typing and compositionality results [1], [9], [2] like the one
we formalize here in Isabelle. Note that in this way of using
the lazy intruder, there is no bound on the number of sessions.

The lazy intruder constraints are of the form M ` t where
now M and t can contain variables. Intuitively, M is the
knowledge that the intruder had at a point where he sent a
message of the form t to some honest agent. Here the term t
may contain variables, so that t is a pattern of what messages
the agent would accept and the variables are the places where
the agent does not expect a particular value. This is where the
lazy intruder is lazy: we do not right away try to determine
a value for each variable. Therefore, the next messages this
honest agent sends may contain variables from t and this is
how variables can end up in the intruder knowledge M ′ in a
successor state.

For a feasible procedure for checking the satisfiability of
constraints, one needs to require a well-formedness condition
on constraints: they can be ordered as M1 ` t1, . . . ,Mn ` tn
(the order in which the constraints occurred) where

1) Mi ⊆ Mi+1 (for 1 ≤ i < n): the intruder knowledge
grows monotonically; and

2) FV Mi ⊆
⋃i−1
k=1 FV tk: all variables originate from a term

sent by the intruder.
A large part of this work is to formalize in Isabelle/HOL

these lazy intruder constraints, a reduction procedure for the

constraints, and to prove the soundness, completeness, and
termination of this procedure. Completeness and termination
are quite difficult even as standard pen-and-paper proofs. We
therefore had to first seek for any possibilities to make the task
and the formalization as easy and light-weight as possible. The
main simplifications are a different representation and an “out-
sourcing” of decomposition steps, as we explain next.

The formalization we present here is a so-called deep
embedding, i.e. we formalize constraints as objects in Isabelle
that we can reason about. This is in contrast to a shallow
embedding where we simply consider them as HOL formulae
that use the ` predicate. A shallow embedding would have
advantages (both in terms of simplicity and performance)
if one would like to directly perform constraint reasoning
in Isabelle. A deep embedding is however necessary for
our purpose, since we want to reason about a procedure
that manipulates constraints, and in particular prove that this
procedure is complete and terminates (the soundness proof
could also be expressed in a shallow embedding).

A. The Lazy Intruder on the Beach
The first idea for keeping matters simple is to change the

representation of the constraints by using strands.2 A strand is
a sequence of send and receive operations and strand spaces
are a nice formalism to reason about protocol executions [25].
We define an intruder strand as a list of received and sent
messages:

datatype (Σ,V) strand-step =
Send ((Σ,V) term) | Receive ((Σ,V) term)

type-synonym (Σ,V) strand = (Σ,V) strand-step list

Thus, the intruder knowledge at each point in the strand are
the messages that the intruder has received up to this point,
and each sent message must be something he can construct
from the knowledge at that point.

Example 2: Consider the following constraints in traditional
representation:

{crypt(pub(ka), secret), ki} ` crypt(pub(x), y)
{crypt(pub(ka), secret), ki, y} ` secret

In the strand representation we would write this as:

Receive crypt(pub(ka), secret).Receive ki.
Send crypt(pub(x), y).Receive y.Send secret.0

Instead of [st1, . . . , stn] we rather write st1. . . . .stn.0 like
in process calculi.
The advantage of our representation is that we have “built-in”
the first condition of the well-formedness: that the intruder
knowledge monotonically grows. The second condition—that
all variables originate in terms sent by the intruder—is now
easy to formulate:

Definition 2: An intruder strand A is well-formed iff
wfst ∅ A holds where:

wfst V 0 iff True
wfst V (Receive t.A) iff FV t ⊆ V and wfst V A

wfst V (Send t.A) iff wfst (V ∪ FV t) A
2Note that the word strand in Danish and German means beach.
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Here the parameter V of wfst V A is meant to denote the free
variables of all sent messages that have occurred in a prefix of
the parameter A. The variables occurring in an intruder strand
A are denoted by varsst A. Moreover, the intruder knowledge
of an intruder strand A, written ikst A, is the set of received
messages. That is, t ∈ ikst A iff Receive t occurs in A.

B. Constraint Semantics

We define the semantics of intruder strands based on the
Dolev-Yao deduction relation `. Recall that an interpretation
I maps all variables to ground terms. We write JAK M I to
denote that I is a solution of an intruder strand A where M
is an (initially empty) set of messages available to the intruder
at the start, and define this relation as follows:

J0K M I iff True
JSend t.AK M I iff (I M) ` (I t) and JAK M I

JReceive t.AK M I iff JAK ({t} ∪M) I

Thus, every message he receives is simply added to the
parameter M that collects the intruder knowledge in this
inductive definition. For every message t that the intruder
sends, we require that he can derive it from knowledge M
(under the interpretation I).

Example 3: Consider the intruder strand from the previous
example. Any I with I x = ka and I y = secret is a solution
of the constraint. Consider only the prefix up to (and including)
the first Send step; then also I x = I y = ki is a solution,
and so is any interpretation that maps x and y to terms that
the intruder can generate from his knowledge at that point.

During constraint reduction below we will consider pairs
(A, θ) of an intruder strand A and a well-formed substitution
θ that represents the (partial) solution obtained so far (like the
solution for x and y in the example above). At the beginning
of the reduction, θ is simply the identity. Whenever θ is
augmented during reduction, we apply it also to A, i.e., A
contains no variables in the domain of θ (that are already
“solved”).3 Formally:

Definition 3: An intruder constraint is of the form (A, θ),
where A is an intruder strand and θ is a substitution. An
intruder constraint (A, θ) is furthermore well-formed if 1)
A is a well-formed intruder strand, 2) θ is a well-formed
substitution, and 3) the domain of θ and the variables of A
are disjoint.

The interpretation I is said to be a model of (A, θ) (with
initial intruder knowledge M0) written M0, I |= (A, θ), iff θ
supports I and JAK M0 I holds. For the default M0 = ∅ we
simply write I |= (A, θ), and I |= A if additionally θ = [].

