
Cryptographic Choreographies
Sebastian Mödersheim

DTU Compute
Kgs. Lyngby, Denmark
0000-0002-6901-8319

Simon Lund
DTU Compute

Kgs. Lyngby, Denmark
0009-0005-2957-3472

Alessandro Bruni
IT-University of

Copenhagen, Denmark
0000-0003-2946-9462

Marco Carbone
IT-University of

Copenhagen, Denmark
0000-0001-9479-2632

Rosario Giustolisi
IT-University of

Copenhagen, Denmark
0000-0002-2917-9601

Abstract—We present CryptoChoreo, a choreography language
for the specification of cryptographic protocols. Choreographies
can be regarded as an extension of Alice-and-Bob notation,
providing an intuitive high-level view of the protocol as a whole
(rather than specifying each protocol role in isolation). The
extensions over standard Alice-and-Bob notation that we consider
are non-deterministic choice, conditional branching, and mutable
long-term memory. We define the semantics of CryptoChoreo
by translation to a process calculus. This semantics entails an
understanding of the protocol: it determines how agents parse
and check incoming messages and how they construct outgoing
messages, in the presence of an arbitrary algebraic theory
and non-deterministic choices made by other agents. While
this semantics entails algebraic problems that are in general
undecidable, we give an implementation for a representative
theory. We connect this translation to ProVerif and show on a
number of case studies that the approach is practically feasible.

I. INTRODUCTION

Specification languages for security protocols can be
roughly divided into three classes. The most low-level one are
based on multi-set rewriting rules, such as the Tamarin input
language [1] and the AVISPA Intermediate Format [2], where
each rule describes state transitions corresponding usually to
a pair of protocol steps from the view of one honest agent:
receiving a message, processing and checking it, and sending
the next message. More high-level are languages based on
process calculus such as ProVerif [3], where typically each
role of the protocol is described like a program, often as a
sequence of sending and receiving steps. The most high-level
are languages based on Alice-and-Bob notation [4], [5], [6],
[7], [8], [9], [10], which describe the entire protocol by an
ideal run of the protocol as a sequence of A → B : M steps
where role A sends message M to role B, thus describing the
interplay of all roles.

Alice-and-Bob notation is very intuitive and succinct be-
cause it gives the synopsis of the protocol and leaves implicit
how agents construct the messages they send, and how they
parse and check the messages they receive. The latter is
a non-trivial problem one has to solve when defining a
formal language based on Alice-and-Bob notation, namely
when giving a formal semantics by translation to a lower-
level language. This was described by [6], [11] for models
in the free term algebra, but a key question is how to deal
with algebraic properties as needed, for instance, for Diffie-
Hellman. If Alice needs to construct exp(exp(g,X), Y), given
her own secret X and the public value exp(g, Y) from Bob,
the semantics needs to infer that this is possible by composing

exp(exp(g, Y), X) since this is equivalent to the goal term by
the algebraic properties of exponentiation. It turns out that one
can define such semantics in a general, uniform, and concise
way for an arbitrary algebraic theory as an intruder deduction
problem [7], [8], [9], [10]

As a side-effect of “abusing” the intruder deduction to define
the behavior of honest agents, one prevents many specification
errors that can easily happen in the lower-level formalisms,
e.g., when the message sent by one agent are different from
the messages that another agent expects, rendering the protocol
unexecutable. This may lead in the worst case to a false
negative (an attack of the real system is not detected because
of a specification error). Many such errors are prevented by
formal Alice and Bob approaches because the protocol would
be refused as unexecutable by the compiler.

Thus, Alice-and-Bob notation is a beneficial and accessible
specification language that can be used even without a deep
background in formal verification. It is also striking how often
scientific works that formalize a protocol using a lower-level
language first summarize the protocol informally in Alice-
and-Bob notation. However, existing formal Alice-and-Bob
languages do not support branches in the protocol execution
(by conditions or non-determinism), unbounded repetition, or
mutable long-term memory: everything is restricted to a linear
session of fixed length.

While informal uses of Alice-and-Bob notation can easily
be extended ad hoc, the first main contribution of this paper
is a new choreography language, called CryptoChoreo, which
extends Alice-and-Bob notation with non-deterministic choice,
branching, and mutable long-term memory.1

Such features are needed for instance if we want to for-
mulate a protocol with a server that maintains a long-term
database and that may react to a request in different ways
depending the current state of its database. Non-deterministic
choice can be helpful for modelling several options in a
protocol that are at a participant’s discretion, where we do
not want to formalize how they make a decision. Especially
this allows us to formulate an API where a user can non-
deterministically choose to send any of a number of commands
to a server (who may in turn ask other servers in order to
answer the request).

1Since a choreography can be executed an unbounded number of times,
non-determinism and long-term memory are sufficient to formulate repeti-
tions and sequential composition of protocols without an explicit repetition
construct.

A : (νM.
A→ s : scrypt((B, crypt((msg ,M), ek(B))), shk(A, s)).
s→ B : sign((A, crypt((msg ,M), ek(B))), inv(sk(s))).
B ni-authenticates A on M)

+ (νK.
A→ s : scrypt((B, crypt((upd ,K), ek(B))), shk(A, s)).
s→ B : sign((A, crypt((upd ,K), ek(B))), inv(sk(s))).
K secret between A,B)

Fig. 1. Example Choreography.

CryptoChoreo is, in a sense, a conservative extension
of formal Alice-and-Bob languages: we give a semantics—
parameterized over an arbitrary algebraic theory—that agrees
with standard Alice-and-Bob languages on the subset that
does not use the new constructs. A particular challenge for
this semantics is to integrate the algebraic understanding of
the protocol with branching: if one party has made a non-
deterministic choice, other parties do not necessarily know
which choice was taken. For instance, our semantics allows
for the following protocol: Alice non-deterministically chooses
one of two types of message that she sends encrypted for Bob
over an intermediary server as an authentication service; the
server is unaware in which branch the execution is, but in each
case it can execute its step uniformly by checking a MAC from
Alice and signing the resulting message.

The semantics is formulated as a translation to local be-
haviors, i.e., a process for each role of the protocol. In gen-
eral, this involves algebraic problems that are not recursively
computable (since, e.g., whether two terms are equal under
a set of algebraic equations is in general undecidable). The
second main contribution is to give a computable translation
for an algebraic theory that includes standard constructors and
destructors as well as exponentiation (for Diffie-Hellman).

As a third contribution, we connect our translator with
ProVerif and demonstrate the effectiveness of our approach
with several case studies. A particular challenge is that
ProVerif’s abstraction often is not precise enough when the
long-term memory induces non-monotonic behavior (e.g.,
when a certain action is possible only until a change of
the memory state) and thus fails to verify a protocol. We
have developed several heuristics to make sound encodings
in ProVerif that often overcome these problems.

The rest of this paper is organized as follows: in Section II
we define the syntax of CryptoChoreo and give example; in
Section III we define the semantics for an arbitrary algebraic
theory; in Section IV, we describe the practical implementation
for a representative algebraic theory; in Section V we describe
the connection to ProVerif and our case studies; and we
conclude in Section VI.

II. CHOREOGRAPHY LANGUAGE

Let us start with the example choreography in Fig. 1. We
discuss later the front-matter declarations (e.g., types and ini-
tial knowledge) that is needed for a full specification. RoleA is

starting the choreography and first makes a non-deterministic
choice (+) about which of the two sub-choreographies to run.
In the first case, A generates a new random M (represent-
ing a message to send to B) together with a constant tag
msg (indicating that this is a message transmission), then
asymmetrically encrypts it with the encryption key ek(B),
highlighted in blue. A then symmetrically encrypts the blue
message and the name of B with a shared key shk(A, s) with
the (trusted) server s. Suppose only B knows the decryption
key inv(ek(B)), then s can only decrypt the outer symmetric
encryption, but not the blue message. The next step is that
s signs the blue message and the sender name A using the
private signature key inv(sk(s)); the idea is that s is vouching
that the blue message really came from A (as the symmetric
encryption guarantees to s) and B can verify the signature
knowing the corresponding public signing key sk(s). Finally,
we have an authentication goal when B receives this message:
namely, that A has indeed intended to send the message M
to B. Non-injective (ni in ni-authenticates) here means that
B has no freshness guarantee (the message may be a replay).
The other sub-choreography is very similar, except that here
A sends a different kind of message, a key update with a fresh
key K with a different goal: K is secret between A and B (of
course both sub-choreographies could have a secrecy and an
authentication goal).

Each of the two sub-choreographies could be specified in
existing formal Alice-and-Bob languages, but not the non-
deterministic choice. Note that s here does not realistically
know which sub-choreography was chosen by A. The seman-
tics we give below sorts this out correctly: the server shall
do the same operations in both choreographies and simply
handle the blue message as a black box. Note that an intruder
playing role A is also allowed; and this intruder may form a
blue message that complies with neither sub-choreography; s
will anyway accept this message if everything it can check
complies with the protocol.

a) Terms: We build terms using an alphabet Σ of func-
tion symbols and a set of variables V . We denote all function
symbols with lower-case letters and all variables with upper-
case letters. In the above example, e.g., scrypt , shk , inv , msg ,
and s are function symbols (constants are function symbols
with 0 arguments), while A and M are variables. Variables
mean that they can take a different value in every run of the
choreography. We use sans-serif font to denote roles of the
protocol; they can be variables like A and B or constants like
s. The latter means that there is one fixed player who cannot be
the intruder—an easy way to specify a trusted third party. We
will discuss below the specification of function symbols and
their algebraic properties. We also use the notation (t1, . . . , tn)
for a concatenation using a pair operator.

b) Syntax: The formal syntax of a choreography is
shown in Fig. 2. A choreography 0 represents a terminated
protocol, in which each participant has terminated. We omit
trailing 0s when this is clear from the context. An interaction
A → B : t. C denotes a protocol where A sends a term t
to B and then continues with choreography C. The next items

2

C ::= 0 (end)
| A → B : t. C (interaction)
| t secret between A1, . . . ,An.C (secrecy goal)
| B authenticates A on t.C (inj. auth. goal)
| B ni-authenticates A on t.C (non-inj. auth. goal)
| A : A (atomic)

A ::= νN. A (new)
| A1 +A2 (choice)
| if s

.
= t then A1 else A2 (condition)

| s := c[t].A (memory read)
| c[t] := s.A (memory write)
| C (choreography)

Fig. 2. Syntax of CryptoChoreo.

A : EKB := keys[B].
if EKB

.
= blank then

νN.A→ s : (key ,B, N)
s→ A : sign((key ,B, ek(B), N), inv(sk(s)))
A : keys[B] := ek(B)

else . . . (previous example with ek(B) 7→ EKB)

Fig. 3. Extension of the example from Fig. 1.

represent the specification of goals (injective and non-injective
authentication, and secrecy) that we discuss later in detail.

All these constructs are present in existing formal Alice-
and-Bob languages. What CryptoChoreo is adding are con-
structs that are all local to one role. Denote this by giving
a role name A followed by a colon and an atomic section
A of steps that A locally executes. Here, we have the fresh
generation of a random value νN (as is standard). Next, we
have the non-deterministic choice A1+A2 (this is actually an
internal choice for the role who runs this atomic section and
an external choice for all others). Then, we have a conditional
where the condition is a comparison of terms. Last, we have
reading from, and writing to, long-term memory. We denote
with c[t] a memory cell in a family of memory cells c, where
c is an identifier and t is an index term. On memory read
and write, there will be no race conditions with other parallel
sessions, because our semantics will treat each section A as
atomic like the name suggests.

c) Memory Cell Example: To illustrate memory, consider
the following augmentation shown in 3 of the example in
Fig. 1, where A may not know the encryption key of every
B (but just the public signature verification key sk(s) of s).
When A wants to talk to B, she checks her memory cell
keys[B]; if this returns the initial value blank , then she does
not know the key of B and asks s, which we assume knows
all public encryption keys via the ek function and can vouch
for it with its signature. A checks the signature and stores
the key (note that for A the term ek(B) is just a blob that
she cannot verify itself; this will be shown in the semantics
below). Note that we do not have a repetition operator, and
this example shows why this is without loss of generality:

in the case that A does not know the key of B, the run of
the choreography ends with writing the key (that she received
from s) into her memory. Thus, in any later run between the
same A and B, A will retrieve the key from her memory and
run the standard protocol with it. In other words, unbounded
repetition is implicit, because a choreography can be executed
any number of times (also in parallel) with arbitrary instances
of the (non-constant) roles and information between different
runs can be transfered using memory.

d) Front Matter: The definition of our choreography
language is parameterized over sets Σ and V (respectively,
function symbols and variables) and a set of equations E (over
Σ,V-terms). The set E induces a congruence relation =E on
terms. In the implementation of our translation, in Section IV,
we instantiate E with a concrete choice of properties.

