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Abstract

In protocol verification we observe a wide spectrum from fully auto-
mated methods to interactive theorem proving with proof assistants like
Isabelle/HOL. The latter provide overwhelmingly high assurance of the
correctness, which automated methods often cannot: due to their com-
plexity, bugs in such automated verification tools are likely and thus the
risk of erroneously verifying a flawed protocol is non-negligible. There
are a few works that try to combine advantages from both ends of the
spectrum: a high degree of automation and assurance. We present here
a first step towards achieving this for a more challenging class of pro-
tocols, namely those that work with a mutable long-term state. To our
knowledge this is the first approach that achieves fully automated verifica-
tion of stateful protocols in an LCF-style theorem prover. The approach
also includes a simple user-friendly transaction-based protocol specifica-
tion language embedded into Isabelle, and can also leverage a number of
existing results such as soundness of a typed model.

1 Introduction
There are at least three reasons why it is desirable to perform proofs of security
in a proof assistant like Isabelle/HOL or Coq. First, it gives us an overwhelm-
ing assurance that the proof of security is actually a proof and not just the
result of a bug in a complex verification tool. This is because the basic idea of
an LCF-style theorem prover is to have an abstract datatype theorem so that
new theorems can only be constructed through functions that correspond to
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accepted proof rules; thus implementing just this datatype correctly prevents us
from ever accepting a wrong proof as a theorem, no matter what complex ma-
chinery we build for automatically finding proofs. Second, a human may have
an insight of how to easily prove a particular statement where a “stupid” verifi-
cation algorithm may run into a complex check or even be infeasible. Third, the
language of a proof assistant can formalize all accepted mathematics, so there
is no narrow limit on what aspects of a system we can formalize. For instance,
we have proved in Isabelle/HOL a compositionality result [24] for our protocol
model: given a set of protocols for which we have proved security and that meet
a number of requirement, then also their composition is correct. Since also the
said requirements are proved in Isabelle, we arrive at a full security proof of
the entire system checked by Isabelle. A result like this is beyond the scope of
any standard verification tool. Note also that as part of the composition, some
of the component protocols may be proved secure by different methods or even
automatically.

Paulson [38] and Bella [5] developed a protocol model in Isabelle and per-
formed several security proofs in this model, e.g., [39]. That the proof of a single
protocol (for which even some automated security proofs exist) is worth a pub-
lication, underlines how demanding it is to conduct proofs in a proof assistant.
This raised the question of how one can automatically produce proofs that can
be checked by a proof assistant and thus get the mentioned overwhelming as-
surance. The first works in this direction consider tools based on Horn-clause
resolution like ProVerif [20, 11], as well as the tool Scyther-proof [31] for the
backward search-based tool Scyther [18].

A drawback of these approaches so far is that they only apply to Alice-and-
Bob style protocols where there is no relation between several sessions. When
we consider, however, any system that maintains a mutable long-term state,
e.g., a security token or a server that maintains a simple database, we hit the
limits of tools like ProVerif and Scyther. To cope with the complexity, some
extensions to ProVerif have been proposed [3, 14], but also a tool that went a
completely different way: Tamarin [33] is actually inspired by Scyther-proof and
has the flavor of a proof assistant environment itself, namely combining partial
automation with interactively performing a proof, i.e., supplying the right lem-
mas to show. Interestingly, there is no connection to Isabelle or other LCF-style
theorem provers, while one may intuitively expect that this should be easily
possible. The reason seems to be that Tamarin combines several specialized au-
tomated methods, especially for term algebraic reasoning, that would be quite
difficult to “translate” into Isabelle/HOL—at least the authors of this paper do
not see an easy way to make such a connection. In fact, if it was possible for a
large class of stateful protocols, the combination of overwhelming assurance of
proofs and a high degree of automation would be extremely desirable.

The goal of this work is to achieve exactly this combination for a well-
defined fragment of stateful protocols. We are here using as a foundation the
Isabelle/HOL formalization and protocol model by Hess et al. [23]. One rea-
son for this choice is that the proof technique we present in this paper works
only in a restricted typed model. Fortunately, that formalization ships with a
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typing result [26], namely an Isabelle theorem that says: if a protocol is secure
in this typed model, then it is also secure in the full model without the typ-
ing restriction—as long as the protocol in question satisfies a number of basic
requirements. Thus we get fully automated Isabelle proofs for most protocols
even without a typing restriction.

The automated proof technique we employ in this paper is based on the
set-based abstraction approach of [12, 35]. The basic idea is that we represent
the long-term state of a protocol by a number of sets; the protocol rules specify
how protocol participants shall insert elements into a set, remove them from a
set, and check for membership or non-membership. (The intruder may also be
given access to some sets.) Based on this, we perform an abstract interpretation
approach that identifies those elements that have the same membership status in
all sets and compute a fixed point, more precisely a representation of all messages
that the intruder can ever know after any trace of the protocol (including the set
membership status of elements that occur in these messages). One may wonder
if considering just intruder-known messages limits the approach to secrecy goals,
but thanks to sets, a wide range of trace-based properties can be expressed by
reduction to the secrecy of a special constant attack. (We cannot, however,
handle privacy-type properties in this way.)

We thus check if the fixed point contains the attack constant, and if so, we
can abort the attempt to prove the protocol correct. This may happen also for a
secure protocol as the abstraction entails an over-approximation. However, vice-
versa, if attack is not in the fixed point, then the protocol should be secure—if
the fixed point is indeed a sound representation of the messages the intruder can
ever know. The proof we perform in Isabelle now is thus basically to show that
the fixed point is closed under every protocol rule: given any trace where the
intruder knows only messages covered by the fixed point, then every extension
by one protocol step reveals only messages also covered by the fixed point.

Contributions Our main contribution is the formalization in Isabelle of the
abstraction interpretation approach for stateful protocols as the PSPSP tool. In
a nutshell, we have implemented in Isabelle the computation of the abstract fixed
point—the proof idea so to speak—and how Isabelle can convince herself that
this fixed point covers everything that can happen in the concrete protocol. The
Isabelle security proof that one obtains consists of two main parts: first, we have
a number of protocol-independent theorems that we have proved in Isabelle once
and for all, and second, for every protocol and fixed point, we have a number of
checks that Isabelle can directly execute to establish the correctness of a given
protocol. The entire protocol-independent formalization consists of more than
25,000 lines of Isabelle code (definitions, theorems and proofs).

A second contribution is the development and integration into Isabelle of a
simple protocol specification language for stateful protocols that is based on a
notion of atomic transactions: in a transaction, an entity may receive a mes-
sage, consult its long-term database, make changes to the database and finally
send out a reply. This language is more high-level than for instance multi-set
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rewriting while directly defining a state-transition system.
With respect to the conference version of this paper [27], we have made

a number of improvements. First, we have improved the verification method
itself. We have devised a novel method for checking the fixed-point coverage that
significantly improves the runtime of many examples. We have also improved
the check that fixed point is closed under decryption rules.

Second, we have connected the PSPSP tool to the compositional reason-
ing results of [23]: the transaction language now includes everything that is
necessary to specify for protocol composition (most importantly, protocol in-
terfaces and declassification for shared messages). The PSPSP tool now offers
an automated check of the sufficient condition of compositionality. This allows
for proving the security of a complex system in Isabelle entirely automatically,
namely by using PSPSP to check the components and compositionality condi-
tions, and then applying the composition theorem.

Third, related to that, one may of course prove only some components of a
composition automatically with PSPSP and prove other components manually
when they do not fall into the scope of what PSPSP can support. Also, one may
integrate manual reasoning with automated PSPSP analysis: when the runtime
of automated analysis are high, a human prover may have an idea to prove some
aspect more easily avoiding, e.g., some lengthy enumerations. We give a case
study of such an interactive proof that shows the potential of a methodology
for combining automatic verification with human ingenuity.

Fourth, we have improved the user experience of the tool, e.g., by better
error messages and support to understand attacks. A trace of derivation steps
for the attack constant can be of great help: either this is a true attack and
one can strengthen the protocol to prevent the attack, or it is a false positive
induced by the over-approximation and this may give a hint how to refine the
model of the protocol.

Fifth, while the transactions of a protocol specification immediately give rise
to a state-transition systems there is a slight semantic gap between them namely
that it is a necessity of the abstract interpretation approach that in the abstract
transactions, every value occurs in a message (while in the transaction language
specification a value may occur only in a set). This is without loss of generality,
because one can make a transformation that for every newly generated value
v generates a special message occurs(v) and require that occurs(v) holds for
every non-fresh value v in a rule. The tool includes this transformation so
the modelers do not have to make this encoding themselves. Now we have
proved the soundness of this transformation. Another point is that the semantics
of transactions is defined as symbolic traces (“lazy intruder”) of unbounded
length. This is particularly practical for relative soundness results like typing
and compositionality. We have now also proved the equivalence with a more
standard “ground” semantics.

Sixth, we have a major new case study from working with the Danish com-
pany Logos. In this case study we verify a protocol that the company is using
for a travel card solution. The verification with PSPSP revealed a flaw in the
protocol. After repairing the flaw, we were able to prove the security of the
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fixed protocol using PSPSP.
The complete formalization is available at the Archive of Formal Proofs as

the entry titled Automated Stateful Protocol Verification [29]:

https://www.isa-afp.org/entries/Automated_Stateful_Protocol_
Verification.html

The latest development version and related works can be found at the following
webpage:

https://people.compute.dtu.dk/samo/pspsp.html

The rest of this paper is organized as follows: Section 2 introduces prelim-
inaries, Section 3 defines the protocol model, Section 4 explains the set-based
abstraction approach, Section 5 introduces the protocol checks with optimiza-
tions introduced in Section 6, Section 7 presents and reports on the results of a
number of experiments applying our approach to a selection of protocols, Sec-
tion 8 gives a short demonstration of PSPSP from the user’s perspective (and
discusses the application of the compositionality result [24]), Section 9 presents
and reports on a case study where we apply PSPSP to a protocol by the Danish
company Logos and finally Section 10 is the conclusion where we also discuss
related work.

2 Preliminaries

2.1 Terms and Substitutions
We model terms over a countable set Σ of symbols (also called function symbols
or operators) and a countable set V of variables disjoint from Σ. Each symbol in
Σ has an associated arity, and we denote by Σn the symbols of Σ of arity n. A
term built from S ⊆ Σ and X ⊆ V is then either a variable x ∈ X or a composed
term of the form f(t1, . . . , tn) where each ti is a term built from S and X, and
f ∈ Sn. The set of terms built from S and X is denoted by T (S,X). Arbitrary
terms t usually range over T (Σ,V), unless stated otherwise. By subterms(t) we
denote the set of subterms of t.

The set of constants C is defined as the symbols with arity zero: C ≡ Σ0. It
contains the following distinct subsets:

• the countable set V of concrete values (or just values),

• the finite set A of abstract values,

• the finite set E of enumeration constants,

• the finite set S of database constants,1

• and a special constant attack.
1These databases are simply sets of messages, and we therefore often refer to them simply

as “sets” in this paper.
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The analyst, i.e., the author of a protocol specification may freely choose E and
S as well as any number of function symbols F with their arities (disjoint from
the above subsets).

Example 1 Consider a protocol with two users a and b, where each user a has
its own keyring ring(a), and the server maintains databases of the currently valid
keys valid(a) and revoked keys revoked(a) for a. For such a protocol we define
E = {a, b} and S = {ring(a), valid(a), revoked(a) | a ∈ E}.

We regard all elements of S as constants, despite the function notation,
which is just to ease specification. This work is currently limited to finite enu-
merations and finite sets, as handling infinite domains would require substantial
complications of the approach (e.g., a symbolic representation or a small system
result).

Arbitrary constants are usually denoted by a, b, c, d, whereas arbitrary
variables are denoted by x, y, and z. By x̄ we denote a finite list x1, . . . , xn of
variables.

We furthermore partition Σ into the public symbols (those symbols that are
available to the intruder) and the private symbols (those that are not). We
denote by Σpub and Σpriv the set of public and private symbols, respectively.
By Cpub and Cpriv we then denote the sets of public and private constants,
respectively. The constant attack, the values V, the abstract values A, and the
database constants S are all private.

The set of variables of a term t is denoted by fv(t) and we say that t is
ground iff fv(t) = ∅. Both definitions are extended to sets of terms as expected.

A substitution is a mapping from variables V to terms. The substitution
domain (or just domain) dom(θ) of a substitution θ is defined as the set of those
variables that are not mapped to themselves by θ: dom(θ) ≡ {x ∈ V | θ(x) ̸= x}.
The substitution range (or just range) ran(θ) of θ is the image of the domain
of θ under θ: ran(θ) ≡ θ(dom(θ)). For finite substitutions we use the notation
[x1 7→ t1, . . . , xn 7→ tn] to denote the substitution with domain {x1, . . . , xn}
and range {t1, . . . , tn} that sends each xi to ti. Substitutions are extended to
composed terms homomorphically as expected. A substitution δ is injective
iff δ(x) = δ(y) implies x = y for all x, y ∈ dom(δ). An interpretation is a
substitution I such that dom(I) = V and ran(I) is ground. A variable renaming
ρ is an injective substitution such that ran(ρ) ⊆ V. An abstraction substitution
is a substitution δ such that ran(δ) ⊆ A.

2.2 The Intruder Model
We employ the intruder model from [23] which is in the style of Dolev and Yao:
the intruder controls the communication medium and can encrypt and decrypt
with known keys, but the intruder cannot break cryptography. More formally,
we define that the intruder can derive a message t from a set of known messages
M (the intruder knowledge, or just knowledge), written M ⊢ t, as the least
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relation closed under the following rules:

M ⊢ t
(Axiom)
t ∈ M

M ⊢ t1 · · · M ⊢ tn
M ⊢ f(t1, . . . , tn)

(Compose)
f ∈ Σn

pub

M ⊢ t M ⊢ k1 · · · M ⊢ kn
M ⊢ r

(Decompose)
Ana(t) = (K,R), r ∈ R,

K = {k1, . . . , kn}

where Ana(t) = (K,R) is a function that maps a term t to a pair of sets of terms
K and R. We also define a restricted variant ⊢c of ⊢ as the least relation closed
under the (Axiom) and (Compose) rules only.

The (Axiom) rule simply expresses that all messages directly known to the
intruder are derivable, the (Compose) rule closes the derivable terms under the
application of public function symbols such as encryption or public constants
(when f ∈ Σ0

pub = Cpub). The (Decompose) rule represents decomposition oper-
ations: Ana(t) = (K,R) means that t is a term that can be analyzed, provided
that the intruder knows all the “keys” in the set K, and he will then obtain
the “results” in R. This gives us a general way to deal with typical construc-
tor/destructor theories without needing to work with algebraic equations and
rewriting. We may also write Keys(t) and Result(t) to denote the set of keys
respectively results from analyzing t, i.e., Ana(t) = (Keys(t),Result(t)).

