
Privacy as Reachability

Sébastien Gondron1, Sebastian Mödersheim2 and Luca Viganò3
1,2DTU Compute, Denmark, Kgs. Lyngby

3Department of Informatics, King’s College London, London, UK
1spcg,2samo@dtu.dk, 3luca.vigano@kcl.ac.uk

August 26, 2021

Abstract

We show that privacy can be formalized as a reachability problem. We
introduce a transaction-process formalism for distributed systems that can
exchange cryptographic messages (in a black-box cryptography model).
Our formalism includes privacy variables chosen non-deterministically from
finite domains (e.g., candidates in a voting protocol), it can work with
long-term mutable states (e.g., a hash-key chain) and allows one to spec-
ify consciously released information (e.g., the number of votes and the
result). We give a conservative extension by probabilistic variables. We
prove useful properties and discuss examples, e.g., problems of linkability
and vote copying, and the core of the privacy-preserving proximity tracing
system DP-3T.

Keywords— Formal Methods. Protocol security. Transition system. Probabilities.
Linkability. Voting. Vote copying. DP-3T.

1 Introduction
Privacy-type properties of security and voting protocols are often specified as trace
equivalence of two processes in some process calculus, such as the Applied-π calcu-
lus [2, 5, 9, 13]. While such approaches have uncovered vulnerabilities in a number
of protocols, they rely on asking whether the intruder can distinguish two variants
of a process; e.g., the intruder should not be able to detect a difference between two
processes differing only by the swap of the votes of two honest voters. It is quite hard
to intuitively understand what such a trace equivalence goal actually entails and what
not, and one may wonder if there are other trace equivalences that should be checked
for. It is a rather technical way to encode the privacy goals of a protocol, and although
one can get insights from a failed proof when the goal is too strong, one cannot easily
see when it is too weak.

To fill the gap between intuitive ideas of the privacy goals and the mathematical
notions used to formalize and reason about them, (α, β)-privacy has been proposed
in [27]. It is a declarative approach based on specifying two formulae α and β in
first-order logic with Herbrand universes. α formalizes the payload, i.e., the “non-
technical” information, that we intentionally release to the intruder, and β describes

1

the “technical” information that he has, i.e., his “actual knowledge”: what (names,
keys, etc.) he initially knows, which actual cryptographic messages he observed and
what he infers from them. He may be unable to decrypt a message, but know anyway
that it has a certain format and contains certain (protected) information, e.g., a vote.

There are, however, two further open problems, which we tackle in this paper.
Problem 1. The main difficulty in reasoning about privacy with trace equivalence

is that one needs to consider two possible worlds: for every step the first system can
make, one has to show that the other system can make a similar step so that they
are still indistinguishable (and so are the executed steps). Many works tame this
difficulty by making the processes just differ in some message-subterms, so everything
except these subterms is equal. One can obtain a verification question that is close to
a reachability problem, which drastically reduces the range of protocols that can be
considered.

What distinguishes (α, β)-privacy from trace equivalence is that it considers one
possible world rather than two. (α, β)-privacy is until now only a static approach that
does not reason about the development of a system, like the influence that the actions
of an intruder can have on a system, and thus does not solve Problem 1 . . . yet.

The first main contribution of this paper is to lift (α, β)-privacy from a static ap-
proach to a dynamic one. We define a transaction-process formalism for distributed
systems that can exchange cryptographic messages (in a black-box cryptography model).
Our formalism

• includes privacy variables that can be non-deterministically chosen from finite
domains (e.g., the candidates in a voting protocol),

• can work also with long-term mutable states (e.g., modeling a hash-key chain),
and

• allows one to specify the consciously released information (e.g., the number of
cast votes and the result).

We define dynamic (α, β)-privacy that holds if (α, β)-privacy holds in every state
of the transition system. Hence, every state is an (α, β)-privacy problem, i.e., a pure
reachability problem that supports a wide variety of privacy goals.

This does not solve all the challenges of automation: (i) (α, β)-privacy is in gen-
eral undecidable, but for most reasonable protocols (including the algebraic model of
cryptography) it is decidable, as it boils down to a static equivalence of frames; (ii) the
set of reachable states is infinite. Symbolic and abstract interpretation methods still
need to be developed.

We argue though that this approach is very helpful for manual analysis, because
it is a novel view of privacy that allows us to characterize the reachable states in a
declarative logical way, and analyze the dynamic (α, β)-privacy question for them. As
a topical case study we consider the core of the privacy-preserving proximity tracing
system DP-3T [33]. We discover counter-examples for dynamic (α, β)-privacy, i.e., the
intruder can make more deductions about the honest agents than released in α. Step
by step, including more details in α, we obtain a characterization of all information
that the system actually discloses, and then prove dynamic (α, β)-privacy. This can
be helpful to understand the actual privacy impact of a system, and is also an answer
to Problem 1.

Problem 2. Many approaches (e.g., quantitative information flow, differential pri-
vacy, etc.) reason about privacy by considering quantitative aspects and probabilities.
Trace equivalence approaches are instead purely qualitative and possibilistic, and so is

2

(dynamic) (α, β)-privacy; this is appropriate for many scenarios, but we give examples
where probability distributions play a crucial role (i.e., in a purely possibilistic setting,
there is no attack, but with probabilities there is).

As second main contribution, we give a conservative extension of (dynamic) (α, β)-
privacy by probabilistic variables. As for non-deterministic variables (used when prob-
abilities are irrelevant or when the intruder does not know the distribution), proba-
bilistic variables can be sampled from a finite domain with a probability distribution,
which may depend on probabilistic variables that were chosen earlier.

As proof-of-concept, we consider some simple examples, and then we show that a
well-known problem of vote copying (e.g., in Helios, where a dishonest voter can copy
an honest voter’s vote) can be analyzed with probabilistic (α, β)-privacy in a new
light: one can observe the influence on the distribution by the dishonest votes, where
possibilistic models would not allow the deduction. The intruder almost becomes
an empirical scientist who needs to decide when the distortion of the probabilities is
significant to deduce how a particular voter voted. Hence, our approach successfully
tackles Problem 2.

We prove two theorems for (dynamic) probabilistic (α, β)-privacy. We define a
notion of extensibility, which says that β does not exclude choices of probabilistic
variables. Theorem 1 says that if we prove possibilistic (α, β)-privacy for an extensible
pair (α, β), then probabilistic (α, β)-privacy holds as well. Theorem 2 proves stability
under background knowledge: if the intruder has additional background information
α0 (e.g., knowledge about the distribution of votes or particular voters), then in any
state with an extensible pair (α, β), probabilistic (α ∧ α0, β ∧ α0)-privacy still holds;
the intruder does not learn more than what he already knew and what we deliberately
release.

As a third contribution, we formalize the relationship between our approach and
trace equivalence (Theorems 3 and 4).

We provide preliminaries in §2. In §3, we lift (α, β)-privacy from static to dynamic.
In §4, we give a conservative extension of (dynamic) (α, β)-privacy with probabilities.
We formalize the DP-3T protocol with dynamic possibilistic (α, β)-privacy in §A, we
show how to formalize voting privacy goals with dynamic (α, β)-privacy in §B, and we
prove the relationship with trace equivalence in §5, and discuss that with information
flow in §6. Finally, in §7, we discuss future work.

2 Preliminaries
We adapt some useful notions from [20, 27, 18].

2.1 Herbrand Logic
(α, β)-privacy is based on specifying two formulae α and β in First-Order Logic with
Herbrand Universes, or Herbrand Logic for short [20]. For brevity, we only list the
differences with respect to standard first-order logic (FOL).

Herbrand Logic fixes the universe in which to interpret all symbols. We introduce
a signature Σ = Σf] Σi] Σr with Σf the set of uninterpreted function symbols,
Σi the set of interpreted function symbols and Σr the set of relation symbols. Let
TΣf be the set of ground terms that can be built using symbols in Σf and let ≈ be
a congruence relation on TΣf ; then we define the Herbrand Universe as the quotient
algebraA = TΣf /≈ = {[[t]]≈ | t ∈ TΣf }, where [[t]]≈ = {t′ | t ∈ TΣf ∧t ≈ t

′}. The algebra

3

fixes the “interpretation” of all uninterpreted function symbols: fA([[t1]]≈, . . . , [[tn]]≈) =
[[f(t1, . . . , tn)]]≈.

The interpreted function symbols Σi and the relation symbols Σr behave as in
FOL, i.e., as function and relation symbols on the universe. To highlight the distinction
between uninterpreted and interpreted function symbols, we write f(t1, . . . , tn) if f ∈
Σf and f [t1, . . . , tn] if f ∈ Σi . Given a signature Σ, a set V of variables distinct from Σ,
and a congruence relation ≈, and thus fixing a universe A, we define an interpretation
I (with respect to Σ, V, and ≈) as a function such that: I(x) ∈ A for every x ∈ V;
I(f) : An 7→ A for every f/n ∈ Σi of arity n; and I(r) ⊆ An for every r/n ∈ Σr of
arity n. Note that the functions of Σf are determined by the quotient algebra. We
define a model relation I |= φ (in words: φ holds under I) as is standard and use
notation like φ |= ψ.

Let Σf contain the constant 0 and the unary function s, and let Σi contain the
binary function +, i.e., the universe contains the natural numbers 0, s(0), s(s(0)), . . .,
which we also write as 0, 1, 2, . . . We characterize + by the axiom αax ≡ ∀x, y. x+ 0 =
x ∧ x+ s(y) = s(x+ y).1

We employ standard syntactic sugar and write, e.g., ∀x. φ for ¬∃x. ¬φ, and x ∈
{t1, . . . , tn} for x = t1 ∨ . . . ∨ x = tn. Slightly abusing notation, we will also consider
a substitution {x1 7→ t1, . . . , xn 7→ tn} as a formula x1 = t1 ∧ . . . ∧ xn = tn.

2.2 Encoding of Frames
We use, as it is customary in security protocol analysis, a black-box algebraic model.
We choose a subset Σop ⊆ Σf of uninterpreted functions to be the operators available
to the intruder. For instance, we generally require 0, s ∈ Σop , so the intruder can
“generate” any natural number. In order to represent the intruder’s knowledge, we use
frames.

Definition 1 (Frame). A frame is written as z = {|m1 7→ t1, . . . ,ml 7→ tl|}, where the
mi are distinguished constants called labels and the ti are terms that do not contain
any mi. We call m1, . . . ,ml the domain and t1, . . . , tl the image of the frame. We
write z{|t|} for replacing in the term t every occurrence of mi with ti, i.e., z works
like a substitution.

The labels mi can be regarded as memory locations of the intruder, representing
that the intruder knows the messages ti. The set of recipes is the least set that contains
m1, . . . ,ml and that is closed under all the cryptographic operators in Σop .

We use two frames concr and struct that always have the same domain D in any
formula. Let concr and struct be unary function symbols, and gen a unary relation
symbol defined by the following axioms:

φgen ≡ ∀r.gen(r)⇔
(
r ∈ D ∨

∨
fn∈Σop

∃r1, . . . , rn.

r = f(r1, . . . , rn) ∧ gen(r1) ∧ . . . ∧ gen(rn)
)

φhom ≡
∧
fn∈Σop

∀r1, . . . , rn. gen(r1) ∧ . . . ∧ gen(rn) =⇒
concr [f(r1, . . . , rn)] = f(concr [r1], . . . , concr [rn])∧
struct [f(r1, . . . , rn)] = f(struct [r1], . . . , struct [rn])

φ∼ ≡ ∀r, s. gen(r) ∧ gen(s) =⇒
concr [r] = concr [s]⇔ struct [r] = struct [s]

1This characterization is only possible due to the expressive power of Herbrand logic (in
FOL one cannot characterize the universe appropriately).

4

Then, the formula

φ ≡ struct [l1] = t1 ∧ . . . ∧ struct [ln] = tn ∧
concr [l1] = t′1 ∧ . . . ∧ concr [ln] = t′n

specifies two frames concr and struct with domain D = {l1, . . . , ln} and the augmen-
tation with the axioms above means that concr and struct are statically equivalent :
for any pair of recipes r and s that the intruder can generate, concr agrees on r and
s iff struct does.

2.3 Alpha-Beta-Privacy
The distinction between payload and technical information is at the core of (α, β)-
privacy. We formalize it by a distinguished subset Σ0 ⊂ Σ of the alphabet, where Σ0

contains only the non-technical information, such as votes and addition, while Σ \ Σ0

includes cryptographic operators. The formula α is always over just Σ0, whereas β is
over the full Σ.

Definition 2 (Model-theoretical (α, β)-privacy [27]). Consider a countable signature
Σ and a payload alphabet Σ0 ⊂ Σ, a formula α over Σ0 and a formula β over Σ
s.t. fv(α) ⊆ fv(β), both α and β are consistent and β |= α. We say that (α, β)-privacy
holds (model-theoretically) iff every Σ0-model of α can be extended to a Σ-model of β,
where a Σ-interpretation I′ is an extension of a Σ0-interpretation I if they agree on
all variables and all the interpreted function and relation symbols of Σ0.

In this paper, we call model-theoretical (α, β)-privacy also static possibilistic (α, β)-
privacy and, in contrast to [27], we allow β to have more free variables than α. All
α formulae we consider in this paper are combinatoric, which means that Σ0 is finite
and contains only uninterpreted constants. Then α has only finitely many models.

The common equivalence-based approaches to privacy are about the distinguisha-
bility between two alternatives. In contrast, (α, β)-privacy represents only one single
situation that can occur, and it is the question what the intruder can deduce about this
situation. To model this, we formalize that the intruder not only knows some concrete
messages, but also that the intruder may know something about the structure of these
messages, e.g., that a particular encrypted message contains a vote v1, where v1 is a free
variable of α. Hence, we define the intruder knowledge by two frames concr and struct ,
where struct formalizes the structural knowledge of the intruder and thus may contain
free variables of α, and the frame for the concrete knowledge concr is the same except
that all variables are instantiated with what really happened, e.g., v1 = 1. The main
idea is that we require as part of β that struct and concr are statically equivalent, which
means that if the intruder knows that two concrete constructible messages are equal,
then also their structure has to be equal, and vice versa. For example, let h ∈ Σ \Σop

and struct = {m1 7→ h(v1),m2 7→ h(v2)} and concr = {m1 7→ h(0),m2 7→ h(1)}.
Every model of β has the property v1 6= v2. Suppose α ≡ v1, v2 ∈ {0, 1}, then (α, β)-
privacy is violated, since, for instance, v1 = 0, v2 = 0 is a model of α, but cannot be
extended to a model of β. However, if α ≡ v1, v2 ∈ {0, 1}∧v1 +v2 = 1, then all models
of α are compatible with β and privacy is preserved.

In the following, we assume β in every state to be implicitly augmented by the
respective α and by the axioms φgen , φhom and φ∼ whereD is the set of labels occurring
in β.

5

3 Transition Systems for Alpha-Beta-privacy
We lift the definition of static (α, β)-privacy to a dynamic one with transition systems.
In §3.1, we describe the syntax of a protocol specification, notably the syntax of
processes. We give the operational semantics for transition systems in §3.2 and define
the state with, amongst other things, the following formulae: the payload formula α,
the technical information formula β and the truth formula γ. We also define δ, which
is a sequence of conditional updates on the cells, and η, which is a probability decision
tree for the random variables. In §3.3, we show how to derive a legitimate linkability
attack on the OSK protocol.

3.1 Syntax
We consider a number a transaction processes and a number of families of memory
cells, which allow us to model the stateful nature of some protocols. These cells can
be used, for instance, to store the status of a key (e.g., valid or revoked).