Some variables and functions symbols are declared as roles
(set in sans-serif in this paper) and only these can be used
in places where the syntax indicates sans-serif font. For each
role, one must declare the initial knowledge: a list of terms
where all occurring variables are of type role. For our example
(in the augmented version where A does not initially know B’s
public key), this declaration could be:

A : A,B, s, sk(s), shk(A, s)
s : A,B, s, sk(s), inv(sk(s)), shk(A, s), ek(B)
B : A,B, s, sk(s), ek(B), inv(ek(B))

Note that with less knowledge the protocol would not be
executable (neither for the initial version of the example where
A cannot ask the server for B’s public key).

We require that for every variables that is not of type
role, the first occurrence is either in a new statement (like
νX) or in a memory read (like X := c[s]). Also, in a new
statement νX , we assume that X did not occur before in the
choreography (this can be achieved by renaming). In contrast,
variables in a memory read may have occurred before, e.g.,
νX. . . .X := c[s1]. . . . X := c[s2] is legal, and it would mean
that the value retrieved here is the same value as before—in an
ideal unattacked execution of the choreography. Our semantics
can tell if the respective role has the necessary knowledge to
check that and insert such a check in the code, if so.

III. TRANSLATION SEMANTICS

The semantics of CryptoChoreo is now defined by a trans-
lation to a process calculus, where we define for each role of
the choreography a process, representing the local behavior
of this role in one execution of the choreography. We then
allow arbitrary instances of all roles to run in parallel, together
with an intruder who can also play any of the roles (except
trusted third parties) as a normal participant (but who does not
necessarily follow the protocol).

A. Local Behaviors

It is convenient for the translation and the later connection
to ProVerif to define a restricted syntax and semantics for local
behaviors as the target language of the translation semantics.

3

L ::= 0 (end)
| send(r).Li (send)
| receive(X).L (receive)
| lock.A (atomic local)

A ::= νX .L (new)
| A1 +A2 choice
| if r1

.
= r2 then A1 else A2 (cond)

| X := c[r1].A (mem read)
| c[r1] := r2.A (mem write)
| event(r).A (event)
| unlock.L (end)

Fig. 4. Syntax of Local Behaviors.

a) Syntax: The syntax of local behaviors mirrors that of
CryptoChoreo from the point of view of a single role: instead
of a communication step between two roles, we have now
sending and receiving. We use here however a different set of
symbols Σp which represent public functions, i.e., functions
that every agent, including the intruder, can apply. This will
include most of the functions from Σ like crypt that represent
cryptographic algorithms and as well as public constants like
msg in the example above. It will not include however some
functions from Σ that just describe relations in the model,
but do not represent actual cryptographic algorithms like
inv (which maps public keys to the corresponding private
key) or ek (which maps an agent to a corresponding public
key). Σp will also include some functions that are not in Σ:
observe that we have not used any functions for decryption or
signature verification, because they are destructors or verifiers,
i.e., functions that extract a subterm or verify the structure
of a term; while the choreography is only concerned with
constructed messages. Also, we will use a distinct set of
variables called labels. Labels are denoted X1,X2, . . . and
are disjoint from Σ, Σp, and V . The terms built from these
variables and Σp are called recipes and we denote them with
r, r1, r2, etc.

Fig. 4 shows the syntax of local behaviors. Note that, in
order to enter the atomic section, it is necessary to make a
lock step and it has to end with an unlock step; the semantics
of local behaviors use that as a mutual exclusion mechanism
on the memory to prevent race conditions (even if one ensures
by design that each memory cell belongs to a particular agent,
there may be more than one run of the choreography in
parallel). The other constructs are similar to choreographies.
However, instead of variables like M we have now labels like
X , and instead of terms (over Σ and V) we have recipes. Note
that memory read and receiving can only “read into” a label
X (while on the choreography level, these can be composed
terms). We require that at each receive and memory read, we
use a new label (that did not occur before in the local behavior;
this can be easily achieved by renaming).

b) Frames: To capture the knowledge of an honest agent
at a state of protocol execution, we define a frame to be a
finite mapping F = [X1 7→ t1, . . . ,Xn 7→ tn] where the
Xi are labels and the ti are terms. We call {X1, . . . ,Xn}

the domain of F and we say F is concrete if the ti contain
no variables. The semantics of local behaviors will only use
concrete frames. Given a recipe r, we use a frame F like
a substitution and write F (r) for the term that results from
replacing the labels Xi with the respective term ti; F (r) is
undefined if r contains labels outside the domain of F .

To each role A, we attach an initial knowledge frame FA that
is not necessarily concrete but contains only variables of type
role. In the translation from CryptoChoreo to local behaviors,
we take the initial knowledge of each role A : t1, . . . , tn at the
CryptoChoreo level and turn into an initial knowledge frame
FA = [X1 7→ t1, . . . ,Xn 7→ tn] for the local behavior.

We require that all labels in a local behavior first occur in
the initial knowledge frame, in a new, in a receive, or in a
memory read.

c) Example Local Behavior: The role A of the example
of Fig. 3 will be translated by the semantics into the following
local behavior:
FA = [X1 7→ A,X2 7→ B,X3 7→ s,X4 7→ sk(s),X5 7→ shk(A, s)]
lock.XK := keys[X2].
if XK

.
= blank then

νXN .unlock.send((key ,X2,XN)).
receive(Xkc).lock.
if (vsign(Xkc,X4) = ⊤) then
let (Xt,XB ,XK′ ,XN ′) = open(Xkc) in
if (Xt

.
= key ∧ XB = X2 ∧ XN ′ = XN) then

keys[X2] := XK′ .unlock.0
else unlock.0

else unlock.0
else ... translation of the other part, using XK as ek(B)

Here, we use some syntactic sugar: several checks can be done
by one condition; and that we write let for parsing the content
of a message, in this case expecting that it can be parsed into a
quadruple. The function vsign is supposed to be signature ver-
ification with the property vsign(sign(m, inv(k)), k) =E ⊤
and open a destructor that yields the signed message, i.e.,
open(sign(m, inv(k))) = m. This models a signature scheme
where the signed text is transmitted in plain along with a
signed hash, i.e., one needs the public key only for signature
verification. One can also observe that between each lock and
unlock there is at most one memory read or write, so locking
is in this case actually redundant as it does not prevent any
race conditions.

d) Semantics of Local Behaviors: We give a simple
operational semantics for a set of local behaviors FA1 :
LA1 , . . . , FAn : LAn (where each FAi is the initial knowledge
frame of Ai). We assume a set Ag ⊆ Σ∩Σp of public constant
of type role and that i ∈ Ag represents a dishonest agent
(“intruder”) while all other agents are honest.2

For a behaviour FA : LA we call the substitution σ
an instantiation if it maps all variables in FA (that are by
definition of type role) to elements of Ag . We say it is a
dishonest instantiation if σ(A) = i and an honest instantiation

2One may well consider more than one dishonest agent, but for simplicity
we work with just one.

4

(0 ⊎ L,F, µ)→ (L,F, µ)
(send(r).L ⊎ L,F, µ)→ (L ⊎ L,F [X 7→ r], µ)

where X is a fresh label
(receive(X).L ⊎ L,F, µ)→ (L[X 7→ F (r)] ∪ L,F, µ)

where r is a recipe over the domain of F
(lock.A ⊎ L,F, µ) tr→ (L ⊎ L,F, µ′)

if (A, µ)
tr

⇒∗ (unlock.L, µ′)
(L,F, µ)→ (σ(FA)(LA) ⊎ L,F, µ)

if σ is a an honest instantiation of a role FA : LA,
(L,F, µ)→ (L,F ⊎ σ(FA), µ)

if σ is a dishonest instantiation of a role FA : LA

and where the labels of FA have been freshly renamed

(νX .A, µ)⇒ (A[X 7→ n], µ) where n is a fresh constant
(A1 +A2, µ)⇒ (Ai, µ) if i ∈ {1, 2}
(if r1

.
= r2 then A1 else A2, µ)⇒ (A1, µ) if r1 =E r2

(if r1
.
= r2 then A1 else A2, µ)⇒ (A2, µ) if r1 ̸=E r2

(X := c[r1].A, µ)⇒ (A[X 7→ µ(c, r1)], µ)
(c[r1] := r2.A, µ)⇒ (A, µ[(c, r1) 7→ r2])

(event(r).A, µ) r⇒ (A, µ)

Fig. 5. Semantics of Local Behaviors.

otherwise. We write σ(FA) for the instantiation of the initial
knowledge frame and σ(FA(LA) for the instantiation of the
behavior itself, replacing all labels from FA in LA by ground
terms; thus all remaining labels first occur at a new, at a
receive, or at a memory read.

The last ingredient for the semantics is a memory map µ
that maps every memory cell c[(t)E] gives a value, initially
blank , where (t)E is the =E-equivalence class of a ground
term t over Σ. As easy notation we just write µ(c, t) for this
value, and we write µ[(c, t) 7→ t′] for changing the memory
cell c[(t)E] to value t′.

The semantics of local behaviour is defined in Fig. 5 and
consists of two transition relations → and ⇒ that call each
other:→ is on triples (L,F, µ) where L is a multi-set of local
behaviors, F is a frame representing the intruder knowledge
and µ is the memory map; the initial state is (∅, [], µ0) where
µ0 maps everything to blank ; ⇒ is on tuples (A, µ) where
A is an atomic section of a local behavior. We decorate the
transition relations with a list of events that occurred upon the
transitions. In this semantics, the intruder is the network: every
message an honest agent sends gets added into the intruder
knowledge, and every message an honest agent receives comes
from the intruder knowledge: the intruder can choose any
recipe over their knowledge, which includes encrypting and
decrypting with known keys. An atomic section is handled
literally atomically using the ⇒ relation locally at an agent
until it hits the unlock; we label the transition with the trace
tr of all events that the agent emitted. The next rule allows to
spawn new instances any role A: we choose any instantiation
σ of the variables in FA with agent names; if σ is honest,
i.e., σ(A) ̸= i, we apply the instantiated knowledge σ(FA)

as a substitution to the local behavior LA, leaving only labels
that are introduced by new, receive, and memory read. This
semantics allows running an arbitrary number of sessions in
parallel and sequentially. If σ is dishonest, i.e., σ(A) = i then
this represents that the intruder plays role A under the actual
name i. This models a dishonest/compromised agent. We give
the intruder the initial knowledge needed to play the role, i.e.,
σ(FA) where we have to rename the labels in the frame to
avoid a clash with labels in the present intruder knowledge.