Example 2 To model asymmetric encryption and signatures we first fix two
public crypt, sign ∈ F2 and one private inv ∈ F1 function symbols. The term
crypt(k,m) then denotes the message m encrypted with a public key k and
sign(inv(k),m) denotes m signed with the private key inv(k) of k. To obtain a
message m encrypted with a public key k the intruder must produce inv(k). For-
mally, we define the analysis rule Anacrypt(x1, x2) = ({inv(x1)}, {x2}). For sig-
natures we define the rule Anasign(x1, x2) = (∅, {x2}) modeling that the intruder
can open any signature that he knows. We also model a transparent pairing
function by fixing pair ∈ Σ2 and defining the rule Anapair(x1, x2) = (∅, {x1, x2}).

Note that we have in this example used a simple notation for describing
Ana(t) for an arbitrary term t: each rule Anaf (x1, . . . , xn) = (K,R) defines Ana
for a constructor f ∈ Fn. Here xi are distinct variable symbols, and K and
R are sets of terms such that R ⊆ {x1, . . . , xn} and K ⊆ T (F, {x1, . . . , xn}).
Note that for each constructor we have at most one analysis rule, and for all
constructors without an analysis rule we just have Ana(t) = (∅, ∅). (An example
for the latter is a hash function: the intruder cannot obtain information from a
hash value.)

The reason for this convention is that the formalization of [23] requires that
the Ana function satisfies certain conditions, most notably that it is invariant
under substitutions.2 Without going into detail, our notation of the Ana rules

2One may wonder why we do not allow for analysis rules of the form Anaf (t1, . . . , tn) =
(K,R), where the ti are arbitrary terms instead of just variables. Because of the substitution
invariance requirement from [23] on Ana such analysis rules would not lead to more expressive
Ana functions.
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allows for an automated proof that all these requirements are satisfied. Thus,
this allows the user to specify an arbitrary constructor/destructor theory with
these Ana rules without having to prove anything manually.

2.3 Typed Model
Our result is based on a typed model in which the intruder is restricted to
only making “well-typed” choices. Many protocol verification methods [5, 7, 11,
38, 39] rely on such a typed model since it simplifies the protocol verification
problem. There exist many typing results [16, 26, 1, 25, 22, 2] that show that
a restriction to a typed model is sound for large classes of protocols. That is,
it is without loss of attacks to restrict the verification to a typed model. Each
such result shows that if a protocol satisfies certain syntactic conditions and is
secure in a typed model then the protocol is secure also in an untyped model.
[26] is such a result that is part of the Isabelle formalization we employ. Since
this result has itself been proved in Isabelle, it is sufficient to obtain the Isabelle
proof of a protocol in the unrestricted model from the Isabelle proof in the typed
model and that the protocol satisfies the requirements of the typing result. As
a minor contribution of this paper that we just mention here is that we have
automated the Isabelle proof of these requirements of the typing result for the
protocol specification language we present. Thus, all that is left to do in the
following section is the automated proof for the protocol in the typed model.

In a nutshell, the typing result requires that messages with different intended
meaning cannot be confused for each other—a condition called type-flaw resis-
tance. More formally, the typed model is parameterized over a typing function
Γ and a finite set of atomic types Ta satisfying the following:

• Γ(x) ∈ T (Σ \C,Ta) for x ∈ V (where Ta here acts like a set of “variables”)

• Γ(c) ∈ Ta for c ∈ C

• Γ(f(t1, . . . , tn)) = f(Γ(t1), . . . ,Γ(tn)) for f ∈ Σ \ C

A substitution θ is then said to be well-typed iff Γ(θ(x)) = Γ(x) for all variables
x. In this paper we use Ta = {value, enum, settype, attacktype}, and the elements
of A ∪ V have type value, the elements of E have type enum, the elements of
S have type settype and attack has type attacktype. We furthermore assume
that all variables that we use in protocol specifications have atomic types, and
we denote by Va the set of variables with atomic type a (e.g., Vvalue is the
set of value-typed variables). As an example, let x, y ∈ Vvalue and a ∈ E, then
Γ(sign(inv(x), pair(a, y))) = sign(inv(value), pair(enum, value)). Suppose an agent
expects to receive a term of this type; then the typed model means the restriction
that the intruder can only send messages of this type, i.e., he cannot send in
place of x and y some terms of a different type. This restriction of the intruder
to typed terms—which is without loss of generality when the requirements of
the typing result hold—is drastically simplifying the task of proving the protocol
correct.
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3 Transactions
The Isabelle protocol model of [23] consists of a number of transactions specify-
ing the behavior of the participants. A transaction consists of any combination
of the following: input messages to receive, checks on the sets, modifications of
the sets, and output messages to send. A transaction can only be executed atom-
ically, i.e., it can only fire when input messages are present, such that the checks
are satisfied, and then they produce all changes and the output messages in one
state transition. Instead of defining a ground state transition system, [23] con-
siders building symbolic traces as sequences of transactions with their variables
renamed apart, and with any instantiation of the variables that satisfies the
checks and the intruder model in the sense that the intruder can produce every
input message from previous output messages. (Transactions can also describe
additional abilities of the intruder such as reading a set.) Security goals are
formulated by transactions that check for a situation we consider as a success-
ful attack, and then reveal the special constant attack to the intruder. Thus, a
protocol is safe if no symbolic constraint with the intruder finally sending attack
has a satisfying interpretation. Note that the length of symbolic traces is finite
but unbounded (i.e., an unbounded session model), and that the number of
enumeration constants and databases currently supported is arbitrary but fixed
in the specification.

For the convenience of an automated verification tool, we have defined a
small language called trac based on transactions with a bit of syntactic sugar,
and this language is directly embedded into Isabelle. It is a simple text-based
format directly accepted by our tool – see section 8. For now we introduce this
language only at hand of a keyserver example adapted from [23] that we also
use as a running example for the remainder of this paper.

3.1 A Keyserver Protocol
Before we proceed with the formal definitions, we illustrate our protocol model
through the keyserver example. Here users can register public keys at a trusted
keyserver and these keys can later be revoked. Each user U has an associated
keyring ring(U) with which it keeps track of its keys. (The elements of ring(U)
are actually public keys; we implicitly assume that the user U knows the corre-
sponding private key.)

First, we model a mechanism outOfBand by which a user U can register a new
key PK at the keyserver out-of-band, e.g., by physically visiting the keyserver.
The user U first constructs a fresh public key PK and inserts PK into its keyring
ring(U). We model that the keyserver—in the same transaction—learns the key
and adds it to its database of valid keys for user U , i.e., into a set valid(U).
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Finally, PK is published:

outOfBand(U: user)
new PK
insert PK ring(U)
insert PK valid(U)
send PK .

Note that there is no built-in notion of set ownership, or who exactly is per-
forming an action: we just specify with such transactions what can happen.
The intuition is that ring(U) is a set of public keys controlled by U (and U has
the corresponding private key of each) while valid(U) is controlled by the server
(who is not even given a name here). Putting it into a single transaction models
that this is something happening in collaboration between a user and a server.

Next, we model a key update mechanism that allows for registering a new
key while simultaneously revoking an old one. Here we model this as two trans-
actions, one for the user and one for the server, since here we model a scenario
where user and server communicate via an asynchronous network controlled by
the intruder. To initiate the key revocation process the user U first picks and
removes a key PK from its keyring to later revoke, then freshly generates a
new key NPK and stores it in its keyring. (Again the corresponding private
key inv(NPK ) is known to U , but this is not explicitly described.) As a final
step the user signs the new key with the private key inv(PK ) of the old key and
sends this signature to the server by transmitting it over the network:

keyUpdateUser(U: user,PK : value)
PK in ring(U)
new NPK
delete PK ring(U)
insert NPK ring(U)
send sign(inv(PK ), pair(U,NPK )).

The check PK in ring(U) represents here a non-deterministic choice of an ele-
ment of ring(U). (Observe that a user can register any number of keys with the
outOfBand transaction.) We declare PK as a variable of type value, because
PK is not freshly generated; all freshly generated elements, like NPK here, are
automatically of type value.

When the server receives the signed message, it checks that PK is indeed a
valid key, that NPK has not been registered earlier, and then revokes PK and
registers NPK . To keep track of revoked keys, the server maintains another
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database revoked(U) containing the revoked keys of U :

keyUpdateServer(U: user,PK : value,NPK : value)
receive sign(inv(PK ), pair(U,NPK ))
PK in valid(U)
NPK notin valid(_)
NPK notin revoked(_)
delete PK valid(U)
insert PK revoked(U)
insert NPK valid(U)
send inv(PK ).

As a last action, the old private key inv(PK ) is revealed. This is of course not
what one would do in a reasonable implementation, but it allows us to prove that
the protocol is correct even if the intruder obtains all private keys to revoked
public keys. (This could also be separated into a rule that just leaks private
keys of revoked keys.)

Actions of the form x notin s(_) for s ∈ Σn are syntactic sugar for the
sequence of actions x notin s(a) for each a ∈ E.

Finally, we define that there is an attack if the intruder learns a valid key of
an honest user. This, again, can be modeled as a sequence of actions in which
we check if the conditions for an attack holds, and, if so, transmit the constant
attack that acts as a signal for goal violations. Let honest be a subset of user
that contains only the honest agents. Then we define:

attackDef(U: honest,PK : value)
receive inv(PK )
PK in valid(U)
attack.

The last action attack is just syntactic sugar for send attack.

3.2 Protocol Model
The keyserver protocol that we just defined consists of transactions that we
now formally define. To keep the formal definitions simple we omit the vari-
able declarations and the syntactic sugar employed in our protocol specification
language. Thus only value-typed variables remain in transactions since the enu-
meration variables are resolved as syntactic sugar. A transaction T is then of
the form T = Sr ·Sc ·F ·Su ·Ss where the Si are strands built from the following
grammar:

Sr ::= receive t1, . . . , tn · Sr | 0
Sc ::= x in s · Sc | x notin s · Sc | x ̸ .= x′ · Sc | 0
F ::= new x · F | 0
Su ::= insert x s · Su | delete x s · Su | 0
Ss ::= send u1, . . . , un · Ss | 0
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where x, x′ ∈ Vvalue, s ∈ S, ti ∈ T (E∪ F,Vvalue), ui ∈ T (E∪ F,Vvalue)∪ {attack},
and where 0 denotes the empty strand.

The function fv is extended to transactions as expected, and for a transaction
T = Sr · Sc · F · Su · Ss we define fresh(T ) ≡ fv(F ) (i.e., x ∈ fresh(T ) iff new x
occurs in T ).

Protocols are defined as finite sets of such transactions P = {T1, . . . , Tn}.
Their semantics is defined in terms of a ground transition system in which each
configuration is of the form (M,D,C) where M is the intruder knowledge (the
messages sent so far), D is a set of pairs representing the current state of the
databases (e.g., (k, s) ∈ D iff k is an element of the database s) and C keeps track
of the constants that are no longer fresh. For a configuration and a transaction
we can check if the transaction is executable from that configuration, and if so
then there is a transition to the new configuration which results from executing
the transaction. When executing a transaction, variables x occurring in new x
actions will be instantiated with fresh values. This instantiation takes care of
the new x actions which are then no longer needed. The instantiation also
requires a slightly more flexible syntax compared to the transaction syntax, to
allow for actions such as insert t s where t /∈ V. We introduce a syntax that
accounts for this, called constraints:

A ::= send t1, . . . , tn · A | receive t1, . . . , tn · A | t ̸ .= t′ · A | insert t t′ · A | delete t t′ · A |
t in t′ · A | t notin t′ · A | 0

where t, t′ ∈ T (Σ,V) and where 0 is the empty constraint. Note also that in
contrast to transactions, constraints are seen from the intruder’s point of view,
in the sense that the directions of transmitted messages are swapped (so receives
become sends and vice-versa).

For the semantics of constraints we define a relation I |=M
D A where A is

a constraint, M is the intruder knowledge, D is a set of pairs representing the
current state of the databases, and I is an interpretation:

I |=M
D 0 iff true

I |=M
D send t1, . . . , tn · A iff M ⊢ I(ti), for all i ∈ {1, . . . , n}, and I |=M

D A
I |=M

D receive t1, . . . , tn · A iff I |=M∪{I(t1),...,I(tn)}
D A

I |=M
D insert t s · A iff I |=M

D∪{I((t,s))} A
I |=M

D delete t s · A iff I |=M
D\{I((t,s))} A

I |=M
D t ̸ .= t′ · A iff I(t) ̸= I(t′) and I |=M

D A
I |=M

D t in s · A iff I((t, s)) ∈ D and I |=M
D A

I |=M
D t notin s · A iff I((t, s)) /∈ D and I |=M

D A

We say that I is a model of A, written I |= A, iff I |=∅
∅ A. We may also

apply substitutions θ to constraints A, written θ(A), by extending the definition
of substitution application appropriately. The function fv is also extended to
constraints.

We define what an intruder learns ik(A) when a constraint A is executed:
ik(A) = {ti|1 ≤ i ≤ n, (receive t1, . . . , tn) ∈ A}. We also define how the
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databases look db(A, I, D) after a constraint A is executed from a database D
under interpretation I:

db(0, I, D) = D

db(t · S, I, D) =


db(S, I, D ∪ {(I(t), I(s))}) if t = insert t s

db(S, I, D \ {(I(t), I(s))}) if t = delete t s

db(S, I, D) otherwise

With this in place, we define a transition relation ⇒P for protocols P in
which states are configurations and the initial state is the empty configura-
tion (∅, ∅, ∅). First, we define the dual of a constraint A, written dual(A), as
“swapping” the direction of the sent and received messages of A: dual(0) = 0,
dual(receive t · A) = send t · dual(A), dual(send t · A) = receive t · dual(A), and
dual(a · A) = a · dual(A) otherwise. The transition

(M,D,C) ⇒P (M ∪ I(ik(A)), db(A, I,D), C ∪ (subterms(A) ∩ C))

is then applicable for a transaction T ∈ P if the following conditions are met:

1. T = Sr · Sc · F · Su · Ss for some F ,

2. σ is a substitution mapping fresh(T ) to fresh values (i.e., dom(σ) =
fresh(T ), ran(σ) ⊆ V, and ran(σ) ∩ C = ∅),

3. A = dual(σ(Sr · Sc · Su · Ss)), and

4. I |=M
D A.

A configuration (M,D,C) is said to be ground reachable in P iff 0 ⇒⋆
P

(M,D,C) where ⇒⋆
P denotes the transitive reflexive closure of ⇒P . For any

configuration (M,D,C) ground reachable in this transition system, M and D
are ground because in each step the substitutions σ and I replace variables with
ground terms in the elements added to these sets.