In the processes, we talk about privacy variables of two sorts: non-deterministic or
random. Each of them has a domain D = {c1, . . . , cn}, where c1, . . . , cn are constants,
i.e., a variable will be instantiated to one of these values. A random variable can
also use Dprob = {c1 : p1, . . . , cn : pn}, where the pi are probabilities s.t. they form a
distribution, i.e., pi ∈ [0, 1] and

∑n
i=1 pi = 1. We might omit the probabilities in Dprob

when the distribution is uniform, and if only some of the pi are made precise, then the
rest of them are uniformly distributed amongst the remaining probability weight. We
consider only finite domains. This is not a restriction, since it is possible to leave the
size of the model as a parameter in all definitions.

Definition 3 (Syntax). A protocol specification consists of:

• a number of families of memory cells, e.g., cell(·), together with an initial value
which is a ground context k([·]), so that initially cell(t) = k([t]),

• a number of transaction processes of the form Pl, where Pl is a left process
according to the syntax below, and

• an initial state (see Definition 5), containing, e.g., domain specific axioms in
the formulae α and β (see preliminaries).

We define left processes and right processes as follows:

Pl ::= mode x ∈ D.Pl Pr ::= snd(t).Pr
| mode x← Dprob .Pl | cell(s) := t.Pr
| rcv(x).Pl | mode φ.Pr
| x := cell(s).Pl | 0
| if φ then Pl else Pl
| νN.Pr

where x ranges over variables; mode is either ? or �, D is the finite domain of a non-
deterministic variable; Dprob is the finite domain of a random variable; s and t range
over terms, cell over families of memory cells, and φ over Herbrand formulae; and N
is a set of fresh variables, i.e., that do not occur elsewhere. In φ formulae, we also
allow the symbol I around terms, e.g., x .

= I(x). This will refer during execution to
the true interpretation of the variables as we define below.

6

“mode x ∈ D” is the picking of a non-deterministic variable, “mode x← Dprob” is
the sampling of a random variable, and both are only released in β if mode is �, and
additionally in α if mode is ?. “rcv(x)” is a standard message input, where the variable
x is replaced with an actual received message. “x := cell(s)” is a cell read where x is
replaced by a value stored in the memory cell. The conditional “ if φ then Pl else Pl”
is standard. “νN.Pr” creates a sequence of fresh variables; it does not recur on Pl but
on Pr, meaning that one can have new variables only once, directly before entering
the right process. “snd(t)” is a standard message output. “cell(s) := t” is a cell write
that stores a term in the cell. “mode φ” releases a formula in α of the current state if
mode is ? and in γ if mode is �. Finally, “0” is the null process.

We may write “ let x = t” for the substitution of all following occurrences of x by
t. Another syntactic sugar concerns parsing of messages. For many (cryptographic)
operators we may have a corresponding destructor and verifier , e.g., we often use the
public functions pair/2, proji/1 and vpair/1 with the properties proji(pair(t1, t2)) ≈ ti,
and vpair(pair(t1, t2)) ≈ true. More generally, let f/n be a destructor (like the proji)
and v/n a corresponding verifier (like vpair); then we may write “try t = f(t1, . . . ,
tn) in P1 catch P2” in lieu of “ if v(t1, . . . , tn)

.
= true then let t = f(t1, . . . , tn).P1 else P2”.

In the try construct, t is substituted in P1 and, as for the else branch in the conditional
construct, we may omit the catch branch when P2 is the null process. Let us now look
at a first example.

Example 1 (Basic Hash). As a first example, we consider the Basic Hash proto-
col [6]: a reader can access a database of authorized tags that carry a mutable state.
We consider n tags in the domain Tags = {t1, . . . , tn}. Let sk/1 and h/2 be private
functions. Each tag T has an immutable secret key sk(T). Let pair/2, vpair/1 and
proji/1 be public functions as before. The tag sends messages of the form of a pair of
a fresh nonce and the hash of the same nonce and its secret key.

Tag

? T ∈ Tags.
νN.snd(pair(N,h(sk(T), N))).0

When the reader receives a message from a tag T , it has first to figure out who T is
by trying all known keys sk(T) of any token T , almost like a guessing attack. In order
not to have to describe this procedure as transactions (it is included in the intruder
model if he knows any keys), we simply define two special private functions for the
reader (extract/1 and vextract/1) that check if a message is valid and extract T from it
such that extract(pair(N,h(sk(T), N))) ≈ sk(T) and vextract(pair(N,h(sk(T), N))) ≈
true.

Reader

rcv(t).
try R = extract(t) in
snd(ok).0

Definition 4 (Requirements on Processes). We require that α formulae are over Σ0

and contain only variables that were released in α. In “mode x ∈ D.Pl”, “mode x ←

7

Dprob .Pl”, “rcv(x).Pl” and “x := cell(s).Pl”, we require that x cannot be instantiated
twice, i.e., Pl contains neither “mode x ∈ D′”, nor “mode x ← D′prob”, nor “rcv(x)”,
nor “x := cell(s′)”. We also require that in different branches of conditionals, the
same random and non-deterministic variables are chosen in the same order and from
the same set of values, and the ordering with receive steps is also the same. This is
formalized by the following function that is only defined when the requirements are met:

varseq(mode x ∈ D.Pl) = mode x ∈ D.varseq(Pl)
varseq(mode x← Dprob .Pl) = mode x← D.varseq(Pl)
varseq(if φ then P1else P2) = varseq(P1)
if varseq(P1) = varseq(P2) and undefined otherwise

varseq(rcv(t).Pl) = rcv(t).varseq(Pl)
varseq(_.Pr) = varseq(Pr)

varseq(0) = 0

Note that in the case for Dprob , the right-hand side uses D, which is supposed to
mean drop the probabilities from the domain: two branches are allowed to assign
different probabilities to the elements of the domain, but it has to be the same do-
main. We also require that when a random variable y is sampled inside a conditional
“ if φ then Pl else Pl”, φ can only contain conjunctions of the form x

.
= ci, where x

is a random variable that has previously been sampled, and if y is an α variable, then
also x must be.

Finally, we require that every transaction in a protocol specification is a closed
process, i.e., it has no free variables and the binding occurrence of a variable is the
first occurrence where in the context it is not free (so further occurrences do not open
a new scope):

fv(mode x ∈ D.Pl) = fv(Pl) \ {x}
fv(mode x← Dprob .Pl) = fv(Pl) \ {x}

fv(rcv(x).Pl) = fv(Pl) \ {x}
fv(x := cell(s).Pl) = (fv(s) ∪ fv(Pl)) \ {x}

fv(if φ then P1else P2) = fv(φ) ∪ fv(P1) ∪ fv(P2)

fv(νN.Pr) = fv(Pr) \N

, and the free variables of a right process are all variables occurring in it.

3.2 Operational Semantics
We describe the operational semantics that lifts the definition of static (α, β)-privacy to
a dynamic one with transition systems. We define possibilistic dynamic (α, β)-privacy,
which intuitively holds if (α, β)-privacy holds in every state of the transition system.
Let us start by defining the states of our transition system, where, for simplicity,
we already include the tree η that we will need in Section 4, in which we discuss
probabilities explicitly.

Definition 5 (State). A state is a tuple (α, β, γ, δ, η), where:

• formula α over Σ0 is the released information,

• formula β over Σ is the technical information available to the intruder, such
that β is consistent and entails α (thus also α is consistent and fv(α) ⊆ fv(β)2),

2[27] only allowed that fv(α) = fv(β), but our constructions do not require it.

8

• formula γ over Σ0 is the truth, which is true for exactly one model with respect
to the free variables of α and Σ0, and γ ∧ β is consistent,

• δ is a sequence of conditional updates of the form cell(s) := t if φ, where s and
t are terms and φ is a formula over Σ, and its free variables are a subset of the
free variables of α, and

• η is a probability decision tree, which, for a sequence of random variables
x1, . . . , xn, has n + 1 levels where every inner node on the i-th level is labeled
xi, and the leaves on level n+ 1 are unlabeled. To each variable xi we associate
a domain Di = {cl1 , . . . , cli}. Every xi node in η has li children, and every
branch from a node to its children is labeled with one of the cli and a probability,
so that the probabilities under a variable sum up to 1. In the following, we will
use η in such a way that the first k levels are the random variables of α, and
the remaining levels the random variables of β.3 If there are no probabilistic
variables, we may omit the tree η.

The formulae α and β play the same roles than in the previous section. To define
our transition system, we introduce the formula γ that represents the “truth”, i.e.,
the real execution of a protocol. For instance, for a voting protocol, α may contain
vi ∈ {0, 1} (i.e., that vote vi is one of these values), β may contain cryptographic
messages that contain vi, and γ may contain vi = 1, i.e., what the vote actually
is (and this is not visible to the intruder). The consequences of γ is what really
happened, e.g., the result that one can derive from the votes in γ is the true result of
the election. The sequence δ represents in a symbolic way all updates that a protocol
may have performed on the memory cells: when updates are under a condition, the
intruder does not know whether they where executed, so each update operation in δ
come with a condition φ; these entries in general contain variables when the intruder
does not know the concrete values. We describe η and the probabilistic mechanisms
in Section 4.

During the execution of a transaction, the intruder will in general not know what
exactly is happening, in particular in a conditional, it will not be generally clear
which branch has been taken. Therefore, we define now the notion of possibilities that
represent all possible choices, what that means for the condition and the structure of
messages. One of the possibilities is marked to indicate which one is actually true.

Definition 6 (Possibility, configuration). A possibility (P, φ, struct) consists of a pro-
cess P , a formula φ and a frame struct representing the structural knowledge attached
to this process P . A configuration is a pair (S,P), where S is a state and P is a
non-empty finite set of possibilities s.t.:

• fv(P) is a subset of the free variables of S,
• exactly one element of P is marked as the actual possibility, which we depict by

underlining that element,

• the formulae φ1, . . . , φn of P are mutually exclusive (i.e., |= ¬φi∨¬φj for i 6= j)
and β implies their disjunction (i.e., β |= φ1 ∨ . . . ∨ φn), and

• β ∧ γ |= φ for the condition φ of the marked possibility.
3Note that the tree has exponential size in the number of variables, so for implementation

in automated tools, a more efficient representation should be chosen, but for the conceptual
level, this is irrelevant.

9

In a state, we can start the execution of any transaction from the protocol descrip-
tion as follows:

Definition 7 (Initial configuration). Consider a configuration (S,P), a transaction
process Pl, a substitution θ that substitutes the fresh variables N (from a νN.Pr speci-
fication) with fresh constants from Σ\Σ0 that do not occur elsewhere in the description
or in (S,P), and that replaces all other variables with fresh variables that do not occur
elsewhere in the description or in (S,P). The initial configuration of Pl w.r.t. (S,P)
and θ is (S ′, {(θ(Pl), φ, struct) | (0, φ, struct) ∈ P}).

From this initial configuration, we can get to a new state (or several states) by
the following normalization and evaluation rules, basically working off the steps of the
process Pl. We first define these rules and then give a larger example in Section 3.3.

3.2.1 Normalization Rules

We have six normalization rules for a configuration: redundancy, cell reads, condi-
tional, cell write, redundant entries in δ, release in α. Recall that in a configuration,
we have always one possibility being marked, which we denote by underlining it; in
the following rules however, if no possibility is underlined, then the rule applies for all
possibilities, no matter if marked or not.

Redundancy We can always remove redundant possibilities when the intruder
knows that a condition is inconsistent with β (this can never happen to the marked
possibility, as the truth is always consistent with β):

{(P, φ, struct)} ∪ P =⇒ P if β |= ¬φ

Cell Reads Let C[·] be the initial state of cell, and let the cell operations in the
current state S be cell(s1) := t1 if φ1, . . . , cell(sn) := tn if φn. Then, every configuration
that starts with the reading of a memory cell is normalized via:

{(x := cell(s).Pl, φ, struct)} ∪ P =⇒
{(if s = sn ∧ φn then let x := tn.Pl else

if s = sn−1 ∧ φn−1 then let x := tn−1.Pl else

. . .

if s = s1 ∧ φ1 then let x := t1.Pl else

let x := C[s].Pl, φ, struct)} ∪ P

The same rule holds if the possibility is marked (and then the transformed possibility
is the marked one).

Conditional A conditional process is normalized via:

{(if ψ then P1 else P2, φ, struct)} ∪ P =⇒
{(P1, φ ∧ ψ, struct), (P2, φ ∧ ¬ψ, struct)} ∪ P

If the process “ if ψ then P1 else P2” is marked, then, by construction, β ∧ γ |= φ, thus
either β ∧ γ |= φ ∧ ψ or β ∧ γ |= φ ∧ ¬ψ. Accordingly, exactly one of the alternatives
is marked.

10

Cell write A cell write process is normalized via:

{(cell(s) := t.Pr, φ, struct)} ∪ P =⇒ {(Pr, φ, struct)} ∪ P

where δ is augmented with the entry cell(s) := t if φ. The order of these entries in δ
depends on which normalizations are performed first, e.g., if we have {(cell(s1) := t1.0,
φ1, struct1), (cell(s2) := t2.0, φ2, struct2)}, then normalization yields {(0, φ1, struct1),
(0, φ2, struct2)}. Depending on whether we have started normalizing the first or the
second possibility, the resulting δ is either δ ≡ cell(s1) := t1 if φ1, cell(s2) := t2 if φ2

or δ ≡ cell(s2) := t2 if φ2, cell(s1) := t1 if φ1.
However, both orderings are in some sense equivalent, because φ1 and φ2 are

mutually exclusive, so at most one of them can happen in any given model I of β.
A similar argument holds for any critical pair of applicable normalization rules, and
thus an arbitrary application strategy of the normalization rules may be fixed for the
uniqueness of the definition.

Redundant entries in δ An entry cell(s) := t if φ can be removed from δ if
β |= ¬φ.

Release Given a process that wants to release some information φ0, if the possibility
is marked then we add it to α if mode is ? or to γ if mode is �, otherwise we ignore it:

{(mode α0.Pr, φ, struct)} ∪ P =⇒ {(Pr, φ, struct)} ∪ P

Recall that in process specifications, the formula φ0 may contain subterms of the form
I(t), e.g., x = I(x). When adding to α or to γ, this subterm must be replaced by the
actual value I(t) where I is the unique model of γ, i.e., the truth.

3.2.2 Evaluation Rules

We call a set of configurations normalized if normalization rules have been applied as
far as possible. The first step of a normalized set of configurations is either a random
sampling or non-deterministic choice, a send or a receive step, or they finished—since
all other constructs are acted upon by the normalization rules. The following eval-
uation rules can produce multiple successor configurations (due to non-deterministic
choice or random sampling), and they can produce non-normalized configurations. In
this case, before another of the evaluation rules can be taken, the configurations have
to be normalized again.

Non-deterministic choice If the first step in the marked process is a non-
deterministic choice, then in fact, all processes must start with a non-deterministic
choice of the same variable x and from the same domain D. This is because we re-
quired that varseq is defined and the set of configurations is normalized. In this case,
the evaluation is defined as a non-deterministic configuration transition for every c ∈ D
as follows:

((α, β, γ, δ, η),{((mode x ∈ D.P1, φ1, struct1), . . . ,
(mode x ∈ D.Pn, φn, structn))}) =⇒

((α′, β′, γ′, δ, η),{(P1, φ1, struct1), . . . , (Pn, φn, structn)})

where α′ = α ∧ x ∈ D if mode is ? and α′ = α if mode is �, β′ = β ∧ x ∈ D and
γ′ = γ ∧ x .

= c for whatever mode.