C. Out-sourcing Analysis

One aspect that makes the lazy intruder complicated, both
in terms of an implementation in tools, and in terms of prov-
ing completeness and termination of the reduction procedure
below, is analysis of terms. For instance, if the intruder learns

3In Isabelle, we have to define explicitly an extension of substitution to
functions on constraints (defined homomorphically as expected) but we leave
this implicit in the notation in this paper, for simplicity.

an encrypted term where the subterm for the key contains a
variable, then whether he can decrypt the term may depend on
the substitution for that variable. In general, one has to make
then a case split: the case that the message can be deciphered
and the case that it cannot, since ignoring either case may
eliminate solutions. In fact, in the case a message has not
been decrypted, after each received message another case split
is necessary whether or not the term should now be decrypted.
Another complication arises from the fact that a term in the
intruder knowledge could directly be a variable that may
represent a decryptable term, and one has to carefully argue
that the term in question was known to the intruder earlier (and
could have been decrypted then), but this argument requires
that the earlier constraints have already been simplified.

To avoid these complications, we now consider the follow-
ing idea: we limit the intruder to composition steps, i.e., the
`c relation, and “out-source” all decomposition steps to the
transition system. To that end, we can imagine special honest
agents that perform decryption operations for the intruder. We
discuss this in detail (and prove correctness) in Section VI.

One may wonder why we even bother with the lazy intruder
and do not simply out-source also the composition steps of `c
as well. Recall that the lazy intruder was conceived to counter
the problem that the `c closure is infinite (while closure under
analysis is finite). In other words, in a forward exploration
of a transition system, composition leads to blind exploration
(while analysis is not a problem). A backwards search like
lazy intruder constraint solving is a clear demand-driven way
to handle composition steps. Exactly this demand-driven, lazy
aspect is what we shall exploit in the typing results: while
the intruder can compose ill-typed messages, this is never
necessary to mount the attack, and this “never necessary” is
captured by the laziness of the intruder. Not having analysis
steps as part of that argument does not hurt, because the
analysis of terms is not what introduces ill-typed messages.
In fact, we believe that even for automated tools that use the
lazy intruder technique, the out-sourcing of analysis could be
beneficial, since it drastically simplifies the technique, and as
far as we can see every provision for efficiency (e.g. eagerly
performing analysis steps that require no substitution) can be
similarly applied at the transition system level.

We then define a variant J·Kc of the semantics J·K restricted
to composition steps by replacing ` with `c in the definition
of J·K. Similarly, we define |=c by replacing J·K with J·Kc in
the definition of |=.

D. Constraint Reduction

The goal of the constraint reduction procedure is to de-
termine all solutions of a constraint. There are in general
infinitely many solutions, but they can be finitely represented,
namely by simple constraints:

Definition 4: An intruder constraint (A, θ) is simple if and
only if t ∈ V for every Send t that occurs in A.
The point is that simple constraints are always satisfiable: the
remaining variables are arbitrary, so the intruder can choose
any term from his knowledge. A key point of the typing result
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is: when the variables are annotated with an intended type (and
the intruder knows values for each type), then there always
also exists a well-typed solution for a simple constraint.

The goal of the reduction procedure is now to transform a
given constraint into an equivalent set of simple constraints.
That is, we define a reduction relation  on constraints4, and
for a given (A0, θ0), we consider the reachable constraints, i.e.,
(A0, θ0)  ∗ (A, θ). (The relation  ∗ denotes the reflexive
transitive closure of  while  + then denotes the transitive
closure.) We prove in Isabelle that there are finitely many
(termination), and that the union of the models of the reachable
simple constraints is exactly the set of models of (A0, θ0)
(soundness and completeness).

Definition 5: The lazy intruder is the least relation  
between constraints closed under the following rules:

(ComposeLI ) : (A.Send f(t1, . . . , tn).A′, θ)
 (A.Send t1. · · · .Send tn.A′, θ)

if simple A, f ∈ Σn, public f

(UnifyLI ) : (A.Send s.A′, θ) (δ (A.A′), θ · δ)
if s, t /∈ V, simple A, t ∈ ikst A, Some δ = mgu s t

The (ComposeLI ) rule corresponds to the (Compose) rule
of the Dolev-Yao model, i.e., if the intruder has to produce
f(t1, . . . , tn) for a public symbol f , one way to do it is to
produce each of the ti (in whatever way) and apply f to them.

The (UnifyLI ) rule corresponds to the (Axiom) rule of the
Dolev-Yao model: it states that the intruder can send a message
s if he has previously learned a message t that can be unified
with s. More precisely, the most general unifier δ of s and
t (if it exists; the data constructor Some is from the option
datatype) represents all interpretations of the constraint, under
which s and t are equal, and thus under which the Send s can
be removed as this requirement is satisfied. However, we have
to integrate δ by composing it with the existing solution θ and
applying it to the rest of the constraint, so that no variable in
the domain of δ remains in the intruder strand.

Note that the (UnifyLI ) rule is not applicable if the term s
to be generated is a variable, because we are lazy: since so far
there is no more constraint on what s should be precisely, it is
pointless to explore options—the intruder can always generate
something. This is a key to the typing result later. In following
reduction steps, this variable may be replaced with a more
concrete term, and then we explore how that term can be
generated. Finally, the rule also forbids that the term t that
we unify with s is a variable (and this is again crucial in
the typing result), but that this restriction is without loss of
generality is a tricky part of the completeness proof.

Note that in contrast to many other lazy intruder methods,
these rules are only applicable to the first term of the form
Send t where t is not a variable, i.e., all prior Send steps
must be simple already. This restriction is without loss of

4This relation φ  ψ is sometimes written
ψ

φ, i.e, in the form of a proof
calculus for satisfiability. One can read each such rule top down: every solution
of ψ is also a solution of φ. The procedure, however, works by backwards
exploring the rules: the solutions of φ include all solutions of ψ.

generality again as our proofs show; since this removes some
non-determinism, it also makes some arguments later easier,
because we can rely on the prefix to be simple.

Example 4: Let us reduce the constraint from Example 2
(with [] as initial substitution). With one  step (address-
ing the first Send) we can get (using (ComposeLI )) to:
. . . Send pub(x).Send y.Receive y.Send secret.0.