We now define a different semantics for protocols, namely one defined in
terms of a symbolic transition system in which a single constraint is built up
during transitions, essentially representing a “trace” of what has happened. We
use this system as a basis for our formalization of both typing and compo-
sitionality because for these two aspects it is convenient to reason about the
mentioned single constraint. For typing, it is convenient to reason about the
many solutions it may have, and for compositionality it is convenient to split the
constraint into parts that then constitute constraints of the individual protocols.
We call the system symbolic because we allow the built constraint to contain
variables—this is in contrast to the ground transition system which picks and
applies a new interpretation I in each transition. The symbolic transition sys-
tem is defined using a transition relation ⇒•

P for protocols P in which states
are constraints and the initial state is the empty constraint 0. The transition

A ⇒•
P A · dual(ρ(σ(Sr · Sc · Su · Ss)))

is applicable for a transaction T ∈ P if the following conditions are met:
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1. T = Sr · Sc · F · Su · Ss for some F ,

2. σ is a substitution mapping fresh(T ) to fresh values (i.e., dom(σ) =
fresh(T ), ran(σ) ⊆ V, and the elements of ran(σ) do not occur in A),
and

3. ρ is a variable renaming sending the variables of T to new variables that do
not occur in A or P (that is, dom(ρ) = fv(T ) and (fv(A)∪fv(P))∩ran(ρ) =
∅).

A constraint A is said to be symbolically reachable in P iff 0 ⇒•⋆
P A where

⇒•⋆
P denotes the transitive reflexive closure of ⇒•

P . The protocol then has
an attack iff there exists a symbolically reachable and satisfiable constraint
where the intruder can produce the attack signal, i.e., there exists a symbolically
reachable A in P and an interpretation I such that I |= A · send attack. If P
does not have an attack then P is secure.

We show that the notions of reachability in the two systems correspond:

Theorem 1 3

{(M,D) | (M,D,C) is ground reachable in P} =

{(ik(I(A)), db(A, I, ∅)) | A is symbolically reachable in P and I |= A}

For the remainder of the paper we will focus our attention on the symbolic
transition system as justified by the above theorem and thus by reachable we
will mean symbolically reachable.

3.3 Well-Formedness
We are going to employ the abstraction-based verification technique from [35]
in the following to automatically generate security proofs. The technique has
a few more requirements in order to work and which we bundle in a notion of
well-formedness.

First, when a transaction uses a variable when sending a message or per-
forming a set update, then that variable must either be fresh or have occurred
positively in a received message or check. Intuitively, transactions cannot pro-
duce a value “out of the blue”, but the value either has to exist before the trans-
action (in some message or set) or be created by the transaction. Formally, let
T = Sr · Sc · F · Su · Ss . Then we require:

C1: fv(Su) ∪ fv(Ss) ⊆ fv(Sr ) ∪ fv(Sc) ∪ fresh(T )

C2: fresh(T ) ∩ (fv(Sr ) ∪ fv(Sc)) = ∅

C3: fresh(T ) ⊆ fv(Ss) ∪ {x | insert x s ∈ Su}
3This theorem is called protocol_model_equivalence in the Isabelle formalization and can

be found in the Stateful_Protocol_Model.thy theory file.

14



(The second condition simply states that values that are freshly generated by a
transaction T should not also occur in the received messages and the checks of
T .)

The abstraction approach that we employ, furthermore, would not work if,
e.g., an agent freshly creates a value and stores it in a set, but never sends it
out as part of a message. This is because the abstraction discards the explicit
representation of sets, and just keeps the abstracted messages. As an easy
workaround we define a special private unary function symbol occurs and then
do a transformation. The transformation augments every rule containing action
new x with the action send occurs(x), and also augments every transaction
where variable x occurs but is not freshly generated with receive occurs(x). In
order not to bother the user with this, our tool can make this transformation
automatically using the following function:

Definition 1 Let T = Sr ·Sc ·F ·Su ·Ss be a transaction, let y1...yn be its fresh
variables and let {x1, ..., xn} be its (possibly empty) set of other free variables.
We define a function add_occurs_sends that ensures that occurs messages are
being sent:

add_occurs_sends(0) = send(occurs(y1), ..., occurs(yn))

add_occurs_sends(send(t1, ..., tn) · S) = send(occurs(y1), ..., occurs(yn), t1, ..., tn) · S

With this we define a function add_occurs_msgs that ensures that occurs
messages are being received and sent:

add_occurs_msgs(T ) = S′
r · Sc · F · Su · S′

s

where

S′
r =if {x1...xn} = ∅ then Sr else receive(occurs(x1), ..., occurs(xn)) · Sr

S′
s =if F = 0 then Ss else add_occurs_sends(Ss)

This addition of occurs has, however, a subtle consequence. Suppose a spec-
ification contains no transaction that generates any fresh value, but, say, only
an attack rule like this:

attackDef2(PK : value)
receive PK
attack.

This rule cannot fire after the occurs transformation, because it adds the require-
ment to receive occurs(PK ) which nobody can produce. One would, however,
naturally expect that said protocol is not secure.

One may wonder in the above example why the intruder is not able to provide
the value, since he has an unlimited supply of constants of every type, including
type value. However, for such a constant c he does not have occurs(c) (because
it is not fresh and occurs is private) and thus cannot use it in any transaction.
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If the user does not include an initial value producing transaction then our
tool will automatically insert one. If the user does include one, then it is the
design choice of the user to define exactly how it should look, as long as it
lives up to the definition of being an initial value producing transaction. This
is in our opinion more flexible than strictly enforcing a specific rule, since the
user can adapt the rule to the context of a particular model. For instance, in
the keyserver example where values represent public keys one may define the
intruder rule that gives also the corresponding private key to the intruder and
inserts it into a dedicated set:

intruderValues()
new PK
insert PK intruderkeys
send PK
send inv(PK ).

Thus, we require (and automatically check) that each protocol specification
includes a value-producing transaction:

Definition 2 A transaction is an initial value-producing transaction for a pro-
tocol P if it is of the form new x · Su · send t1...tn where ti = x for some i, no
other variable than x occurs in a subterm in t1...tn and where Su is either 0 or
insert x c for a set c such that no transaction in P deletes from nor does any
check on c.

It is clear that an initial value-producing transaction is applicable in every state
and generates a fresh value.

Note that the occurs messages are only added during verification. We prove
the transformation to be sound. Essential to this proof is the above realization
that the intruder will only have occurs messages available for values (i.e., V).
This essentially means that if a run of P relies on running a transaction with
its actual parameters being built from public constants (i.e. Cpub), then in the
transformed protocol the intruder cannot do the same, because he will not have
in his knowledge the needed occurs messages for these. 4 In order to resolve this
problem we prove the following lemma which transforms a run A of P relying
possibly on public constants into one that relies only on values:

Lemma 1 Let P be a protocol that includes a value-producing transaction and
which has a well-typed attack A·attack with model I. Then there exists strand B
and interpretation J such that B · attack is a well-typed attack on P with model
J and such that J maps all B’s free variables to values.

The proof is essentially by induction on how A was reached by ⇒•. Thus, we
have to consider an A being extended with a transaction T = Sr ·Sc ·F ·Su ·Ss

4One could perhaps be tempted to simply remove the public constants from the develop-
ment, however that is incompatible with the typing result of [26] which relies on an infinite
set of these being available.
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to A · dual(ρ(σ(Sr · Sc · Su · Ss))) and then show that the corresponding B can
be similarly be extended in a way that preserves the properties required by the
lemma. The substitution σ picked some number n of public constants. In the
extension of B we will apply first an initial value producing transaction n times
to obtain n values, and then use T , but with a substitution σ′ that uses these
n values instead of the public constants. The formalized proof is tricky, as it
requires us to keep track of which fresh values and variables have been used
so far in the induction, and we also need to meticulously update our model J
to ensure that it is indeed a model of B. Therefore, in the formal proof, the
induction is done in a central step where the property proved is strengthened
to account for these aspects.

Theorem 2 5 Let P be a protocol that includes a value-producing transaction
and which has a well-typed attack. Then the protocol {add_occurs_msgs T |
T ∈ P} also has a well-typed attack.

The proof has essentially three steps: The first step relies on lemma 1 by ob-
taining the attack B and model J described by that lemma’s conclusion. The
second step inserts in B the sending and receiving of appropriate occurs mes-
sages, thus turning it into an attack on {add_occurs_msgs T | T ∈ P}. The
third step proves that J is also a model of {add_occurs_msgs T | T ∈ P}.

Finally, a small technical difficulty arises when a transaction has two vari-
ables x, y that could be the same value, i.e., that allows for a model I with
I(x) = I(y). This is difficult to handle in the verification since the transaction
may require inserting x into a set and delete y from that very set. To steer clear
of this, the paper [35] simply defines the semantics to be injective on variables.
For user-friendliness, we do not want to follow this, and rather do the following:
for any rule with variables x and y that are not part of a new construct, we
generate a variant of the rule where we unify x and y, checking whether this
gives a consistent transaction. If so, we add it to the rule system. Then we
add the constraint x ̸ .= y to the original rule. We do that until all rules have
x ̸ .= y for all pairs of variables that are not freshly generated. For instance, in
the keyserver example, we have only one rule to look at: keyUpdateServer with
variables PK and NPK . Since unifying PK and NPK gives an unsatisfiable
rule, it is safe to add PK ̸ .= NPK to it.

4 Set-Based Abstraction
We now come to the core of our approach: for a given protocol, how to au-
tomatically verify and generate a security proof that Isabelle can accept. As
explained earlier, this is based on an abstract interpretation method called set-
based abstraction [34, 12, 35]. Essentially the method computes a fixed point
that over-approximates what can ever happen in any sequence of transactions.

5This theorem is called add_occurs_msgs_soundness in the Isabelle formalization and can
be found in the Stateful_Protocol_Verification.thy theory file.
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While it is relatively easy to formalize the computation of this fixed point in
Isabelle, the main work consists in convincing Isabelle that every transaction
is covered by the fixed point in the following sense. Given any trace that is
represented by the fixed point and in which a transaction is executable, then
also the resulting trace is covered by the fixed point. Thereby all traces are
covered by the fixed point, and when the attack predicate is not contained in
the fixed point, it is not reachable in any trace of the protocol. It is essential
that the Isabelle proof does not rely on the correctness of the approach or the
correct computation of the fixed point: Rather, the fixed point can be regarded
as a mere proof idea, as a claimed upper bound on what can happen, and in the
worst case, if this upper bound were wrong then the attempt to prove coverage
of all transactions would fail. Thus, the coverage check is an approach to auto-
matically “generate” a proof in Isabelle, and this is indeed the core contribution
of this work.

Recall that in the previous section we formalized a protocol model by reach-
able constraints A (i.e., a sequence of transactions where variables have been
named apart and the send/receive direction has been swapped in order to ex-
press it from the intruder’s point of view) with their satisfying interpretations
I |= A. Note that |= is defined via a relation |=M

D , where here M denotes the
intruder knowledge (all the messages received so far) and D denotes the state of
the sets S (all values inserted into a set that were not deleted so far). We could
thus characterize the “state” of the entire system after a number of instantiated
transactions by these two items, M and D.

Example 3 In our keyserver example the following trace is possible (after tak-
ing a transition of outOfBand with variables instantiated by [PK 7→ pk1, U 7→ a]
followed by a transition of keyUpdateUser with variables instantiated by [PK 7→
pk1, U 7→ a,NPK 7→ pk2]):

insert pk1 ring(a)
insert pk1 valid(a)
receive pk1
pk1 in ring(a)
delete pk1 ring(a)
insert pk2 ring(a)
receive sign(inv(pk1), pair(a, pk2))

Suppose we start in state M0 = ∅ and D0 = ∅. After this trace we have

M = {pk1, sign(inv(pk1), pair(a, pk2))}, and
D = {(pk1, valid(a)), (pk2, ring(a))}.

In general, D consists of pairs (v, s) where v ∈ V is a value and s ∈ S is a set.
The idea of our abstract interpretation is that we stop distinguishing values that
are members of the same sets. Let thus A be the powerset of S and define an
abstraction function αD from V to A that depends on the current state D:

αD(c) = {s | (c, s) ∈ D}
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and we extend it to terms and sets of terms as expected. Remember that A
is included in Σ0 so we can build abstract terms that include elements of A as
abstract constants.

Example 4 In the previous example we have αD(pk1) = {valid(a)} and αD(pk2) =
{ring(a)}. Thus αD(M) = {{valid(a)}, sign(inv({valid(a)}), pair(a, {ring(a)}))}.

The key idea is to compute the fixed point of all the abstract messages that
the intruder can obtain in any model of any reachable constraint. Note that this
fixed point is in general infinite, even if S is finite (and thus so is A), because
the intruder can compose arbitrarily complex messages and send them. This is
why tools like [34, 12, 35] do not directly compute it but represent it by a set
of Horn clauses and check using resolution whether attack is derivable.

However, remember that we can restrict ourselves to the typed model and use
the typing result of [26] to infer the security proof without the typing restriction.
All variables that occur in a constraint are of type value (the parameter variables
of the transactions are de-sugared) and thus, in a typed model it holds that
I(x) ∈ V for every variable x and well-typed interpretation I. While V is still
countably infinite, the abstraction (in any state D) maps to the finite A. Thus,
the fixed point is always finite in a typed model.

There is a subtle point here: even though we limit the variables to well-typed
terms, and thus also limit all messages that can ever be sent or received, the
Dolev-Yao closure is still infinite, i.e., for a (finite) set M of messages there
are still infinitely many t such that M ⊢ t. Only finitely many of these t
can be sent by the intruder in the typed model, but one may wonder if the
entire derivation relation ⊢ can be limited to “well-typed” terms without losing
attacks. Indeed, we define well-typed terms as the set of terms that includes all
well-typed instances of sent and received messages in transactions, and that is
closed under subterms and Keys. We have now proved in Isabelle that for the
intruder to derive any well-typed term, it is sound to also limit the intruder
deduction to well-typed terms, so no ill-typed intermediate terms are needed
during the derivation. (This is indeed very similar to some lemmas we have
proved for parallel compositionality, namely for so-called homogeneous terms
the deduction does not need to consider any inhomogeneous terms [23].) Thus,
it is sound to limit the fixed point, including intruder deduction, to well-typed
terms, which makes the fixed point finite.

4.1 Term Implication
Let us now see in more detail how to compute the fixed point. An important
aspect of the abstraction approach is that the global state is mutable, i.e., the
set membership of concrete values can change over transitions, and so their
abstraction changes.

Example 5 The value pk1 in example 3 is created in the first transaction
and has, after the first transaction the abstraction {valid(a), ring(a)}. Since
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the second transaction deletes pk1 from ring(a), it changes its abstract class
to {valid(a)}.

As such transitions of abstract class play a crucial role in the approach, define
the following notion:

Definition 3 (Term implication) A term implication (a, b) is a pair of ab-
stract values a, b ∈ A and a term implication graph TI is a binary relation
between abstract values, i.e., TI ⊆ A × A. Instead of (a, b) ∈ TI we may also
write a →→ b.