B. Projection: The Semantics of CryptoChoreo

We can now give the semantics of CryptoChoreo by trans-
lation to local behaviors. We again use frames to represent the
knowledge of a role at a given point in the translation, but this
differs from their use in the local behavior semantics. As said,
the messages in a choreography represent how messages look
like in an “ideal” or unattacked run—which may differ from
the shape of messages in a real run due to interference from
the attacker. For instance if A is supposed to receive exp(g, Y)
from B for a secret Y that A does not know, there is nothing
that A can check about this message. To keep track of this
during translation we make an entry [Xi 7→ exp(g, Y)] in the
frame F of A that expresses: A has received some message
Xi and according to the choreography it is supposed to be
exp(g, Y). Given that another entry [Xj 7→ X] represents the
fresh value A has created for her own secret X , then the
Diffie-Hellman key exp(exp(g,X), Y) can be formed with
the recipe r = exp(Xi,Xj): F (r) = exp(exp(g, Y), X) =E

exp(exp(g,X), Y). In this way, frames make the connection
between the messages the agents have and use in their lo-
cal behavior and what the messages supposedly are on the
choreography level. We will use this to figure out how agents
generate outgoing messages and how they analyze incoming
messages.

We thus define two core algorithmic problems on frames:
• The deduction problem: Given frame F and term t,

compute a recipe r such that F (r) =E t if one exists
or return fail otherwise.

• The complete check problem: Given a frame F , compute
a finite set of checks, i.e., equations of recipes ϕ = {r1

.
=

r′1, . . . , rn
.
= r′n} such that F (ri) =E F (r′i) for each 1 ≤

i ≤ n, that is complete in the sense that if for any other
r0, r

′
0 we have F (r0) =E F (r′0), then ϕ |=E r0

.
= r′0, or

return fail if no finite set of checks satisfies that. 3

Both these problems are in general not recursively computable
(because in general even =E is undecidable), but in Section IV
we give algorithms for both problems for a standard set E of
equations.

We first note a complete set of checks for F is not unique,
however if ϕ and ψ are two complete set of checks for F ,
then ϕ |=E ψ and ψ |=E ϕ, so they are equivalent and in
the semantics we can leave this choice undetermined4 without

3We use standard logical notation: an interpretation I maps all the variables
to terms; define I |=E s

.
= t if I(s) =E I(t); we extend this definition to

sets of equations; ϕ |=E ψ if for all I |=E ϕ also I |=E ψ.
4Thus a concrete implementation is free to choose one.

5

making the semantics ambiguous. By abuse of notation we
thus write ϕ(F) for a complete set of checks for F , even
though it is strictly speaking not a function.

Second, also the deduction problem has in general many so-
lutions, i.e., different r1 and r2 such that F (r1) =E F (r2) =E

t. (This does generally not imply that r1 =E r2: we may have
different ways in knowledge F to produce a particular term
t.) However, in this case ϕ(F) |=E r1

.
= r2, i.e., if we have

performed all the checks in ϕ(F), then also the choice between
the two recipes r1 and r2 does not matter.

Third, in the semantics, we need a slight generalization
of the deduction problems, namely given several frames
F1, . . . , Fn and goal terms t1, . . . , tn and we want a single
recipe r that solves all deduction problems, i.e., Fi(r) = ti
for every 1 ≤ i ≤ n. Suppose we already have a set ϕ of
checks that is a complete set of checks for each of the Fi,
and suppose there is a solution r for all frames. Then any
solution r′ for one of the frames, say F1, must be equivalent
to r, i.e., ϕ |=E r

.
= r′. Thus for checked frames it suffices to

compute a solution for one frame and check if it works on the
other frames—if not, then there is no common solution for all
frames.

Nondeterminism and conditions mean that, in general, a role
does not know which branch of the choreography we currently
are in, and this also holds during the translation. Therefore,
during in the translation, the translation state contains a finite
set of pairs (Fi : Ci) where each Fi is a frame (all Fi have
the same domain) and Ci is the remainder of the choreography
that still needs to be translated.

Definition 1. A translation state is of the form

(A, ϕ ▷ ψ, b, {(F1 : C1), . . . , (Fn : Cn)})
where A is the role we are currently translating; ϕ and ψ are a
set of equations r1

.
= r2 between recipes, where ϕ represents

checks that have already been done, and ψ are checks that
are pending; b ∈ {c, a} is a flag indicating whether we are
on the choreography level or in an atomic section; the Fi are
frames with the same domain that map to terms; and the Ci
are either choreographies if b = c or atomic sections if b = a.

During translation we preserve the invariant that ϕ∪ψ is a
complete set of checks for the F1, . . . , Fn where ψ may contain
checks that do not hold on all Fi. If ψ ̸= 0, i.e., if there are
pending checks, they will be performed first before all other
translation steps.

Given a choreography C and a role A of that choreography
and a frame FA that contains the initial knowledge of A in
the choreography specification where each item has received
a unique label Xi, the initial translation state for translating
A in C is:

(A, ∅ ▷ ∅, c, {(FA : C)})
i.e., there is just one possibility C where we are and the current
knowledge is FA.

1) Cases of the Semantics Function: The semantics func-
tion [[T]] takes a translation state T and projects the chore-
ography to the actions of the role, yielding a local behavior

for that role. We define it recursively by a case distinction
on T . Since we will often require all possibilities (Fi, Ci) to
start with the same kind of command, we use the following
notation: {Fi, νNi.Ci}ni=1 for {F1, νN1.C1, . . . , Fn, νNn, Cn},
and similar for other constructs in place of νN . For simplicity,
we first present this semantics without goals.

a) [[A, ϕ ▷ ∅, c, {(Fi : 0)}ni=0]] where n > 0: All
possibilities have finished, and the translation is simply:
0.

b) [[A, ϕ ▷ ∅, c, {(F : B→ C.C)} ∪ {Fi : Ci}ni=1]] for A ̸=
B and A ̸= C: One of the possibilities is a communication
step that A is not involved in and is therefore ignored. The
translation is thus:
[[A, ϕ ▷ ∅, c, {(F : C)} ∪ {Fi : Ci}ni=1]]

c) [[A, ϕ ▷ ∅, c, {Fi : A→ Bi : ti.Ci}ni=1]] where n > 0:
All possibilities are send steps for A.

As explained before, we check whether there is a recipe
r such that Fi(r) = ti for each 1 ≤ i ≤ n. If there is no
such r, then we reject the protocol as unexecutable: either
there is no way for A to produce the outgoing term ti, or the
different possibilities would require different recipes, and A
cannot know in which possibility they are. However, if there
is such an r,5 then the translation is:
send(r).[[A, ϕ ▷ ∅, c, {Fi : Ci}ni=1]]

d) [[A, ϕ ▷ ∅, c, {Fi : Bi → A : ti.Ci}ni=1]] where n > 0:
All possibilities are receive steps for A.

Let X be a new recipe variable and F ′
i = Fi[X 7→ ti] for

every i ∈ {1, . . . , n}. Let ϕi be a complete finite set of checks
for F ′

i and let Φ = ∪ni=1 ϕi. This represents all checks that we
can do in any of the frames Fi. First we can remove from Φ
all those checks that are already implied by the checks ϕ from
the translation state (i.e., that have already been done before
in the translation process). We can also remove from Φ any
equation that is implied by the other equations. Let thus Φ′ be
a resulting minimal set of equations.6 The translation of the
receive step is then obtained by adding received message to
the frames and inserting the Φ′ as pending checks that have
to be done next:
receive(X).[[A, ϕ ▷ Φ′, c, {F ′

i : Ci}ni=1]]
e) [[A, ϕ ▷ {r1

.
= r2} ∪ψ, b, {Fi : Ci}ni=1]] where n > 0:

There is at least one pending check r1
.
= r2.

We partition the possibilities into those where Fi satisfies
the check and those that do not:
Let FCs+ = {(Fi : Ci) | Fi(r1) =E Fi(r2)}
and FCs− = {(Fi : Ci) | Fi(r1) ̸=E Fi(r2)}.
The translation is now:
if r1

.
= r2 then [[A, ϕ ∪ {r1

.
= r2} ▷ ψ, b,FCs+]]

else [[A, ϕ ▷ ψ, b,FCs−]]
f) [[, ▷ , , ∅]] : There are no possible continuations.

This can happen when doing a check that splits the possi-
bilities into FCs+ and FCs−, and one of them is empty. It

5If there are several such recipes, the choice between them leads to
equivalent translation outcomes as explained before.

6Again, there may be several minimal sets, e.g., if two equations imply
each other; however all resulting sets from the minimization are logically
equivalent.

6

means that if we reach this branch, the agent has detected that
an incoming message is not compliant with the choreography,
and aborts the execution. The translation is thus simply:
0

g) [[A, ϕ ▷ ∅, c, {Fi : A : Ai}ni=1]] where n > 0: All
possibilities start with an atomic section of the agent A.

Then the translation is simply to issue the lock and switch
the atomic section flag:
lock.[[A, ϕ ▷ ∅, a, {Fi : Ai}ni=1]]

h) [[A, ϕ ▷ ∅, c, {(F : B : A)} ∪ {Fi : Ci}ni=1]] where
B ̸= A: One possibility is that another role goes into its atomic
section.

Role A should ignore these steps and just extract all contin-
uations after the atomic section, which is defined as follows:

cont(A1 +A2) = cont(A1) ∪ cont(A2)
cont(if s

.
= t then A1 else A2) = cont(A1) ∪ cont(A2)

cont(.A) = cont(A)
cont(C) = {C}

Let C1, . . . , Cm = cont(A) in the translation:
[[A, ϕ ▷ ∅, c, {F : Ci}mi=1 ∪ {Fi : Ci}ni=1]]

We now come to the cases for an atomic section of the agent
we translate for:

i) [[A, ϕ ▷ ∅, a, {Fi : νNi.Ai}ni=1]] for n > 0: All
possibilities create a fresh number Ni.

We pick a fresh label X and translate:
νX . [[A, ϕ ▷ ∅, a, {Fi[X 7→ Ni] : Ai}ni=1]]

j) [[A, ϕ ▷ ∅, a, {Fi : si := c[ti].Ai}ni=1]] where n > 0:
All cases start with a memory read.

Similar to the send case, we require that there is one recipe
r such that Fi(r) =E ti for each 1 ≤ i ≤ n. If not, the
semantics rejects the protocol as unexecutable at this point
(because the agent either cannot create the proper index for
the memory lookup, or there are contradicting possibilities for
this index). The retrieved message si is treated like in the
receive case: we add it to the knowledge with a new label
X , giving frames F ′

i = Fi[X 7→ si], and then we compute
a complete set of checks ϕi for each F ′

i , compute the union
Φ = ∪ni=1ϕi, and remove redundant equations leading to a
reduced Φ′. The translation is then:
X := c[r].[[A, ϕ ▷ Φ′, a, {F ′

i : Ai}ni=1]]
k) [[A, ϕ ▷ ∅, a, {Fi : c[ti] := si.Ai}ni=1]] where n > 0:

All possibilities start with a write step. We require that there
are recipes r1 and r2 such that Fi(r1) = ti and Fi(r2) = si
for each i ∈ {1, . . . , n}. (If not, this is a specification
error, because it is unclear what A’s next step is.) Then the
translation is:
c[r1] := r2.[[A, ϕ ▷ ∅, a, {Fi : Ai}ni=1]]

l) [[A, ϕ ▷ ∅, a, {Fi : if si
.
= ti then A+

i else A−
i }ni=1]]

where n > 0: All theAi start with a condition. We require that
there are recipes r1 and r2 such that Fi(r1) = ti and Fi(r2) =
si for each i ∈ {1, . . . , n}. (If not, this is a specification error,
because it is unclear what A’s next step is.) We define
T + = [[A, ϕ ▷ ∅, a, {Fi : A+

i }ni=1]] and
T − = [[A, ϕ ▷ ∅, a, {Fi : A−

i }ni=1]].
The translation is:
if r1

.
= r2 then T + else T −

m) [[A, ϕ▷∅, a, {Fi : Ci}ni=1]] where n > 0: Finally, if all
the Ai conclude the atomic section, then the translation is:
unlock.[[A, ϕ ▷ ∅, c, {Fi : Ci}ni=1]]

n) [[]] for any other translation state: this is an error,
because it is unclear what A should do next.