11

Random Sampling For the same reason as before, if the first step in the marked
process is a random sampling, then all processes must start with a random choice of the
same variable x. They may be sampled at different probabilities Dprob,1, . . . , Dprob,n,
but the underlying set of elements D is identical. Then, for every c ∈ D we have a
configuration transition as follows:

((α, β, γ, δ, η),{((mode x← Dprob,1.P1, φ1, struct1), . . . ,
(mode x← Dprob,n.Pn, φn, structn))}) =⇒

((α′, β′, γ′, δ, η′),{(P1, φ1, struct1), . . . , (Pn, φn, structn)})

where α′ = α ∧ x ∈ D if ? is specified and α′ = α otherwise, β′ = β ∧ x ∈ D and
γ′ = γ ∧ x .

= c for whatever mode.
The tree η′ is obtained from η as follows. First, let us describe the case that x has

been sampled when mode was set to �. Then, we replace the leaves of η with a new
level of nodes labeled x, each of which have |D| leaves as children. The probabilities
on the new branches are determined as follows: for every x-labeled node, the path
from the root determines an interpretation of all the random variables. We check
which of the conditions of φ1, . . . , φn agree with this interpretation. If there is more
than one, say φi and φj , then Dprob,i = Dprob,j (due to our requirement that the
conditions for a probability distribution for a random variable can only depend on
the value of earlier random variables). Thus we can label the children of a given
node accordingly.Note that it may happen that no φi agrees with the node; this is
when the respective interpretation has already been excluded by α or β; in this case,
the probability distribution is immaterial in the following, we just set it to uniform
distribution.

If x has been sampled whenmode was set to ?, i.e., is an α variable, the construction
of η′ is slightly different: we introduce the new level below the last α-variable in η,
where the children of an x-node in η′ are n copies of the subtree of the corresponding
node in η. This is possible since the choice of an α variable by construction can only
depend on other α variables.

Example 2 (Probability tree). Consider the simple process that samples in that order
a variable x with mode set to ?, a variable y with mode set to � and a variable z with
mode set to ?:

Example of a probability tree

? x← {1: 1
3
, 2: 1

3
, 3: 1

3
}.

� y ← {1: 1
4
, 2: 3

4
}.

? z ← {1: 1
2
, 2: 1

2
}

With our evaluation rules, this produces the probability decision tree in Figure 1
(note that the nodes with variables z appears before the nodes with variable y because
z has been sampled with mode set to ?):

To see an another example of an η tree, see Figure 4.

Marked process receives Also in this case, if one process starts with a receive,
all the others start with a receive as well. Also here, we have several possible state
transitions, since the intruder can freely choose a message to send to the processes.
Let r be any recipe that the intruder can generate according to β, i.e., β |= gen(r).

12

x

z

y y

z

y y

z

y y

1: 1
3

1: 1
2

1: 1
4

2: 3
4

2: 1
2

1: 1
4

2: 3
4

2: 1
3

1: 1
2

1: 1
4

2: 3
4

2: 1
2

1: 1
4

2: 3
4

3: 1
3

1: 1
2

1: 1
4

2: 3
4

2: 1
2

1: 1
4

2: 3
4

Figure 1: Example of a probability tree

For every such r, we have a configuration transition:

{(rcv(x).P1, φ1, struct1), . . . , (rcv(x).Pk, φk, structk)} →

{(P1[x 7→ struct1[r]], φ1, struct1), . . . , (Pk[x 7→ structk[r]], φk, structk)}

Note that our construction requires that in any rcv(x).Pk, x is a variable that did
not occur previously in the same process, i.e., we forbid rcv(x).rcv(x).Pk, as explained
in Definition 4.

Marked process sends If the marked process sends a message next, this is ob-
servable, and all processes that do not send are ruled out. Thus, we have the rule

{(snd(m1).P1, φ1, struct1), . . . , (snd(mk).Pk, φk, structk)} ∪ P →

{(P1, φ1, struct1 ∪ {|l 7→ m1|}), . . . , (Pk, φk, structk ∪ {|l 7→ mk|})}

where l is a fresh label and P is a set of configurations that are finished, and we
augment β by:

φ1 ∨ . . . ∨ φk ∧ concr [l] = γ(m1) ∧

∃i ∈ {1, . . . , k}.
k∨
j=1

i = j ∧ struct [l] = mj ∧ φj

This is because the intruder can now rule out all possibilities in P and their conditions
(so one of the φi in the remaining processes must be true). Moreover, the intruder
knows a priori only that the message they receive, concretely γ(m1), is one the mi and
this is the case iff φi holds.

Marked process has terminated If the marked process has terminated, then
the others have either also terminated or start with a send step (since other cases are
already done). If all processes are terminated, we are done, otherwise the intruder can

13

rule out the processes that are not yet done:

{(0, φ1, struct1), . . . , (0, φk, structk)} ∪ P →

{(0, φ1, struct1), . . . , (0, φk, structk)}

where P is a set of configurations that start with a send, and we augment β by
φ1 ∨ . . . ∨ φk. In any case, we have thus finished the normalization and evaluation
rules, and thus have reached a state.

After defining transition systems, let us define dynamic (α, β)-privacy. Note that
this definition is possibilistic, so we refer to states without regards to η:

Definition 8 (Dynamic (α, β)-privacy). Given a configuration (S,P), a transaction
process Pl, and a substitution θ as in Definition 7, the successor states are defined
as all states reachable from the initial configuration of Pl using the normalization and
evaluation rules. The set of reachable states of a protocol description is the least
reflexive transitive closure of this successor relation w.r.t. a given initial state of the
specification (the possibilities being initialized with (0, true, ∅)).

We say that a transition system satisfies dynamic (α, β)-privacy iff static (α, β)-
privacy holds for every reachable state.

3.3 Linkability attack on OSK Protocol
As a second example, we consider the OSK protocol [28]. Consider a finite set of tags
Tags = {t1, . . . , tn}, and let h/1 and g/1 be two public functions (modeling one-way
functions). Consider also two families of memory cells: one for the tags, r(·), one for
the reader, state(·), whose initial values are both init(·). Each tag T owns r(T) and
the reader owns the entire family state(T), i.e., T ’s “database”. The tag updates its
state r(T) by applying a hash to it at each session and sending out the current key
under g. The privacy goal is thus that the intruder cannot find out anything besides
the fact that this action is performed by some tag T ∈ Tags, i.e., that he cannot link
two or more sessions to the same tag.

Tag

? T ∈ Tags.
Key := r(T).
r(T) := h(Key).
snd(g(Key)).0

The reader should receive a message of the form g(hj(init(T))), and would accept
this message, if its own database contains the value hi(init(T)) for some i ≤ j (to
prevent replay). Like in Example 1, the server has to perform a kind of guessing
attack to figure out T and j − i. To model this simply we introduce private functions
getT/1, vgetT/1, extract/2, vextract/2 with the algebraic properties in Figure 2. The
getT function extracts the name (if it is a valid message, as checked with vgetT) and
extract extracts the current key (if it is a higher hash than the given key, as checked
with vextract). For applying the verifiers, we use the syntactic sugar try again to
formulate the reader, who when successful, updates its own state and sends an ok

14

getT(g(init(T))) ≈ init(T)

getT(g(h(X))) ≈ getT(g(X))

vgetT(g(init(T))) ≈ true

vgetT(g(h(X))) ≈ vgetT(g(X))

extract(g(init(T)), init(T)) ≈ init(T)

extract(g(h(X)), init(T)) ≈ h(extract(g(X), init(T)))

extract(g(h(X)), h(X ′)) ≈ h(extract(g(X), X ′))

vextract(g(init(T)), init(T)) ≈ true

vextract(g(h(X)), init(T)) ≈ vextract(g(X), init(T))

vextract(g(h(X)), h(X ′)) ≈ vextract(g(X), X ′)

Figure 2: Algebraic properties for the OSK example.

message:
Reader

rcv(x).
try T = getT(x) in
s := state(T).
try s′ = extract(x, s) in

state(T) := h(s′).
snd(ok).0

We illustrate the semantics by showing how to reach a state of the OSK protocol
that violates (α, β)-privacy. The initial state is S0 = {α0 ≡ true, β0 ≡ true, γ0 ≡ true,
δ0 ≡ true}; we omit η0 since this example is purely possibilistic. We start with a
transition of process Tag , and we thus get to the following possibilities (with a variable-
renamed copy of Tag): {(? T1 ∈ Tags. Key1 := r(T1). r(T1) := h(Key1). snd(g(Key1)). 0,
true, {})}. The first step is choosing a value from Tags for T1, i.e., we have |Tags|
successor states. Let us focus on the choice t1, and thus γ0 is augmented by T1

.
= t1,

and α and β are augmented by T1 ∈ Tags. Then we apply the rule for cell reads. Since
δ0 is still empty, we just replace Key1 by init(T1) in the rest of the process. We can now
apply the rule for cell write. This means δ0 is augmented by r(T1) := h(init(T1)) if true.
is sending a message and we thus augment β by concr [l1] = g(init(t1)) ∧ struct [l1] =
g(init(T1)). There is just one possibility in our configuration and it has terminated, so
the transaction is completed, getting to the state shown in the first line of Figure 3
(we refer to the α in that line as α1 and so on).

For the second transition, we use Tag once more, the new possibilities being
{(? T2 ∈ Tags. Key2 := r(T2). r(T2) := h(Key2). snd(g(Key2)). 0, true, struct)}. Let us
consider the transition where we pick for the choice of T2 the same tag t1. This time,
the cell read introduces a case split:

if T2
.
= T1 then let Key2 = h(init(T1)) . . . else let Key2 = init(T2)

The normalization of if splits this into two possibilities: {(Pa, T1
.
= T2, struct1), (Pb,

T1 6
.
= T2, struct1)} where Pa and Pb are instantiations of the process r(T2) := Key2.

snd(g(Key2)) by Key2 = h(init(T1)) and Key2 = init(T2), respectively, and where

15

α
β

γ
δ

1
T
1
∈
T
ag
s

co
n
cr

[l
1
]

=
g
(i
n
it

(t
1
))
∧
st
ru
ct

[l
1
]

=
g
(i
n
it

(T
1
))

T
1
. =
t 1

r(
T
1
)

: =
h

(i
n
it

(T
1
))

if
tr
u
e

2
T
2
∈
T
ag
s

co
n
cr

[l
2
]

=
g
(h

(i
n
it

(t
1
))

)
∧
∃i
∈
{1
,2
}.

T
2
. =
t 1

r(
T
2
)

: =
h

(h
(i
n
it

(T
1
))

)
if
T
1
. =
T
2

i
=

1
∧
st
ru
ct

[l
2
]

=
g
(h

(i
n
it

(T
1
))

)
∧
T
1
. =
T
2

r(
T
2
)

: =
h

(i
n
it

(T
2
))

if
T
1
6. =
T
2

∨
i

=
2
∧
st
ru
ct

[l
2
]

=
g
(i
n
it

(T
2
))
∧
T
1
6. =
T
2

3
co
n
cr

[l
3
]

=
ok
∧
∃i
∈
{1
,2
}.

st
at
e(
T
1
)

: =
h

(i
n
it

(T
1
))

if
T
1
. =
T
2

i
=

1
∧
st
ru
ct

[l
3
]

=
ok
∧
T
1
. =
T
2

st
at
e(
T
2
)

: =
in
it

(T
2
)
if
T
1
6. =
T
2

∨
i

=
2
∧
st
ru
ct

[l
3
]

=
ok
∧
T
1
6. =
T
2

4
T
1
. =
T
2

st
at
e(
T
1
)

: =
h

(i
n
it

(T
1
))

if
T
1
6. =
T
2

F
ig
ur
e
3:

E
xe
cu
ti
on

of
th
e
O
SK

P
ro
to
co
l

16

struct1 is the frame from the first transaction. The case where T2
.
= T1 is marked

since this is the reality. The normalization of the cell writes augments δ1 by two lines
(in either order): r(T2) := h(h(init(T1))) if T2

.
= T1 and r(T2) := h(init(T2)) if T2 6= T1.

It remains to send the outgoing, message and the structural information is now dif-
ferent, leading to the β in line 2 of Figure 3. The corresponding structural knowledge
of each possibility is updated with the respective version, let us call them structa and
structb in the following. Since they both have terminated, we have reached the end of
the second transaction.

The new possibilities are {(Reader(3), T1
.
= T2, structa), (Reader(3), T1 6

.
=T2, structb)}

after a Reader transition, where Reader(3) is a renaming of the reader process variables
with index 3. We evaluate the receive step and here we have a choice of every recipe
that the intruder can generate: we use l2, i.e., the message from the second token
transaction. Note that structa[l2] = g(h(init(T1))) and structb[l2] = g(init(T2)), which
is what we insert for the received message x3 in the respective processes. When the
processes (successfully) try getT(x3), we get thus let T3 = T1 and let T3 = T2, respec-
tively. The state lookup gives the respective initial value, since we have not yet written
anything to the state cells. Thus also trying extract(T, s) will succeed and either pro-
duce s3 := h(init(T1)) or s3 := init(T2). We thus amend δ by the two lines (in either
order) state(T1) := h(h(init(T1))) if T1

.
= T2 and state(T2) := h(init(T2)) if T1 6

.
= T2.

In both processes, we are now at a sending step. Even if the message is the same in
both processes, we still have to consider a case distinction since the conditions differ,
as shown in line 3 of Figure 3 (this formula can be simplified, of course). Again, both
processes are empty, so we have finished the third transaction.

Finally, we have {(Reader(4), T2
.
= T1, struct

′
a), (Reader(4), T2 6= T1, struct

′
b)} af-

ter performing another Reader process, with Reader(4) again being a renaming of
variables with index 4 and struct ′a and struct ′b are the augmented structs frames with
the last ok-message. We consider the intruder choosing l1 as a recipe for the received
message, i.e., struct ′a[l1] = struct ′b[l1] = g(h(init(T1))) for variable x4. The next op-
eration tries getT(x4), which gives T1 in any case. Looking up the state(T1) gives
s4 := h(h(init(T1))) in the first possibility (due to T1

.
= T2), and the initial value

s4 := init(T1) in the second. Thus, the next try succeeds only for the second pos-
sibility, and we have: {(0, T2

.
= T1, struct

′
a), (snd(ok).0, T2 6

.
= T1, struct

′
b)}. Now, the

evaluation rule for the marked possibility being finished tells us: the second possibility
cannot be the case because it would send a message, and the intruder can see that
this does not happen, so we can augment β by the condition of the only remaining
possibility, i.e., T1

.
= T2. That is indeed a violation of privacy since we can now exclude

all those models of α where T1 6
.
= T2.

4 Probabilistic privacy
In the previous section, we introduced random privacy variables, but we did not fully
explain their purpose and functioning yet. For some problems that satisfy dynamic
possibilistic (α, β)-privacy, we might want to refine the analysis. Extending all the
models of α to a model of β does not mean that we do not leak information on the
likelihood of a specific model of α through the technical information in β.

17

4.1 Probabilistic Alpha-Beta-Privacy
We thus propose a conservative extension first of static and then of dynamic (α, β)-
privacy in order to add probabilities. We still consider a protocol specification, but,
while the problems that we considered before had only non-deterministic privacy vari-
ables, we now consider problems that also have some privacy variables that can be
sampled according to a probability distribution. These random variables are orga-
nized in a probability decision tree as defined via η in the previous section. We define
the probability of a model of α, and intuitively, if the models of β yield a different
probability for the model of α that they extend, then β violates the privacy of α in a
probabilistic sense. However, the difference in probabilities might not be significant,
so it is left to the modeler’s appreciation to define an acceptable threshold.

Before giving formal definitions, we illustrate the interest of a probabilistic def-
inition of (α, β)-privacy by means of a simple example, the well-known Monty Hall
problem that originates from the game show “Let’s Make a Deal” [29].