The reason we use the word “implication” is as follows. Suppose an abstract
set of messages contains several occurrences of the same abstract value a ∈ A,
say M = {f(a), g(a, a)}. Due to the abstraction, we have lost the information
of how many distinct constants are represented here, e.g., two corresponding
concrete set of messages could be M0 = {f(c1), f(c2), g(c1, c2), g(c1, c1)} and
M1 = {f(c2), g(c2, c2), g(c2, c1)} where both c1 and c2 have the same set mem-
berships a. If now value c1 changes its set memberships to, say, b ∈ A, then
the abstraction of M0 becomes {f(b), f(a), g(b, b), g(b, a)} and the abtraction
of M1 becomes {f(a), g(a, a), g(a, b)}. Thus, in general, to include all possible
terms that can be reached by a term implication a →→ b, each occurrence of a
can independently change to b. This means that all of the original terms with
no a changed to b are also reached and hence we call it an implication. This is
captured by the following definitions:

Definition 4 (Term transformation) Let (a, b) be a term implication. The
term transformation under (a, b) is the least relation a→→b closed under the fol-
lowing rules:

x a→→b x x ∈ V a a→→b b

t1 a→→b s1 · · · tn a→→b sn
f(t1, . . . , tn) a→→b f(s1, . . . , sn)

f ∈ Σn

Note that this relation is also reflexive since a a→→b a follows from a ∈ A ⊆ Σ0

and the third rule. If t a→→b t′ then we say that t′ is implied by t under (a, b),
or just t′ is implied by t for short.

Definition 5 (Term implication closure) Let TI be a term implication graph
and let t be a term. The term implication closure of t under TI is defined as
the least set clTI (t) closed under the following rules:

t ∈ clTI (t)

t′ ∈ clTI (t)

t′′ ∈ clTI (t)

(a →→ b) ∈ TI ,
t′ a→→b t

′′

This definition is extended to sets of terms M as expected. If t′ ∈ clTI (t) then
we say that t′ is implied by t (under TI ).

The idea is that the fixed point should ultimately be closed under the term
implication graph. However, this closure is actually quite large in many practical
examples, and thus we just record the messages that are ever received by the
intruder together with the term implication graph, but without performing this
closure explicitly:
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Definition 6 (Fixed point) A protocol fixed-point candidate, or fixed point
for short,6 is a pair (FP ,TI ) such that

1. FP is a finite and ground set of terms over T (Σ \ V, ∅).

2. TI is a term implication graph: TI ⊆ A× A.

4.2 Limitations
There are some limitations of our approach that we now mention. First, we
inherit the free algebra term model from [23] (two terms are equal iff they
are syntactically equal) and so we do not support algebraic properties such as
needed for Diffie-Hellman. Secondly, we inherit the limitations of AIF’s set-
based abstraction approach:

• We require each protocol to have a fixed and finite number of enumeration
constants and sets. This typically means that also the number of agents
is fixed—at least if the protocol has to specify a number of sets for each
agent.

• We require that the sets can only contain values. The reason is to allow
these values to be abstracted by set membership.

• We cannot refer directly to particular constants of type value. This would
not be very useful as every value with the same set-membership status are
identified with the same abstract value under the set-based abstraction.

Our approach allows for an unbounded number of sessions. The only differ-
ence here between our work and, e.g., Tamarin [33] and ProVerif [9] is that we
need, as mentioned, to fix the number of enumeration constants and sets, and
thereby, in a typical specification, also fix the number of agents. However, there
is no difference in the notion of unbounded sessions: We allow for an unbounded
number of transitions, every set can contain an unbounded number of values,
and the intruder can make an unbounded number of steps.

Because we use the typing result from [26], we also require that protocols
have to satisfy the type-flaw resistance requirements of that result. These
requirements are a generalization of the common tagging mechanisms which
should in many applications not be a practical limitation. Note that this re-
quirement is checked automatically.

Finally, we do not directly support private channels, but one can instead send
messages under a private function. For instance, one can write in a transaction
send privChan(A,B, t) where A and B are of type enum and t is a message. Such
communication is asynchronous. One can model synchronous communication
only in a limited way here through sets, e.g., as insert Nonce privCh(A,B).

6Here “candidate” is to emphasize that this is just a proof idea that has yet to be verified
by Isabelle.
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4.3 Example of a Fixed-Point Computation
Consider again the keyserver protocol defined in Subsection 3.1; for simplicity
we do this example for just one user a who is also honest: user = honest = {a}.
We show how the fixed point (or rather the candidate that we then check with
Isabelle) is computed; to make it more readable, let us give the fixed point right
away and then see how each element is derived: FPks ≡ (FPks ,TI ks) where

FPks ≡ { {ring(a), valid(a)}, {ring(a)}, inv({revoked(a)}),
sign(inv({valid(a)}), pair(a, {ring(a)}))
sign(inv(∅), pair(a, {ring(a)})) }

and where the term implication graph TI ks can be represented graphically as
follows where each edge a →→ b corresponds to an element of TI ks :

{ring(a)}

{ring(a), valid(a)}

∅ {valid(a)} {revoked(a)}

Note that we can actually reduce the representation of the fixed point a little
as we do not need to include facts that can be obtained via term implication
from others; with this optimization we obtain actually:

FP ′
ks ≡ { sign(inv(∅), pair(a, {ring(a)})), {ring(a)}, inv({revoked(a)}) }

To compute this, we first consider the transaction outOfBand where a fresh
key is inserted into both ring(a) and valid(a) and sent out. The abstraction
of this key is thus the value {ring(a), valid(a)}. This value is in the intruder
knowledge in FPks but redundant due to other messages we derive later.7 Note
that this rule cannot produce anything else so we do not consider it for the
remainder.

Next let us look at the transaction keyUpdateUser. For keyUpdateUser we
need to choose an abstract value for PK that satisfies the check PK in ring(a).
At this point in the fixed-point computation we have only {ring(a), valid(a)}.
Since the transaction removes the key PK from ring(a), we get the term im-
plication {ring(a), valid(a)} →→ {valid(a)}. A fresh value NPK is also generated
and inserted into ring(a), and a signed message is sent out which gives us:
sign(inv({valid(a)}), pair(a, {ring(a)})). Also, this one is a message that later be-
comes redundant with further messages. By analysis, the intruder also obtains
{ring(a)}.

The new value {ring(a)} allows for another application of the keyUpdateUser
rule, namely with this key in the role of PK . This now gives the term implication
{ring(a)} →→ ∅ and the message sign(inv(∅), pair(a, {ring(a)})). After this, there
are no further ways to apply this transaction rule, because we will not get to
any other abstract value that contains ring(a).

7In fact, the well-formedness conditions of the previous section require to also include
occurs facts, but for illustration, we have simply omitted them (as the intruder knows every
public key that occurs).
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Applying the keyUpdateServer transaction to the first signature we have ob-
tained (i.e., with PK = {valid(a)} and NPK = {ring(a)}), we get the term
implications {valid(a)} →→ {revoked(a)} and {ring(a)} →→ {ring(a), valid(a)}, and
the intruder learns inv({revoked(a)}). Applying it with the second signature
(i.e., with PK = ∅ and NPK as before), we get additionally the term implica-
tion ∅ →→ {valid(a)}. Note that we must also check if the intruder can generate
a signature that works with keyUpdateServer: however, the only private keys he
knows are those represented by inv({revoked(a)}), and they are not accepted for
this transaction. (In a model with dishonest agents, the intruder can of course
produce signatures with keys registered to a dishonest agent name, but here we
have just one honest user a.)

No other transaction can produce anything we do not have in FPks already—
in particular we cannot apply the attack transaction and this concludes the fixed-
point computation. Thus—according to our abstract interpretation analysis—
the protocol is indeed secure. Next we try to convince Isabelle.

5 Checking Fixed-Point Coverage
A major contribution of this work is now to use the fixed point that was auto-
matically computed by the abstract interpretation approach as a “proof idea”
for conducting the security proof in Isabelle on the concrete protocol. Essen-
tially, we prove that the fixed point indeed “covers” everything that can happen.
We break this down into an induction proof: given any trace that is covered
by the fixed point, if we extended it by any applicable transition, then the re-
sulting trace is also covered by the fixed point. This induction step we break
down into a number of checks that are directly executable within Isabelle us-
ing the built-in term rewriting proof method code-simp. We have also proved
some protocol-independent Isabelle theorems that show that any protocol that
passes said checks is indeed correct. Note that these checks are not only fully
automated, but they are also terminating in all but a few degenerate cases.8

5.1 Automatically Checking for Fixed-Point Coverage
Let us look at how we can automatically check if a fixed point covers a protocol.
We first explain how this works in general and thereafter give an example, in
Example 6, of how it works using the keyserver example.

A transaction of the protocol after resolving all the sugar has only variables
of type value. Thus, in a typed model and under the abstraction, we can in-
stantiate the variables only with abstract values, i.e., elements from A. We first

8It is technically possible to specify protocols for which the checks do not terminate. For
instance, an analysis rule of the form Anaf (x) = ({f(f(x))}, R), for some f , x and R, would
lead to termination issues when automatically proving the conditions for the typing result
which we rely on, because we here need to compute a set that contains the terms occurring in
the protocol specification and is closed under keys needed for analysis, and such a set would
in this case be infinite. However, this is an artificial example that normally does not occur
since it is usually the case that keys cannot themselves be analyzed.
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define what it means that a transaction is applicable under such a substitu-
tion of the variables with respect to the fixed point computed by the abstract
interpretation:

Definition 7 (Fixed-point coverage: pre-conditions) Let T = Sr ·Sc ·F ·
Su ·Ss be a transaction and let FP = (FP ,TI ) be a fixed point. Let further δ be
an abstraction substitution mapping the variables of T to abstract values of A.
We say that δ satisfies the pre-conditions (for T and FP), written pre(FP, δ, T ),
iff the following conditions are met:

F1. clTI (FP) ⊢ δ(ti) for all receive t1, . . . , tn occurring in Sr and for all i ∈
{1, . . . , n}

F2. s ∈ δ(x) for all x in s occurring in Sc

F3. s /∈ δ(x) for all x notin s occurring in Sc

F4. δ(x) = ∅ for all x ∈ fresh(T )

Here, F1 checks that the intruder can produce all input messages for the trans-
action under the given δ. Note that the intruder has control over the entire
network, so he can use here any message honest agents have sent and also
construct other messages from that knowledge (hence the ⊢). Moreover, we
consider here the closure of the intruder knowledge FP under the term implica-
tion rules, since that represents all variants of the messages that are available to
the intruder; we will later show as an optimization that we can check whether
clTI (FP) ⊢ δ(t) holds without first explicitly computing clTI (FP). The next
checks F2 and F3 are that all set membership conditions are satisfied, and F4
checks that all fresh variables represent values that are not member of any set.

Now for every δ under which the transaction T can be applied (according
to FP), we compute what T can “produce” and that that is also covered by
FP. What the transaction can produce are the outgoing messages and the
changes in set memberships. The latter is captured by an updated abstraction
substitution δu that is identical with δ except for those values that changed their
set memberships during the transaction:

Definition 8 (Abstraction substitution update) Let T = Sr ·Sc ·F ·Su ·Ss

be a transaction and δ an abstraction substitution. We define the update of δ
w.r.t. T , written δu, as follows:

δu(x) ≡ upd(Su , x, δ(x)), where

upd(0, x, a) = a

upd(t · S, x, a) =


upd(S, x, a ∪ {s}) if t = insert x s

upd(S, x, a \ {s}) if t = delete x s

upd(S, x, a) otherwise
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Note that according to this definition, if a transaction contains insert and delete
operations of the same value x for the same set, then “the last one counts”. But
there is a more subtle point: suppose the transaction includes the operations
insert x s and delete y s . The above definition would not necessarily formalize
the updates of the set memberships if the transaction were applicable (in the
concrete) under an interpretation I with I(x) = I(y). Note that for this very
reason the concrete semantics requires I to be injective, and, as explained earlier
in Subsection 3.3, we automatically achieve this through appropriate syntactic
sugar so as to not bother the user.

Based on this update, we can now define what it means for a transaction to
be covered by a fixed point:

Definition 9 (Fixed-point coverage: post-conditions) Let T = Sr · Sc ·
F · Su · Ss be a transaction and let FP = (FP ,TI ) be a fixed point. Let δ
be an abstraction substitution and δu the update of δ w.r.t. T . We say that
δ satisfies the post-conditions (for T and FP), written post(FP, δ, T ), iff the
following conditions are met:

G1. (δ(x) →→ δu(x)) ∈ TI ∗ for all x ∈ fv(T ) \ fresh(T )

G2. clTI (FP) ⊢ δu(ti) for all send t1, . . . , tn occurring in Ss and for all i ∈
{1, . . . , n}

Here G1 expresses that every update of a value must be a path in the term
implication graph (it does not need to be a single edge). G2 means that the
intruder learns every outgoing message δu(t) and thus it must be covered by the
fixed point when closed under term implication.

We can now put it all together: for the pre-conditions we are restricting the
coverage check to those abstraction substitutions that are actually possible in
the fixed point. For the post-conditions we are then checking that the fixed point
covers everything that the transaction produces under those same substitutions:
fixed-point coverage is thus defined as follows:

Definition 10 (Fixed-point coverage) Let T be a transaction and let FP =
(FP ,TI ) be a fixed point. We say that FP covers T iff for all abstraction substi-
tutions δ with domain fv(T ), if pre(FP, T, δ) then post(FP, T, δ). For a protocol
P we say that FP covers P iff FP covers all transactions of P.

With this defined we can prove the following theorem:

Theorem 3 9 Let P be a protocol and let FP be a fixed point. If attack does
not occur in FP, and if P is covered by FP, then P is secure.

Example 6 Consider the key update transaction keyUpdateServer from Subsec-
tion 3.1. We now show that the fixed point FPks defined in Example 4.3 covers
this transaction, i.e., satisfies Definition 10.

9This theorem is called protocol_secure in the Isabelle code and can be found in the
Stateful_Protocol_Verification.thy theory file.
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The only variables occurring in keyUpdateServer are PK and NPK , so we
can begin by finding the abstraction substitutions with domain {PK ,NPK} that
satisfy the pre-conditions given in Definition 7. We denote by ∆ the set of those
substitutions. Afterwards we show that all δ ∈ ∆ satisfy the post-conditions
given in Definition 9.

The variables PK and NPK are not declared as fresh in keyUpdateServer so
condition F4 is vacuously satisfied. From F2 and F3 we know that valid(a) ∈
δ(PK ) and valid(a), revoked(a) /∈ δ(NPK ), for all δ ∈ ∆. From F1 we know
that clTI ks

(FPks) ⊢ δ(sign(inv(PK ), pair(a,NPK ))). The intruder cannot com-
pose the signature himself since he cannot derive a private key of the form
inv(b) where b ∈ A and valid(a) ∈ b. Hence, the only signatures available to
him—that also satisfy the constraints for ∆ that we have deduced so far—are
sign(inv({valid(a)}), pair(a, b)) for each b ∈ {{ring(a)}, ∅}. The only surviving
substitutions are

δ1 = [PK 7→ {valid(a)},NPK 7→ ∅], and
δ2 = [PK 7→ {valid(a)},NPK 7→ {ring(a)}].

That is, ∆ = {δ1, δ2}.
Next, we compute the updated substitutions w.r.t. the transaction keyUpdateServer:

δ1u = [PK 7→ {revoked(a)},NPK 7→ {valid(a)}], and
δ2u = [PK 7→ {revoked(a)},NPK 7→ {ring(a), valid(a)}].