2) Example: Let us continue the example choreography
from Fig. 3 and let us look at the translation for the role s.
The knowledge of s gives us the frame:
F0 = [X1 7→ A,X2 7→ B,X3 7→ s,X4 7→ sk(s),

X5 7→ inv(sk(s)),X6 7→ shk(A, s),X7 7→ ek(B)]
and we compute [[s, ∅ ▷ ∅, c, {F0 : C}]] where C is the
entire choreography. The choreography begins with atomic
actions of A, checking if the key of B is known, asking
s if not and starting the main protocol otherwise. Thus
using rule III-B1h we get a split into two possibilities
{(F0 : A → s : (key ,B, N). . . .), (F0 : C0)} where C0 is the
initial choreography example of Fig. 1 (with ek(B) replaced
by the variable EKB that represents the key that A has looked
up from memory). Now C0 starts with another atomic section
of A (the choice to either send a message or a key update). So
we apply again rule III-B1h to split that possibility into two:
(F0 : A→ s : (key ,B, N). . . .),
(F0 : A→ s : scrypt((B, crypt(. . . ,EKB)), shk(A, s)). . . .)
(F0 : A→ s : scrypt((B, crypt(. . . ,EKB)), shk(A, s)). . . .)

Now finally all messages are something the server can receive,
so with rule III-B1d we get updated frames F1, F2, F3

augmenting F0 with a new label X8, which is bound to the
respective incoming message.

The checks that we can do for F1 are that X8 is a triple, that
the first item is constant key and the second item is X2.7 For
ease of notation, assume we have functions vtuplen and πn
(for all n ∈ N) with the property vtuplen(t1, . . . , tn) =E ⊤
and πi(t1, . . . , tn) =E ti. Thus the checks for F1 are ϕ1 =
{vtuple3(X8)

.
= ⊤, π1(X8)

.
= key , π2(X8)

.
= X2}.

In F2 and F3 we can check that symmetric decryp-
tion of X8 with key X6 succeeds and yields a pair. The
blue parts in F2 and F3 cannot be decrypted, so s cannot
further check anything about this. In our example theory
E below we have operators scrypt , vscrypt and dscrypt
with the properties dscrypt(scrypt(m, k), k) =E m and
vscrypt(scrypt(m, k), k) =E ⊤. Together they model AEAD
symmetric schemes, i.e., the attacker cannot modify the en-
crypted message m by modifying the ciphertext scrypt(m, k),
as this would lead to errors when decrypting; thus the decryp-
tion is an operation that fails when applied to an incorrect
message or the wrong key, and we model that in the algebra
by two functions, one telling us whether decryption works with
the given key and one that in the positive case gives the result.
We thus have in F2 and F3 the complete set of the checks:

7More realistically, s should not expect a particular name B but rather have
it determined through A’s request. This is why we like to model ek(·) as a
public function (one can look up the public key of any role), but here we
deliberately made this function private, so that A has to ask the server for
the role. Anyway the semantics ensures that for any instantiation of the role
variables with agent names, we have any number of server instances, so this
comes without loss of attacks.

7

ϕ2 = ϕ3 = {vcrypt(X8,X6)
.
= ⊤,

vtuple2(dscrypt(X8,X6))
.
= ⊤, π1(dscrypt(X8,X6))

.
= X2}.

We thus have the translation
receive(X8).[[s, ∅ ▷ ϕ1 ∪ ϕ2, c, {(F1:. . .), (F2:. . .), (F3:. . .)}]]

Applying rule III-B1e several times to process all checks,
we get the possibilities partitioned (because ϕ1 only holds in
F1 and ϕ2 only holds in F2 and F3) as follows:
if ϕ1 then [[s, ϕ1 ▷ ∅, c, {(F1:. . .)}]] else
if ϕ2 then [[s, ϕ1 ▷ ∅, c, {(F2:. . .), (F3:. . .)}]] else 0

Let us just look at the most interesting branch, namely the
positive case under ϕ2. Here the next step in F2 is s → B :
sign((A, crypt((msg ,M),EKB)), inv(sk(s))) and in F3 the
corresponding step but with content (upd ,K). So we need
to apply rule III-B1c which requires a recipe r that works in
both cases. Let rb = π2(dscrypt(X8,X6)) which gives the
“blue message part” that s cannot decrypt in either F2 or F3.
Now r = sign((X1, rb),X5) is the recipe that works in both
cases. Thus the complete translation for the server role is:

receive(X8).if ϕ1 then send(sign((key ,X2,X7)),X5) else
if ϕ2 then send(sign((X1, π2(dscrypt(X8,X6))),X5))

C. Attack Semantics

In this section, we formalize our notion of security. In a
sentence, we consider there to be an attack if the system can
possibly develop in a way that falsifies a given query over
traces.

A security query is built from the following grammar:

p ::= event(t) | event(s) ⊑ event(t) | intruder(t) | s .
= t

| ⊥ | p1 =⇒ p2 | ∀X. p′

The other logical operators can be added as syntactic sugar
(in particular we will use ∧). We only consider a query well-
formed if it contains no free variables.

We characterize a trace, (L0, F0, µ)
t1,...,tn
→∗ (Lm, Fm, µ),

by the list of emitted events and the final knowledge of the
intruder: ([t1, . . . , tn], Fm).

Following is the semantics for evaluating a query:

([t1, . . . , tn], F) |= event(s) iff s =E ti

([t1, . . . , tn], F) |= intruder(s) iff F (r) =E s

([t1, . . . , tn], F) |= s
.
= t iff s =E t

([t1, . . . , tn], F) |= ⊥ never
([t1, . . . , tn], F) |= p1 =⇒ p2

iff ([t1, . . . , tn], F) ̸|= p1

or ([t1, . . . , tn], F) |= p2

([t1, . . . , tn], F) |= ∀X. p
iff for all s we have ([t1, . . . , tn], F) |= p[s/X]

([t1, . . . , tn], F) |= event(s) ⊑ event(t)

iff for every ti =E s there is a unique tj =E t

We consider a configuration as secure with regard to a given
query if the query is valid on all traces from the configuration.

For the rest of this section, we will show how to encode the
security goals in a choreography as queries.

First, we modify the grammar of choreographies to allow
the emission of events:

C ::= . . .
A ::= . . .

| event(t).A

These events will be handled by the projection in the same
way as sends: We check if we can find a recipe that produces
t in all frames, and return a translation error if not.

To each secrecy goal g = “t secret between A1, . . . ,An”,
we assign a unique event name eg ∈ Σ \Σp. We then replace
each g with

A1 : event(eg(t,A1, . . . ,An)).
...

An : event(eg(t,A1, . . . ,An))

The goal holds iff the following query holds:

∀X,A1, . . . ,An. ¬
(

A1 ̸
.
= i ∧ . . . ∧ An ̸

.
= i∧

event(eg(X,A1, . . . ,An)) ∧ intruder(X)

)
To a goal g = “B ni-authenticates A on t”, we associate

unique start- and end-event names egs, ege ∈ Σ \Σp. We then
replace the goal with the end event B : event(ege(t,A,B)).
We want to check that the occurrence of this event implies the
occurrence of a corresponding start event from A. However,
it is not always possible to insert that start event right at the
beginning of the choreography; t might contain values that
have been generated during the protocol run.

To solve this, we make the following modification to the
projection semantics for A:
If we are computing [[A, ϕ ▷ ∅, c, {Fi : Ci}ni=1]], B :
event(ege(t,A,B)) is in one of the Ci, and the corresponding
start event has not yet been generated, try the following: If
there is a recipe r such that F1(r) = t ∧ . . . ∧ Fn(r) = t,
return event(egs(r,A,B)).[[A, ϕ ▷ ∅, c, {Fi : Ci}ni=1]] while re-
membering that the event was generated. Otherwise, continue
computing [[A, ϕ ▷ ∅, c, {Fi : Ci}ni=1]] as normal.
The goal is enforced by the following query:

∀X,A,B. A ̸ .= i ∧ B ̸ .= i ∧ event(ege(X,A,B))
=⇒ event(egs(X,A,B))

For each g = “B authenticates A on t”, we do the same
procedure, except that we use the query:

∀X,A,B. A ̸ .= i ∧ B ̸ .= i =⇒
event(ege(X,A,B)) ⊑ event(egs(X,A,B))

IV. MECHANIZATION OF THE PROJECTION

We give now an overview of the mechanization for a
representative algebraic theory; most details are found in
Appendix B. To implement the projection of Section III, one
must be able to do the following:

• (word problem) Given two terms s and t, check if s =E t.
• (recipe composition) Given a set of frame-term pairs
{(F1, t1), . . . , (Fn, tn)}, decide if there is a recipe r so
F1(r) =E t1 ∧ . . . ∧ Fn(r) =E tn, and return it if so.

8

• (complete set of checks) Given a frame F calculate a
complete set of checks, i.e., a finite set of checks that
implies all checks that can be made at all.

In this section we will demonstrate how to do this for
a particular cryptographic model with Diffie-Hellman keys,
symmetric encryption, and asymmetric encryption. We assume
that for all destructors we have a corresponding verifier that
can be used to check whether decryption would succeed.

Recall that we are distinguishing terms, denoted s, t, as
used in the choreography. They built over the alphabet Σ
and variables V , where Σ does not contain any destructors
or verifiers, but may contain private functions. In contrast, on
the local behavior level, we have recipes that are built over
Σp and labels Xi, where Σp contains only public function
symbols, but includes destructors and verifiers.

As part of our algebraic theory we consider the following
built-in symbols:

Constructors Destructors Verifiers
Tuples pair fst , snd vpair
Asymmetric Enc. crypt dcrypt vcrypt
Private Keys inv pubk vinv
Symmetric Enc. scrypt dscrypt vscrypt
Signatures sign open vsign
Diffie-Hellman exp exp−1 vexp

All the constructors are part of Σ and can occur in terms, and
all except inv are public and thus in Σp and can occur in
recipes. Note that we had earlier used n-tuples for simplicity,
and here have only binary tuples, but this can be seen as syn-
tactic sugar. Besides these symbols, the modeler can declare
other further function symbols that can be either public (and
thus both part of Σ and Σp), e.g., to model hash functions or
public constants, or that can be private (and thus only part of
Σ), e.g., to model key infrastructures or fixes secrets between
agents. However, these user-defined functions cannot have any
algebraic properties. We also have a public constant ⊤ both in
Σ and Σp. We call a recipe constructive if it does not contain
destructors or verifiers.

Definition 2. We define our algebra E = R ∪B where
R =
{vpair(pair(x, y),⊤) .= ⊤,
fst(pair(x, y),⊤) .= x, snd(pair(x, y),⊤) .= y,
vscrypt(scrypt(x, y), y)

.
= ⊤,

dscrypt(scrypt(x, y), y)
.
= x,

vcrypt(crypt(x, y), inv(y))
.
= ⊤,

dcrypt(crypt(x, y), inv(y))
.
= x,

vsign(sign(x, inv(y)), y)
.
= ⊤,

open(sign(x, inv(y)), y)
.
= x,

vinv(inv(x),⊤) .= ⊤, pubk (inv(x),⊤)
.
= x,

vexp(exp(x, y), y)
.
= ⊤, exp−1(exp(x, y), y)

.
= x},

and B = {exp(exp(x, y), z) .= exp(exp(x, z), y)}.
Let =E denote the congruence induced by these equations

and =B the congruence induced just by the equation in B.

The functions vpair , fst , snd , vinv , and pubk should
actually be unary functions, because they do not require a key.

For uniformity we have made them binary functions like all
the other destructors and verifiers, and we use ⊤ as a dummy
value for the key-position.

The reader may be surprised to see a verifier for Diffie-
Hellman exponentiation. This is because our method below
requires that every destructor has a corresponding verifier.
However, the verifier vexp exists only pro-forma: if we our
procedure runs into a situation where it actually employs vexp,
it stops with an error. The only situation where it would be
employed is, if we have an agent knows both x and a term
(equivalent to) exp(t, x), but not t, and this does not occur in
standard uses of Diffie-Hellman.