Since we cannot unify the pub(x) with anything, we
then are forced to make another compose, leading to:
. . . Send x.Send y.Receive y.Send secret.0 The remaining
non-simple Send secret cannot be solved (if secret ∈ Cpriv),
i.e. it has no successor under . Since it is not simple, it does
not have any solution by completeness of the lazy intruder (the
actual completeness theorem will be introduced later).

From the original constraint we can however also reach
another constraint when using (UnifyLI ) between the received
encrypted message and the one to be sent, giving the unifier
δ = [x 7→ ka, y 7→ secret]: . . . Receive secret.Send secret.0
which can trivially be solved with another unify step.

Our formalization can be extended with equality constraints
si

.
= ti as well. To solve such constraints we can simply com-

pute the mgus θi of all equality constraints s1
.
= t1, · · · , sn

.
=

tn associated with an intruder strand A and then solve the
constraint (θ A, θ) where θ = θ1 · . . . · θn. The resulting
constraint is well-formed as well since θ is a well-formed
substitution by Lemma 1 and hence the set of variables of
θ A and the domain of θ would be disjoint. Negative equality
constraints ¬∃x̄. si

.
= ti can be handled separately from the

lazy intruder, similar to how they are handled in other works
like [1].

E. Proving Soundness & Completeness

A great part of the contribution of this paper lies in the
Isabelle proof of the soundness and completeness of lazy
intruder reduction. This is following basically the proofs in [1]
and we do not repeat here any proof sketches. In fact, with
analysis (that we out-source to the transition system) we found
several mistakes in [1]; these are discussed on the transition
system level in Section VI-B, along with a correction.

We first prove that all reductions preserve well-formedness
of the constraints:

Lemma 2 (Well-formedness preservation): If (A1, θ1) is
well-formed and (A1, θ1) ∗ (A2, θ2) then (A2, θ2) is well-
formed.
From the well-formedness we can quite easily derive sound-
ness, i.e., that no reduction step introduces new solutions:

Theorem 1 (Soundness): If (A, θ) is well-formed, (A, θ) ∗
(A′, θ′), and I |=c (A′, θ′), then I |=c (A, θ).
The proof of completeness relies on the termination which we
thus prove first.

Lemma 3 (Termination): For a constraint (A, θ), the set of
reachable constraints {(A′, θ′) | (A, θ) ∗ (A′, θ′)} is finite.

The next step is that all simple constraints are satisfiable:
Lemma 4 (Simple constraints are satisfiable): If (A, θ) is

well-formed andA is simple, then there exists an interpretation
I such that I |=c (A, θ).
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The most difficult lemma to prove is that given a non-simple
but satisfiable constraint, then for every solution I of that
constraint exists a reduction  that preserves I.

Lemma 5 (Completeness, single step): If (A, θ) is well-
formed, I |=c (A, θ), and A is not simple, then there exists
(A′, θ′) such that (A, θ) (A′, θ′) and I |=c (A′, θ′).

From this, we obtain the completeness: a well-formed
constraint is either simple (and thus satisfiable), or we can
make further reductions (and no solution gets lost), or else we
are stuck at an irreducible constraint (that is thus unsatisfiable).
Together with termination we thus have:

Theorem 2 (Completeness): If (A, θ) is well-formed and
I |=c (A, θ) then there exists a (A′, θ′) such that A′ is simple,
(A, θ) ∗ (A′, θ′), and I |=c (A′, θ′).

V. TYPED MODEL

So far our model of the intruder is untyped. We now define
a simple type system and consider the restriction of the model
where the intruder is limited to well-typed messages. The
main result of this section is the formalization of a typing
result on intruder constraints for a large class of protocols: if a
constraint (A, θ) has a solution I, then it also has a well-typed
solution I ′. Thus, if we can verify a protocol in a typed model
(all constraints that arise only have well-typed solutions) then
we can infer that it is also secure in the untyped model. In
this section we first develop the typing result on the level
of constraints (without analysis) and then extend it to entire
protocols and transition systems in Section VI.

A. The Type System

Recall that our notion of terms is parameterized over a
set Σ of function symbols, so one can easily introduce new
operators without updating all the proofs. Similarly, for the
type system we introduce another set over which our result is
parameterized: a finite set Ta of atomic types. An example is
Ta = {Agent,Nonce,SymmetricKey,PrivateKey}. (Note that
public keys do not have an atomic type, because we build them
using operator pub from private keys.) Next, we introduce
composed types as built like terms from Ta and the operators
of Σ, for instance crypt(pub(PrivateKey),Nonce) could be a
composed type. As types are thus very similar to normal terms,
we re-use the definition for terms:

type-synonym (Σ,Ta) term-type ≡ (Σ,Ta) term

Thus, we put atomic types in every place where normal terms
would have variables. (Note that our type system has no type
variables, atomic types are like constants.) To avoid confusion
and make definitions nicer to read, we introduce two synonyms
for the constructors Var and Fun of terms, namely TAtom

and TComp, and consistently use them when talking about
types. We inherit all previous notions from terms, e.g., well-
formedness for types (all operators are used with correct arity).
However, we additionally require that no constants occur
in types. Further, our result is parameterized over a typing
function Γ : (Σ,V) term⇒ (Σ,Ta) term-type that maps each
term to a type and that must satisfy the following properties:

1) Γ(c) ∈ Ta for every c ∈ C.
2) Γ(f(t1, . . . , tn)) = f(Γ(t1), . . . ,Γ(tn)) for every f ∈

Σ \ C.
3) Γ(v) must be a well-formed type for every v ∈ V .

In fact, it is thus sufficient to specify Γ for all constants
(as atomic types) and all variables (as arbitrary well-formed
types), and then homomorphically extend Γ to arbitrary terms.
Thus, every well-formed term t has a well-formed type Γ(t).

Finally, we want to give the intruder an unbounded sup-
ply of terms of every type, thus we require that Cpub
contains infinitely many constants of every atomic type:∧
a. infinite {c. Γ (Fun c []) = TAtom a ∧ public c}
An important point why this type system is of foundational

interest is that it limits the size of terms that can be substituted
for a variable, e.g., when the protocol requires a value to be of
type nonce, it cannot be a composed term in the typed model
anymore. Abstract interpretation approaches like the one used
in ProVerif (where Σ is finite) become decidable under this
restriction, and several Isabelle proof methodologies are based
on a typed model [21], [22], [5], [4], [8]. This restriction on
substitutions—that they preserve typing—is captured by the
following definition:

Definition 6 (Well-typed substitutions): A substitution δ is
well-typed iff Γ(δ x) = Γ(x) for all x ∈ V .