Now we can verify that conditions G1 and G2 hold for δ1 and δ2: We have that
δi(x) →→ δiu(x) is covered by TI ks , for all i ∈ {1, 2} and all x ∈ {PK ,NPK}.
We also have that the outgoing message inv(PK ) is in clTI ks

(FPks) under each
δiu. Thus keyUpdateServer is covered by FPks .

We can, in a similar fashion, verify that the remaining transactions of the
keyserver protocol are covered by the fixed point. Thus the keyserver protocol is
covered by FPks . ■

5.2 Automatic Fixed-Point Computation
An interesting consequence of the coverage check is that we can also use it to
compute a fixed point for protocols P. In a nutshell, we can update a given a
fixed-point candidate FP0 for P as follows: For each transaction of P we first
compute the abstraction substitutions ∆ that satisfy the pre-conditions F1 to
F4. Secondly, we use the post-conditions G1 and G2 to compute the result of
taking T under each δ ∈ ∆ and add those terms and term implications to FP0.
Starting from an empty initial iterand (∅, ∅) we can then iteratively compute
a fixed point for P. Definition 11 gives a simple method to compute protocol
fixed points based on this idea.

Definition 11 Let P be a protocol and let f be the function defined as follows:

f((FP ,TI )) ≡ (FP ∪ {t ∈ F̂PT
δ | T ∈ P, δ ∈ ∆T

FP,TI },
TI ∪ {ab ∈ T̂I Tδ | T ∈ P, δ ∈ ∆T

FP,TI })
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where
∆T

FP,TI ≡ {δ | dom(δ) = fv(T ), pre((FP ,TI ), T, δ)}
F̂PT

δ ≡ {δu(ti) | send t1, . . . , ti, . . . , tn occurs in T}
T̂I Tδ ≡ {(δ(x), δu(x)) | x ∈ fv(T ) \ fresh(T )}

Then we can compute a fixed point for P by computing a fixed point of f , e.g.,
by computing the least n ∈ N such that fn((∅, ∅)) = fn+1((∅, ∅)).

We provide, as part of our Isabelle formalization, a function to compute
such a fixed point (with some optimizations to avoid computing terms and term
implications that are subsumed by the remaining fixed point), using the built-in
code generation functionality of Isabelle.

6 Improving the Coverage Check
We now describe a number of improvements that are essential to an efficient
check (small experiments show that without these, performance is quite poor
even in minimal examples). We emphasize again that even if we had introduced
mistakes here, it would not affect the correctness of the entire approach, since
in the worst case the proofs would be rejected by Isabelle.

There are two major issues that make the coverage check from the previous
section quite inefficient when implemented directly. One concerns the fact that
the fixed point should be considered closed under intruder deduction and term
implication. Even though the typed model allows us to keep even the intruder
deduction closure finite, explicitly computing the closure is not feasible even on
rather modest examples. The second issue is about the abstraction substitutions
δ of the check: recall that in the check we defined above, for a given transaction
we consider every substitution δ of the variables with abstract values, which is
of course exponential both in the number of variables and the number of sets.

Let us first deal with this second issue. We can indeed compute exactly those
substitutions that satisfy conditions F2 to F4: every positive set-membership
check x in s of the transaction requires that s ∈ δ(x), and similarly for the
negative case. Moreover, δ(x) can be only an abstract value that actually occurs
in the fixed point. Starting from these constraints often substantially cuts down
the number of substitutions δ that we need to consider in the check, especially
when we have more agents than in the example. This is because typically (at
least in a good protocol) most values will not be members of many sets that
belong to different agents (but rather just a few that deal with that particular
value).

The first issue, i.e., avoiding computing the term implication closure clTI (FP)
when performing intruder deductions, is more difficult. The majority of this sec-
tion is therefore dedicated to improving on conditions F1 and G2 so that we can
avoid computing the entire closure clTI (FP)—only in a few corner cases do we
need to compute the closure for a few terms of FP . A key to that is to saturate
the intruder knowledge with terms that can be obtained by analysis and then
work with composition only, i.e., ⊢c.
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6.1 Intruder Deduction Modulo Term Implications
Recall that ⊢c is the intruder deduction without analysis, i.e., only the (Axiom)
and (Compose) rules. We first consider how we can handle in this restricted
deduction relation the term implication graph TI efficiently, i.e., how to decide
clTI (M) ⊢c t (for given TI , M and t) without computing clTI (M). In a second
step we then show how to also handle analysis, i.e., the full ⊢ relation.

In fact, it boils down to checking the side condition of (Axiom), i.e., in our
case, whether t ∈ clTI (M), without having to compute clTI (M) first. (The
composition rule is then easier because it does not “directly look” at the knowl-
edge.) For this, it is sufficient if we can check whether t ∈ clTI (t

′) for any
t′ ∈ M , without having to compute clTI (t

′).
Consider again Definition 5. We can use this to derive a recursive check

function t′ ⇝TI t for the question t ∈ clTI (t
′): it can only hold if either

• t and t′ are the same variable,

• or t, t′ are abstract values with a path from t′ to t in TI ,

• or t = f(t1, . . . , tn) and t′ = f(t′1, . . . , t
′
n), where recursively t′i ⇝TI ti

holds for all 1 ≤ i ≤ n.

With this we can now define a recursive function ⊩c that checks for given
M , TI , and t whether clTI (M) ⊢c t without computing clTI (M), defined as
follows:

M ⊩TI
c t iff (∃t′ ∈ M. t′ ⇝TI t) or

t is of the form t = f(t1, . . . , tn) where f ∈ Σn
pub and M ⊩TI

c ti for all i ∈ {1, . . . , n}

This function indeed fulfills its purpose:

Lemma 2 clTI (M) ⊢c t iff M ⊩TI
c t

Next, we show how to reduce the intruder deduction problem ⊢ to the re-
stricted variant ⊢c.

6.2 Analyzed Intruder Knowledge
The idea is now that ⊢c is actually already sufficient, if we have an analyzed
intruder knowledge: we define that a knowledge M is analyzed iff M ⊢ t implies
M ⊢c t for all t. More in detail, we can consider a knowledge M that is satu-
rated by adding all subterms of M that can be obtained by analysis. Then M
is analyzed, i.e., we do not need any further analysis steps in the intruder de-
duction. This is intuitively the case because the intruder cannot learn anything
from analyzing messages he has composed himself.

We now define formally what it means for a term t to be analyzed using the
keys (Keys(t)) and results (Result(t)) from the analysis as defined in Subsection
2.2:
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Definition 12 (Analyzed term) Let M be a set of terms and let t be a term.
We then say that t is analyzed in M iff M ⊢c Keys(t) implies M ⊢c Result(t)
(where M ⊢c N for sets of terms M and N is a shorthand for ∀t ∈ N. M ⊢c t).

The following lemma then provides us with a decision procedure for deter-
mining if a knowledge is analyzed:

Lemma 3 M is analyzed iff all t ∈ M are analyzed in M .

We now consider again an intruder knowledge given as the term implication
closure of a set of messages, i.e., clTI (M) instead of M . Efficiently checking
whether an intruder knowledge’s term implication closure is analyzed, without
actually computing it, is challenging. The following lemma shows that if we can
derive the results of analyzing a term t in the knowledge M then we can also
derive the results of analyzing any implied term t′ ∈ clTI (t):

Lemma 4 Let t ∈ M . If clTI (M) ⊢c Result(t) then for all t′ ∈ clTI (t),
clTI (M) ⊢c Result(t

′).

Therefore, if all k ∈ Keys(t) can be derived and t is analyzed in clTI (M) then
we can conclude that all implied terms t′ ∈ clTI (t) are analyzed in clTI (M). If,
however, some of the keys for t are not derivable then we are forced to check
the implied terms as well as the following example shows:

Example 7 Let f, g ∈ Σ1
priv , TI = {a →→ b}, and M = {f(a), g(b)}. Define the

analysis rules Anaf (x) = ({g(x)}, {x}) and Anag(x) = (∅, ∅). Then clTI (M) =
{f(b)}∪M . The term f(a) is analyzed in clTI (M) because the key g(a) cannot be
derived: clTI (M) ̸⊢c g(a). However, f(a) a→→b f(b) and f(b) is not analyzed in
clTI (M): Ana(f(b)) = ({g(b)}, {b}) but the key g(b) is derivable from clTI (M)
in ⊢c whereas the result b is not. Thus clTI (M) is not an analyzed knowledge.
■

So in most cases we can efficiently check if clTI (M) is analyzed, and in
some cases we need to also compute the term implication closure clTI (t) of
problematic terms t ∈ M (but not necessarily compute all of clTI (M)). The
former corresponds to the “if”-branch of the following definition and the latter
corresponds to final “else”-branch:

Lemma 5 clTI (M) is analyzed iff for all t ∈ M , the following holds

if clTI (M) ⊢c Keys(t) then t is analyzed in clTI (M)
else if A ∩ subterms(Keys(t)) = ∅ then true
else if ∀s ∈ clTI (Keys(t)). clTI (M) ̸⊢c s then true
else all t′ ∈ clTI (t) are analyzed in clTI (M).

Lemma 5 provides us with the means to extend a knowledge M to one whose
term implication closure is analyzed: The idea is to close M under the rule that
extends it with the result Result(t) of those analyzable terms t ∈ M for which
the conditions on the right-hand side of the biconditional in Lemma 5 fails. For
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instance, in Example 7 we need to extend M = {f(a), g(b)} with b, resulting in
the analyzed knowledge M ′ = {f(a), g(b), b}.

The two “else-if”-branches are an improvement we have made for this journal
version of the paper. The idea is the following:

1. If Keys(t) are not derivable from the term-implication closed knowledge
clTI (M), and if there is no abstract value occurring in Keys(t), then
Keys(s) = Keys(t) for all implied terms s of t, and so t is analyzed in
clTI (M).

2. If none of the implied keys of t are derivable then t is also analyzed in
clTI (M).

These two special cases are useful to speed up the analyzed-fixed-point check
when the fixed point contains terms that have lots of abstract values in them
and that cannot be analyzed by the intruder (the last else-branch would in such
cases take a lot of time to compute since the size of clTI (t) grows exponentially
with the number of occurrences of abstract values in t)—also, it is often the
case that Keys(t) has fewer abstract values in it than Result(t), and so the size
of clTI (Keys(t)) is likely to be much smaller than clTI (t), hence the second
“else-if” condition is usually much faster to check than the last else-branch.

As an example, when modeling private channels one may use terms of the
form secch(secchcr(a, b), t), denoting that t is sent on a private channel from
agent a to agent b, where the term t is derivable if the secret secchcr(a, b) is
known, and where there would be an attack on the protocol if the intruder knew
secchcr(a, b) for honest a and b. In a secure protocol the term secch(secchcr(a, b), t),
for honest a and b, would not be derivable by the intruder, and so it is sufficient
to check that clTI (M) ̸⊢c secchcr(a, b) and A ∩ subterms(secchcr(a, b)) = ∅ in-
stead of checking that all elements of clTI (secch(secchcr(a, b), t)) are analyzed
in clTI (M), which may take a significant amount of time since t may contain a
lot of abstract values.

6.3 A Further Improvement of the Coverage Check
We return to the second issue described in the beginning of this section: the
issue of restricting how many abstraction substitutions need to be considered in
order to conclude that a transaction is covered. The solution presented so far
restricted the number of abstraction substitions considered by computing those
that satisfy conditions F2 to F4 of Definition 7. We now show a way to take
into consideration also condition F1 to further restrict the set of abstraction
substitutions to consider. This will not be exactly the set of substitutions that
satisfy F1 to F4, but rather do an over-approximation that allows us to also
calculate the desired set of abstration substitutions in an efficient way.

F1 essentially says that for each received term t of a considered transaction,
its abstraction δ(t) must be something that the intruder can actually produce
from the fixed point. Thus, by inspecting t and comparing it to the terms
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available in the fixed point we will be able to see what the variables in t could
be instantiated to if δ(t) were to be a term producible from the fixed point.

The following functions capture this idea:

Definition 13 Let T be a transaction and let t1, . . . , tn be the terms in the
receive-steps of T . Assume that n > 0, i.e., that T has at least one receive-step.
Let FP = (FP ,TI ) be a fixed point and let OCC be the abstract values that
occur in FP. Assume that FP is analyzed. Let furthermore x be a free variable
of T . Then an over-approximation of the possible abstractions of x constrained
by t1, . . . , tn is the set rcvconstrsx({t1, . . . , tn}) where rcvconstrsx is defined as
follows:

rcvconstrsx({t1, . . . , tn}) =
⋂

i∈{1,...,n} rcvconstrsx({ti})
rcvconstrsx({y}) = {b | a ∈ FP ∩ A, (a, b) ∈ TI ∗} if x = y
rcvconstrsx({y}) = OCC if x ̸= y
rcvconstrsx({c}) = ∅ if c ∈ Cpriv and c /∈ FP
rcvconstrsx({c}) = OCC if c ∈ Cpub or c ∈ FP ∩ Cpriv

rcvconstrsx({f(t1, . . . , tn)}) = θ1 ∪ θ2 if f ∈ Σn, n > 0,
θ1 =

⋃
δ∈∆ δ(x),

θ2 = rcvconstrsx({t1, . . . , tn}),
∆ = match(f(t1, . . . , tn),FP)

and where match is defined as follows:

match(t,M) = {δ ∈ match(t, s) | s ∈ M}
match(t, s) = {θ} if δ ∈ match′(t, s),

∀x. δ′(x) =
⋂

a∈δ(x){b | (a, b) ∈ TI ∗},
∀x ∈ fv(t). δ′(x) ̸= ∅,
∀x. θ(x) = if x ∈ fv(t) then δ′(x) else OCC

match(t, s) = ∅ otherwise
match′(x, a) = {θ} if x ∈ V, a ∈ A,∀y. θ(y) = if x = y then {a} else ∅
match′(t, s) = {θ} if t = f(t1, . . . , tn), s = f(s1, . . . , sn),

∀i ∈ {1, . . . , n}. match′(ti, si) ̸= ∅,
∆ = {δ ∈ match′(ti, si) | i ∈ {1, . . . , n}},
∀x. θ(x) =

⋃
δ∈∆ δ(x)

match′(t, s) = ∅ otherwise

We explain now what the above functions will do. Consider first the match′

function from a syntactical point of view. This function takes as input a received
term t and tries to match it with a term s from the intruder knowledge. It will
firstly check if there is a way to replace each variable occurrence in t with an
abstract value such that t becomes syntactically equal to s. If there is no such
replacement, then it will simply give ∅. However, if there is such a replacement
match′ will return a singleton set consisting of a map θ from variables into sets
of abstract values. Each variable is mapped to the set of abstract values that
have the property that some occurrence of the variable needs to be replaced
with that abstract value in order for t to become syntactically equal to s.
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Example 8 As an example, we have that match′(f(X,X), f({valid(a), ring(a)}, {revoked(a), ring(a)}) =
{[X 7→ {{valid(a), ring(a)}, {revoked(a), ring(a)}}]}. It is perhaps surprising that
X is mapped to a set of values and not as in more simple matching algorithms
to a single value. The reason is that an abstract value in a term in FP does
not only represent itself, but its whole closure under the term implication graph.
Thus, {valid(a), ring(a)} and {revoked(a), ring(a)} might actually be able to rep-
resent the same value, or more precisely, there might be a set of abstract values
that {valid(a), ring(a)} and {revoked(a), ring(a)} both represent under term im-
plication.