A similar question may arise from the destructor and verifier
for private keys. Many approaches model a public constructor
that from a given private key generates a public key; we use
here instead a private constructor inv to map a public key to a
corresponding private key; this allows us easily model public-
key infrastructures like ek(A) being the public encryption of
A where ek is a public function (so every agent can lookup
keys). The small price to pay is that the inverse mapping from
private to public key is called a destructor and that we have
a verifier to check if a private key really fits with the public
key.

The considered theory E = R ∪B allows us to decide the
word problem, i.e., for terms or recipes s, t, whether s =E t.
This is because R used as rewrite rules modulo B (i.e.,→R/B)
is convergent. Thus we only need to compare the normal forms
of s and t modulo B. The equivalence class modulo B of any
term is finite and easily computable. See Theorem 1 in the
appendix.

1) Compose: We define a function compose(F, t) that,
given a frame F and a term t, obtains all constructive recipes
r such that F (r) =B t. Roughly, for every term t0 in [t]B
(the equivalence class of t modulo B) we can check if t0 is
a term in the frame, and additionally, if t0 = f(t1, . . . , tn)
for a public f (which cannot be a destructor or verifier by
construction), we recursively compute compose(F, ti) and
from the results construct the solutions for compose(F, t) as
expected.

We further introduce the notion of an analyzed frame, i.e.,
where the frame contains every term that can be obtained using
a destructor on any message in the frame, using a constructive
recipe for the key term. In an analyzed frame F , compose
finds a recipe for every term t that can be obtained with any
recipe (Lemmas 4 and 5).

2) Analysis: We define an analysis procedure that succes-
sively applies decryption steps as long as possible: for every
message that potentially can be decrypted, we check if we
can compose the decryption key. If so, the resulting message
is added to the frame. Whenever we add an analyzed message
to the frame, we also need to check again all those messages
for which we previously did not have the decryption key. We
show that this terminates (Theorem 2) and produces correct
analyzed frames (Theorem 3).

3) Checks: Finally, given an analyzed frame, we show
how to compute a complete set of checks. In particular, it is

9

sufficient to restrict oneself to constructive recipes for checks
in an analyzed frame (Lemma 6 and Theorem 4).

Finally, the compose procedure can be extended to the
recipe composition problem, i.e., given analyzed and checked
F1, . . . , Fn and goal terms t1, . . . , tn, find a single recipe r
with Fi(r) = ti for all i, because we try to get a solution for
F1(r) = t1 and if it exists, then it works in all frames, because
they are checked (Theorem 5).

V. CASE STUDIES

A. Exporting to ProVerif

In this section, we summarize how the output from the
projection semantics of Section III can be further translated to
ProVerif code for automatic verification. More details can be
found in Appendix Section A. We start by unfolding the labels
from the initial knowledge in each local behavior, similarly to
what we do in the semantics of Figure 5. Each local behavior
is almost a valid ProVerif process already, except for the use
of nondeterministic choice and memory cells.

Nondeterministic choice is simple to encode: we take a
message from the network (the intruder) indicating which
branch to take, and then branch on the content of that message.
Thus, we leave it to the intruder to pick the branch that will
lead to an attack (if one exists).

Encoding memory cells is more involved. We encode each
memory cell as a private channel, and ensure by construction
that the channel always contains exactly one message (except
when the message has been consumed in an atomic section
that has not yet been left). Then, in the semantics of ProVerif,
a read from the memory cell corresponds exactly to reading
the term that was most recently placed in the channel.

However, when the ProVerif process is translated to Horn-
clauses, certain overapproximations will mean that it is no
longer guaranteed that a message on a private channel is
consumed in the right order or only once. We decrease
the chance of a false positive by adding a counter to each
memory cell, which is incremented on every write. Adding the
admissible axiom that if two values written to a memory cell
are associated with the same counter value they must be equal,
excludes many impossible models during the proof search.

B. Examples

We implemented a tool in Haskell that automates the
projection from choreographies to local behaviors, based on
the definitions in Sections III and IV. It also supports the
generation of a ProVerif file from these local behaviors,
following the steps described in Section V-A.

We will in the following describe one particular example,
but have made more available. All our examples combined
verify in a minute when exported to ProVerif. We wish to
highlight the following notable examples:

• ttp-blind-forward.choreo is similar to the ex-
ample from Section II. Here a trusted third party either
helps A authenticate a new encryption key with or au-
thenticate a request to B, without knowing which branch
it is in.

• SSO.choreo describes a protocol where an agent A
authenticates to another agent B using a trusted third
party ttp. We can also verify this when the behaviour
of ttp is taken from SSO-API.choreo, where ttp
is implemented like an API responding to queries and
saving their state using memory cells. Our tool includes
an option for selecting the behavior of participants from
different choreographies like this.

• We demonstrate in tpm-simple.choreo and
tpm-simple-API.choreo the security of a TPM
that can either declassify a given value or delete it. In
particular, this protocol is non-monotonic, as it should
be transparent to the owner of the value which choice
was taken, and that if one choice is made then the other
cannot be made later.

• SSO-DH.choreo and SSO-DH-API.choreo demon-
strates a Diffie-Hellman exchange mediated by a trusted
third party.

• ASW.choreo contains the example described in the
following.

The Asokan-Shoup-Waidner (ASW) protocol serves as a
motivating example that demonstrates the expressiveness of
our choreography language, particularly its support for explicit
branching, non-deterministic choice, conditional behavior, and
long-term memory access.

ASW is a fair contract signing protocol involving three
participants: an originator O, a responder R, and a trusted
third party (TTP). The protocol mainly ensures that either
both parties obtain a binding contract, or neither does. The
key challenges addressed by this protocol are:

• Timeouts and abort scenarios: Participants may time-
out, leading to different protocol continuations.

• Stateful TTP: The TTP must maintain memory of pre-
vious contract states to prevent inconsistent responses.

• Conditional logic: Protocol actions depend on checking
stored memory values.

C. Non-deterministic Choice and Branching

Algorithm 1 presents the ASW choreography using explicit
branching in the message flow. After O sends M1 to R, the
responder can either timeout and trigger an abort request
(shown in red), or continue by generating NR and replying
with M2. In the continuation, timeouts may occur again: after
receiving M2, O can either timeout and ask the ttp to resolve,
or proceed by sending NO ; symmetrically, after receiving NO ,
R can either timeout and resolve, or complete by sending
NR. The explicit +-marked alternatives capture this non-
determinism directly at the level of the choreography.

D. Conditional Behavior and Memory Access

The distinctive feature of ASW is the behavior of the trusted
third party, which consults and updates long-term memory
cells indexed by the contract identifier M1. In both ABORT
and RESOLVE, the ttp first reads ttp mem[M1] (with blank
denoting an uninitialized cell) and then branches on the stored
value.

10

Algorithm 1 ASW Choreography
1: O : νText . νNO .
2: O→ R : sign(f1(O,R, ttp,Text , h(NO)), inv(pk(O)))︸ ︷︷ ︸

=:M1

.

3: R : R→ O : timeout .ABORT(O,M1)
4: + νNR.
5: R→ O : sign(f2(M1, h(NR)), inv(pk(R)))︸ ︷︷ ︸

=:M2

.

6: O : O→ R : timeout .RESOLVE(R,M1,M2)
7: + O→ R : NO .
8: R : R→ O : timeout .RESOLVE(O,M1,M2)
9: + R→ O : NR

10:
11: ABORT(A,M1) =
12: A→ ttp : sign(fabort(M1), inv(pk(A)))
13: ttp : blank := ttp mem[M1].
14: ttp mem[M1] := aborted .
15: ttp→ A : sign(fabort(M1), inv(pk(ttp)))
16: + aborted := ttp mem[M1].
17: ttp→ A : sign(fabort(M1), inv(pk(ttp)))
18: + (resolved ,M2) := ttp mem[M1].
19: ttp→ A : sign(fresolve(M1,M2), inv(pk(ttp)))
20:
21: RESOLVE(A,M1,M2) =
22: A→ ttp : sign(fresolve(M1,M2), inv(pk(A)))
23: ttp : blank := ttp mem[M1].
24: ttp mem[M1] := (resolved ,M2).
25: ttp→ A : sign(fresolve(M1,M2), inv(pk(ttp)))
26: + aborted := ttp mem[M1].
27: ttp→ A : sign(fabort(M1), inv(pk(ttp)))
28: + (resolved ,M2) := ttp mem[M1].
29: ttp→ A : sign(fresolve(M1,M2), inv(pk(ttp)))

This illustrates several language features:
1) Memory read: blank := ttp mem[M1] reads the

current state associated with M1.
2) Case distinction on memory: depending on whether

ttp mem[M1] is still blank , has been set to aborted , or
contains (resolved ,M2), the ttp returns a consistently
matching signed response.

3) Memory write: ttp mem[M1] := aborted (in ABORT)
and ttp mem[M1] := (resolved ,M2) (in RESOLVE)
record the outcome so that repeated requests cannot lead
to contradictory replies.

4) Non-monotonic memory: the same cell can be read
multiple times and updated across different interactions
in the run.

E. Semantic Challenge: Participant Knowledge

A subtle aspect of ASW mechanization arises during pro-
jection. When O or R make decisions (e.g., “abort”), they
must send signals that the ttp later interprets. However, the
originating participant does not see the entire memory state of
the TTP. During projection, the analyzer must determine:

• When to accept incoming values without immediate
verification (e.g., when O receives an untagged nonce
response).

• When to insert runtime checks that compare received
values against later constraints (e.g., when verifying
h(NO) = X after learning NO).

VI. RELATED WORK AND CONCLUSIONS

Alice-and-Bob notation. Several lines of work have given
Alice-and-Bob notation a precise semantics by compiling them
to lower-level role-based specifications, and by rejecting nota-
tions that are not executable because e.g. senders cannot con-
struct a message or receivers cannot check it. Early semantics
were developed for the free term algebra and later extended to
equational theories, often by reducing executability questions
to intruder deduction and unification problems [6], [11], [7].
Our semantics follows this tradition, but lifts it from linear
notations to choreographies with non-deterministic choice,
branching, and mutable long-term memory. This combination
is essential for modeling modern protocol interactions with
stateful services and APIs, while maintaining the compact
global view that motivates Alice-Bob notations.

Protocol models and tool support. At the other end of
the spectrum, multi-set rewriting languages (e.g., as used by
Tamarin and the AVISPA family) provide an explicit account
of state and message flows and are well-suited for reasoning
with rich adversary models [1], [2], [12]. Process-calculus
based tools such as ProVerif offer a more program-like view
of each role and highly automated verification, typically by
a sound over-approximation [13], [3]. Our contribution is
complementary: CryptoChoreo aims to be a high-level speci-
fication language that can be translated into such backends. In
this respect, our approach is aligned with lines of work that
provide source-to-source translations or front-ends for existing
verification tools, such as SAPIC/SAPIC+ [14], [15], but with
a focus on preserving the readability and single global story
of a choreography.

Choreographies and global types. Choreographic program-
ming and the theory of multiparty session types/global types
study how a global description of multiparty interaction can
be projected to local behaviors, with correctness guarantees
such as deadlock freedom [16], [17], [18]. Our work is
inspired by the same global-to-local methodology, but targets
the Dolev–Yao setting with an active adversary, cryptographic
constructors/destructors, equational theories, and explicit at-
tacker knowledge.

State and APIs in protocol models. Stateful extensions and
encodings have been studied both at the specification level
and in tool-oriented front-ends [14]. CryptoChoreo makes state
explicit at the choreography level via memory cells.

Equational reasoning and mechanization. Reasoning about
message construction, parsing, and checks in the presence of
equational theories is a classic challenge in symbolic protocol

11

analysis [19]. Our mechanization focuses on a representa-
tive theory combining standard constructors/destructors with
Diffie–Hellman exponentiation, and yields an effective pro-
jection procedure [20]. This is intentionally backend-agnostic
at the level of the core semantics, while our ProVerif export
demonstrates one concrete and practical target.