Example 3 (Monty Hall problem). There are three doors, and only one of these doors
hides a valuable prize; the two other doors hide joke prizes4. We model this situation
with a random variable x. The prize has an equal probability to be found behind each
door. We write x← {1, 2, 3} to say that x is sampled from these values with a uniform
distribution. The trader (this is “Let’s Make a Deal” lingo) has to choose a door and
communicate (send) their choice to the host, Monty Hall. Monty then opens one of the
two doors that were not chosen by the trader and that does not hide the prize. However,
from the point of view of the trader, Monty chooses a door randomly between the two
remaining doors. Monty then gives the trader the choice whether they want to switch
door or not, before ultimately the two remaining doors are opened and the location of
the prize is revealed. Let us formalize this with a dynamic probabilistic (α, β)-privacy
and define the Monty process.

Monty

? x← {1, 2, 3}.
rcv(choice).
? open← {1, 2, 3} \ {x, open}.
? x 6 .= open.
snd(open).0

open← {1: 1
3
, 2: 1

3
, 3: 1

3
} \ {x, open} is syntactic sugar for:

if x
.
= 1 then

if choice
.
= 2 then open← {1: 0, 2: 0, 3: 1}.

else if choice
.
= 3 then open← {1: 0, 2: 1, 3: 0}.

else open← {1: 0, 2: 1
5
, 3: 1

2
}.

else if x
.
= 2 . . .

Before the execution of the process, α0 ≡ true. After, it is revealed as part of α that
the prize was put behind a door chosen with a uniform probability. It is also revealed
which door has been opened, thus which door does not hide the prize. Let us now
consider one concrete reachable state after the execution of the Monty process, namely

4The joke prizes were called zonk in the game

18

one where the intruder in the role of trader chose, or sent, 1 for the choice, the prize
is behind the third door and Monty opened the second door: γ ≡ x

.
= 3 ∧ choice

.
=

1 ∧ open
.
= 2. We then have:

α ≡ x ∈ {1, 2, 3} ∧ x 6 .= 2, i.e., α ≡ x ∈ {1, 3}

Intuitively, the trader thinks they have an equal chance to find the prize either
behind the door that they initially choose or behind the other door. However, since
they know the way Monty chooses the door to open, β and η are as follows, where l is
a fresh label generated during the evaluation of the transition:

β ≡ α ∧ concr [l] = 2 ∧ struct [l] = open

x

open open open

1: 1
3

1: 0
2: 1

2
3: 1

2

2: 1
3

1: 0
2: 0 3: 1

3: 1
3

1: 0
2: 1 3: 0

Figure 4: Probability tree for the Monty Hall problem

We colored in red the nodes for which no model exists in the considered state, e.g.,
the branch for which x .

= 2 is not supported by any valid model. The table below shows
the models of α and their extension to β for this concrete reachable state where AP
stands for the absolute probability, i.e., the multiplication of the probability of events
for that model, and NP for the normalized probability, i.e., so that the column sums
up to 1. Remember that this does not yet follow from our transition systems definition,
but rather motivates the following definition of the probability of the models of α and
β. We can see now the well-known glitch in the Monty Hall problem: according to α,
the probability of x .

= 1 and that of x .
= 3 are both 1

2
, but according to β, x .

= 1 has
probability 1

3
whereas x .

= 3 has 2
3
, i.e., β has been leaking information about x that

was not contained in α. This reflects the advice that in this situation the trader should
switch to door 3.

Since we propose below a conservative extension, we want to be able to talk about
models that differ only by the choice of non-deterministic variables. To this aim, we
define an equivalence relation for the interpretations over the free random variables of α
(respectively, of β): given two models of α (of β) I1 and I2, I1 =r I2 iff I1(x) = I2(x)
for all x ∈ fvr(α) (for all x ∈ fvr(β)) where fvr(·) refers to free random variables of
a formula. We define an equivalence class [I] ([I′]) induced by this relation for all
Σ0-interpretations I of α (for all Σ-interpretation I′ of β).

Since there are finitely many free random variables of α (of β), there are finitely
many equivalence classes of probabilistic models of α, i.e., there exist I1, . . . , Ik, s.t. k ∈
N+, such that [I1] ∪ . . . ∪ [Ik] is a partition of the models of α (respectively, there exists

19

α-Model α-AP α-NP β-Model β-AP β-NP

x = 1 1
3

1
2

open = 1 impossible
1
3open = 2 1

6
open = 3 impossible

x = 3 1
3

1
2

open = 1 impossible
2
3open = 2 1

3
open = 3 impossible

Table 1: Models of α and their extensions to β for the Monty Problem

I1, . . . , Ik′ , s.t. k′ ∈ N+, such that [I1]∪ . . .∪ [Ik′] is a partition to their extensions to
models of β).

Definition 9 (Absolute and Normalized Probabilities). Given two formulae α and β,
and a probability decision tree η, an interpretation class [I] corresponds to a unique
path in η starting at the root node, and we define its absolute probability Pabs,η([I])
as the product of the probabilities along the path. Note that if [I] is an α interpretation
class, the path traverses just the upper part of η that corresponds to the free variables
of α while if [I] is a β interpretation the path reaches a leaf.

Let [I1], . . . , [Ik] be the model classes of α (of β); we define the normalized prob-
ability of each interpretation class as:

Pη([Ii]) =
Pabs,η([Ii])∑k
j=1 Pabs,η([Ij])

.

Note that Pη([I]) is defined so it does not depend on the choice of the representative
I of the equivalence class [I].

We allow β to have more free variables than α. In particular, it allows β to have
more free random variables than α. The intuitive idea to formulate probabilistic (α, β)-
privacy as a conservative extension is to require that the sum of the probabilities of
the equivalence classes of β, when restricted to the free variables of α and the payload
alphabet Σ0, is equal to the probabilities of the equivalence classes of α:

Definition 10 (Probabilistic (α, β)-privacy). Let Σ0 (Σ and consider a formula α
over Σ0 and a formula β over Σ, s.t. β |= α, fv(α) ⊆ fv(β), and both α and β are
consistent, and η is the probability decision tree. We say that (α, β)-privacy holds
probabilistically iff (α, β)-privacy holds and

Pη([I0]) =

k∑
i=1

Pη([Ii])

for every model I0 of α, and for the models [I1], . . . , [Ik] of β (partitioned by equiva-
lence class) s.t. Ii|Σ0,fv(α) = I0 for every i ∈ {1, . . . , k}. We say that (α, β)-privacy
holds probabilistically and dynamically iff (α, β)-privacy holds probabilistically in ev-
ery reachable state.

Intuitively, this means that the probability of every model of β that agrees on the
payload part, when considered together, equals the probability of the original model
of α. With this definition, we can see that the Monty Hall problem from Example 3

20

satisfies possibilistic (α, β)-privacy in the state we considered but breaks probabilistic
(α, β)-privacy. Now, let us see how we could correct the protocol:

Example 4 (Alternative Monty Hall). Suppose the door that Monty opens after the
choice of the trader is taken randomly between the doors that were not chosen by the
trader, thus including the one hiding the prize (even though this might shorten the
game). We propose the process:

Alternative Monty

? x← {1, 2, 3}.
rcv(choice).
? open← {1, 2, 3} \ {choice}.
if open

.
= x then

? x
.
= open.

else
? x 6 .= open.

snd(open).0

We consider the same reachable state as in Example 3. α, β and γ are similar.
The probability tree has a similar form but we update the probability on the branches
accordingly. Let us look again at the models of α and their extension to β. This time
again, the probability of x .

= 1 and x .
= 3 is both 1

2
according to α and so it is according

to β. β is not leaking information about x that was not contained in α anymore. This
reflects that the trader cannot adopt a better strategy.

The difference between the original Monty Hall problem in Example 3 and the
alternative Monty Hall problem in Example 4 is that the choice of the door that
Monty opens is independent of where the prize is located in the second case. In other
words, the free random variable of β, namely the choice of the opened door, could
have been 2 or 3, whatever the free random variable of α, namely the location of the
prize; that is, the choice of the location of the prize does not influence the probability
distribution of the choice of the opening of the door. We can actually identify a
condition under which if (α, β)-privacy holds possibilistically, then (α, β)-privacy also
holds probabilistically:

Definition 11 (Extensibility). Let Σ0 (Σ and consider a formula α over Σ0 and
a formula β over Σ, s.t. β |= α, fv(α) ⊆ fv(β) and both α and β are consistent.
We say that a pair (α, β) is extensible if it is possible to extend every model of α by
a number of models of β that cover the whole domain of the free random variables
occurring exclusively in β, i.e., for all I0 |= α. for all σ : y1, . . . , yk 7→ dom(y1)× · · ·×
dom(yk). there exists I |= β ∧ σ such that I|Σ0,fv(α) = I0.

The definition of extensibility does not refer to probabilities or to a probability
tree η. When we have extensibility, it means that the [I1], . . . , [Ik] are exactly all the
leaves under I0, so the probability of that subtree is 1, as can be seen by induction. As
a consequence, the absolute probability of [I0] is the same as the sum of the absolute
probabilities of the [Ii].

We can prove that if (α, β)-privacy holds possibilistically for (α, β) that is extensi-
ble, then (α, β)-privacy also holds probabilistically. This is only a sufficient condition:
probabilistic (α, β)-privacy may hold, even if (α, β) is not extensible.

21

Theorem 1. Let Σ0 (Σ and consider a formula α over Σ0 and a formula β over Σ,
s.t. β |= α, fv(α) ⊆ fv(β) and both α and β are consistent. Let η be the probability
decision tree. If (α, β)-privacy holds possibilistically, i.e., for every I0 |= α, there
exists I |= β such that I|Σ0,fv(α) = I0, and (α, β) is extensible, then (α, β)-privacy
holds probabilistically. We extend this theorem to dynamic (α, β)-privacy as expected.

4.2 The intruder as an empirical scientist
Probabilistic (α, β)-privacy is a “sharp sword”: a relatively small shift in probabilities
due to the information in β is already a violation of (α, β)-privacy, while it may be too
insignificant to be beneficial for the intruder. One wants to avoid even minimal shifts,
because in many areas of security we have seen how an intruder can actually “amplify”
tiny imperfections in a system, so that they become significant. Nonetheless, it can
be insightful to analyze also a system that does not satisfy probabilistic (α, β)-privacy
for a weaker goal. In particular, we want to regard now the intruder as an empiri-
cal scientist who conducts an experiment, where they manipulate some “independent
variables”, and try to observe a significant effect.

The Helios voting protocol originally allowed an intruder, as a dishonest voter, to
copy votes of others [10]. For a small number of voters, this can lead to a violation
of possibilistic (α, β)-privacy, e.g., a and b are honest, c dishonest, and we consider a
binary vote between 0 and 1; then the intruder can copy a’s vote; the result is greater
than two iff a voted 1. Thus, possibilistic (α, β)-privacy does not hold. It would,
however, if the cardinality would not allow for such a deduction, but if we look at the
problem probabilistically, i.e., we know a distribution of the votes, then this yields a
shift in probabilities.

We could see this as an experiment, where the intruder is not really interested in
breaking the privacy of the entire vote, but rather targeting the privacy of a particular
voter a—even sacrificing their chance to make their preferred option win by copying
a’s vote. If this is the actual goal, then actually it makes sense to focus on this single
vote also in the privacy goal, i.e., to say α ≡ x1 ∈ {0, 1}, and β containing all the
other votes and the result. This means that all the other voters and the result are for
the intruder right now not interesting but just how a has voted. The copying of α’s
vote is thus the experiment the intruder takes if we regard a’s vote as an independent
variable of a scientific experiment.

Let us make such an experiment for 6 honest and 2 dishonest voters, meaning the
intruder can copy the vote of a two times. The result is 5 votes for candidate 1. Let
v1, . . . , v6 be random variables and v7, v8 are the votes controlled by the intruder.

α ≡ v1 ∈ {0, 1}
β ≡ α ∧ v2, · · · , v6 ∈ {0, 1} ∧ v7, v8 ∈ {0, 1}

∧
∑8
i=1 vi = 5 ∧ v7

.
= v1 ∧ v8

.
= v1 .

By analyzing the previous elections, the intruder knows the random variables are
chosen following the probability distribution {0: 2

3
, 1: 1

3
}. It is clear that α has only

two models: I1 s.t. I1(v1) = 0 and Pη([I1]) = 2
3
, I2 s.t. I2(v1) = 1 and Pη([I2]) = 1

3
.

Both these models can be extended to models of β. Possibilistically, (α, β)-privacy
holds. However, if we normalize the sum of the probabilities of the interpretation class
for the β models, we obtain for the first one P1 ≈ 2.44 and for the second P2 ≈ 97.56.
In this case, there is nearly no doubt for the intruder that voter a voted for 0.

In general, the intruder may set a threshold for being convinced for a particular
model, e.g., when all other models together have a probability of at most 0.05. One

22

can thus also calculate, given the number of honest and dishonest voters, as well the
probability distribution, whether the intruder has even a chance to find a significant
result. For instance, in an election with 100 votes where the intruder controls just
five votes, a’s privacy is well protected, unless there is a candidate with a very low
popularity, say 0.01, and a votes for that candidate. We explain in Appendix B how
to model voting protocols with dynamic (α, β)-privacy.

4.3 Background Knowledge
The authors of [27] explained what happens when the intruder can use background
knowledge outside our formal method. Consider a small village where everybody
votes the same way. A new person settles in, and in the next election, a vote for
the opposition party is cast. Even a perfect privacy-preserving voting system cannot
prevent the intruder to infer that it is quasi-certain this vote comes from the newcomer.
The authors proved that the possibilistic (α, β)-privacy is stable under an arbitrary
consistent intruder background knowledge. Unfortunately, this property does not hold
for possibilistic (α, β)-privacy in general. Consider:

? x← {0: 1
2 , 1: 1

2}.
? y ∈ {0, 1}.
if x

.
= 1 then

? z ← {0: 1
2 , 1: 1

2}.
snd(y ⊕ z)

else
? z ← {0: 0, 1: 1}.
snd(z)

While this is an artificial example, it has some similar patterns to Σ-protocols, i.e.,
giving out a “secret” y “blinded” by z in one case, and just z in another case. Suppose
this process executes and the intruder observes that it sends the value 1. Then, we
have the models depicted in the following table where (we have arranged the items, so
that we can summarize them to model classes) we have shaded red all those models
that get excluded by the fact that we have observed sending 1 (because this means
that either x = 1, and then y and z must be different, or x = 0, then z must be 1).

So far, (α, β)-privacy holds probabilistically: all model classes of β where x .
= 1

have together probability 1
2
as does the corresponding α-class, and the same for x .

= 0.
If we now have the background knowledge that y .

= 1, then this excludes some further
models that are shaded in blue in the from x. While this still preserves possibilistic
(α, β) privacy, it violates probabilistic (α, β) privacy: according to β, x .

= 1 is half as
likely as x .

= 0.
Indeed, this is a very constructed example (where for x .

= 0, z is not really random
any more), and actually in many practically relevant examples, background knowledge
indeed also preserves probabilistic (α, β)-privacy for extensible pair (α, β):

Theorem 2 (Stability Under Background Knowledge). Let α and β be given so that
(α, β)-privacy holds possibilistically, and (α, β) is extensible. Let α0 be a Σ0-formula.
Then (α∧α0, β∧α0)-privacy holds probabilistically. We extend this result for dynamic
(α, β)-privacy as expected.

23

α-Prob x y z β-Prob

1
2

0 0 0
0 1 0 0

0 0 1 1
20 1 1

1
2

1 0 0 1
41 1 0

1 0 1
1 1 1

1
4

Table 2: Example: for non-extensible (α, β), probabilistic privacy is in general
not stable under background knowledge.