The example also points to a more semantic way to understand match′. Say that
we are interested in the set of abstraction substitutions that when applied to t
gives a term represented by the term implication closure of s. For each free vari-
able x in t, such an abstraction substitution must necessarily return an abstract
value that is part of the term implication closures of all abstract values in θ(x)
for the θ ∈ match′(t, s). Consider now the match function which captures ex-
actly this semantic idea. When possible, it returns a singleton containing a map
θ that expresses our idea more directly: The match function ensures that for
each variable x, the abstraction substitutions we were interested in just above
will necessarily return an abstract value in θ(x). Additionally, match can also
be applied to a received term t and a whole intruder knowledge M . Consider
here any abstraction substitution, that when applied to t gives a term repre-
sented by the term implication closure of some s in M . For such an abstraction
substitution there must be a θ ∈ match(t,M) such that for each variable x, the
abstraction substitution returns an abstract value in θ(x). Let us consider an
example:

Example 9 Assume that the term implication graph is {valid(a), ring(a)} →→
{revoked(a), ring(a)}. Consider then the following calculation by the match func-
tion:

match(f(X,X), f({valid(a), ring(a)}, {revoked(a), ring(a)}))
= {[X 7→ {{{valid(a), ring(a)}, {revoked(a), ring(a)}} ∩ {{revoked(a), ring(a)}}}]}
= {[X 7→ {{revoked(a), ring(a)}}]}

Notice here that indeed the term f({revoked(a), ring(a)}, {revoked(a), ring(a)}) is
represented by the term f({valid(a), ring(a)}, {revoked(a), ring(a)}) when consid-
ering the term implication graph.

Consider lastly the rcvconstrs function. This can take a variable x and singleton
set of a received term t. It then essentially checks if t actually is a term that
the intruder could potentially find in or build from the fixed point, and if that
is the case then it collects a set of abstract values which x could have for that to
happen. A simple case is when t is exactly the variable x because here we simply
collect all abstract values that are directly in the fixed point when closed under
the term implication graph. The most interesting case is when t is a composite
term f(t1, . . . , tn). Here, we have essentially to consider two cases:
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• the case that the intruder can directly “match” f(t1, . . . , tn) with a term
in FP

• the case that the intruder can construct f(t1, . . . , tn) by composition from
the intruder knowledge, thus having to recursively consider for t1, . . . , tn
the two cases we are considering here.

We need not consider analysis, because we are assuming that FP is analyzed.
The matching done in the former case is then where possible values for x is
found. We also define rcvconstrs when applied to a non-singleton set M of
received terms, representing a set of received terms. The variable x of course
has to live up to the constraints generated by all the received terms relative
to the fixed point, and thus we can simply take the intersection of constraints
generated by the individual received terms. The following example illustrates
the idea:

Example 10 Consider a transaction receiving the set of terms {cpub, X, fpriv2(X,Y ), fpub2(fpriv1(X), Y )}
where cpub is a public constant, fpriv1 and fpriv2 are private functions and fpub2 is
a public function.

Assume that we have the following fixed point:

FP = { fpriv2({valid(a)}, {valid(a)}), fpriv2({revoked(a)}, {valid(a)}),
{revoked(a)}, fpriv1({revoked(a)})}

TI = ∅

Assume also for the sake of simplicity that there are no analysis rules. Then
this fixed point is clearly analyzed because all messages that the intruder can de-
rive from FP using ⊢ can also be derived using ⊩c. Let us now apply rcvconstrs to
get rcvconstrsX({cpub, X, fpriv2(X,Y ), fpub2(fpriv1(X), Y )}) = {{revoked(a)}} and
rcvconstrsY ({cpub, X, fpriv2(X,Y ), fpub2(fpriv1(X), Y )}) = {{valid(a)}}. Thus, in
this case we get one possible abstraction substitution, namely [X 7→ {revoked(a)}, Y 7→
{valid(a)}].

Example 11 Consider a transaction receiving the set of terms {fpriv2(X,Y )}
where fpriv2 is a private function. Consider the fixed point FP = ({fpriv2({valid(a)}, {revoked(a)}), fpriv2({revoked(a)}, {valid(a)})}, ∅).
Assume also for the sake of simplicity that there are no analysis rules. Let us
now apply rcvconstrs to get rcvconstrsX({fpriv2(X,Y )}) = {{revoked(a)}, {valid(a)}}
and rcvconstrsY ({fpriv2(X,Y )}) = {{revoked(a)}, {valid(a)}}. Thus, in this case
we get four possible abstraction substitution, namely [X 7→ {revoked(a)}, Y 7→
{valid(a)}], [X 7→ {valid(a)}, Y 7→ {revoked(a)}], [X 7→ {revoked(a)}, Y 7→
{revoked(a)}] and [X 7→ {valid(a)}, Y 7→ {valid(a)}]. Notice that we see here
that an overapproximation is happening because actually only the first two ab-
straction substitutions will generate terms represented by the fixed point.

We explain also how the mentioned functions are implemented. The way that
match′ does the mentioned checks and calculates its θ is simply by recursion on
the structure of t. In the recursive case each subterm of t will create a mapping,
and these mappings are combined by pointwise union. The match function
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calculates its θ as follows: It uses match′ to check if t can potentially match s
and the resulting map is δ. For each variable x the match function calculates
which abstract values δ(x) represents by taking the term implication closure of
each a ∈ δ(x) and in order to find the abstract values that all these closures
represent, their intersection is taken. This results in the mapping δ′ which maps
each variable x to the mentioned intersection. Then match checks that all free
variables in t can actually represent some abstract value, because if not then no
abstraction substitution can make t be represented by s. Lastly the resulting
mapping θ is simply δ′, but modified to return OCC for all variables not free in
t, because for such variables the intruder may pick any abstract value, which the
intruder might do to also make some other pair of terms match, but we know
here at least that the intruder will not be able to use any other value than the
ones that occur in FP. The function match can also be applied to a received
term t and the full intruder knowledge M . This is done by applying match
individually to all terms in M and collecting the resulting maps in a set. The
way that rcvconstrs works when applied to a variable x and a singleton set of a
term is to do a recursion on the term. In case the term is a different variable
than x, a public constant or an intruder-known private constant then this is
not constraining what x could be, and thus the whole OCC is returned because
we then know only that the intruder at least must pick a variable occurring in
FP. In case t is an intruder-unknown private constant then the intruder has
no way to give x an abstract value, and thus ∅ is returned. This also means
that no abstraction substitution will make the transaction applicable. If t is
equal to x then the intruder can pick any intruder-known abstract value for
x. If t is a composite term f(t1, . . . , tn) then, as mentioned earlier, we need to
take into account both of the possibilities that the intruder can directly match
f(t1, . . . , tn) with a term in FP and that the intruder can construct f(t1, . . . , tn)
by composition. In the former case we can use match to calculate what possible
values x can have when t is matched with the intruder knowledge. This is in the
definition collected as the set θ1. In the latter case we can use recursion to see
what possible abstract values x can get if it occurs in one or more of t1, . . . , tn.
The result is the set θ2, and we finally return θ1 ∪ θ2.

The following lemma captures the idea of match:

Lemma 6 If θ(t) ∈ clTI (s) and fv(s) = ∅, and there are no abstract values
occurring in t, and θ is an abstraction substitution, then match(t, s) ̸= ∅.

This lemma essentially shows that if a term t (which is intended to be from a
recive step) can be instantiated by some abstraction substitution θ to be in the
term implication closure of s (which is intended to be in FP), then match(t, s)
will return a non-emtpy set of functions.

Next, we have lemma capturing the idea of rcvconstrs:

Lemma 7 Let T be a transaction with at least one receive-step, FP = (FP ,TI )
be a fixed point where FP is analyzed, x ∈ fv(T ), δ be an abstraction substitution
with domain fv(T ), and let t1, . . . , tn be the terms occurring in the receive-steps
of T . If FP ⊢c δ({t1, . . . , tn}) then δ(x) ∈ rcvconstrsx({t1, . . . , tn}).
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Verification

Initialization Fixed Point Safe Check NBE Check Unsafe Check
Protocol Translation Setup Computation |FP| |TI| Default Receive Default Receive Default Receive

Keyserver_2_1 00:00:07 00:00:46 00:00:04 22 27 00:01:05 00:01:45 00:00:24 00:00:25 00:00:19 00:00:24
Keyserver_3_1 00:00:08 00:00:36 00:00:04 31 40 00:00:44 00:00:53 00:00:24 00:00:23 00:00:22 00:00:21
Keyserver_4_1 00:00:09 00:00:38 00:00:04 40 53 00:00:59 00:01:21 00:00:22 00:00:20 00:00:18 00:00:17
Keyserver2_2_1 00:00:08 00:00:35 00:00:04 9 4 00:01:22 00:02:13 00:00:20 00:00:22 00:00:20 00:00:18
Keyserver2_3_1 00:00:06 00:00:46 00:00:04 12 6 00:01:57 00:04:27 00:00:26 00:00:30 00:00:19 00:00:20
Keyserver2_4_1 00:00:07 00:00:37 00:00:04 15 8 00:04:02 00:10:49 00:00:35 00:00:42 00:00:19 00:00:18
KS_Comp_2_1 00:00:09 00:00:38 00:00:06 40 105 00:23:51 00:57:32 00:02:00 00:02:37 00:00:18 00:00:21
KS_Comp_3_1 00:00:09 00:00:36 00:00:08 56 153 01:36:50 03:55:23 00:06:30 00:08:47 00:00:20 00:00:23
KS_Comp_4_1 00:00:09 00:00:37 00:00:13 70 201 04:57:05 11:38:15 00:15:57 00:24:45 00:00:18 00:00:25
NSLclassic 00:00:06 00:00:35 00:00:04 69 6 00:05:26 00:05:49 00:00:25 00:00:26 00:00:19 00:00:22
NSPKclassic 00:00:06 00:00:35 00:00:04 43 6 attack attack attack attack attack attack
PKCS_Model03 00:00:06 00:00:37 00:00:07 8 2 attack attack attack attack attack attack
PKCS_Model07 00:00:10 00:00:34 00:00:29 15 5 attack attack attack attack attack attack
PKCS_Model09 00:00:07 00:00:36 00:00:13 40 20 attack attack attack attack attack attack
TLS12_auth_simp 00:00:09 00:00:38 00:00:07 48 20 11:59:01 04:21:27 08:22:19 00:02:47 00:00:27 00:00:19

Table 1: Runtime Measurements (Time Format: hh:mm:ss).

This lemma essentially says that if there is an abstraction substitution that will
instantiate a set of received terms to terms that the intruder can actually derive,
then the application of that abstraction substitution to any variable will indeed
be one of the abstract values that rcvconstrsx calculates.

This section demonstrates how the Isabelle formalization allows for describ-
ing different strategies in order to prove to Isabelle that the computed fixed point
covers the transactions. Indeed, as part of such arguments we show in Isabelle
that the strategy is sound, like in Lemma 7. The strategies can often negotiate
an efficient solution between different extremes. For instance, not considering
the messages the intruder needs to produce (F1) leads to an unnecessarily large
set of abstractions to consider, while computing the precise set of abstractions
that satisfy (F1) would often waste a lot of time on an optimization that is just
not worth it (or it may even be undecidable). While we here used our intuition
and experience with examples, in general an extensive study of different variants
on a larger benchmark suite could allow for further improvements.

7 Experimental Results
Table 1 shows the fixed-point sizes of various example protocols together with
measurements of the elapsed real time it takes to generate and verify the Is-
abelle specifications. First, we report the time for translating the protocol
specifications into Isabelle/HOL (Translation), the time for showing that the
given protocol is an instance of the formal protocol model (Setup), and the
time for computing the fixed point and its size. In the last six columns, we
report the run-time of three different strategies for the security proof: Safe em-
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ploys symbolic evaluation using Isabelle’s simplifier code-simp. For each of these
strategies, we report the time our default version of the coverage check (Default)
and the time for the improved coverage check (Receive). For the latter, please
recall section 6.

In the safe configuration, all proof steps are checked by Isabelle’s LCF-
style kernel. NBE employs normalization by evaluation, a technique that uses
a partially symbolic evaluation approach that, to a limited extend, relies on
Isabelle’s code generator. Finally, Unsafe is an approach that directly employs
the code generator and internally uses the proof method eval. In general, the
configurations NBE and Unsafe require the user to trust the code generator.
While Isabelle’s code generator is thoroughly tested, it is not formally verified.
We mainly provide these configurations to provide faster alternatives during
interactive protocol explorations. Ultimately, it is up to the user to decide which
approach to use, preferably after consulting [21], which discusses the software
stack that needs to be trusted in each of these configurations in more detail.

All experiments have been conducted on a shared Linux server with an Intel
Xeon E5-2640 CPU and 96GB main memory. Our implementation provides an
option to measure the time required for executing individual “top-level” com-
mands (e.g., protocol_security_proof). We only report the times that are
specific to the individual protocols using a “pre-compiled” session that contains
our generic protocol translator as well as the protocol-independent formaliza-
tions and proofs. Compiling this session takes ca. 20 minutes on the same
machine.

The example Keyserver_h_d is our running keyserver example for h honest
agents and d dishonest agents.10 The example Keyserver_Composition_h_d
with h honest agents and d dishonest agents is inspired by [23] where another
keyserver protocol—named Keyserver2_h_d here—runs in parallel on the same
network and where databases are shared between the protocols.

We made further experiments where our focus is not the precise modeling and
verification of particular protocols, but rather to experiment with our method
on more complex examples and get an understanding of how our method scales.

With TLS12simp we have looked at one practical protocol, TLS 1.2, with
two honest agents and one dishonest agent, albeit with some simplifications, in
particular modeling only one variant of the flow and simplifying the hashing.

NSLclassic and NSPKclassic are based on the NSL and Needham–Schroeder
protocol specifications shipped with AIF-ω [35].

Finally, scenario 3 and 7 (PKCS#11_3 and PKCS#11_7), from the “PKCS#11”
model that is distributed with AIF-ω [35] are examples of another flavor of state-
ful protocols, namely security tokens that can store keys and perform encryption
and decryption and with which the intruder can interact through an API. Gen-
erally modeling such tokens and their APIs works quite well with the set-based
abstraction. We report only two scenarios as they are the only ones that do

10We verify here a generalized version of the keyserver example (as compared to the running
example): we include dishonest agents who can participate in the protocol. This also requires
that agents maintain a set of deleted keys, because otherwise the abstraction ∅ leads to false
attacks.
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Verification

Initialization Fixed Point (TLS) Fixed Point (SSO) TLS SSO
Check Trans. Setup Comp. |FP| |TI| Comp. |FP| |TI| Default Receive Default Receive Composition

Safe Check 00:00:13 00:00:24 00:00:04 25 16 00:07:09 202 38 00:10:56 00:10:06 - - : - - : - - - - : - - : - - - - : - - : - -
NBE Check 00:00:13 00:00:24 00:00:04 25 16 00:07:09 202 38 00:00:58 00:00:43 07:28:57 01:48:07 00:00:12
Unsafe Check 00:00:13 00:00:24 00:00:04 25 16 00:07:09 202 38 00:00:15 00:00:14 00:00:10 00:00:07 00:00:05

Table 2: Runtime Measurements (Time Format: hh:mm:ss) for the Composed
Protocol TLS12_SSO.

not lead to an attack. In fact there is a third one (scenario #9) that is marked
as correct in the AIF-ω distribution, but that is actually due to a mistake that
our attempt to verify it in Isabelle has revealed. We discuss this example in
more detail in the appendix. This illustrates our main point that there can be
surprises when one tries to verify in Isabelle the results of automated tools.