The requirement that we need for our typing result is that
the messages and sub-messages of a protocol must have a
different shape whenever they have different types. For that
reason we specify the set of sub-message patterns given the
set of messages M . In the next section we will use as M
the set of all messages of the protocol description (containing
variables, hence message patterns).

Definition 7 (Sub-message patterns): The sub-message pat-
terns SMP(M) for a set of messages M is defined as the least
set satisfying the following rules:

1) M ⊆ SMP(M).
2) If t ∈ SMP(M) and t′ @ t then t′ ∈ SMP(M).
3) If t ∈ SMP(M) and δ is a well-typed substitution then

δ t ∈ SMP(M).
The intuition behind this definition is that during constraint
reduction we can get to subterms of the initially given terms
and apply substitutions. We will show that for the considered
class of protocols these substitutions will always be well-
typed, so we never fall out of SMP(M).

We can now define the main requirement for our typing
result, as a property of the set SMP(M):

Definition 8 (Type-flaw resistance): We say a set M of mes-
sages is type-flaw resistant iff ∀s, t ∈ SMP(M)\V. (∃δ. δ s =
δ t) −→ Γ(s) = Γ(t). We may also apply the notion of type-
flaw resistance directly to an intruder strand A to mean that
the set of all t for which Send t or Receive t occurs in A is
type-flaw resistant.
The notion of type-flaw resistance requires that we cannot
unify any subterms (except variables) that have different types,
i.e., terms that have different meaning must be clearly distin-
guishable. This is a bit more general than results that are based
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on adding tags to messages to make them distinguishable,
like [13], [7] since we do not impose a particular mechanism
to disambiguate messages, such as tags, but rather have a very
general definition: to prove type-flaw resistance you just have
to ensure that terms of different types are not unifiable (hence
distinguishable). We illustrate this with a real-world example,
also formalized in Isabelle, by proving type-flaw resistance of
TLS.

B. TLS Example

As a real-world example, let us consider the messages
of the TLS Handshake protocol [10]. TLS defines several
concrete message structuring formats, e.g., the first message
of the TLS handshake is called clientHello, and contains
essentially five distinct pieces of information (such as a time
stamp and a random number); the concrete message format
includes also length information and a tag (to distinguish
the clientHello from other messages). We represent in
our term algebra by an abstract function of five arguments
clientHello(T,R, S,C,K) and define it as a transparent
function in Ana, i.e., the intruder can extract all fields from
a known message of this format (without knowing any keys).
All other formats of TLS are modeled the same way. The
entire TLS handshake protocol can then be represented by the
following set of message patterns M :

clientHello(T1, RA, S,Cipher ,Comp),
serverHello(T2, RB , S,Cipher ,Comp),
serverCert(sign(Pr ca, x509(B,PB))),
clientKeyExchange(crypt(PB , pmsForm(PMS ))),
finished(prf(clientFinished(
prf(master(PMS , RA, RB)), RA, RB , hash(HSMsgs))))

Here crypt is again asymmetric encryption, sign is signa-
ture, and master, prf and hash are one-way functions for
hashing, key derivation, and MAC’ing; all other functions are
formats. Most variables are of atomic type except for PB
being of type pub(PrivateKey) and HSMsgs which represents
the concatenation of all handshake messages, i.e., its type is
concat(clientHello(. . .), . . . , finished(. . .)) for yet an-
other format concat.

One may wonder at this point how this finite set M is
sufficient to represent the protocol with an unbounded number
of sessions. In fact, we will define below a protocol by an
unbounded number of strands for the honest agents (essentially
the initial state of a transition system). In fact, the sent
and received messages of these strands shall be well-typed
instances of M : we rename variables so that strands use
pairwise disjoint sets of variables, but this renaming is well-
typed, and we may instantiate some variables with ground
terms, e.g., in all client strands the variable PMS shall be
instantiated with a unique constant of the according type.
Collecting all messages from these strands we thus obtain
an infinite set M ′, however, SMP(M) ⊇ SMP(M ′) since
M ′ contains only well-typed instances of M , and thus if M
is type-flaw resistant, so is M ′. More generally, for checking
that a protocol is type-flaw resistant, it is sufficient to consider

any set M that subsumes all messages of the protocols’ honest
agent strands as well-typed instances.

It is not too difficult to show that M for TLS is type-flaw
resistant: every operator except prf is applied to arguments
of the same type throughout SMP(M); for prf the argument
is either of the form clientFinished(·) or master(·) (but
never a variable, because prf is always applied to non-variable
arguments in M and it does not occur in the type of any term
in M ). Due to the free algebra, it follows almost immediately
that two unifiable elements of SMP(M) \ V have the same
type. While we have conducted the proof manually in Isabelle,
we believe it is possible to automate such proofs as a general
proof strategy.

C. Constraint-level Typing Result & Formalization in Isabelle

For our typing result on the constraint-level we first prove
that well-typedness and type-flaw resistance are invariants of
the constraint reduction:

Lemma 6 (Invariants): If (A, θ) is well-formed, A is type-
flaw resistant, θ is well-typed, and (A, θ)  ∗ (A′, θ′), then
A′ is type-flaw resistant and θ′ is well-typed.

Recall that by Lemma 4, every simple constraint has an
interpretation; we now show that it even has a well-typed
interpretation. This is because the intruder can generate terms
of any type (as he knows constants of any type and can
compose with public functions).

Lemma 7 (Simple intruder strands are well-typed satisfi-
able): If (A, θ) is well-formed, A is simple, and θ is well-
typed, then there exists a well-typed interpretation Iτ such
that Iτ |=c (A, θ).
In fact, the proof is constructive, using this interpretation:

Isimple ≡ λ v. ε t.Γ(v) = Γ(t) ∧ ∅ `c t

where ε is the Hilbert operator, i.e. ε t. φ yields a value t
such that φ holds, and ∅ `c t means that the intruder can
generate t without any prior knowledge except for the public
constants. Since all intruder deduction constraints are on the
form M `c x all variables of the same type can safely be
interpreted as the same public, ground term.5

From this we get the typing result on the constraint level:
Theorem 3 (Existence of well-typed attacks, on the

constraint-level): If (A, θ) is well-formed and type-flaw re-
sistant, θ is well-typed, and I |=c (A, θ), then there exists a
well-typed interpretation Iτ such that Iτ |=c (A, θ).
The proof idea is that all terms in the constraints reduction
are elements of SMP(A) and thus any unifier between non-
variable terms must be well-typed.