Proof. If (α, β) is extensible, then also (α∧α0, β∧α0) is extensible. Since (α, β)-privacy
holds possibilistically, by stability under background knowledge, (α∧α0, β∧α0)-privacy
holds possibilistically, and since it is still extensible, it also holds probabilistically by
Theorem 1.

5 Comparison with Trace Equivalence Approaches
The gold standard for privacy in security protocols are the notions of observational
equivalence and trace equivalence (see, e.g., [11] for a survey). Roughly, a pair of
processes is trace equivalent if all transitions of one process can be simulated by the
other. This entails substantial difficulties for automated verification [7], especially
when systems have a long-term mutable state [4], but still privacy notions are typi-
cally formulated as such an equivalence between two alternative worlds, rather than
reachability problem. Interesting in this context is the notion of diff-equivalence [5]
that is implemented in the most popular verification tools ProVerif and Tamarin: here
the processes are parametrized over a binary choice in terms and this gets close to
a reachability problem, because the processes are practically in lockstep. This is,
however, so restrictive that only a very limited class of privacy properties can be
considered.

(α, β)-privacy was introduced in [27] as a more declarative way to formalize and
reason about privacy than the indistinguishability of two alternatives. There is an
underlying notion of equivalence in (α, β)-privacy though: the static equivalence of
the frames concr and struct . These describe not two alternative worlds but rather
different levels of knowledge of the intruder: the concrete messages and the structural
knowledge. However, (α, β)-privacy is a static notion, describing a fixed state of the
world, and does not reason about the interaction of the intruder with his environment.
We showed in this paper how to lift (α, β)-privacy to full-fledged transition systems,
and have thus re-cast privacy as a reachability problem without the limitations that
come, e.g., in diff-equivalence.

In a nutshell, all that can be expressed with trace equivalence, and more, can be
expressed with (α, β)-privacy. We now give a formal comparison5.

5The reader should bear in mind that trace equivalence and (α, β)-privacy are two quite
different “games”, so bridging between them often leads to constructions, and requires restric-

24

5.1 Visibility of Transactions
It is inherent in the semantics of (α, β)-privacy that the intruder knows which transac-
tion is currently being executed; but the intruder does not know which of the if-then-
else branches is taken, unless this can be inferred from the communication behavior of
the transaction. In contrast, most trace-based approaches are formulated in a variant
of the Applied-π calculus and do not have a notion of transaction in the first place;
the intruder view is thus limited to the communication behavior.

If desired, it is easy to express the same limited intruder view in (α, β)-privacy
transactions:6 given a specification of transactions T1, . . . , Tn, one can transform them
into a single transaction T as follows (where z is a variable that does not occur in any
of the Ti):

� z ∈ {1, . . . , n}.
if (z

.
= 1) then T1.

else if (z
.
= 2) then T2.

...
else if (z

.
= n) then Tn

This transaction allows all the same behaviors as the Tis together, except that the
intruder does not see a priori which of the Tis is taken. Depending on the output
messages of the Tis, the intruder may anyway find out which Ti it is (or just narrow
it down to a few candidates), but that in itself is not a violation of privacy since the
non-deterministic choice of z was not released in α (and thus learning the value of z
does not exclude any models of α).

In our opinion, it is better to let the intruder know the transaction by default,
and have the modeler explicitly specify otherwise (with the above construction), when
the protocol privacy indeed relies on this. This makes it less likely that such a re-
liance is overlooked upon implementation. For the rest of this discussion, we will
speak of transactions T1, . . . , Tn, but allowing for the case that n = 1 with the above
construction.

5.2 Restrictions
We consider two restrictions (R1) and (R2) that do not seem utterly necessary, but
greatly simplify the exposition. (R1): for this discussion, we consider (α, β)-privacy
without interpreted functions except concr and struct and without relation symbols
except gen. Hence, there are only the following “sources” of non-determinism:

• variables that are introduced as ? x ∈ D;7 let us call such an x an α-variable
(because it is part of α),

• variables that are introduced as � y ∈ D; let us call such a y a β-variable
(because it is not part of α),

• the non-determinism of the transition relation itself, i.e., in a sequence of steps,
which transaction is performed next, and

tions, that are somewhat artificial, but that at least give an idea of how the two approaches
relate.

6It is similarly possible to equip a process calculus specification with additional messages
that tell the intruder a particular point has been reached.

7We also ignore the probabilistic aspect in this section as it is not part of the common
trace equivalence notions.

25

• for a transaction that receives a message, which of all available messages is
received.

Thus, for a given choice of transactions to perform and recipes of the intruder to
send for the inputs, the α- and β-variables are the only non-determinism.

(R2): we restrict transactions to having exactly one input and one output (on every
path through its if-the-else conditions). This simplifies the problem as the intruder
may not directly infer anything about the conditionals from the number of messages
sent or received by a transaction; of course, the intruder may still be able to conclude
from the observed output which path was taken by a transaction. Hence, this is not a
significant restriction in practice. In a trace of k steps, the intruder has to give k inputs
and receives k outputs. Thus, in each reached state after k steps, every struct frame
and the concr frame have the same domain {l1, . . . , lk}, where each li labels the output
of the i-th transaction. Similarly, the input from the intruder to each transaction is
thus simply a recipe ri which uses only labels {l0, . . . , li−1}, i.e., all outputs received
so far.

Definition 12. Given a transaction specification with the restrictions (R1) and (R2),
we define a trace tr as a tuple ((a1, r1), . . . , (ak, rk), (S,P)), where

• each ai identifies one of the transactions,

• each ri is an intruder recipe over labels {l1, . . . , li−1}, and
• (S,P) is any configuration reached by the given sequence of transactions when

the inputs are bound to the ri and the outputs labeled li. (This is according to
our definition of transaction semantics in Section 3.2.)

We refer to the α(S), β(S), and γ(S) of a trace as expected; we may also refer
to the concr(S) of a trace, i.e., the (unique) ground messages bound to the labels li
according to β(S).

We call a sequence (a1, r1), . . . , (ak, rk) a symbolic trace that represents all those
traces that have this sequence of (ai, ri) transactions and inputs. The set of represented
traces is finite, corresponding to the possible interpretations of the non-deterministic
α and β variables.

We say that (α, β)-privacy holds in a trace ((a1, r1), . . . , (ak, rk), (S,P)) if it holds
in state S, and that it holds in a symbolic trace tr if it holds in all traces represented
by tr .

We call two traces tr = ((a1, r1), . . . , (ak, rk), (S,P)) and tr ′ = ((a1, r1), . . . , (ak,
rk), (S ′,P ′)) equivalent, and write tr ≈ tr ′, if concr(S) ∼ concr(S ′) (and, as indicated
by pattern matching, the ai, ri, and k are the same).

Let traces(Spec) be the set of traces produced by a specification of (α, β)-privacy
transactions. We call two specifications Spec and Spec′ trace equivalent, and write
Spec ≈ Spec′, if for every trace tr ∈ traces(Spec), there is a tr ′ ∈ traces(Spec′) with
tr ≈ tr ′, and vice versa.

A binary privacy question is a specification of (α, β)-privacy transactions that do
not contain any α-variables and make no α-release, together with a special transaction
Tbin = if (init

.
= ⊥) then ? x ∈ {0, 1}. init := x, where init is a distinguished memory

cell initialized to ⊥ and the other transactions may only read, but not modify, the value
of init.

The traces represented by a symbolic trace are actually easy to compute thanks
to the restrictions (R1) and (R2): we follow the normal semantics, but for every step
“? x ∈ Dx” and for every step “� y ∈ Dy”, we keep the choice symbolic, and compute a

26

set of corresponding α and γ that we attach to the respective possibility (Pi, φi, struct i)
in the configurations. The δ is the same for all, and the β can be reconstructed from
γ and the configuration. This is taking advantage of the fact that we already have
a representation for all the possibilities (the (Pi, φi, struct i)) at a given point. Now,
there is however no possibility (Pi, φi, struct i) marked, but that marking is actually
only needed in case the different possibilities have differences in the number of sent
and received messages, which we do not consider here due to the restrictions (R1) and
(R2).

Note that every trace has at least one interpretation since every if-then-else has at
least one branch that can execute, i.e., every transaction is applicable in every trace
(it may just fail to actually do something).

This definition expresses the fact that trace equivalence is about the ability to
distinguish between two systems that each reflect a particular choice of the privacy
information. Relating this to the terms of (α, β)-privacy means thus that α is simply
the secrecy of a bit x. We can now relate (α, β)-privacy in the binary case with trace
equivalence (we first prove Theorem 4 as it will come in handy to prove Theorem 3):

Theorem 3. Consider a binary privacy question Spec that meets (R1) and (R2). For
each b ∈ {0, 1}, let Specb be the specialization of Spec where Tbin sets the choice of x
to {b}. Then (α, β)-privacy holds in Spec iff Spec0 ≈ Spec1.

Here, one can see two fundamental differences between (α, β)-privacy and the trace
equivalence approach: in trace equivalence, we do not have to introduce a distinction
between high-level and low-level (but we simply have a single bit a secret); on the
other hand, we cannot express more than a binary choice between two systems in one
go: of course one can specify several binary questions, but each is an independent
binary question. In contrast, in (α, β)-privacy we can have a choice between any finite
number of models and we can let this develop during transitions, also dependent on
the actions of the intruder. For this reason, we also formulate a different equivalence
notion that is based on traces, but that, instead of distinguishing two systems, is based
on the models of a formula α in a single system:

Theorem 4. (α, β)-privacy holds in a symbolic trace tr = (a1, r1), . . . , (ak, rk) iff for
every trace (tr , (S,P)) and every Σ0-interpretation I0 |= α(S), there exists a trace
(tr , (S ′,P ′)) such that I0 |= γ(S ′) and concr(S) ∼ concr(S ′).

Proof. Let tr = (a1, r1), . . . , (ak, rk) and first suppose (α, β)-privacy is violated in tr ,
i.e., for some trace (tr , (S,P)), (α, β)-privacy is violated in S. This means that there
is one model I0 of α(S) that cannot be extended to a model of β, i.e., for every
(Pi, struct i, φi) ∈ P, either I0 6|= φi or the I0(struct i) 6∼ concr(S). Thus, the intruder
can exclude in state S every trace (tr , (S ′,P ′)) where I0 |= γ(S ′). Since only the α-
and β-variables are to interpret, this means that in every trace (tr , (S ′,P ′)) where
I0 |= γ(S ′), we have concr(S) 6∼ concr(S ′).

Vice-versa, suppose there is a trace (tr , (S,P)) and a model I0 of α(S) such that
for every trace (tr , (S ′,P ′)) where I0 |= γ(S ′), concr(S) 6∼ concr(S ′). Then, similarly,
for every (Pi, struct i, φi) ∈ P, either I0 6|= φi or I0(struct i) 6∼ concr(S). Thus,
(tr , (S,P)) violates (α, β)-privacy.

We can finally prove Theorem 3:

Proof. Note that Spec, Spec0 and Spec1 have the same set of symbolic traces. If a
symbolic trace tr does not contain the special transaction Tbin , then all the concrete

27

traces it represents in Spec0, Spec1 and Spec are also the same, so up to taking the
special transaction, there is trivially no violation of (α, β)-privacy or trace distinction
possible. Thus, for the rest of this theorem, we consider only a symbolic trace tr
that includes the special transaction Tbin . Observe that in Spec, all concrete traces
(tr ,S,P) represented by tr have thus α(S) ≡ x ∈ {0, 1}.

Suppose now (α, β)-privacy holds in Spec and suppose (tr ,S,P) is a trace that tr
represents in Spec0. Then, γ(S)(x) ≡ 0. This trace is also possible in Spec, and since
the privacy holds, by Theorem 4, there exists a trace (tr ,S ′,P ′) in Spec that supports
the other model of α, namely γ(S ′)(x) ≡ 1, and such that concr(S) ∼ concr(S ′). By
construction, (tr ,S ′,P ′) is a trace of Spec1. Thus, for every trace in Spec0 exists an
equivalent one Spec1. By a similar proof, every trace in Spec1 has an equivalent in
Spec0. Hence, Spec0 and Spec1 are trace equivalent.

Suppose now, for the sake of contradiction, that (α, β)-privacy is violated in Spec.
Then, by Theorem 4, there exists a trace (tr ,S,P) in Spec, say with γ(S)(x) ≡ 0
(the proof for the case γ(S)(x) ≡ 1 is analogous), and there is no trace (tr ,S ′,P ′) of
Spec such that both γ(S)(x) ≡ 1 and concr(S) ∼ concr(S ′). Obviously, (tr ,S,P) is a
trace of Spec0, but for all (tr ,S ′,P ′) of Spec1, concr(S) 6∼ concr(S ′) (since they have
γ(S)(x) ≡ 1). Thus, Spec0 and Spec1 are not trace equivalent.

6 Comparison with information flow
For many applications, it is interesting to take into account probabilities. We see no
obvious way to reason with them in equivalence-based specifications, but the fact that
every state in dynamic possibilistic (α, β)-privacy represents a single reality allows
us to make a declarative extension that integrates non-determinism and probabilistic
aspects. In fact, the two theorems on extensible specification allow for adding prob-
abilities and background knowledge to an otherwise possibilistic specification without
further proofs.

Our work is also related to privacy approaches based on non-interference and
information flow [17, 26, 32]. In fact, one may wonder if dynamic probabilistic (α, β)-
privacy is not simply information flow in disguise. That is, one may think that α is
basically akin to high variables, and β is akin to low variables. While there are similar-
ities and parallels, there are also key conceptual differences. Most importantly, the β
information is “low” in quite a different sense: it is regarded as technical information,
but without stipulating whether it is privileged. For instance, β may contain crypto-
graphic keys and nonces, and some nonces (and even some keys) may be obtained by
the intruder without violating dynamic probabilistic (α, β)-privacy; in fact, knowing
them does not in itself constitute a violation. However, sometimes even just know-
ing that two low-level messages are identical can be sufficient to deduce a violation,
because it rules out some model of α.

Our explicit focus on probabilities bears similarities with approaches in quanti-
tative information flow [3, 8, 14, 19, 22, 24, 30], as well as differential privacy [16,
34], k-anonymity [31], l-diversity [25], and t-closeness [23], which aim at quantifying
privacy to capture leaks or information disclosure in a system. Differential privacy, in
particular, is concerned with statistical queries to databases, i.e., how do you reveal
accurate statistics about a set of individuals while preserving their privacy? In this
approach, private and public information are not completely disjoint, e.g., one might
want to reveal the average age of the participants in a survey, but if a new participant
is added after the reveal of the average, then one can learn their age.

28

Differential privacy (and related approaches) and approaches for protocol security
and privacy (like ours) are typically seen as two different disciplines that look at privacy
in distinct, particular ways. We regard our work also as an attempt to start bridging
this gap. While our approach is rooted in protocol verification, we have tried to import
here notions that have been successful on the other side of the gap.

Still, it is important to note an interesting relationship between our work in this
paper and information flow. This comparison underlines the fact that in general,
many information flow approaches are a form of static analysis that over-approximates
and classifies many potential problems as violations, whereas (α, β)-privacy is usually
more precise. The comparison with information flow is a bit more difficult, since it is
farther away from (α, β)-privacy than trace equivalence, and thus we give a less formal
comparison.

An intuition is that the semantics of transactions in (α, β)-privacy reflects what
would be called explicit and implicit flows in information flow approaches: the messages
sent out by a transaction are visible to the intruder. This may give rise to an explicit
flow, for instance, if the sent message contains directly the value of an α-variable.
It may give rise to an implicit flow, if the sent message depends on a condition and
the intruder may thus be able to determine the value of the condition. In fact, an
important part of the semantics is to formalize what the intruder knows about the
shape of the message (i.e., struct) depending on the different outcomes of conditions
taken so far.