For all our examples, verification times for all examples, using the unsafe
check (i.e., making full use of Isabelle’s code generator), are below 30s. This
makes this configuration ideal for interactive development, e.g., while refining a
protocol specification. In contrast, the verification using only Isabelle’s simplifier
can take more than 12 hours for our example protocols. Thus, in most cases this
configuration will be used in “batch-mode” after the protocol has been checked
using the configuration employing the code generator. For the most protocols,
NBE provides a good middle-ground, bringing the verification times down to
under a minute for most examples, and below 30min for all examples except for
TLS_auth_simp.

Furthermore, the improved coverage check introduced in section 6 signif-
icantly reduces the safe verification time for TLS_auth_simp in safe mode
from 12 hours to less than 4 1/2 hours. For NBE, it reduces the runtime for
TLS_auth_simp from over 8 hours to less than 3 minutes. For the configu-
ration fully relying on code-generation (unsafe), the improvements are minor
(from 27sec to 19sec). Note that this coverage check can also increase the ver-
ification times (e.g., for the composed keyserver examples). Further work is
required to develop a heuristic helping users to decide, which check to try first.
At this point in time, we recommend users of PSPSP to use the unsafe check-
ing during interactive verification sessions and switch to safe using the regular
coverage check for the final (batch-mode) verification. If this batch-mode check
takes very long (e.g., more than a few hours), it is worthwhile to check if the
improved coverage check (Default) is faster.

Table 2 shows the running times for an example of a protocol composition,
implementing a TLS-based single sign-on. Note that the format of the table
differs from Table 1: we report the running times for the three different verifica-
tion checks (Safe, NBE, and Unsafe) on three separate lines. For each of these
checks, we report the running time for the initialization and the fixed point
computation (as well as its size) for each sub-protocol (i.e., TLS and SSO).
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These aspects are the same for all three verification checks, as their implemen-
tation does not make use of the optimizations provided by the code generator.
Next, we report the running times (as in Table 1 for both coverage checks)
for individual verification of the two sub-protocols. The final column reports
the running time for the proof that the composition of the two sub-protocols
is secure. Here, “- - : - - : - -” denotes that the check takes more than 12 hours.
Notably, the security verification of the individual protocols takes significantly
longer (for instance, several hours for SSO for the NBE check, the safe check
does take more than 12 hours), while the proof that the composition of the two
protocol is secure, only takes a few seconds. Furthermore, note TLS used in
this composition case study focuses only on the core of TLS: the key exchange.
In contrast, TLS_auth_simp in Table 1 also includes the password authentica-
tion and the transmission of some dummy data. This explains the difference in
running times (and fixed-point sizes) between these two versions of TLS.

8 Isabelle/PSPSP
We implemented our approach on top of the Isabelle framework [40], result-
ing in a tool called Isabelle/PSPSP [29], which is now part of the Archive of
Formal Proofs (AFP).11 This includes a formalization of the protocol model in
Isabelle/HOL, a data type package that provides a domain specific language
(called trac) for specifying security protocols, and fully automated proof sup-
port.

8.1 The Architecture of Isabelle/PSPSP
For our implementation of Isabelle/PSPSP, we make use of the fact that Is-
abelle is not only an interactive theorem prover; it also provides an extensible
framework for developing formal method tools [43].

Figure 1 shows an overview of the Isabelle architecture, highlighting in green
the additions provided by Isabelle/PSPSP. In particular:

• Protocol Formalization: PSPSP is built on, and re-uses, our stateful pro-
tocol formalization (and its typing results) formalized in Isabelle/HOL.
This part is available as a stand-alone AFP entry [28], consisting of ca.
20, 000 lines of code. The formalization presented in this paper, formaliz-
ing the presented method for the automated verification of security proto-
cols, adds another 25, 000 lines of code [29]. Note that these formalizations
(proofs, definitions) are reusable, i.e., independent of any concrete security
protocol.

• Automated Proof Support (PSPSP Methods): We developed several proof
methods using, both, Isabelle’s high-level proof development language Eis-
bach [30] and the Isabelle/ML interface. Isabelle/ML is Isabelle’s pro-

11As part of the AFP, PSPSP will be maintained and, for instance, ported to the latest
official release of Isabelle.
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Figure 1: The system architecture of Isabelle and Isabelle/PSPSP.

gramming API that allows one to extend Isabelle using the SML [37]
programming language. We use this, in particular, for computing the ab-
straction of the fixed point that builds the back-bone of our automation.

• Support for trac: To improve the user-friendliness of PSPSP, we defined
a trace-based specification language for security protocols, called trac. By
supporting trac as input language, we allow users to use PSPSP with-
out the need to understand all the details of our protocol formalization.
Actually, users of PSPSP mostly need to understand trac, and our new
Isabelle commands for verifying security protocols. Supporting trac re-
quires a parser for trac (implemented in Isabelle/ML) and implementing
an encoder (or datatype package) that translates trac into the correspond-
ing HOL definitions. Furthermore, the trac datatype package also proves
automatically a number of basic properties that are used within the actual
security proof.

It is noteworthy all our additions have been implemented in a logically safe way,
i.e., a bug in our implementation cannot result in an insecure protocol being
successfully verified: any bug could only result in PSPSP not able to verify a
secure protocol.

8.2 Isabelle/PSPSP – A Guided Tour
Figure 2 shows the Isabelle IDE (called Isabelle/jEdit). The upper part of the
window is the input area that works similar to a programming IDE, i.e., sup-
porting auto completion, syntax highlighting, and automated proof generation
and interactive proof development. The lower part shows the current output (re-
sponse) with respect to the cursor position. In more detail, Figure 2 shows the
specification, and the fully-automated verification of a toy keyserver protocol:
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Figure 2: Using Isabelle/PSPSP for verifying a toy keyserver protocol.
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• The protocol is specified using the domain-specific language trac that, e.g.,
could also be used by a security protocol model checker (line 9–67). Our
implementation automatically translates this specification into a family
of formal HOL definitions. Moreover, basic properties of these definitions
are also already proven automatically (i.e., without any user interaction):
for this simple example, already over 350 theorems are automatically gen-
erated.

• Next (line 72) our implementation automatically shows that the proto-
col satisfies the requirement of our model (Technically, this is done by
instantiating several Isabelle locales, resulting in another 1750 theorems
“for free.”).

• In line 73, we compute the fixed point. We can use Isabelle’s value-
command (line 74) to inspect its size.

After these steps, all definitions and auxiliary lemmas for the security proof are
available. We can now perform a fully automated proof (line 75). This top-level
command proves automatically a theorem showing the security of the defined
protocol. This successful proof took ca. 41s (see lower part of the Isabelle/jEdit
window.)

8.3 Compositionality
PSPSP is part of a larger Isabelle infrastructure for security protocols that
allows also for compositionality [24], i.e., for a result of a form: if two or more
protocols are secure in isolation and satisfy certain requirements, then also their
composition is secure, i.e., when they run in parallel sharing the same network
and even some sets. Especially the support for shared sets allows us to consider
also complex interactions between two protocols, for instance where one protocol
negotiates keys and another protocol uses them.

The compositionality framework uses the same specification language (trac)
as PSPSP. One can thus specify a set of component protocols, use PSPSP to
prove the security of each of them in isolation, and use the compositionality
framework to check that they fulfill the requirements for compositionality and
then obtain an Isabelle proof that the composed system is secure.

As an example, we have modeled in [24] a composition of TLS 1.2 and
SAML Single-Sign-On (SSO): TLS establishes a shared key where the client
is not authenticated, but can do so with the help of an identity provider, us-
ing a password between client and identity provider. The TLS protocol would
store any exchanged keys that a client A has negotiated with server B in a set
clientKeys(A,B) on the client side, and in the set serverKeys(B) on the server
side. The latter set of keys is only parameterized over the agent name B, since
A is not authenticated. Each of these sets are, of course, from the local point
of view of each agent, and it is part of the verification that, for instance, the
intruder does not find out a key between two honest agents A and B. Finally,
the SSO protocol can just retrieve and use these keys, both to authenticate
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the connection between client and server, as well as between client and iden-
tity provider (where the password is transmitted). Note that the run time for
the TLS component of the composition is here greater than the runtime of the
TLS_auth_simp, because it is purely the key-exchange while all authentication
and data-transmission is “outsourced” to the SSO protocol. Thus, in general,
verification can be improved by using compositional reasoning, if one can split
a complex system into smaller components.

The compositionality framework supports strictly more protocols than PSPSP,
most importantly it allows for composed messages in sets. In these cases,
one cannot use PSPSP to verify the respective components, but of course one
can also consider compositions where a subset of the components is proved by
PSPSP and the others are verified manually.

9 Case Study: Logos
We had the opportunity to formally verify with PSPSP a protocol by the Dan-
ish company Logos. This protocol is in the area of reader terminals for a travel
card solution, namely to establish a secure connection between a terminal and
the Logos server. The particular challenge here is that this should work after
a terminal has been in storage for years and all public keys of the servers have
been updated in the meantime; we do not want to exclude that an intruder
could have obtained old private keys—after all that is the reason for updating
them regularly. Such a protocol, even though its messages are fairly simple,
is obviously a challenge for verification tools (without bounding the number of
sessions) as it requires mutable long-term states at its core. With some simpli-
fications, we have managed to make a model in PSPSP and found a security
flaw, and then verified the protocol with PSPSP under a minor modification.
Logos has applied this modification and has thus an Isabelle-verified product,
one might say, although this should of course be taken with a grain of salt, given
that we only verified a simplified model of the protocol (and in a black-box model
of cryptography).

In order to model the Logos protocol in PSPSP, we need to make some
simplifications and restrictions that are best explained by the enumeration con-
stants:

hw_id = {t1, t2}
epoch = {e1, e2}

Here we have two terminals (hardware-ids) t1 and t2. A restriction to finitely
many terminals is necessary. The server should maintain state for each terminal,
namely a set keys(T ) for T: hw_id. Note that this does not bound the number of
sessions each terminal can perform. Second we have two epochs e1 and e2. We
have introduced these epochs since PSPSP has no explicit notion of time that
would allow us, for instance, to reason about whether one event occurred before
the other. This model of epochs means that we split the whole timeline into
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two distinct epochs, without a bound on how many transactions can happen in
each epoch. In fact, our model will work in almost the exact same way in both
epochs (we explain the exceptions at each transaction below). This allows us
to make a model that is almost oblivious about time except for one fact: that
everything in e1 happens before everything in e2.

First, we define that the intruder can generate public-private key pairs. Note
that when no epochs are mentioned, the rule can uniformly be applied in all
epochs:

intruder_key_gen()
new PK
insert PK intruderkeys
send PK , inv(PK ).

For simplicity, we model here only a single public key of the Logos server.
The server can at any time, and in every epoch, generate a new server key and
insert it into the set of keys it currently has. This is an over-approximation, i.e.,
the server in practice would never have more than one key at the same time,
but of course the abstraction used in PSPSP implies that everything that can
happen, can happen arbitrarily often.

server_keys_gen(E: epoch)
new PKL
insert PKL server_keys(E)
send PKL.

Note that this can happen in every epoch, but we have parameterized the server
keys set over the epoch, so we can distinguish e1-keys from e2-keys. Like in
the keyserver examples before, the knowledge of the corresponding private key
inv(PKL) is implicit for honest agents like the Logos server.

The fact that all keys could be replaced by new keys we can simply over-
approximate by the following “revocation” rule:

server_keys_revoke(E: epoch,PKL: value)
PKL in server_keys(E)
delete PKL server_keys(E).

When a batch of new terminals is manufactured, they initially have all the
same public/private key pair, and they are just distinguished by their hardware-
id. We assume here that batch generation is only in epoch e1, because with e2
we want to model only what happens long after manufacture. Before terminals
can be manufactured, we first need to create a public/private key pair, and
like for the Logos server, we allow for arbitrary such events and revocation at
any point as an over-approximation of several manufacturing batches that can
happen in e1:

batch_keys_gen()
new PK
insert PK batch_keys(e1).

batch_keys_revoke(PK : value)
PK in batch_keys(e1)
delete PK batch_keys(e1).
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Again, the corresponding private key inv(PK ) is implicit, since only the manu-
factured terminals would have it and are assumed to be honest.

When manufactured, the terminals have also the current public key of the
Logos server. They are required to run a bootstrap protocol with the server in
order to establish an individual key, and this has to happen within 30 days after
manufacture, and we assume here that this is still within epoch e1. (Failure
to run it is modeled here by the fact that batch and/or server key can be
revoked, and thus the terminal cannot do any transactions.) In the bootstrap
protocol, the terminal creates a fresh public key pair BKP , the bootstrap key,
and inv(BKP) the corresponding private key. For now even the public key is
kept secret between terminal and server:

bootstrap_endpoint_terminal(T: hw_id,PKL: value,PKBatch: value)
PKL in server_keys(e1)
PKBatch in batch_keys(e1)
new BKP
insert BKP bkp(T )
send crypt(PKL, sign(inv(PKBatch), pair(T,BKP))).

Here we have drastically simplified the bilaterally authenticated TLS session
between terminal and server, by encryption of the message with the public key
PKL of the server and signing by the private key of the entire batch of terminals
inv(PKBatch). The terminal remembers its bootstrap key BKP (and implicitly
the private key) in the set bkp(T ). The server receives the public key BKP in
the following transaction and stores it in keys(T ):

bootstrap_endpoint_server(T: hw_id,PKL: value,BKP: value,PKBatch: value)
receive crypt(PKL, sign(inv(PKBatch), pair(T,BKP)))
PKL in server_keys(e1)
PKBatch in batch_keys(e1)
insert BKP keys(T ).

Note again that this bootstrap protocol so far can only be done in epoch
e1 as demanded by the parameters of the server and batch key sets, but it can
happen for arbitrary many batches and updates of the server keys in e1. Now
we come to the truststore protocol which a terminal may execute after many
years in storage, so this is possible in both epochs. To initiate, the terminal
says its unique hardware ID and a fresh nonce N :

truststore_endpoint_terminal(E: epoch, T: hw_id)
new N
insert N nonce(E)
send T,N.

For simplicity, we omit that this is also done via TLS: since in general neither
can verify the certificate of the other, this is not much better than plaintext,
and so we do not bother with modeling TLS here. Also, the N is inserted into
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an epoch-specific set, as the terminal would not accept an answer in epoch e2
with a nonce from epoch e1.