VI. PROTOCOL TRANSITION SYSTEMS

The previous sections have established the typing result on
the level of constraints and we now lift it to transition systems.
Since we had out-sourced the entire question of analysis, we
also have to take care of it now.

5It is possible to extend this result to include inequalities like x 6= y as
in Almousa et al. [1], by simply ensuring that Isimple chooses different terms
for each variable; this is possible since the intruder has an infinite supply of
every atomic type.
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A. Definitions

We now represent also the honest agents by strands (reusing
the definition of intruder strands), and we define a protocol to
be a countably infinite set of such honest agent strands:

type-synonym (Σ,V) protocol ≡ (Σ,V) strand set

As is usual we allow the intruder full control of all commu-
nication happening in the protocol: whenever an honest agent
receives a message the intruder must have sent it, and when-
ever an honest agent sends a message the intruder intercepts it.
Hence, for protocol execution, we define a symbolic transition
system in which honest agents can send and receive messages
(that might contain variables, hence symbolic) and where we
record the steps taken during these transitions. A state (S;A)
then consists of a protocol S and an intruder strand A which
represents the steps taken from the intruder’s point of view
and which we will build up during execution of S. Since the
goal of this section is to lift the typing result to the transition
system, where we use the full semantics |=, we interpret the
constraints in states under |= and not |=c as we did in previous
sections. For the initial state the intruder strand is empty, that
is (S0; 0) where S0 denotes the initial protocol and where the
empty intruder strand 0 will be filled during transitions.

Definition 9 (Protocol transition system):

TS1 : (S;A)⇒• (S \ {0};A) if 0 ∈ S
TS2 : (S;A)⇒• ({S} ∪ (S \ {Send t.S});A.Receive t)

if Send t.S ∈ S
TS3 : (S;A)⇒• ({S} ∪ (S \ {Receive t.S});A.Send t)

if Receive t.S ∈ S

The first rule simply removes empty strands, i.e., honest
agents that have finished execution. The second rule allows
honest agents to send messages, in which case the intruder
intercepts and receives this message. Hence we extend the
intruder knowledge (by adding a Receive step to the intruder
strand) at that point with the message that is sent. The third
and final rule allows an honest agent to receive a message,
and in this case we require that the intruder must generate this
message. Thus we extend the intruder strand with an additional
derivation requirement by adding a Send step. As usual we
write ⇒•∗ for the reflexive transitive closure.

Note that we require intruder strands to be well-formed,
including those emerging from an execution of a protocol. For
this reason, we impose a requirement on the variables in all
honest-agent strands of the protocols we consider that is dual
to the requirement for intruder strands: while in the intruder
strands all variables must originate in a Send step, we require
that in an honest agent strand they are all originating in a
Receive step. Formally, we define the dual of a strand S as
“swapping” the direction of the steps of S:

dualst 0 = 0
dualst (Send t.S) = Receive t.(dualst S)

dualst (Receive t.S) = Send t.(dualst S)

Then we define protocol well-formedness using Definition 2:

Definition 10: A protocol S is well-formed iff wfsts S where

wfsts S ≡ ∀S ∈ S. wfst ∅ (dualst S)

It is now immediate that all intruder strands of reachable states
are well-formed if the initial protocol is well-formed.

B. Problems of the Original Paper

Recall that in our Isabelle formalization of the lazy intruder,
we have decided to “out-source” the analysis step from the
intruder to the transition system. Therefore, we need to now
show that the transition system from the previous section
(that assumes the full intruder in its semantics) is equivalent
to a transition system where the intruder is restricted to
composition steps (i.e., `c) and that has special transition
steps for analysis—and make that work with the typing result.
Upon trying to prove these results in Isabelle we discovered
several problems in the result of Almousa et al. [1]. In fact,
that paper handles analysis as part of the lazy intruder, but
the problems appear in similar form. In fact, discovering and
provably fixing all such mistakes is indeed the main goal of
the Isabelle formalization. We discuss first the errors and ways
to fix them, and then how other typing results are doing on
these issues.

The lazy intruder analysis rule of [1] would in our notation
look like this:

(DecomposeLI ) (A.A′, θ) (A.Send K.Receive T.A′, θ)
if s ∈ ikst A, Ana s = (K,T ), T * ikst A

Here we use Send K and Receive T for sets K and T
of messages as obvious abbreviation for sequences of send
and receive steps. The rule means, at any point in an intruder
strand, the intruder can attempt the analysis of a term s that he
learned before that point, and this attempt would mean that he
has to generate (“Send”) the key terms K and would obtain
(“Receive”) the resulting messages T . (In fact, our handling
of analysis as part of the transition system adds analysis steps
that similarly produce such sending and receiving steps in the
intruder strand.)

Like [1], we make the following requirement on the Ana

function that all key and result terms are subterms of the term
being analyzed:

Ana1 : Ana t = (K,T ) =⇒ K ∪ T ⊂ subterms t

This is necessary for termination, since without such a re-
striction to subterms one could encode undecidable problems
into analysis. This is however not enough as our first counter-
example to correctness of [1] shows:

Example 5: Suppose for two public unary operators f and
g we define: Ana f(g(x)) = (∅, {x}). Then the constraint
Receive g(c).Send c has a solution since {g(c)} ` c. This
solution would however be missed by (DecomposeLI ), thus
the lazy intruder of [1] is incomplete.
The same problem does not occur in other typing results,
or works with lazy intruder constraints [2], [9] because they
consider a fixed set of operators where none has a destructor-
like behavior upon analysis. A property of analysis that all
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these approaches use is that the intruder does not learn
anything new from analyzing terms that he composed himself,
e.g., encrypting a term and then decrypting it will not reveal
new information, and without loss of generality we thus can
exclude intruder-composed terms from analysis. Also [1] uses
this argument, but as example 5 shows, this is not true for
all intruder theories they allow. We thus make an additional
restriction on Ana, namely that analysis can only yield direct
subterms:

Ana2 : Ana f(t1, . . . , tn) = (K,T ) =⇒ T ⊆ {t1, . . . , tn}

Example 6: Let now f be a binary operator with the
following Ana rule:

Ana f(s, t) = (∅, {t}) if s ∈ V

This is hardly a reasonable analysis rule since it gives results
only for symbolic terms, but not for ground terms. The
constraint Send x.Receive f(x, c).Send c has no solution
since there is no interpretation I with I {f(x, c)} ` c.
However, constraint reduction with rule (DecomposeLI ) yields
a simple (and thus satisfiable constraint), and we thus also have
a counter-example for soundness of [1].
To correct this, we add the following requirement:

Ana3 : Ana t = (K,T ) 6= (∅, ∅) =⇒ Ana (δ t) = (δ K, δ T )
for any substitution δ

Thus, when applying Ana on any analyzable term t, then any
instance δ t must allow for the same analysis under δ.

Example 7: Consider again our standard Ana (which sat-
isfies all three requirements). For the full intruder model
` (that is not restricted to composition only) the lazy in-
truder with (DecomposeLI ) is not complete: The constraint
Send x.Receive crypt(x, c).Send c has the solution I =
[x 7→ pub(c′)] for some constant c′. However, this solution
is not found by the lazy intruder (with the above analysis
rule) because Ana crypt(x, c) = (∅, ∅). The problem is that
the case Ana crypt(pub(k),m) does not match the term we
need to analyze, since it has the variable x in the key position.
One may wonder if the authors of [1] actually meant to
apply this rule under unification with a term in the intruder
knowledge, however that would require to apply the unifier
(in the example [x 7→ pub(x′)] for a new x′) to the rest of
the constraint—while all other rules of [1] explicitly denote
such unifiers; moreover this reading of the rule would lead to
non-termination.
In the other typing results [2], [9], this problem does not occur
because they fix the public-key infrastructure, i.e., they cannot
model that an honest agent receives an arbitrary public key
x in a message and use it for encrypting a message, i.e.,
crypt(x,m). When fixing the public key infrastructure, all
keys used for public key encryption are of the form pub(·) (in
our notation) and then the mentioned problem does not occur.
However, we do not want to impose this strong restriction to a
fixed public key infrastructure and rather allow for protocols
that can also exchange public keys. A milder restriction is
that all terms used as a first argument of crypt must have the

form pub(·), for instance the strand of an honest agent could
be: Receive pub(x).Send crypt(pub(x), c). The restriction
here is that this agent only accepts a public key as input, i.e.,
restricting this bit to a typed model by assumption. There are
several ways to justify this restriction, e.g., it is common in
protocols where a new public key t can be introduced that
the creator has to sign any message with the corresponding
private key, proving that t = pub(s) for some private key s
(and without the recipient learning s). Also, when receiving
a public key as part of a certificate from a trusted authority,
one may rely that the authority has required this kind of proof
from the owner of the public key, and thus it is justifiable to
model the certified key to have the form pub(·).6

While the pub-requirement solves the problem for the
concrete example crypt, we need a general requirement for
arbitrary operators. The example shows that this cannot be a
property of Ana alone, but relates to the use of the operators
in the protocol:

Definition 11 (Analysis-invariance): A protocol S0 is
analysis-invariant iff

∀t ∈ (subterms M) \ V. ∀K,T, δ.
Ana t = (K,T ) −→ Ana (δ t) = (δ K, δ T )

where M is the set of sent messages occurring in S0.
Thus we require that any subterm t of the protocol, ex-
cept variables, can be analyzed if some instance δ t can
be analyzed. This excludes a term like crypt(x, t) since it
cannot be analyzed while the instance crypt(pub(c), t) can. In
general, this restriction affects only those operators f where
the analysis rule has the form Ana f(t1, . . . , tn) where some
ti is not a pattern variable; then the protocol cannot use a
variable for that argument.

These restrictions are sufficient to conclude the typing result
on the transition system level, as described next, and they still
support strictly more protocols than the previous typing results
(except the flawed [1]).

C. Handling Analysis

As an intermediate step towards the result, we now define
a second transition system ⇒•c similar to ⇒•, but where
the intruder does not handle analysis himself (interpreting
constraints under |=c instead of the full |= as in ⇒•) and
where we have special transitions for analysis. An easy way
to handle this would be to simply define a set of hon-
est agents that behave like the analysis functionality, e.g.,
Receive crypt(pub(x), y).Receive x.Send y. In fact, this
works fine (and does not even need the requirement of analysis
invariance we introduced before) as far as the equivalence to
the standard transition system ⇒• is concerned. However this
does not directly work with the typing result: the notion of
type-flaw resistance would have to be satisfied on the set of
all honest agent strands, including the ones for analysis. This

6Many approaches have other models of the relation between public and
private keys, e.g., mappings on constants that are not part of Σ, or a private
function from public to private keys. All these seem to have trouble with
either the lazy intruder or the typing result.
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would be violated for many reasonable protocols (that have no
type-flaw problems). Luckily, there is a (more complicated)
solution that requires no further restriction on protocols.

The idea is that the intruder is allowed to attempt analysis
for every non-variable subterm of a term in his knowledge.
(Note that includes subterms he may be unable to derive, but
as part of the analysis step he has to prove he can produce
them, so this is sound.) Thus, the ⇒•c is defined like ⇒• plus
the following additional rule:

TSc4 : (S;A)⇒•c (S;A.Send t.Send k1. · · · .Send km.
Receive s1. · · · .Receive sn)

where t ∈ (subterms (ikst A)) \ V
and Ana t = ({k1, . . . , km}, {s1, . . . , sn})

Example 8: Consider the protocol S0 = {S1,S2,S3} where

S1 = Send ka.Send scrypt(kb, crypt(pub(ka), secret))
S2 = Receive scrypt(kb, x).Send x
S3 = Receive secret

Here, the strand S3 represents a strand to check a secrecy
goal, i.e., we want to check that we cannot reach a state
where S3 has executed and the intruder constraint is satis-
fiable. Consider the execution of the steps of S1 and S2, i.e.,
(S0; 0) ⇒•c

∗ ({S3};A) where

A = Receive ka.Receive scrypt(kb, crypt(pub(ka), secret))
Send scrypt(kb, x).Receive x

For the intruder to obtain the secret, we can now make
an analysis step with rule (TSc4) for the term t =
crypt(pub(ka), secret), yielding the state ({S3};A.D) with

D = Send crypt(pub(ka), secret).Send ka.Receive secret

and then execute S3, yielding state (∅;A.D.A′) with A′ =
Send secret. This constraint A.D.A′ is satisfiable in |=c.