For example, consider the following simple program:

if (x>10){
y:=y*y;

}
else{

y:=y*x;
}

Suppose x is of level H (high) and y of level L (low). Then, we obviously have
two violations of information flow. We could model this also in (α, β)-privacy, but
since we are modifying variables, we would have to use here memory cells Xcell and
Ycell. We can initialize these memory cells with an arbitrary value from, say, the set
of integers. The privacy condition is that the intruder cannot find out anything about
the initial value of x. However, he should be able to see the value of y before and
after the transaction. The initialization can be formalized as follows (where init is a
boolean memory cell, initialized to false):

if (init
.
= false) then

init := true.
? X ∈ {0, . . . ,MAXINT}.
� Y ∈ {0, . . . ,MAXINT}.
Xcell := X.
Ycell := Y.
snd(Ycell)

29

and the actual program is:

if (init
.
= true) then

if (Xcell > 10) then
Ycell := Ycell ∗ Ycell.

else
Ycell := Ycell ∗ Xcell.

snd(Ycell)

A possible trace is now that the intruder observes an initialization transaction with
the concrete value 1 (for y) and then the same value again in a program transaction.
Then, he can exclude the second branch (because y would have to be at least 11 for
that), and thus knows X > 10, violating the (α, β)-privacy privacy goal.

Here we can however observe five major differences between (α, β)-privacy and
information flow. The first major difference is that (α, β)-privacy will not trigger if
there is no actual information flow that can be observed. In the above example, for
instance, if y gets initialized with 0, then the result is not telling anything about x,
and hence in that state, (α, β)-privacy holds. Thus, (α, β)-privacy does not share the
false positives that can arise from the over-approximation of static information flow
analysis. While it is nice to avoid false positives, the simplicity and efficiency of static
analysis naturally raise the question whether this can also be an effective technique
to analyze (α, β)-privacy problems and whether we can over-approximate in a similar
way—a problem we must leave open at this point.

A second major difference is that (α, β)-privacy allows for sending also classified
values on a public channel when they are encrypted such that the intruder cannot
decrypt them. While one can of course define an appropriate declassification to allow
also for this in information flow, this is not suitable for the analysis of privacy in pro-
tocols, and one would need here (α, β)-privacy or trace equivalence approaches: this is
because one needs to analyze in general whether the employed encryption regime in-
deed excludes attacks, so that the intruder cannot obtain any information, for instance
by comparison of encrypted messages (or their reuse).

For a third major difference, recall that (α, β)-privacy by default does not hide
which transaction is taken, but this information can be hidden from the intruder
(cf. the comparison with trace equivalence in Section 5). It is important to note that
the number of transactions taken cannot be hidden from the intruder in (α, β)-privacy.
For instance, this program

while (x>0){
x:=x-1;
y:=y*x;

}

would be fine in classical information flow if x and y are both H (or both L), as all
implicit and explicit flows are allowed. However, the number of transactions that can
be taken now reveals information about x. One may consider this as a (rather blunt)
timing leak. In fact, we cannot directly implement this program as one transaction
in (α, β)-privacy. Instead we would have to also model a program counter—as a β-

30

variable that is not given to the intruder:

if (PC
.
= start ∧ Xcell > 0) then

Xcell := Xcell− 1.
Ycell := Ycell ∗ Xcell.

else if (PC
.
= start ∧ Xcell

.
= 0) then

PC
.
= end

Now after only two such transactions, the intruder can infer that the initial value
of x is greater then 0 and thus violate privacy.

A fourth difference between the approaches concerns declassifications. While in
information flow one would declassify a particular value, (α, β)-privacy in general
allows one to rather declassify a statement, and declassification is closed under logical
deduction. For instance, when we release the result of an election, we do not just
declassify the number of votes received by each candidate (that was computed based
on the classified votes), but we also release the statement that it is the sum of all
accepted votes. Thus, if we have three dishonest voters voting for candidate A, and
candidate A received only three votes, then the intruder can infer—and is allowed to
infer—that no honest voter voted for candidate A. Similarly, in a unanimous vote, the
intruder also learns the value of every single vote, and that is permitted by the goal.

As a final difference, consider the security lattices that can be used for the different
levels in information flow. While we, in (α, β)-privacy, basically consider only two
levels (i.e., whether the intruder may know or not), this can be used anyway for a
more complex lattice by several separate analyses, one for each security level that the
intruder may realistically obtain. There is, however, one aspect that (α, β)-privacy
cannot handle at all: how information flow can use lattices for integrity analysis, e.g.,
that information cannot flow from an untrusted variable into a trusted one. Here,
(α, β)-privacy can only offer the formulation of the usual authentication goals like
injective agreement that are standard in protocol verification.

7 Future Work
Having introduced transition systems, it is natural to consider the automation of our
approach. Since it is based on FOL, our formalization is expressive but not decidable,
not even semi-decidable, which presents challenges for automation. Still, some frag-
ments of (α, β)-privacy are decidable [27] and are, in some sense, equivalent to the
classical static equivalence of frames, so there is hope for automation for fragments
of dynamic probabilistic (α, β)-privacy too. We also plan to extend our approach to
formalize other quantitative aspects of privacy in addition to probabilities, such as
costs and timing leaks as in [15, 21].

References
[1] DP-3T.DP-3T – Decentralized Privacy-Preserving Proximity Tracing. 2020.

url: https://github.com/DP- 3T/documents/blob/master/DP3T%
20White%20Paper.pdf.

[2] Martín Abadi, Bruno Blanchet, and Cédric Fournet. “The Applied Pi Cal-
culus: Mobile Values, New Names, and Secure Communication”. In: J.
ACM 65.1 (2018), 1:1–1:41.

31

[3] Mário S. Alvim et al. The Science of Quantitative Information Flow. 2020.
[4] Myrto Arapinis et al. “Stateful applied pi calculus: Observational equiv-

alence and labelled bisimilarity”. In: J. Log. Algebraic Methods Program.
89 (2017), pp. 95–149.

[5] Bruno Blanchet, Martín Abadi, and Cédric Fournet. “Automated verifica-
tion of selected equivalences for security protocols”. In: J. Log. Algebraic
Methods Program. 75.1 (2008), pp. 3–51.

[6] Mayla Brusò, Konstantinos Chatzikokolakis, and Jerry den Hartog. “For-
mal Verification of Privacy for RFID Systems”. In: CSF. 2010, pp. 75–
88.

[7] Vincent Cheval, Hubert Comon-Lundh, and Stéphanie Delaune. “A proce-
dure for deciding symbolic equivalence between sets of constraint systems”.
In: Inf. Comput. 255 (2017), pp. 94–125.

[8] David Clark, Sebastian Hunt, and Pasquale Malacaria. “Quantitative Anal-
ysis of the Leakage of Confidential Data”. In: ENTCS 59.3 (2001), pp. 238–
251.

[9] Véronique Cortier, Michaël Rusinowitch, and Eugen Zalinescu. “Relating
two standard notions of secrecy”. In: Log. Methods Comput. Sci. 3.3 (2007).

[10] Véronique Cortier and Ben Smyth. “Attacking and Fixing Helios: An
Analysis of Ballot Secrecy”. In: CSF. 2011, pp. 297–311.

[11] Stéphanie Delaune and Lucca Hirschi. “A survey of symbolic methods for
establishing equivalence-based properties in cryptographic protocols”. In:
JLAMP 87 (2017), pp. 127–144.

[12] Stéphanie Delaune, Steve Kremer, and Mark Ryan. “Coercion-Resistance
and Receipt-Freeness in Electronic Voting”. In: CSFW. 2006.

[13] Stéphanie Delaune, Mark Ryan, and Ben Smyth. “Automatic Verification
of Privacy Properties in the Applied pi Calculus”. In: Trust Management
II - Proceedings of IFIPTM 2008: Joint iTrust and PST Conferences on
Privacy, Trust Management and Security, June 18-20, 2008, Trondheim,
Norway. Vol. 263. IFIP Advances in Information and Communication
Technology. 2008, pp. 263–278.

[14] A. Di Pierro, C. Hankin, and H. Wiklicky. “Approximate Non-Interference”.
In: J. Comput. Secur. 12.1 (2004), pp. 37–81.

[15] A. Di Pierro et al. “Tempus Fugit: How to Plug It”. In: JLAP 72.2 (2007),
pp. 173–190.

[16] Cynthia Dwork. “Differential Privacy: A Survey of Results”. In: TAMC.
LNCS 4978. 2008.

[17] Joseph A. Goguen and José Meseguer. “Security Policies and Security
Models”. In: IEEE Symposium on Security and Privacy. 1982, pp. 11–20.

[18] Sébastien Gondron and Sebastian Mödersheim. “Formalizing and Proving
Privacy Properties of Voting Protocols Using Alpha-Beta Privacy”. In:
ESORICS. LNCS 11735. 2019, pp. 535–555.

32

[19] Damas P. Gruska. “Probabilistic Information Flow Security”. In: Fundam.
Inform. 85 (2008), pp. 173–187.

[20] T. Hinrichs and M. Genesereth. Herbrand Logic. Tech. rep. Stanford Uni-
versity, 2006.

[21] Paul C. Kocher. “Timing Attacks on Implementations of Diffie-Hellman,
RSA, DSS, and Other Systems”. In: Advances in Cryptology. 1996, pp. 104–
113.

[22] Ruggero Lanotte, Andrea Maggiolo-Schettini, and Angelo Troina. “Time
and Probability-Based Information Flow Analysis”. In: IEEE Trans. Soft-
ware Eng. 36.5 (2010), pp. 719–734.

[23] Ninghui Li, Tiancheng Li, and Suresh Venkatasubramanian. “t-Closeness:
Privacy Beyond k-Anonymity and l-Diversity”. In: ICDE. 2007, pp. 106–
115.

[24] Gavin Lowe. “Quantifying Information Flow”. In: CSF. 2002, pp. 18–31.

[25] Ashwin Machanavajjhala et al. “L-diversity: Privacy beyond k -anonymity”.
In: ACM Trans. Knowl. Discov. Data 1 (2007).

[26] Heiko Mantel, David Sands, and Henning Sudbrock. “Assumptions and
Guarantees for Compositional Noninterference”. In: CSF. 2011, pp. 218–
232.

[27] Sebastian Mödersheim and Luca Viganò. “Alpha-Beta Privacy”. In: ACM
Trans. Priv. Secur. 22.1 (2019), 7:1–7:35.

[28] M. Ohkubo, K. Suzuki, and S. Kinoshita. “Cryptographic approach to
"privacy-friendly" tags”. In: RFID Privacy Workshop (2003).

[29] Steve Selvin. “On the Monty Hall problem (letter to the editor)”. In: The
American Statistician 29.3 (1975).

[30] Geoffrey Smith. “On the Foundations of Quantitative Information Flow”.
In: FoSSaCS. LNCS 5504. 2009, pp. 288–302.

[31] Latanya Sweeney. “k-Anonymity: A Model for Protecting Privacy”. In:
Int. J. Uncertain. Fuzziness Knowl. Based Syst. 10.5 (2002), pp. 557–570.

[32] Henk C. A. van Tilborg and Sushil Jajodia, eds. Encyclopedia of Cryptog-
raphy and Security, 2nd Ed. 2011.

[33] Serge Vaudenay. Analysis of DP3T. Cryptology ePrint Archive, Report
2020/399. 2020.

[34] Jiannan Yang, Yongzhi Cao, and Hanpin Wang. “Differential privacy in
probabilistic systems”. In: Inf. Comput. 254 (2017), pp. 84–104.

A DP-3T
As a concrete, and topical example, let us consider the decentralized, privacy-preserving
proximity tracing system DP-3T [1], which has been developed to help slow the spread

33

of the SARS-CoV-2 virus by identifying people who have been in contact with an in-
fected person. The DP-3T system aims to minimize privacy and security risks for
individuals and communities, and to guarantee the highest level of data protection.

A.1 Modeling
For every agent and for every day, we have a day key, and the day is further separated
into periods (e.g., of 15 minutes), and for each period, each agent generates a new
ephemeral identity. In order to avoid any complications with infinite numbers of
models, we consider finite (but arbitrarily large) sets of agents, day keys, and ephemeral
IDs. Moreover, we use these sets as sorts, so that we can define interpreted functions
between these sorts without inducing infinitely many models for these functions. We
use the following sorts:

• Agent is the sort of all participating agents,
• Day = {0, . . . ,D− 1} identifies days,
• Period = {0, . . . ,P − 1} identifies a particular period of a day, i.e., a day is

partitioned into P periods (e.g., of 15 minutes).,
• SK is the sort of daily identities, and
• EphID is the sort of ephemeral identities (changing, e.g., every 15 minutes),

Let all elements of these sorts but SK be part of Σ0, so that α formulae can talk
about agents, days, and ephemeral identities. On these sorts, we define the following
functions and relations:

• sk0[·] : Agent → SK maps every agent to their first-day key. We assume that
this key is distinct for every agent, i.e., sk0[a] 6= sk0[b] for any a 6= b,

• h[·] : SK → SK is a hash function that maps every daily identity to the next
day. We assume that for every a : Agent, we have a seed value sk0[a] ∈ SK such
that hi[sk0[a]] 6= hj [sk0[b]] for any a, b ∈ Agent, i, j ∈ Day with (a, i) 6= (b, j):
every daily identity of an agent is unique8,

• prg [·, ·] : SK × Period → EphID models a pseudo-random number generator to
generate the ephemeral identities. We assume prg is injective on the domain
SK ×Period , so that there is also no collision between the ephemeral identities
of any agents (with respect to any timepoints).

• pwnr [·] : EphID → Agent relates, in our model, an ephemeral ID to its actual
owner, i.e., for e = prg [hi[sk(a)], j], we have pwnr [e] = a,

• dayof [·] : EphID → Day tells the day an ephemeral ID is issued, and
• sick ⊆ EphID×Day is a relation where sick(e, d) means that the agent identified

by e has declared sick on day d. In contrast, dayof [e] is the day when e was
used.

The functions h and prg are cryptographic functions, and sk0 is a cryptographic setup.
We regard them as technical/implementation related, so they are only part of Σ \ Σ0

and cannot be used in α. We have made several assumptions about absence of collisions
in these functions: these assumptions are part of β in the initial state. The function
pwnr and the relation sick are part of the high-level modeling, and thus part of Σ0.

We use the following memory cells with their initial values:
8SK is a finite set, so h must have collisions, and we merely exclude that these collisions

are relevant to the protocol. We abstract from cryptography and thus from the negligible
probability of collisions between agents.

34

• skl(A : Agent) := sk0[A] is whatever is the opposite of a look-ahead: it represents
the day ID of agent A of l days ago, where l is the period how far back we want
to report the sickness after a positive test (e.g. five days),

• sk(A : Agent) := hl[sk0[A]]. The current day ID of A is l hashes ahead of sk0.
Thus, within the first l days of the app, we have some “virtual” past days where
we can report sickness—this is to keep the model simple,

• today() := l is the current day counter (it is the same for all agents),

• period() := 0, where 0 identifies the first period of a day,

• ephid(A : Agent) := prg [sk(A), period()] is the current ephemeral ID, and

• isSick(A : Agent) := false is a flag to indicate that the agent has reported sick
and should no longer use the app and should quarantine.