The server now receives the request, looks up the BKP of the claimed T ,
and constructs a so-called truststore message, telling the terminal all current
public key certificates. We have simplified this to the server just telling its own
current public key. To this end, the server generates a new shared key SK which
is inserted into a set of current shared keys sk_keys, encrypts it with the BKP
of the terminal and then authenticates the trust-store by MACing it (and the
nonce) with the SK :

truststore_endpoint_server_epoch1(T : hw_id,BKP: value,PK : value, N: value)
receive T,N
BKP in keys(T )
PK in server_keys(e1)
N notin nonce(e2)
new SK
insert SK sk_keys(T, e1)
insert PK witness(T, e1)
send crypt(BKP , sk(SK )),PK , h(SK , N,PK ).

This is the version for the case it is executed in e1. Here we actually make use of
the epochs with the requirement N notin nonce(e2). This is not a check that the
server can perform, it simply models that this transaction cannot happen in e1
with a nonce that was only created in e2. When this transaction is happening
however in e2, we cannot exclude that the nonce was generated in e1 (e.g., the
intruder replaying an old request):

truststore_endpoint_server_epoch2(T: hw_id,BKP: value,PK : value, N: value)
receive T,N
BKP in keys(T )
PK in server_keys(e2)
new SK
insert SK sk_keys(T, e2)
insert PK witness(T, e2)
send crypt(BKP , sk(SK )),PK , h(SK , N,PK ).

To understand this, consider that actually this approach does not have a
direct notion of time built in, and so we cannot directly talk about what has
happened before or after. With the epochs we have artificially introduced a
minimal notion of time: we distinguish things that have happened in e1 and
that is before everything that happens in e2. Thus, we simply can exclude,
when this transaction happens in e1 that it can use a nonce of epoch e2—it is
simply some information we encode here into the reasoning of the tool.

To continue the bootstrapping protocol, the terminal receives the truststore
message from the server:

truststore_endpoint_terminal′(T: hw_id,BKP: value,SK : value,PK : value, N: value)
receive crypt(BKP , sk(SK )),PK , h(SK , N,PK )
BKP in bkp(T ).
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Actually, we do not model here further the store of the terminal, but we have
authentication goals as discussed below.

We formulate several goals by specifying again what would be an attack.
First, for secrecy goals: the BKP (both public and private key) are secrets,
further the SK and the private key of the terminal batch:

secrecy_bkp(T: hw_id,BKP: value)
receive BKP
BKP in keys(T )
attack.

secrecy_bkp′(T: hw_id,BKP: value)
receive inv(BKP)
BKP in keys(T )
attack.

secrecy_sk(E: epoch, T: hw_id,SK : value)
receive SK
SK in sk_keys(T,E)
attack.

secrecy_batch_key(E: epoch,PKBatch: value)
receive inv(PKBatch)
PKBatch in batch_keys(E)
attack.

For the receiving of the truststore, we have that it is an attack (non-injective
agreement) if the terminal accepts a truststore that was not sent like this from
logos (in any epoch):

noninjauth_server_keys(T: hw_id,PK : value,SK : value,BKP: value, N: value)
receive crypt(BKP , sk(SK )),PK , h(SK , N,PK )
BKP in bkp(T )
PK notin witness(T, e1)
PK notin witness(T, e2)
attack.

The injective aspect now needs the formulation with epochs: it is an attack
if the terminal accepts a message in epoch e2 that the server has indeed said in
epoch e1, but not in epoch e2. (It would be ok, if in both epochs it is said by
the server.)

replay_server_keys(T: hw_id,PK : value,SK : value,BKP: value, N: value)
receive crypt(BKP , sk(SK )),PK , h(SK , N,PK )
BKP in bkp(T )
N in nonce(e2)
PK in witness(T, e1)
PK notin witness(T, e2)
attack.

This goal we actually found violated in the first version of the Logos protocol:
in this first version the terminal did not include the nonce N in the truststore pro-
tocol (and neither did the server’s reply of course). This allows for the following
replay attack: a terminal gets manufactured, runs bootstrap and sometime later
the truststore protocol with the intruder in the middle, recording the truststore
message from the server. The terminal for some reason goes into storage and
then later in epoch e2 it runs the truststore protocol again, where the intruder
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just acts as the logos server and replies with the old truststore messages from
e1, so the terminal is made to accept the old Logos keys that are long revoked
and possibly compromised by the intruder.

We note that this attack is not easy for the intruder to mount, but also
not unrealistic, and invalidating exactly what the protocol should achieve, the
reliable update of keys. The fix with the nonce is not very expensive and in this
version all goals of the protocol are satisfied, including the subsequent server-
certification of new keys generated by the terminal which we do not show here.

The PSPSP tool can verify this specification in about a minute.

10 Conclusion and Related Work
The research into automated verification of security protocols resulted in a large
number of tools (e.g., [9, 10, 15, 4, 18]). The implementation of these tools usu-
ally focuses on efficiency, often resulting in very involved verification algorithms.
The question of the correctness of the implementation is not easy to answer and
this is in fact one motivation for research in using LCF-style theorem provers
for verifying protocols (e.g., [38, 25, 13, 6, 5, 7]). While these works provide a
high level of assurance into the correctness of the verification result, they are
usually interactive, i.e., the verification requires a lot of expertise and time.

This trade-off between the trustworthiness of verification tools and the de-
gree of automation inspired research of combining both approaches [20, 11, 31].
Goubault-Larrecq [20] considers a setting where the protocol and goal are given
as a set S of Horn clauses; the tool output is a set S∞ of Horn clauses that
are in some sense saturated and such that the protocol has an attack iff a con-
tradiction is derivable. His tool is able to generate proof scripts that can be
checked by Coq [8] from S∞. Meier [31] developed Scyther-proof [32], an exten-
sion to the backward-search used by Scyther [18], which is able to generate proof
scripts that can be checked by Isabelle/HOL [36]. Brucker and Mödersheim [11]
integrate an external automated tool, OFMC [4], into Isabelle/HOL. OFMC
generates a witness for the correctness of the protocol that is used within an
automated proof tactic of Isabelle.

Our work generalizes on these existing approaches for automatically obtain-
ing proofs in an LCF-style theorem prover, first and foremost by the support
for stateful protocols and thus a significantly larger range of protocols—moving
away from simple isolated sessions to distributed systems with databases, or
devices that have a long-term storage.

We achieve this by employing the abstraction-based verification technique
of AIF [34], but with an important modification. The method of AIF produces
a set of Horn clauses that is then analyzed with ProVerif [9] (or SPASS[42]),
and the same holds true also for several similar methods for stateful protocol
verification, namely StatVerif [3], Set-π [12], AIF-ω [35] and GSVerif [14]. Note
that definite Horn clauses in first-order predicate logic always have a trivial
model (interpret all predicates as true for all arguments), and we are actually
interested in the free model (free algebra for the functions and least model of
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the predicates). This is achieved in ProVerif (and SPASS) by checking whether
the Horn clauses imply a given attack predicate. If they do, then the attack
predicate is true also in the free model. If they do not, i.e., if the Horn clauses are
consistent with the negation of the attack predicate, then the attack predicate is
not true in all models, and in particular not in the free model since it is the least
model. Thus, in a positive verification, the result from ProVerif is a consistent
saturated set of Horn clauses. As first remarked by Goubault-Larrecq [20],
this is not a very promising basis for a proof, as one does not get a derivation
of a formula (the way SPASS for instance is often used in combination with
Isabelle) but rather a failure to conclude a proof goal. The only chance to verify
the resulting saturated set of Horn clauses, is to recompute the saturation and
compare. Therefore [20] uses a different idea: showing that the Horn clauses and
the negation of the attack predicate are consistent by trying to find some finite
model and, if found, then using this finite model to generate a proof in Coq that
the Horn clauses are consistent with the negation of the attack predicate.

The limitation of [20] is that it checks the protocol proofs only on the Horn
clause level, i.e., after a non-trivial abstraction has been applied. In order to
obtain Isabelle proofs for the original unabstracted stateful protocols, we use
therefore another approach: rather than Horn clauses, we directly generate a
fixed point of abstract facts that occur in any reachable state. This would in
fact normally not terminate on most protocols due to the intruder deduction;
however, we employ here the typing result we have formalized in Isabelle [26] to
ensure that the fixed point is always finite, and our method is in fact guaranteed
to terminate. This fixed point, if it does not contain the attack predicate, is the
core of a correctness proof for the given protocol, namely as an invariant that
the fixed point covers everything that can happen, and we essentially have to
check that this invariant indeed holds for every transition rule of the protocol.

An interesting difference to previous approaches is that we do not rely on
an external tool for the generation of the proof witness, but that it is imple-
mented within Isabelle itself. The reason is more of a practical than a principle
matter: Computing the fixed point in Isabelle is actually not difficult and—
thanks to Isabelle’s code generation—without much of a performance penalty;
however, the fact that we do not rely on an external tool for the generation of
the proof witness reduces the chances of synchronization and update problems
(e.g., with new Isabelle versions). In fact, this work is part of the Archive of
Formal Proofs12, a collection of Isabelle proofs that are kept up to date with
each new version of Isabelle. This means that for each protocol that works in
today’s version it is highly likely that the proof works in future versions, because
the proofs of all theorems of our (protocol-independent) Isabelle theory will be
updated, and the fixed point and the checks about it do not have to change.
Thus we will also automatically benefit from all advances of Isabelle.

Another difference to previous approaches is that we do not directly generate
proof scripts that Isabelle has to then check. Rather, we have a fixed set of
(protocol-independent) theorems that imply that any protocol is secure if we

12See https://www.isa-afp.org.
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have computed a fixed-point representation that gives an upper bound of what
(supposedly) can happen and this representation passes a number of checks.
These checks can either be done by generated code or entirely within Isabelle’s
simplifier. Especially with the generated code we have a substantial performance
advantage, while using Isabelle’s simplifier gives the highest level of assurance
since we only rely on the correctness of the Isabelle kernel. We note that also
the generated code is correct “by construction” and thus extremely unlikely
to compute wrong results. Many small practical advantages arise from the
integration: We do not have an overhead of parsing of proof scripts (which can
be substantial for a larger fixed point). By using the internal API of Isabelle,
we avoid the need for the Isabelle front-end parser to parse and type-check the
fixed point (as we can directly generate a typed fixed point on the level of the
abstract syntax tree). Parsing and type-checking (on the concrete syntax level)
of large generated theories (as, e.g., ones containing the generated fixed point)
is, in fact, slow in Isabelle [11].

Another point is that there exist a number of protocol verification methods
and results that use slightly different models. Here we actually seamlessly inte-
grate a verification method into a rich Isabelle theory of protocols without any
semantic gaps: We provide here a method that is integrated into a large frame-
work of Isabelle theories for protocols (approximately 25,000 lines of code), in
particular a typing and compositionality result. This allows for instance to prove
manually (in the typed model) the correctness of a protocol, use our automated
method to prove the correctness of a different protocol, and then compose the
proof to obtain the correctness of the composition in an untyped model. This
seamless integration of results without semantic gaps between tools we consider
as an important benefit of this approach. Even though many protocol models
are not substantially different from each other, bridging over the small differ-
ences can be very hard to do, especially in a theorem prover that prevents one
from glossing over details. Our deep integration into the existing formalization
of security protocols in Isabelle ensures that the same protocol model (same
semantics) is used—which would otherwise require additional work (e.g., to en-
sure that the semantics of the protocol specified in a tool such as Scyther-proof
is faithfully represented in the generated Isabelle theory).

It is in general desirable to have proofs that are not only machine-checked but
also human-readable. A reason is that, for instance, mistakes in the specification
itself (e.g., a mistake in a sent message so that it cannot be received by anybody)
may lead to trivial security proofs which a human may notice when trying to
understand the proof. Here Scyther-proof has the benefit that it produces very
readable Isar-style proofs; in our case, there is, however, something that is also
accessible: the fixed point that was computed is actually a high-level proof
idea that is often quite readable as well (see for instance our running example).
Moreover, the entire set of protocol-independent theorems are hand-written Isar-
style proofs.

Furthermore, our work shares a lot of conceptual similarities with Tamarin [33]
which can also be regarded as a kind of theorem prover. In fact, it was inspired
by the mentioned work of Meier [32] that generates Isabelle proofs from the
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Scyther tool, but Tamarin is not based on Isabelle and has rather a specialized
proving environment. This in principle shares two very nice features of Isballe:
that there are less limitations in what can be modeled, and that a user can
supply proof ideas, but it also shares the disadvantage of Isabelle: that most
of the interesting proofs are not automatic. There is work on improving this
situation, i.e. finding more proofs automatically for Tamarin [17]. In contrast,
PSPSP is a complete decision procedure for the class of protocols it supports.
Another main difference is here that PSPSP is entirely formalized in Isabelle,
and, as explained, does not rely on the correctness of any external tools. Also
the core of Isabelle is so well studied and used in so many projects that it can
be considered more trust-worthy than the specialized prover of Tamarin. On
the other hand, Tamarin can support algebraic properties which we cannot at
this point.

Finally, another approach that, like Tamarin, is very much related to per-
forming actual proofs of security protocols automatically and semi-automatically
is CPSA [19, 41]. Also here it might be possible to make a connection to a the-
orem prover of Isabelle; however, the approach is even further away from our
approach than Tamarin, because CPSA does not necessarily assume a closed
world of transactions. Rather, it performs an enrich-by-need analysis obtain-
ing all ways to complete a particular scenario and thereby yielding the strongest
security goals a given system would satisfy (even in the presence of other transac-
tions). We believe it is even more challenging to integrate this kind of reasoning
into a theorem prover like Isabelle, but achievable. We like to investigate this
as future work as it could give interesting ways for an analyst to interact with
the proving process and inject proof ideas.
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A problem with the AIF-ω specification 09-lost_-
key_att_countered.aifom

When we tried to model this specification from the AIF-ω distribution, which
is classified as secure by the AIF-ω tool, we failed to prove it secure with our
approach in Isabelle, and in fact, our fixed-point generation was generating the
attack constant. Going back to the AIF-ω verification we noticed that there
was a problem with the public functions, in this case symmetric encryption
and hashing. They were declared as public in the AIF-ω specification, but the
intruder seemed unable to make use of them and get to the attack we had
obtained.

In fact the problem was that AIF-ω does not generate intruder rules for
the function symbols that are declared as public, so unless the user explicitly
states rules like “if the intruder knows x then he also knows h(x))”, the function
symbol is like a private one that the intruder cannot apply himself. When we
add appropriate rules for all public function symbols to the specification, also
AIF-ω finds the attack.

One could argue that this is a problem of the specification (the modeler was
in fact aware of this behavior), however, it can be considered a bug of AIF-
ω, since the keyword “public” for a function symbol at least suggests that the
composition rule would be automatically included. In this sense, our Isabelle
verification has revealed a mistake, in particular one that has led to an erroneous
“verification” of a flawed protocol by an automated tool. In fact, the attack is
not a false positive (i.e., the original specification also has an attack).
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