In the standard transition system the corresponding state
would just omit the analysis step, i.e., (S0; 0) ⇒•∗ (∅;A.A′).
This constraint A.A′ is satisfiable for the full intruder |=.
More generally, we prove in Isabelle that the two transition
systems are equivalent. In particular, for every reachable state
(S;A) of ⇒• and every solution I |= A, an equivalent state
(S;A′) of⇒•c is reachable where A′ is like A augmented with
analysis steps, and I |=c A′. From the initial state (S0; 0) this
can be stated as follows:

Lemma 8 (Equivalence of transition systems, part 1):
If protocol S0 is well-formed and analysis-invariant,
(S0; 0) ⇒•∗ (S;A1. · · · .An), and I |= A1. · · · .An where
each Ai emerged from exactly one application of (TS1),
(TS2), or (TS3), then there exists D1, . . . ,Dn−1 such that
(S0; 0) ⇒•c

∗ (S;A1.D1. · · · .An−1.Dn−1.An) and I |=c

A1.D1. · · · .An−1.Dn−1An and where each Di emerged from
zero or more applications of (TSc4).
The most complicated aspect of the proof is to show that, if
I (ikst A) ` I t for some intruder strand A with model I
and some term t, then there exists some sequence of (TSc4)
steps D such that I (ikst (A.D)) `c I t and where I is
also a model of A.D. This proof proceeds by an induction on

the derivation of I t. Not surprisingly, this case bears many
similarities to completeness proofs of lazy intruder constraint
reduction systems like [1], [9] where the intruder can analyze
terms. The most complicated case—both in our proof and
the proofs of completeness—is where the last step of the
derivation is an application of the (Decompose) rule, i.e.,
where I t is derived by analyzing another ground term t′. In
the completeness proofs we would in this case have to inspect
the derivation tree for t′, eliminate redundant parts (namely,
analysis of intruder-composed terms), and, in the case where
the last step in the derivation is yet another application of
(Decompose), regress to a point in the derivation tree for
t′ where no (Decompose) has occurred yet. In our setting,
because we have a clear separation between term analysis
and composition (because of the out-sourcing analysis and by
considering the sub-relation `c of `), we immediately get from
the induction hypothesis that there exists some D′ (where I is
still a model of A.D′) such that I (ikst (A.D′)) `c t′. Hence
we essentially perform the regression by simply applying the
induction hypothesis instead of inspecting and transforming
derivation trees, making the proof slightly easier.

The other direction of the equivalence is more straightfor-
ward and does not require any assumptions on the protocol.
It follows easily by an induction on reachability:

Lemma 9 (Equivalence of transition systems, part
2): If (S0; 0) ⇒•c

∗ (S;A1.D1. · · · .An.Dn) and I |=c

A1.D1. · · · .An.Dn where each Ai emerged from exactly
one application of (TS1), (TS2), or (TS3), and where each
Di emerged from zero or more applications of (TSc4), then
(S0; 0) ⇒•∗ (S;A1. · · · .An) where I |= A1. · · · .An.

D. Lifting the Typing Result

With this equivalence between the transition systems
proven, we can now lift the typing result of Theorem 3
to constraints reachable in ⇒• where these constraints are
interpreted under the full intruder |= instead of |=c. First
we define that an entire protocol S0 (a set of strands for
honest agents) is type-flaw resistant if the set M of all sent
and received messages of S0 is type-flaw resistant. It is now
immediate that all intruder strands reachable from (S0; 0) in
both transition systems we defined (including analysis steps)
are also type-flaw resistant, because the set of sub-message
patterns are closed under subterms.

We can now first apply Lemma 8 to any satisfiable reachable
state (S;A1. · · · .An) in ⇒• to obtain an equivalent state
(S;A1.D1. · · · .An.Dn) with the same solution reachable in
our intermediate transition system ⇒•c . Then we can lift the
typing result from the constraint level to ⇒•c , since here
constraints are interpreted in |=c, i.e., solving the constraints
does not require analysis steps and thus our constraint-level
typing result Theorem 3 applies. Then, by the equivalence
to ⇒• with the full intruder model |=, i.e. Lemma 9, we
obtain our main result that every reachable state of a type-
flaw resistant and analysis-invariant protocol has a solution iff
it has a well-typed one:
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Theorem 4 (Existence of well-typed attack, on transition
system level): If protocol S0 is well-formed, type-flaw resistant
and analysis-invariant, (S0; 0) ⇒•∗ (S;A), and I |= A, then
there exists a well-typed interpretation Iτ such that Iτ |= A.

VII. CONCLUSION

We have established a typing result in Isabelle: Given an
Isabelle proof of security of a protocol where the intruder is
limited to well-typed messages (e.g., like proofs in the works
of [21] and [4]), then the typing result allows us to lift this
proof to an intruder model without the restriction to well-typed
messages. As an example, we have proved that the type-flaw
resistance requirement of our result is indeed satisfied by the
TLS protocol.

The particular value of this is the high reliability of proofs
checked with Isabelle, in contrast to pen-and-paper proofs in
partially natural language. This is illustrated by several errors
we discovered in the pen-and-paper proofs of Almousa et
al. [1]. Strictly speaking, their result does not hold without
further restrictions on the supported operators and protocols.
The complexity of such results (as well as verification tools)
makes such mistakes likely and this bears the risk of accepting
false security proofs. The Isabelle proof of the typing result
under some additional restrictions is thus also a step towards
“cleaning up”.