Conclusions. We introduced CryptoChoreo, a choreography
language for cryptographic protocols that extends Alice-
and-Bob notation with non-deterministic choice, conditional
branching, and mutable long-term memory, together with a
projection-based semantics and an effective mechanization
for a representative equational theory. Our ProVerif export
shows that these high-level specifications can be connected
to automated verification backends in practice. Future work
includes widening the class of supported equational theories,
improving automation for non-monotonic state encodings, and
adding additional backend targets.

REFERENCES

[1] S. Meier, B. Schmidt, C. Cremers, and D. Basin, “The Tamarin prover
for the symbolic analysis of security protocols,” in Computer Aided
Verification (CAV), 2013.

[2] A. Armando, D. Basin, Y. Boichut, Y. Chevalier, L. Compagna,
J. Cuéllar, P. H. Drielsma, P. Héam, J. Mantovani, S. Mödersheim,
M. Rusinowitch, M. Turuani, L. Viganò, and L. Vigneron, “The AVISPA
tool for the automated validation of internet security protocols and
applications,” in Computer Aided Verification (CAV), 2005.

[3] B. Blanchet, ProVerif: Automatic Cryptographic Protocol Verifier, User
Manual and Tutorial, 2016.

[4] J. K. Millen, “CAPSL: common authentication protocol specification
language,” in Workshop on New Security Paradigms. ACM, 1996, p.
132.

[5] G. Lowe, “Casper: A compiler for the analysis of security protocols,”
J. Comput. Secur., vol. 6, no. 1-2, pp. 53–84, 1998.

[6] F. Jacquemard, M. Rusinowitch, and L. Vigneron, “Compiling and
verifying security protocols,” in Logic for Programming and Automated
Reasoning (LPAR), 2000.

[7] S. Mödersheim, “Algebraic properties in alice and bob notation,” in In-
ternational Conference on Availability, Reliability and Security (ARES),
2009.

[8] Y. Chevalier and M. Rusinowitch, “Compiling and securing crypto-
graphic protocols,” Inf. Process. Lett., vol. 110, no. 3, pp. 116–122,
2010.

[9] O. Almousa, S. Mödersheim, and L. Viganò, “Alice and Bob: Recon-
ciling formal models and implementation,” in Festschrift in honor of
Pierpaolo Degano, 2015.

[10] D. A. Basin, M. Keller, S. Radomirovic, and R. Sasse, “Alice and bob
meet equational theories,” in Festschrift in honor of José Meseguer,
2015.

[11] C. Caleiro, D. Basin, and L. Viganò, “On the semantics of alice &
bob specifications of security protocols,” Theoretical Computer Science,
2006.

[12] D. Basin, S. Mödersheim, and L. Viganò, “OFMC: A symbolic model
checker for security protocols,” in International Journal of Information
Security, 2005.

[13] B. Blanchet, “An efficient cryptographic protocol verifier based on
prolog rules,” in Computer Security Foundations Workshop (CSFW),
2001.

[14] S. Kremer and R. Künnemann, “Automated analysis of security protocols
with global state,” Journal of Computer Security, 2016.

[15] V. Cheval, B. Blanchet, and B. Smyth, “SAPIC+: A protocol specifica-
tion language for the verification of indistinguishability properties,” in
IEEE Computer Security Foundations Symposium (CSF), 2022.

[16] M. Carbone, K. Honda, and N. Yoshida, “Structured communication-
centered programming for web services,” ACM Trans. Program.
Lang. Syst., vol. 34, no. 2, pp. 8:1–8:78, 2012. [Online]. Available:
https://doi.org/10.1145/2220365.2220367

[17] M. Carbone and F. Montesi, “Deadlock-freedom-by-design: multiparty
asynchronous global programming,” in The 40th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL ’13, Rome, Italy - January 23 - 25, 2013,
R. Giacobazzi and R. Cousot, Eds. ACM, 2013, pp. 263–274.
[Online]. Available: https://doi.org/10.1145/2429069.2429101

[18] K. Honda, N. Yoshida, and M. Carbone, “Multiparty asynchronous
session types,” J. ACM, vol. 63, no. 1, pp. 9:1–9:67, 2016. [Online].
Available: https://doi.org/10.1145/2827695

[19] Y. Chevalier and L. Vigneron, “Automated unbounded verification of
security protocols,” in Computer Aided Verification (CAV), 2002.

[20] B. Schmidt, S. Meier, C. Cremers, and D. Basin, “Automated analysis
of diffie–hellman protocols and advanced security properties,” in IEEE
Computer Security Foundations Symposium (CSF), 2012.

[21] R. Küsters and T. Truderung, “Using proverif to analyze protocols
with diffie-hellman exponentiation,” in Proceedings of the 22nd IEEE
Computer Security Foundations Symposium. IEEE Computer Society,
2009, pp. 157–171.

[22] S. Mödersheim, “Diffie-hellman without difficulty,” in Formal Aspects
of Security and Trust - 8th International Workshop, ser. Lecture Notes in
Computer Science, G. Barthe, A. Datta, and S. Etalle, Eds., vol. 7140.
Springer, 2011, pp. 214–229.

[23] V. Cheval, V. Cortier, and M. Turuani, “A little more conversation, a
little less action, a lot more satisfaction: Global states in proverif,” in
31st IEEE Computer Security Foundations Symposium. IEEE Computer
Society, 2018, pp. 344–358.

APPENDIX

A. Exporting to ProVerif (extended)

a) ProVerif encoding: In this section, we will describe
how to use the projection semantics from Section III to
automatically convert a choreography into a ProVerif process.
For the rest of this section, we assume the following:

• We have a choreography C
• In C there are roles A1, . . . ,AnA

• The initial knowledges are given in FA1
, . . . , FAnA

• We have projected the choreography for each role:
LA1 = FA1([[FA1 : C]]A1), . . . ,LnA

= FnA
([[FnA

: C]]nA
)

• Of all the roles, U1, . . . ,UnU
are untrusted.

• For each role Ai, UAi1, . . . ,UAinUAi
are the untrusted

roles occurring in LAi
and FAi

(i.e. the parameters to
the role)

• In C we have the cell families c1, . . . , cnc

We start by encoding the algebra. For the most part, we
encode the algebra E as is, though a simplification must be
made with regard to exp. Directly inserting the equation in B
in ProVerif will lead to nontermination. However, as shown in
[21] and [22], it is sound to use the following encoding for
standard Diffie-Hellman:

fun exp(bitstring, bitstring): bitstring.
const g: bitstring.
equation forall x : bitstring, y : bitstring;

exp(exp(g, y), x) = exp(exp(g, x), y).

We will omit most of the definition of the algebra here, but
include the encoding of symmetric encryption:

type skey.
fun scrypt(bitstring, skey): bitstring.
reduc forall x : bitstring, k : skey;

dscrypt(scrypt(x , k), k) = x .
fun vscrypt(bitstring, skey): bool

12

reduc forall x : bitstring, k : skey;
vscrypt(scrypt(x , k), k) = true

otherwise forall x : bitstring, k : skey;
vscrypt(x , k) = false.

As another preliminary step, we include the type of agents
and the name of the intruder:
type agent.
free i: agent.

ProVerif processes are written in the π-calculus, and look
much like our local behaviors, except for network communi-
cation, nondeterministic choice, and memory cells. We write
[[L]]pv for the ProVerif process obtained from the local behavior
L, and in the following only describe the cases where the local
behaviors differ from the resulting ProVerif processes.

In our local behaviors, we simply use send(X) and
receive(X) to send the content of variable X to the public
network or receive a value from the network and assign it to
X . In ProVerif, the corresponding statements are out(c,X)
and in(c, X:bitstring), where c is a public channel. To make
a clear conceptual divide, we declare two public channels:
c is the public channel the communication declared in the
choreography happens over, while we use ic when information
must be given to or taken from the intruder for the purpose
of modeling.
free ic: channel.
free c: channel.
We then define [[send(t).L]]pv = out(c, t); [[L]]pv and
[[receive(X).L]]pv = in(c, X:bitstring); [[L]]pv.

When a process makes a nondeterministic choice, our
encoding simply has the intruder decide:

[[L1 + L2 + . . .+ Ln]]pv =
in(ic,Branch:nat);
if Branch = 0 then

[[L1]]pv
else if Branch = 1 then

[[L2]]pv
...

else if Branch = n then
[[Ln]]pv

With regard to memory cells, we restrict ourselves to
choreographies with the following properties:

• In every atomic section there is at most one read and one
write to each cell family on every branch, and if a branch
contains both they must use the same address.

• All writes happen at the end of the atomic section.
• All addresses are public. 8

For each cell family, ci, we declare a function:
fun cell ci(bitstring): channel [private].
We can use this function to create a private channel for each
cell in the family. Each such channel will contain at most

8This is not technically required for the translation to be sound. However,
our translation will reveal addresses to the intruder, so you will get false
attacks if this is not the case.

one message at any given time, representing the current value
stored in the cell.

Information sent on a private channel is of course not
revealed to the intruder. Furthermore, communication over
private channels is synchronous, and we can use this to enforce
atomicity when there is a read and write to the same cell in
one atomic section.

The same trick can be used to create atomic sections in
general. We define
free atomic lock: channel [private].
const atomic baton: bitstring.
To enter an atomic section, a process must obtain the baton,
and they should send it back when they leave. We have not
found it beneficial to enforce atomicity of all atomic sections
from local behaviors, but use it strategically for some parts
(for example the memory-initializer processes below).

We ensure that when an agent wants to read from a cell
there is always a message available by including initializer
processes for each cell family. ProVerif supports tables, which
are set-like structure we can use to keep track of which cells
have been initialized, thus making sure that we only initialize
a cell once and enforce the property that each cell channel
contains at most one message. For each ci, we define:

table ci initializer table(bitstring).
let ci initializer() =

in(atomic lock,= atomic baton);
in(ic,Addr : bitstring);
get ci initializer table(= Addr) in 0
else

insert ci initializer table(Addr);
(out(cell ci(Addr), blank) |
out(atomic lock, atomic baton)).

The outputs at the end must be put in parallel, so that one
does not block the other.

We can now have the intruder initialize our memory cells:
[[X := c[t].L]]pv = out(ic, t); in(cell c(t), X: bitstring); [[L]]pv
Also, writing should not block the rest of the process:
[[c[t] := s.L]]pv = (out(cell c(t), s) | [[L]]pv).

There are two remaining problems: If on a branch in an
atomic section there is a read from a cell but no write, the value
in the cell will be consumed and no other process will be able
to read from it. Similarly, if there is a write but no read, the cell
will contain two values, and either is a possible value when
the next process reads from the cell (we also lose the atomicity
mentioned above). We solve this by a simple transformation:
If we are done translating a branch of an atomic section where
we have processed X := c[t] but no corresponding write and
need to return the rest of the translation [[L]]pv, return instead
(out(cell c(t), s) | [[L]]pv). Similarly, if we want to translate
[[c1[t1] := s1.cn[tn] := sn.L]]pv (recall that writes must
be at the end of an atomic section) and have not read from
ci, we return out(ic, ti); in(cell ci(ti), : bitstring); [[c1[t1] :=
s1.cn[tn] := sn.L]]pv.

We now how a way to translate local behaviors to ProVerif
processes. However, we still need to compose all these into a

13

single process that can be verified by ProVerif. Furthermore,
this process must handle the multiple sessions and instantia-
tions supported by the semantics in Figure 5.

For each role Ai with parameters UAi1, . . . ,UAinUAi
we

define the process spawner for that agent:

let processAi(UAi1: agent, . . . ,UAinUAi
: agent) = [[LAi]]pv.

let spawnAi() =
in(ic, (UAi1: agent, . . . ,UAinUAi

: agent));

processAi(UAi1, . . . ,UAinUAi
).