We consider the agent transactions in Figure 5. The transaction New Day or
Period advances a global clock, and when a day is finished, automatically triggers the
generation of new day keys for each agent. This ignores any privacy problems that
could arise from de-synchronized clocks and the like. The Agent Advertise transaction
models that an agent can at any time communicate its current ephemeral identity e and
that the intruder never learns more than the owner of e is some agent x ∈ Agent. Here,
our model ignores the details of how two agents’ phones actually exchange IDs, which
can cause also several problems [33]. Finally, the Agent Sick Transaction models that
an agent declares sick and publishes the day keys in their sickness period (for simplicity,
we publish only the oldest, the others can be generated by everybody themselves). We
specify that the intruder should now only learn that all ephemeral IDs belong to an
agent that has just declared sick. The model actually omits the details of how this
sick report is communicated to a central server (who must also somehow check with
health authorities whether the agent is indeed sick), which again is not trivial to get
right [33]. Our model thus focuses on the core privacy question that arises, even if all
exchange protocols work perfectly.

A.2 Privacy violated
Suppose that we have two advertisements by the same agent a in the first two periods
of the first day (numbered l), i.e., let skl = hl[sk0[a]] be the day key, and e0 = prg [skl, 0]
and e1 = prg [skl, 1] be the released ephemeral IDs. On the same day, a releases a sick
note sk0[a] that gives rise to further ephemeral IDs e2, . . . , en. Then, α in the reached
state is:

α ≡ x1 ∈ Agent ∧ pwnr [e0] = x1 ∧ dayof [e0] = l
∧x2 ∈ Agent ∧ pwnr [e1] = x2 ∧ dayof [e1] = l
∧x3 ∈ Agent ∧ sick(e0, l) ∧ . . . ∧ sick(en, l)

where e0, . . . , en are all ephemeral keys of a released in the sick report. The following
can be derived from β, for some labels m1, m2 and m3 where the sent messages are
stored:

concr [m1] = e0 struct [m1] = prg [hl[sk0[x1]], 0]

concr [m2] = e1 struct [m2] = prg [hl[sk0[x2]], 1]

concr [m3] = skl struct [m3] = hl[sk0[x3]]

Intruder deductions:
concr [prg [m3, 0]] = prg [hl[sk[a]], 0] = e0 = concr [m1]

concr [prg [m3, 1]] = prg [hl[sk[a]], 1] = e1 = concr [m2]

35

New Day or Period

if (period() < P− 1) then
period() := period() + 1

else
period() := 0
if (today() < D− 1) then
today() := today() + 1
for x : Agent
sk(x) := h(sk(x))
skl(x) := h(skl(x))

Agent Advertise

? x ∈ Agent
if ¬isSick(x) then
let z = prg [sk(x), period()]
? pwnr [I(z)] = x ∧ dayof [I(z)] = today()
snd(z)

Agent Sick

? x ∈ Agent
if ¬isSick(x) then
isSick(x) := true
let y = skl(x)
for i ∈ Period ∧ j ∈ {0, . . . , l}
? sick(I(prg [hj [y], i]), I(today()))

snd(y)

Figure 5: A model of DP-3T (with insufficient α).

Using φ∼:
struct [prg [m3, 0]] = struct [m1]
struct [prg [m3, 1]] = struct [m2]

prg [h1[sk1[x3]], 0] = prg [hl[sk0[x1]], 0]

prg [hl[sk0[x3]], 1] = prg [hl[sk0[x2]], 1]

By the properties of prg , h and sk0 : x3 = x2 ∧ x3 = x1

, and thus x1 = x2

This last statement is however not compatible with all models of α, so dynamic
possibilistic (α, β)-privacy is indeed violated. Note that we do not find out that x1 = a,
but we have linkability of pseudonyms of sick persons.

A.3 The Actual Privacy Guarantee
Actually, the protocol releases more information than we have specified so far in α.
This corresponds to the privacy problem that the intruder gets to know that all the
ephemeral identities of a day are related to the same agent. This could be practically

36

∀E,F ∈ EphID , C,D ∈ Day : sick(E,C) ∧ sick(F,D) ∧
pwnr [E]

.
= pwnr [F] =⇒ C = D

∧ ∀E,F ∈ EphID , D ∈ Day : sick(E,D) ∧
pwnr [E]

.
= pwnr [F] =⇒ dayof [F] ≤ D

∧ ∀E,F ∈ EphID , D ∈ Day : pwnr [E]
.
= pwnr [F]∧

dayof [E]
.
= dayof [F] ∧ sick(E,D) =⇒ sick(F,D)

∧ ∀E0, E1, . . . , EP ∈ EphID :
∧

i,j∈{0,...,P},i6=j Ei 6= Ej

pwnr [E1]
.
= . . .

.
= pwnr [EP]∧

dayof [E1]
.
= . . .

.
= dayof [EP]

=⇒ pwnr [E0] 6= pwnr [E1] ∨ dayof [E0] 6= dayof [E1]

Figure 6: Axioms for DP3T

relevant if, e.g., the intruder surveys in several places for ephemeral identities and can
then build partial profiles of users who declared sick.

We at least need to add the following information: in the sick release by the infor-
mation there is one particular agent who is the owner of all released sick-predicates,
i.e., in the Agent Sick transaction we have the α release: This provides the link be-
tween all ephemeral IDs released by an agent, because the owner is the same agent x
(who of course still remains anonymous, hence the variable).

As a consequence, “admitting” in α this additional information, what we could find
out in the concrete scenario before, namely that x1 = x2 = x3, no longer count as an
attacks, as we explicitly declare that we want to release this information.

However, this extended α still does not cover all the information we release. For
instance, if the two agents x1 = a and x2 = b have released ephemeral IDs ea and eb,
respectively, and a has declared sick, then we can still observe that x1 6= x2 because eb
does not belong to any of the keys that have been released with a sick note. Similarly,
we can distinguish agents that have declared sick; for instance, if both a and b have
declared sick, then we can also derive x1 6= x2, because we have distinct day keys and
moreover, when two day keys belong to the same agent, then they are related by the
hash function, i.e., sk1 = hk[sk2] or vice-versa.

So, actually, what we really give out here is much more, and it is not easy to keep
track of it without basically copying into α most of what is going on in β, and thus
basically making the implementation be also the specification. However, as most lo-
gicians will agree, there is almost always a declarative way to describe things. In this
case, we can actually formalize a few relevant properties of the implementation as ax-
ioms on the Σ0 level, without talking about the day keys SK or how they are generated
and how the ephemeral IDs are generated. These axioms are given in Figure 6, and
we obtained them from failed attempts of proving dynamic possibilistic (α, β)-privacy,
adding missing aspects until we could prove it. Here is what these axioms respectively
express:

• an agent declares sick only once,
• after declaring sick, the agent does not use the app anymore. In fact, they could,

if we had a reset operation that installs a new initial key, but we refrained from
further complicating the model,

• when an agent reports sick for a particular day, this entails all ephemeral iden-
tities for that day, and

37

• finally, let P = |Period | denote the number of periods in a day; then there cannot
be more P ephemeral IDs that belong to the same agent on the same day.

We shall thus, from now on, consider the axioms in Figure 6 as part of α in our
initial state.

Now, it may not be entirely intuitive anymore what this actually implies. So, let us
look at the general form that α has after a number of transitions, and how to compute
the models (satisfying interpretations) of α.

In general, in any reachable state the formula α consists of conjuncts of the fol-
lowing forms:

• from Agent Advertise: x ∈ Agent∧pwnr [e] = x∧dayof [e] = d, where e ∈ EphID ,
d ∈ Day , and x is a variable that occurs nowhere else in α, and

• from Agent Sick:
∧
e∈E pwnr [e] = x∧ sick(e, dr), where E is a set of ephemeral

IDs that are released on reporting day dr. Amongst all agent sick reports, the
set E is pairwise disjoint. Moreover, the variable x occurs nowhere else in α.
Finally, the size of E is |Period | × l, i.e., for every of the l days and for every
time period of a day, we identify exactly one ephemeral ID as sick.

Lemma 1. Every model I of α can be computed by the following non-determinstic
algorithm:

1. Consider every conjunct that arose from Agent Sick and consider the variable x
of that conjunct.

(a) For every such x, choose a unique a ∈ Agent and set I(x) = a. (Unique
here means: two different Agent-sick conjuncts with variables x and x′

must be interpreted as different agents I(x) 6= I(x′)).

(b) For every e that occurs in this conjunct, we have I(pwnr [e]) = a.

2. Consider every conjunct that arose from Agent Advertise and let x be the variable
occurring in there and e be the ephemeral ID in there.

(a) If I(pwnr [e]) = a has been determined already, then I(x) = a.

(b) If I(pwnr [e]) has not yet been determined, then let d be the day that is has
been declared. Let Agents be the set of agents that have declared sick on
day d or before, i.e., I(x′) for every x′ such that α contains sick(e, d′) ∧
pwnr [e] = x′ ∧ dayof [e] = d0 and d0 ≤ d. Further, let Agente denote all
the agents a for which I(pwnr[e]) = a, and I(dayof [e]) = d for P different
ephemeral IDs e. Then, choose a ∈ Agent \Agents \Agente arbitrarily and
set I(x) = a and I(pwnr [e]) = a.

3. All remaining aspects of I are actually irrelevant (i.e., I(pwnr [e]) for e that did
not occur in the formula).

In a nutshell: α does not reveal any agent names, but allows one to distinguish
all sick agents from each other and from the non-sick, and it allows one to link all
ephemeral IDs of every sick agent from the first day of sickness on.

Proof. Soundness (i.e., the algorithm produces only models of α): the algorithm re-
spects obviously every conjunct of α produced during transactions, and for the axioms
the distinct choice of sick-reported agents is actually sufficient.

Completeness (i.e., every model of α is produced by the algorithm): we have
first to show that α enforces I(xi) 6= I(xj) for every pair of variables xi and xj

38

that occur in distinct sickness reports. Suppose this were not true, i.e., we have a
model I of α such that I(xi) = I(xj) for the variables xi and xj from distinct agent
sickness reports. From the construction, we know each sick report contains exactly
P · l ephemeral IDs (l days reporting, and P periods per day), and the ephemeral IDs
from distinct sick reports are disjoint. Moreover, each sick report has a reporting day,
say di and dj . Let thus ei and ej be ephemeral IDs from the two sick reports, then
I |= pwnr [ei]

.
= xi

.
= xj

.
= pwnr [ej] and therefore the axioms entail di = dj (same day

of reporting). Thus, α contains for each sick report P ephemeral IDs for l days up to
reporting day di = dj . That is however impossible by the axiom that not more than
P different ephemeral IDs can have the same day and the same owner (while we have
2 · P according to assumption). Thus, I(xi)

.
= I(xj) is absurd.

That all distinct sickness reports must be interpreted as being done by different
agents shows the completeness of the choice in step 1a. Steps 1b and 2a are directly
enforced by α. For step 2b, we have an ephemeral ID e for an agent x, such that e is not
contained in any sick-report. By dayof [e] = d we can check all sick reports that have
been done on day d or before, and which agents we have reported there according to a
given model I, which the algorithm calls the set Agents. Suppose I(x) ∈ Agents, i.e.,
there is a sick report for an agent x′ and I(x′) = I(x) that has at least one ephemeral
id e′ that is included in the sick report for day d′ ≤ d. If d = d′, this contradicts the
axiom that an agent releases all their ephemeral IDs for a given sick day, because we
were considering an e that was not reported sick. If d′ < d, this contradicts the axiom
that the agent stops using the app after the sick report, i.e., dayof [e] must be before
the sick report. Finally, we have to show that also I(x) ∈ Agente is not possible,
because Agente contains all agents for which we have interpreted already P different
ephemeral IDs for this day. This directly follows from the axiom that there are at
most P different ephemeral IDs for the same agent on the same day. This shows that
the choice in step 2b of an agent outside Agents and Agente is complete.

Hence, the algorithm allows all choices that are not excluded by α itself, and is
thus complete.

This characterization of the models of α of any reachable state allows us to prove
dynamic possibilistic (α, β)-privacy as follows.

Theorem 5. DP-3T with the extended α specification given in this section satisfies
dynamic possibilistic (α, β)-privacy.

Proof. We have to show that in every reachable state, any model I0 of α can be
extended to a model I of β. Note that β must have a model Ir that corresponds to
what really happened (and it is also a model of α). The idea is that we incrementally
construct I close to Ir.

First, we choose a key from SK for every agent a and every day d that occur in
β; let us call it ska,d. The principle here is: if, according to I, agent a declares sick at
some point, then β will contain the publication of the corresponding day keys of some
agent x, where I(x) = a. So, we have to set ska,d for those days d and a accordingly.
All remaining keys can be set to arbitrary distinct values from SK , disjoint from those
occurring in β. ska,d = skb,c implies a = b and c = d by construction now, so set
I(sk0[a]) = ska,0, and I(h[ska,d]) = ska,d+1 for any agent a and day d occurring in β.

For prg , we can already pick some values in a convenient way: for those sk that
are part of a sick report (i.e., not arbitrarily chosen from SK in the previous step), we
can choose the ephemeral IDs derived from them to be identical to those in Ir, i.e.,
set I(prg [sk, i]) = Ir(prg [sk, i]) for every period i ∈ Period and every day key sk that

39

is covered by a sickness report. The remaining ephemeral IDs (that did not occur in
sickness reports) will be chosen “on the fly” now. It is yet to be proved that this is
consistent with the rest of β.

For the initial state, we have thus an “intruder interpretation”, i.e., what the initial
value of the memory cells skl(a) and sk(a) of every agent a is, namely I(sk0[a]) and
I(hl[sk0[a]]), respectively (while the real initial values are Ir(sk0[a]) and Ir(hl[sk0[a]])).
The intruder cannot see all the concrete values sk that occur here: the intruder can
only see those values that have been explicitly released and apply the hash function
further to them. Let us speak in the following of the virtual state of the memory cells,
i.e., what value they would have (after a given sequence of transaction) if I were the
reality.

The next day and the next period transactions just change the state; the virtual
state is changed in a way that is completely determined by what we have determined
in I so far.

For an agent advertisement transaction, let x be the variable for the agent in the
transaction and I(x) = a the concrete agent according to I and e the ephemeral
ID advertised. Let further sk, i, and d be the current values of sk(a), period() and
today() in the virtual state. We distinguish two cases: first, if sk is a day key published
in a sick report later, then we have already determined I(prg [sk, i]) = Ir(prg [sk, i])
previously, and Ir(prg [sk, i]) = e because this is indeed the advertisement of the agent
Ir(x) (which may have a name different from I(x)) at this day and time period and
sk is indeed the current day key this agent. Otherwise, if sk is not reported sick
later, then I(prg [sk, i]) is not yet determined, unless we run the same advertisement
a second time for the same agent on the same day and time period, and so it is
already set to e, and we can set it to e. This is possible since in every other reached
virtual state, sk and i are necessarily different, so prg [sk, i] has not yet been assigned
a different interpretation yet. The formula β now contains (for an appropriate label
m): concr [m] = e∧struct [m] = prg [hd[sk0[x]], i]. This is because d and i in the virtual
state are equal to the value in reality. Under I, the struct term thus also equals e.
We show below also for the other transitions that on every introduced label m it holds
that I |= concr [m] = struct [m], and thus concr and struct will be trivially in static
equivalence under I.

For a sick report, let x be the variable for the agent in the transition and I(x) = a
the concrete agent according to I, and let skl, i, and d be the current values of
skl(a), period(), and today() in the current virtual state. The formula β now contains
concr [m] = skl and struct [m] = hd−l[sk0[x]]. Observe also here that we have I |=
concr [m] = struct [m] because skl(x) is x’s key from l days ago.