In other typing results, namely Cortier and Delaune [9] and
Arapinis and Duflot [2], the problems of [1] do not arise, since
they have fixed public key infrastructures (and fixed sets of
supported operators). Our restrictions in contrast do allow also
protocols where public keys are exchanged, though one must
ensure or assume that the received terms are indeed public
keys, but this is often in our opinion a realistic restriction.

At the core of our result, is the formalization of the lazy
intruder and its correctness. This, as well as the proving of the
typing result, gives insights for modeling and proving proto-
cols in general: Since Isabelle forces one to be precise about
every single detail, one is compelled to abstract, generalize,
and simplify as far as possible, to reduce the formalization
to the absolute essence. We have simplified the constraint
representation and shown how to “out-source” the analysis
steps of the intruder to steps in the protocol transition system.
We believe that such insights are helpful beyond the result
itself.

The typing results can also used as a stepping stone for
compositional reasoning, e.g., [9], [1] prove that two protocols
that are secure in isolation can also run securely on the same
communication medium in parallel, if their messages do not
interfere with each other, a requirement closely related to the
typing result. We plan to formalize such a result in Isabelle as
future work.

Acknowledgments: This work was supported by the
Sapere-Aude project “Composec: Secure Composition of Dis-
tributed Systems”, grant 4184-00334B of the Danish Council
for Independent Research. We thank Luca Viganò, Achim
Brucker, and Anders Schlichtkrull for helpful comments and
discussions.

REFERENCES

[1] O. Almousa, S. Mödersheim, P. Modesti, and L. Viganò. Typing
and compositionality for security protocols: A generalization to the
geometric fragment. In ESORICS 2015, pages 209–229, 2015. Extended
version available at http://www.imm.dtu.dk/~samo/.

[2] M. Arapinis and M. Duflot. Bounding messages for free in security
protocols - extension to various security properties. Inf. Comput.,
239:182–215, 2014.

[3] D. A. Basin, S. Mödersheim, and L. Viganò. OFMC: A symbolic model
checker for security protocols. Int. J. Inf. Sec., 4(3):181–208, 2005.

[4] G. Bella. Formal Correctness of Security Protocols - With 62 Figures
and 4 Tables. Information Security and Cryptography. Springer, 2007.

[5] G. Bella, F. Massacci, and L. C. Paulson. Verifying the SET purchase
protocols. J. Autom. Reasoning, 36(1-2):5–37, 2006.

[6] B. Blanchet. An efficient cryptographic protocol verifier based on Prolog
rules. In CSFW 2001, pages 82–96, 2001.

[7] B. Blanchet and A. Podelski. Verification of cryptographic protocols:
tagging enforces termination. Theor. Comput. Sci., 333(1-2):67–90,
2005.

[8] A. D. Brucker and S. Mödersheim. Integrating automated and interactive
protocol verification. In FAST 2009, pages 248–262, 2009.

[9] V. Cortier and S. Delaune. Safely composing security protocols. Formal
Methods in System Design, 34(1):1–36, 2009.

[10] T. Dierks and E. Rescorla. RFC 5246: The Transport Layer Security
(TLS) Protocol, Version 1.2, 2008. Available: http://tools.ietf.org/rfc/
rfc5246.txt.

[11] G. Gonthier and M. Norrish, editors. Certified Programs and Proofs -
Third International Conference, CPP 2013, Melbourne, VIC, Australia,
December 11-13, 2013, Proceedings, volume 8307 of Lecture Notes in
Computer Science. Springer, 2013.

[12] J. Goubault-Larrecq. Towards producing formally checkable security
proofs, automatically. In Computer Security Foundations Symposium,
2008.

[13] J. Heather, G. Lowe, and S. Schneider. How to prevent type flaw attacks
on security protocols. Journal of Computer Security, 11(2):217–244,
2003.

[14] B. Huffman and O. Kuncar. Lifting and transfer: A modular design for
quotients in Isabelle/HOL. In Gonthier and Norrish [11], pages 131–146.

[15] R. Küsters and T. Truderung. Using ProVerif to analyze protocols with
Diffie-Hellman exponentiation. In CSF, pages 157–171. IEEE, 2009.

[16] S. Meier, C. Cremers, and D. A. Basin. Efficient construction of
machine-checked symbolic protocol security proofs. Journal of Com-
puter Security, 21(1):41–87, 2013.

[17] J. K. Millen and V. Shmatikov. Constraint solving for bounded-
process cryptographic protocol analysis. In CCS 2001, Proceedings of
the 8th ACM Conference on Computer and Communications Security,
Philadelphia, Pennsylvania, USA, November 6-8, 2001., pages 166–175,
2001.

[18] S. Mödersheim. Diffie-Hellman without difficulty. In FAST, pages 214–
229, 2011.

[19] S. Mödersheim. Deciding security for a fragment of ASLan. In
ESORICS, pages 127–144. Springer, 2012.

[20] T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL - A Proof
Assistant for Higher-Order Logic, volume 2283 of Lecture Notes in
Computer Science. Springer, 2002.

[21] L. C. Paulson. The inductive approach to verifying cryptographic
protocols. Journal of Computer Security, 6(1-2):85–128, 1998.

[22] L. C. Paulson. Inductive analysis of the Internet protocol TLS. ACM
Trans. Inf. Syst. Secur., 2(3):332–351, 1999.

[23] M. Rusinowitch and M. Turuani. Protocol insecurity with a finite number
of sessions and composed keys is NP-complete. Theor. Comput. Sci.,
299, 2003.

[24] A. Schropp and A. Popescu. Nonfree datatypes in Isabelle/HOL -
animating a many-sorted metatheory. In Gonthier and Norrish [11],
pages 114–130.

[25] F. J. Thayer, J. C. Herzog, and J. D. Guttman. Strand spaces: Proving
security protocols correct. Journal of Computer Security, 7(1):191–230,
1999.

[26] R. Thiemann and C. Sternagel. Certification of termination proofs using
CeTA. In S. Berghofer, T. Nipkow, C. Urban, and M. Wenzel, editors,
TPHOLs 2009, volume 5674 of Lecture Notes in Computer Science,
pages 452–468. Springer, 2009.

13