For each untrusted Ui we must also give the intruder the
associated initial knowledge. Let UUi1, . . . ,UUin be all the
parameters of the role Ui except the role Ui itself and
t1, . . . , tm be the terms in the knowledge of Ui (i.e. FUi

=
{X1 7→ t1, . . . ,Xm 7→ tm}). We define:

let knowledgeUi() =
in(ic, (UUi1: agent, . . . ,UUin: agent));
out(ic, (t1[i/Ui], . . . , tm[i/Ui])).

Finally, we can define the main ProVerif process:

process
(out(atomic lock, atomic baton)) |
!(new a: agent; out(ic, a)) |
!(spawnA1()) |

...
!(spawnAnA

()) |
!(knowledgeU1 ()) |

...
!(knowledgeUnU

()) |
!c1 initializer()

...
!cnc

initializer()

b) Improved Encoding of Memory Cells: When verifying
ProVerif code produced by the encoding above, we run into the
issue that the overapproximations associated with the abstrac-
tions of ProVerif make many secure protocols unverifiable. By
default, ProVerif will consider the values in a cell as a set, and
when you read you will not necessarily get the last value that
was written. This means that for example the TPM example
included with our submission does not verify, since ProVerif
considers runs where deleted is written to the cell and then
classified is later read from it.

We can improve the accuracy of our encoding by a trick
inspired by the “precise” option in ProVerif, originally pre-
sented in [23]. When writing t to a cell c, we instead write
(ic, t) where ic is a natural number indicating that this was
the icth value written to c. Furthermore, we trigger an event
registering what was written, every time a value is written to
a call. The new encoding of cell ci becomes:

fun cell ci(bitstring): channel [private].
event write ci(bitstring, nat, bitstring).

table ci initializer table(bitstring).
let ci initializer() =

in(atomic lock,= atomic baton);
in(ic,Addr : bitstring);
get ci initializer table(= Addr) in 0
else

event write ci(Addr , 0, blank);
insert ci initializer table(Addr);
(out(cell ci(Addr), (0, blank)) |
out(atomic lock, atomic baton)).

Furthermore, we redefine the process translation with the
following:

[[X := c[t].L]]pv =
out(ic, t);
in(cell c(t), (Counter c: nat, X: bitstring));
[[L]]pv

[[c[t] := s.L]]pv =
event write c(t,Counter c, s);
(out(cell c(t), (Counterc + 1, s)) | [[L]]pv)

When inserting writes on branches that only have reads, we
can omit incrementing the counter, as we will necessarily just
write back the value that was already there. In our experiments,
this omission increases the efficiency of ProVerif in many
cases.

Our encoding ensures that every time a new value is put in
the cell, it is associated with a new counter value. Thus, it is
sound to add the following axiom:

axiom t: bitstring,C : nat , s1: bitstring, s2: bitstring;
event(write ci(t,C , s1)) ∧ event(write ci(t,C , s2))

=⇒ s1 = s2.

B. Mechanization of the Projection in Detail

We will here show in more detail how to solve the word
problem, recipe-composition problem, and complete-set-of-
checks problem described in Section IV.

In addition to the Σ and Σp from Section IV, we use Σd

to denote the set of destructors (+ pair projections, Diffie-
Hellman inverse, etc.) and Σv for the set of verifiers.

Unlike in the main matter of the paper, we will here permit
terms s, t, . . . to contain all function symbols, as we here make
precise how these terms are then reduced to ones built only
from Σ.

For the benefit of the following proofs, we define the
syntactic size of terms and checks: |X | = 1, |f(t1, . . . , tn)| =
1 + |t1|+ . . .+ |tn|, and |t .= s| = |t|+ |s|.

Additionally, we need the following concepts:

Definition 3. We define [t]=B = {t′ | t =B t′}. We write →R

for the rewriting system obtain by applying the equations in
R from left to right. We can then define the rewriting system
modulo B-equivalence classes: s →R/B t iff ∃s′ t′. s =B

s′ ∧ s′ →R t′ ∧ t′ =B t. We use t ↓R/B to denote the normal
form of t.

Lemma 1. If s =B t then |s| = |t| and if s →R/B t then
|s| > |t|.

14

Proof. The first part can be shown by induction on the deriva-
tion of s =B t, and the second part follows by case analysis
on s′ →R t′ after unfolding the definition of →R/B .

Lemma 2. s =E t if and only if either:
• s =B t,
• or there is s′ so s→R/B s′ and s′ =E t,
• or there is t′ so t→R/B t′ and s =E t′

Proof. We do induction on the derivation of s =E t in the
equational logic induced by E.

We can now show that our rewriting system is well-behaved:

Lemma 3. (A) [t]=B is finite for all t. (B) If s→R/B t then
s =E t. (C) →R/B is convergent, modulo B. (D) t ↓R/B is
defined and unique for all t, modulo B.

Proof. (A) is easy to see (the equation in B is a kind of
commutativity). (B) follows from transitivity of =E and the
definitions of →R and →R/B . (D) follows (C) by definition.

To show (C), we combine (B) with the following: (1)→R/B

has no infinite chains. (2) If s =E t and →R/B applies to
neither s nor t, then s =B t.

(1) follows from the fact that if t1 →R/B t2 →R/B . . . then
|t1| > |t2| >

(2) follows from Lemma 2.

With this, we can solve the word problem from the start of
the section:

Theorem 1. s =E t if and only if s ↓R/B=B t ↓R/B .

Proof. That s ↓R/B=B t ↓R/B implies s =E t follows from
Lemma 3 (B).

If s =E t then s ↓R/B=E t ↓R/B by Lemma 3 (B), and
since →R/B applies to neither s ↓R/B nor t ↓R/B we have
s ↓R/B=B t ↓R/B by Lemma 2.

In the following, we will analyze a set of frames by
alternating between applying verifiers and destructors to obtain
new terms. We extend frames with additional information,
including which checks have been performed, and how the
content in a label was derived.

Definition 4 (Enhanced Frames). Frames are built over the
following grammar:

F ::= 0

| F0.X 7→ t

| F0.X ← r 7→ t

| F0.r1
.
= r2

We let e range over the entries of the form X 7→ t, X ← r 7→ t,
and r1

.
= r2.

• The domain of a frame is defined as follows. dom(0) = ∅,
dom(F0.X 7→ t) = dom(F0)∪ {X}, dom(F0.X ← r 7→
t) = dom(F0)∪{X}, and dom(F0.r1

.
= r2) = dom(F0).

• Given a recipe r for frame F , we define F (r) as expected,
ignoring r1

.
= r2 and ← r.

In the following, we only consider well-formed frames, which
satisfy these properties:

• In a frame F0.X 7→ t, X /∈ dom(F0) and t is construc-
tive.

• In a frame F0.X ← r 7→ t, X /∈ dom(F0), fv(r) ⊆
dom(F0), F0(r) = t, and there exists constructive t′ such
that t =E t′.

• In a frame F0.r1
.
= r2, fv(r1) ∪ fv(r2) ⊆ dom(F0), and

F0(r1) =E F0(r2).
• In a frame F0.e, F0 is well-formed.

It is easy to see that the projection semantics above and the
following procedures preserve well-formedness.

The checks contained in a frame F , written checks(F), is
the set of all the equations r1

.
= r2 contained in the frame

together with the equations l .= r for each entry l ← r 7→ t
in the frame.

In the projection semantics, we consider sets of frames.
There is a notion that these frames are identical with regard to
all operations we have performed so far, which we formalize
in the following:

Definition 5 (Compatible Frames). We define two frames
being compatible, written F ≃ F ′, as the least relation
satisfying the following rules:

0 ≃ 0
F0 ≃ F ′

0

F0.X 7→ t ≃ F ′
0.X 7→ t′

F0 ≃ F ′
0

F0.X ← r 7→ t ≃ F ′
0.X ← r 7→ t′

F0 ≃ F ′
0

F0.r1
.
= r2 ≃ F ′

0.r1
.
= r2

Thus, frames are compatible if they have passed the same
checks and performed the same operations to construct new
terms, in the same order.

Our analysis should extend a frame to contain all derivable
subterms. This goal is captured in the following:

Definition 6. A label X ∈ dom(F) is analyzed (in F) if
for any constructive key-recipe rk and destructor d ∈ Σd,
if d applies to (F (X), F (rk)), there exists an entry X ′ ←
d(X , r′k) 7→ t where F (rk) =E F (r′k). Furthermore, for the
associated verifier v there must be an entry v(X , r′k)

.
= ⊤.

A frame F is fully analyzed if all labels in dom(F) are
analyzed.

Note that since F is well-formed, we must have t =E

d(F (X), F (rk)).
When all the subterms have been added to a frame, we can

obtain any obtainable term by composition, i.e. a constructive
recipe. The following recursive function returns all construc-
tive recipes for a given term:

Definition 7. We define compose(F, t) =⋃
{composelc(F, s) | s ∈ [t]=B} where

composelc(F, s) = composel(F, s) ∪ composec(F, s),
composel(F, s) = {X |X ∈ dom(F) ∧ F (X) = s}, and

15

composec(F, s) = {f(s′1, . . . , s′n) | s′1 ∈ compose(F, s1) ∧
. . . ∧ s′n ∈ compose(F, sn)} if s = f(s1, . . . , sn) for f ∈ Σc

and composec(F, s) = {} otherwise.

That compose(F, t) is finite can be seen by induction on |t|
and that [t]=B is finite.

The following shows that for fully analyzed frames,
compose can create any obtainable term:

Lemma 4. Assume that F is a fully analyzed frame.
If there is a recipe r and a constructive term t such that
F (r) =E t, then we have that
(1) compose(F, t) is non-empty, and
(2) for every rc ∈ compose(F, t) we have F (rc) =E t.

Proof. (1) We show that if F (r) →∗
R/B t then there is

rc ∈ compose(F, t) such that F (rc)→∗
R/B t.

We do induction on |r|. If r = X , we are done. If r =
f(r1, . . . , rn) for f ∈ Σc, we apply the induction hypothesis
and are done. If r = d(r1, . . . , rn) for f ∈ Σd, then either the
recipe reduces and we are done by the induction hypothesis,
or r = d(X , rkey) and there is another label X ′ and (by
the induction hypothesis) a constructive recipe r′key such that
F (X ′) = F (d(X , r′key)).

(2) It is easy to prove that for every rc ∈ compose lc(F, t)
we have F (rc) =E t by induction on |t|. Furthermore, it is
by definition the case that for every s ∈ [t]=B we have s =E

t.

The following shows completeness of compose:

Lemma 5. For any frame F (even if not fully analyzed),
if r is a constructive recipe such that F (r) =E t and t is
constructive, then r ∈ compose(F, t).

Proof. Follows by induction on |r|.

In the following, we define an analysis procedure that can
be triggered during the projection semantics of Section III any
time a new term is added the frame.

For the analysis of frame F , we require a marking of the
type M : dom(F) −→ {⋆,+,✓}. All labels are initially
marked ⋆, and whenever a label is added to the frame it is
also marked ⋆.

Definition 8. A marking M of frame F is accurate if any label
X ∈ dom(F) where M(X) = ✓ is analyzed in F .

Definition 9 (Analysis Procedure). We want to calculate the
analyzed extensions of a set of frames, {F1, . . . , Fn}, and
marking, M , where the marking is accurate for each frame and
the frames are pairwise compatible. The analysis-extension
function, Ana(M, {F1, . . . , Fn}), is defined by three cases:
If the given set is empty (n = 0), return {}.
If there is a label X marked ⋆, try the following in order:

• F1(X), . . . , Fn(X) are all terms for which no verifier
exists, then return Ana(M [X 7→ ✓], {F1, . . . , Fn}).

• (decomposition) We have a frame Fi, a verifier v ∈ Σv ,
and a constructive term t such that v applies to (Fi(X), t)
(for any d and Fi(X) at most one such t exists and it is

easy to find). Furthermore, compose(Fi, t) is non-empty,
containing at least rkey .
Then, let d1, . . . , dk be all destructors associated
with v and X1, . . . ,Xk fresh labels, and set r1 =
d1(X , rkey), . . . , rk = dk(X , rkey).
Let M ′ be the marking that for any X ′ returns ✓ if
X = X ′, ⋆ if X ′ ∈ {X1, . . . ,Xk} or M(X ′) = +, and
M(X ′) otherwise.
Finally, let
FS+ = {F.v(X , rkey)

.
= ⊤.X1 ← r1 7→

F (r1). · · · .Xk ← rk 7→ F (rk) | F ∈ {F1, . . . , Fn} ∧
F (v(X , rkey)) =E ⊤}
and
FS− = {F | F ∈ {F1, . . . , Fn}∧F (v(X , rkey)) ̸=E ⊤}.
We then return Ana(M ′,FS+) ∪Ana(M,FS−).

• Return Ana(M [X 7→ +], {F1, . . . , Fn}).
If no labels are marked ⋆, return {(M, {F1, . . . , Fn})}.

Note that the choice of rkey does not matter, since if
multiple recipes are supposed to produce the same term but
actually do not, we are not in a run of the protocol that agrees
with the given frame. This will then be discovered when we
later do the checks.

Theorem 2. The analysis procedure terminates.

Proof. Let raw(F) be all the entries of the form X 7→ t (i.e.
the label assignments that are not the product of analysis).
Let |F | =

∑
{|t| | X 7→ t ∈ raw(F)} and |{F1, . . . , Fn}| =∑n

i=1 |Fi|. Let |M |✓ be the number of labels marked ✓ in
M and |M |+ be the number of labels marked +. Lexico-
graphically measure (|{F1, . . . , Fn}|−|M |✓, |{F1, . . . , Fn}|−
|M |+).
The number of labels in a marking will never exceed the
number of subterms of the raw terms of the frames the marking
is based on, so |{F1, . . . , Fn}| − |M |✓ and |{F1, . . . , Fn}| −
|M |+ will always be at least 0.
It is easy to see that no step in the analysis makes
|{F1, . . . , Fn}| − |M |✓ increase, and that each step will
either decrease |{F1, . . . , Fn}| − |M |✓ or |{F1, . . . , Fn}| −
|M |+.

Theorem 3. If F1, . . . , Fn are compatible frames, M
is an accurate marking, and Ana(M, {F1, . . . , Fn}) =
{(M1,FS1), . . . , (Mm,FSm)}, then all frames in each FS i

are fully analyzed, pairwise compatible, and M1, . . . ,Mm are
accurate.

Proof. It is easy to see that the procedure preserves compati-
bility and accuracy of markings.

When the procedure is done, no label will be marked ∗.
If one of Fij is then not fully analyzed, there must be a
label X , a constructive term t, and (by Lemma 5) a recipe
rk ∈ compose(F, t), such that the (decomposition) case is
applicable for X (which must mean, by accuracy, that X is
marked +). However, this cannot be the case, as if this rk
existed when the marking of X was changed from ⋆ to +
then the wrong case was applied, and if it did not exist then

16

the frame must have changed since this, which would remark
X as ⋆.

After distinguishing and extending a set of frames with this
procedure, defining procedures for solving the two remaining
problems stated at the beginning of this section becomes easier.

We start by showing that in an analyzed frame, all checks
can be done in a constructive way:

Lemma 6. If F is a fully analyzed frame, then for any check
ra

.
= rb where F (ra) =E F (rb) there exists a set of construc-

tive checks ϕcsuch that
∧
checks(F) ∧

∧
ϕc |=E ra

.
= rb.

If ra is of the form f(r′a, rk) where f ∈ Σv ∪ Σd and r′a,
rk and rb are constructive, then there is such a ϕc where
for each check r1

.
= r2 ∈ ϕc we have that |r1

.
= r2| ≤

max (2 ∗ |rk|, |r′a|+ |rb|).

Proof. We prove the first part by induction on |ra
.
= rb|.

The second part of the lemma can be proven by considering
the cases of r′a. First, we note that the proof is immediate if
it is not the case that f is a destructor or verifier that applies
to (F (r′a), F (rk)), and we therefore only consider this case.
If r′a = X where X is a label, then we know that for
the applicable verifier v and destructors d1, . . . , dn we have
a constructive recipe r′k and labels X1, . . . ,Xn such that
{v(X , r′k)

.
= ⊤, d1(X , r′k)

.
= X1 . . . dn(X , r′k)

.
= Xn} ⊆

checks(F). If f = v we set ϕc = {rk
.
= r′k, rb

.
= ⊤} and

are done. If f = di we set ϕc = {rk
.
= r′k, rb

.
= Xi} and are

done.
If r′a is a composed recipe (i.e. of the form g(r′a1, . . . , r

′
an))

then it must be the case that f(r′a, rk) →R r′′a for some
constructive recipe r′′a . We then set ϕc = {r′′a

.
= rb} and are

done.

Definition 10. For a term F we define the set of all checks
that hold in the frame:
ϕ(F) = {r1

.
= r2 | r1 ∈ T (Σp, dom(F)) ∧ r2 ∈

T (Σp, dom(F)) ∧ F (r1) =E F (r2)}
We also define the set of all checks between labels and

recipes we can compose:
ϕlc(F) = {X

.
= r | X ∈ dom(F) ∧ r ∈ compose(F, F (X))}

Since a frame is finite, and for any t we have that
compose(F, t) is finite, it must be that ϕlc(F) is finite.

We can now solve the complete set of checks problem:

Theorem 4. If F is fully analyzed, then for any r1
.
= r2 ∈

ϕ(F) we have
∧
checks(F) ∧

∧
ϕlc(F) |=E r1

.
= r2

Proof. Because of Lemma 6 we can assume that r1 and r2
are constructive. We do induction on |r1

.
= r2|.

If either r1 or r2 is a label, we are done.
If r1 = f(r11, . . . , r1n) and r2 = g(r21, . . . , r2n), we must

have f = g. Furthermore, if r11
.
= r21, . . . , r1n

.
= r2n are

valid checks in F , and we apply the induction hypothesis to
get checks ϕ1, . . . , ϕn. We have

∧
checks(F) ∧

∧
ϕ1 ∧ . . . ∧∧

ϕn |=E r1
.
= r2 and are done.

The only hard part is if r1 = exp(r1a, r1b)
and r2 = exp(r2a, r2b) when F (r1a) ̸=E F (r2a)

or F (r1b) ̸=E F (r2b). We then have either
that F (r1a) =E exp(s, t) and t =E F (r2b) or
F (r2a) =E exp(s, t) and t =E F (r1b), for some constructive
s and t. We consider the former and the proof for the latter
is symmetric.
We get exp−1(F (r1a), F (r2b)) = s and
vexp(F (r1a), F (r2b)) = ⊤. From exp−1(F (r1a), F (r2b)) = s
and Lemma 4, we get a constructive recipe r′ such that
F (r′) = s. Observe that |r′| < |r1a|.
By Lemma 6 we get that there must be constructive checks
ϕr

′
such that

∧
checks(F) ∧

∧
ϕr

′ |=E exp−1(r1a, r2b)
.
=

r′ ∧ vexp(r1a, r2b) = ⊤ and for all rϕ
.
= r′ϕ ∈ ϕr

′

we have |rϕ
.
= r′ϕ| ≤ max (2 ∗ |r2b|, |r1a| + |r′|). Since

|r2b| < |r1a| we further have that for all rϕ
.
= r′ϕ ∈ ϕr

′

we have |rϕ
.
= r′ϕ| < |r1

.
= r2|. The induction hypothesis

then gives a set of checks ϕr
′

lc ⊆ ϕlc(F) such that∧
checks(F) ∧

∧
ϕr

′

lc |=E

∧
ϕr

′
.

Furthermore, we have that F (exp(r′, r1b)) =E F (r2a),
which together with the induction hypothesis
gives a set of checks ϕr2alc ⊆ ϕlc(F) such that∧
checks(F) ∧

∧
ϕr2alc |=E exp(r′, r1b)

.
= r2a.

Combining the above with
exp−1(r1a, r2b)

.
= r′ ∧ vexp(r1a, r2b) = ⊤ |=E r1a

.
=

exp(r′, r2b)
and
r1a

.
= exp(r′, r2b) ∧ exp(r′, r1b)

.
= r2a |=E exp(r1a, r1b)

.
=

exp(r2a, r2b)
yields∧

checks(F) ∧
∧
ϕr

′

lc ∧
∧
ϕr2alc |=E r1

.
= r2

and we are done.

It still remains to solve recipe composition. We have already
shown that compose will compose a recipe for a term in a
single fully analyzed frame if it exists, but it remains to be
shown that we can use it to compose a recipe that will work for
all given frames. To prove this, we will leverage the complete
set of checks.

Definition 11. A frame F is fully checked if for any r1
.
=

r2 ∈ ϕ(F) we have checks(F) |=E r1
.
= r2.

The following checking procedure simply mimics the one
from Section III:

Definition 12 (Checking Procedure). We want to calculate
the checked extensions of a set of frames, {F1, . . . , Fn}
where the frames are pairwise compatible. This is given by
Check(ϕlc(F1) ∪ . . . ∪ ϕlc(Fn), {F1, . . . , Fn}) where Check
is the check-extension function. Check(ϕ, {F1, . . . , Fn}) is
defined by three cases:
If ϕ = {}, return {{F1, . . . , Fn}}.
If n = 0, return {}.
If r1

.
= r2 ∈ ϕ, let ϕ′ = ϕ \ r1

.
= r2, FS+ = {F.r1

.
= r2 |

F ∈ {F1, . . . , Fn} ∧ F (r1) =E F (r2)}
and FS− = {F | F ∈ {F1, . . . , Fn} ∧ F (r1) ̸=E F (r2)},
and then return Check(ϕ′,FS+) ∪ Check(ϕ′,FS−)

This procedure is sound:

17

Lemma 7. If {F1, . . . , Fn} is a set of compatible and an-
alyzed frames, then every FS ∈ Check(ϕlc(F1) ∪ . . . ∪
ϕlc(Fn), {F1, . . . , Fn}) will contain compatible, analyzed and
checked frames.

Proof. It is easy to see that compatibility is preserved by the
procedure, and that they are still analyzed (no terms are added
to the frames).

If F ∈ FS then ϕlc(F) ⊆ checks(F), and we are done by
Theorem 4.

As an immediate result, we get that there is no way to
distinguish the frames that are grouped together by Check:

Lemma 8. If F1, . . . , Fn are compatible and fully checked
frames, for any Fi and any check r1

.
= r2 we have that

Fi(r1) =E Fi(r2) if and only if F1(r1) =E F1(r2) ∧ . . . ∧
Fn(r1) =E Fn(r2).

Proof. We have Fi(r1) =E Fi(r2) if and only if
checks(Fi) |=E r1

.
= r2. Furthermore, by compatibility, we

have checks(F1) = . . . = checks(Fn).

For a set of compatible, fully analyzed, and fully checked
frames, the recipe composition problem is simply solved by
compose:

Theorem 5. If F1, . . . , Fn are compatible, fully checked, and
fully analyzed frames, t1, . . . , tn are constructive terms, and
there exists an r such that F1(r) =E t1 ∧ . . . ∧ Fn(r) =E

tn, then compose(F1, t1) is non-empty and for any r′ ∈
compose(F1, t1) we have F1(r

′) =E t1 ∧ . . .∧Fn(r
′) =E tn.

Proof. We get the non-emptiness of compose(F1, t1) and that
for each r′ we have F1(r

′) =E t1 by Lemma 4. Since
F1(r) =E F1(r

′), we have by Lemma 8 that F2(r) =E

F2(r
′) ∧ . . . ∧ Fn(r) =E Fn(r

′), and are done.

18