B Voting Protocols
The authors of [18] have modeled privacy goals for voting protocols with static pos-
sibilistic (α, β)-privacy. To illustrate the expressive power of our approach, we show
how to adapt and formalize these privacy goals, namely voting privacy and receipt-
freeness, with our dynamic extension of (α, β)-privacy. We show the formalization
of these goals with a simple voting protocol. Indeed, while voting protocols can use
more complicated cryptographic primitives, such as homomorphic encryption or blind
signature, the principles behind the formalization of the goals remain similar. The
state we discuss at the end of this section is rather complex, but the specification of
the privacy goals is actually simple and intuitive with (α, β)-privacy, and we obtain a

40

reachability problem out of this.
In our example, we consider a finite set of n voters Voters = {x1, . . . , xn}, two

candidates candA and candB, and a trusted third-party a that acts both as the admin-
istrator of the election and the counter. Let scrypt/2, dscrypt/2 and sk/2 be public
functions, modeling symmetric encryption with a secret key. We consider the alge-
braic equation dscrypt(sk(a, b), scrypt(sk(a, b),m)) ≈ m. Let ballot/2 and open/1 be
two public functions modeling the ballot as a message format with the algebraic func-
tion open(ballot(t1, t2)) ≈ t1, t2. We assume that each voter xi shares an encryption
key with the administrator, sk(xi, a). We also assume that the intruder knows the key
of dishonest voters, i.e., if xi is dishonest, the intruder knows sk(xi, a). We consider
four families of memory cells: one for the status of the election status(·), one for the
status of a voter voted(·), one for recording that the administrator accepts the vote
of a voter cast(·), and one for the result of a candidate result(·). The initial values
are voting, no, no and 0, respectively. Each voter X owns their own cell voted(X)
and the administrator owns the three other entire families, i.e., the election public
information. The administrator can update the status of the election to over when
the tallying phase starts. A voter X updates their status voted(X) to yes when they
vote, and the administrator updates cast(X) to yes when he accepts the vote of a
voter X. Finally, the administrator updates the result of a candidate, say candA, with
the memory cell result(candA), each time a valid vote for this candidate is counted.
Moreover, let v/1 and c/1 be two interpreted functions that model respectively the
voting function and the check for counted votes. Finally, we allow for dishonest voters,
and we define the predicate dishonest. For every dishonest X ∈ Voters, dishonest(X)
holds, and, conversely, for every honest X ∈ Voters, ¬dishonest(X) holds.

The election is divided in two phases. The voting phase is modeled by the Cast
and Admin processes in Figure 7. During a Cast process transaction, a honest voter
X can choose their vote V . If the voter did not vote already, a new random value R
is generated. Their status voted(X) is updated to yes. We publish in γ the true value
of their vote, i.e., v[I(X)]

.
= I(V): this is used later in the tallying phase to formalize

the core of the privacy goal. Finally, the voter sends their vote to the administrator
that they encrypt with their shared secret key. Note that this transaction can only
be taken for honest voters. The intruder can send any messages that he wants, but
ultimately, for the dishonest voters that he controls, he has to produce a vote that the
administrator later accepts if he wants the vote to be counted.

During a Admin process transaction, every time the administrator receives a ballot
from a voterX, they first check that the sender is a legit voter, and they also check that
the legit voter did not cast a vote already by checking cast(X). If these requirements
are met, the administrator updates cast(X) to yes. Besides, if the voter is dishonest,
i.e., if dishonest(X) holds, the vote is also disclosed in γ and in α. This does not
mean that the intruder necessarily knows the value of the vote, but that it should not
count as an attack if he learns it. This can be seen as a sort of declassification: the
relation between a dishonest voter and their vote is not a secret. This is important in
systems like an early version of Helios, where an intruder can cast a copy of another
voter’s vote as his own vote. It would be obscuring the attack from our analysis, if we
simply gave to the intruder the information what his vote is; leaving this information
classified would lead to a false positive in general (because typically the intruder knows
what he voted). (α, β)-privacy thus allows us to stay clear of both problems by just
declassifying the relation between dishonest voter and their vote.

At the beginning of a Counter process transaction, the administrator who is also
acting as the counter can switch the status of the election to over. The administrator

41

Cast

if status(·) .
= voting then

? X ∈ Voters.
if (¬dishonest(X)) then
? V ∈ {candA, candB}.
s := voted(X).
if (s

.
= no) then

νR. voted(X) := yes.
� v[I(X)]

.
= I(V).

snd(scrypt(sk(X, a), ballot(R, V)))

Admin

if status(·) .
= voting then

rcv(scrypt(sk(X, a), ballot(R, V))).
s := cast(X).
if (X ∈ Voters ∧ s .

= no) then
cast(X) := yes.
if (dishonest(X)) then
� v[I(X)]

.
= I(V).

? v[I(X)]
.
= I(V).

Counter

status(·) := over.
forX : Voters
s := cast(X).
if (s

.
= yes ∧ v[I(X)]

.
= candA) then

result := result(candA).
result(candA) := result + 1.
� c[I(X)]

.
= true.

if (s
.
= yes ∧ v[I(X)]

.
= candB) then

result := result(candB).
result(candB) := result + 1.
� c[I(X)]

.
= true.

resultA := result(candA).
resultB := result(candB).
if (resultA 6

.
= result_candA ∨ resultB 6

.
= result_candB) then

attack.
else
? result_candA

.
= I(result_candA) ∧ result_candB

.
= I(result_candB).

result_candA = ΣX∈Voters∧v[X]
.
=candA∧c[X]

.
=yes1

result_candB = ΣX∈Voters∧v[X]
.
=candB∧c[X]

.
=yes1

Figure 7: Voting Protocol

42

is going through all the voters. We use a for construct as a syntactic sugar. We need
to unroll this loop, i.e., repeat the body for each voter. This notational sugar allows
us to keep our formalization parametrized over an arbitrary number of voters, while
a concrete specification that results from unrolling this loop has the number of voters
fixed. This is because we do not wish to formalize an unbounded number of steps in
a single step, which would have undesirable consequences on the semantics. For each
voter, the administrator checks whether they cast a vote that has been accepted. If this
is the case, a distinction is made following the value of the interpreted function v[I(X)]
stored in γ. This does not represent that the administrator knows the value of the
vote, but that we make a case distinction depending of what the truth γ is. Depending
on v[I(X)] being candA or candB, the administrator updates the result memory cell
for the corresponding candidate. Finally, the administrator sets the check for counted
vote of the voter to true. Once this is done for all voters, the administrator checks
that the result is correct. We encode this correctness property for candA for instance
by resultA 6

.
= result_candA. result_candA is computed directly from the information

published in γ, i.e., result_candA =
∑
X∈Voters∧v[X]

.
=candA∧c[X]

.
=true 1, whereas resultA is

the actual computation done by the administrator. Again, this does not mean that
the administrator knows the value of each individual vote, but this means that we
require that the result the counter computes corresponds to the truth. If this is not
the case, there is an attack, i.e., it triggers a violation of (α, β)-privacy, since the basic
correctness of the protocol is shown violated if this branched is reached. Otherwise, we
can publish the result in α. We would like to emphasize the key role of the information
published in γ through interpreted functions to express the privacy goals of a voting
protocol (similarly to what was done in the static approach in [18]).

To give another example on how dynamic possibilistic (α, β)-privacy works, we
show how to reach a state that we call “final”, i.e., a state where the result has been
printed and no new transactions can be taken (see Figure 8). For this example, we
consider that there are three voters, i.e., Voters = {x1, x2, x3}. x1 and x2 are honest
voters, and x3 is dishonest, i.e., dishonest(x3) holds. For the sake of simplicity, we
consider that first the three voters cast their vote, and then only that the administrator
registers their votes.

This means that a Cast process transaction is taken two times for the honest
voters. For the two instantiations (lines 1, 2 in Figure 8), public information about
the voter is released in α, the intruder can observe the exchange of messages with the
administrator, the true value of the votes is released in γ, and the status of each of
the voters is updated to yes. Note that the intruder can send whatever messages that
he can compose, especially he is able to send a valid vote to the administrator since
he knows sk(x3, a).

Then, a process Admin transaction is also taken three times. This is reflected for
the three instantiations (line 3, 4, 5 in Figure 8) by the update of cast(X) to yes. Note
that for the dishonest voter x3, the true result of the vote is released in both γ and
α, since this is a vote that was produced by the intruder. Again, this does not mean
that the intruder learns the value of the vote at this point, but that it will not count
as an attack if he does.

Finally, the only transaction still possible is the instantiation of a Counter process.
This means the administrator is going through the votes and updates the result. Every
time the administrator counts the vote of a voter, it is released in γ that the vote has
been counted. At the end of the process, the result of the election is released in α.

Before concluding on the security of this “final” state, we need to recapitulate
the privacy goals that we expressed. Let us have a look at the information we have

43

α
β

γ
δ

1
X

1
∈
V
o
te
rs

co
n
cr

[l
1
]

=
sc
ry
p
t(
sk

(x
1
,a

),
b
al
lo
t(
R

1
,c
an

d
A

))
X

1
. =
x

1
vo
te
d
(X

1
)

: =
ye
s
if
φ

1

∧
V

1
∈
{c
an

d
A
,c
an

d
B
}
∧

st
ru
ct

[l
1
]
=

sc
ry
p
t(
sk

(X
1
,a

),
b
al
lo
t(
R

1
,V

1
))

∧
V

1
. =
ca
n
d
A

∧
v
[x

1
]
. =
ca
n
d
A

2
X

2
∈
V
o
te
rs

co
n
cr

[l
2
]

=
sc
ry
p
t(
sk

(x
2
,a

),
b
al
lo
t(
R

2
,c
an

d
B

))
X

2
. =
x

2
vo
te
d
(X

2
)

: =
ye
s
if
φ

1
∧
φ

2

∧
V

2
∈
{c
an

d
A
,c
an

d
B
}
∧

st
ru
ct

[l
2
]
=

sc
ry
p
t(
sk

(X
2
,a

),
b
al
lo
t(
R

2
,V

2
))

∧
V

2
. =
ca
n
d
B

∧
v
[x

2
]
. =
ca
n
d
B

3
ca
st

(X
1
)

: =
ye
s
if
φ

3

4
ca
st

(X
2
)

: =
ye
s
if
φ

3
∧
φ

4

5
v
[x

3
]
. =
ca
n
d
A

v
[x

3
]
. =
ca
n
d
A

ca
st

(X
3
)

: =
ye
s
if
φ

3
∧
φ

4
∧
φ

5

6
re
su
lt
_
ca
n
d
A
. =

2
c[
x

1
]
. =
tr
u
e

st
at
u
s(
·)

: =
o
ve
r
if
φ

6

∧
re
su
lt
_
ca
n
d
B
. =

1
∧
c[
x

2
]
. =
tr
u
e

re
su
lt

(c
an

d
A

)
: =

2
if
φ

6
∧
φ
v
o
te

∧
c[
x

3
]
. =
tr
u
e

re
su
lt

(c
an

d
B

)
: =

1
if
φ

6
∧
φ
v
o
te

φ
1
≡

st
at
u
s(
·)
. =
vo
ti
n
g
∧
s 1

. =
n
o
∧
¬
d
is
h
o
n
es
t(
X

1
)

φ
2
≡

st
at
u
s(
·)
. =
vo
ti
n
g
∧
s 2

. =
n
o
∧
¬
d
is
h
o
n
es
t(
X

2
)

φ
3
≡
φ

1
∧
φ

2
∧
φ

3
∧
X

1
∈
V
o
te
rs
∧
st
at
u
s(
·)
. =
vo
ti
n
g
∧
s 3

. =
n
o

φ
4
≡
X

2
∈
V
o
te
rs
∧
st
at
u
s(
·)
. =
vo
ti
n
g
∧
s 4

. =
n
o

φ
5
≡
X

3
∈
V
o
te
rs
∧
st
at
u
s(
·)
. =
vo
ti
n
g
∧
s 5

. =
n
o

φ
6
≡
φ

3
∧
φ

4
∧
φ

5
∧
s 6

. =
ye
s

φ
v
o
te
≡

(v
[x

1
]
. =
ca
n
d
A
∧
v
[x

2
]
. =
ca
n
d
B
∧
v
[x

3
]
. =
ca
n
d
A

)
∧
s 8

. =
ye
s
∧
s 9

. =
ye
s

∨
(v

[x
1
]
. =
ca
n
d
B
∧
v
[x

2
]
. =
ca
n
d
A
∧
v
[x

3
]
. =
ca
n
d
A

)

F
ig
ur
e
8:

E
xe
cu
ti
on

of
th
e
vo

ti
ng

pr
ot
oc
ol

44

intentionally released, i.e., the formula α:

α ≡ X1 ∈ Voters ∧ V1 ∈ {candA, candB}
∧ X2 ∈ Voters ∧ V2 ∈ {candA, candB}
∧ v[x3]

.
= candA

∧ result_candA
.
= 2 ∧ result_candB

.
= 1

α has just two models (before the release of the results, it has four models). Also,
observe that the intruder can now deduce that V1 and V2 are different, and that
is a legal consequence of α. This is something that the cardinality of the election
allows, and the best protocol cannot prevent it. Let us have now a look on the
technical information: β is the conjunction of φgen , φhom , φ∼ (see preliminaries) and
the following frames concr and struct (note that xi are concrete voters and that Xi
are the privacy variables picked during transitions):

concr = {| l1 7→ scrypt(sk(x1, a), ballot(R1, candA)),
l2 7→ scrypt(sk(x2, a), ballot(R2, candB))|}

struct = {| l1 7→ scrypt(sk(X1, a), ballot(R1, V1)),
l2 7→ scrypt(sk(X2, a), ballot(R2, V2))|}

The payload formula α specifies that the intruder can learn that the three voters
voted (he can indeed observe that there are three votes on the bulletin board) and
the result of the election. As explained, he can also learn the true vote of voter x3

(in our specific case, he knows it since he knows sk(x3, a)). But he should not learn
more. The technical information β takes into account the messages that the intruder
observed. In any instantiations of the variables that is compatible with α, concr and
struct are statically equivalent, since the intruder cannot decrypt anything else that
the vote of the dishonest voter (or compose and check other messages). Thus, all the
models of α can be extended to models of β, and this simple voting protocol ensures
voting privacy in its “final” state.

Now let us say that we want this protocol to ensure stronger privacy goals, such as
receipt freeness. The authors of [18] used the following definition: “no voter has a way
to prove how they voted”. The property is formalized with respect to a specific voter,
say x1, that the intruder is trying to influence. The question is whether voter x1 can
prove to the intruder how they voted by a kind of “receipt”. The idea of [18] is to force
the coerced voter to reveal their entire knowledge. But the voter can lie and give to
the intruder anything that they can construct from their own knowledge, as long as
their story is consistent with what the intruder already knows, e.g., from observing
the messages exchanged between the voters and the administrator. Similarly to the
frames concr and struct that represent the knowledge of the intruder, we reason about
the frames concrx1 and structx1 that represent the knowledge of voter x1. The core
idea is then that what voter x1 can lie about is the content of concrx1 . We augment
β by the following axiom φlie , that is updated for every transition as φ∼ for instance,
and where {d1, . . . , dl} is the domain of the frames concrx1 and structx1 :

φlie ≡ struct [d1] = structx1 [d1] ∧ . . . ∧ struct [dl] = structx1 [dl]
∧ ∃s1, . . . , sl. genDx1

(s1) ∧ genDx1
(sl).

(concr [d1] = concrx1 [s1] ∧ . . . ∧ concr [dl] = concrx1 [sl]])

In our simple voting protocol, the knowledge of the voter x1 is very simple. They
know their shared key with the administrator, the random value that they generate

45

when voting and they know the messages that they send:

concrx1 = {| d1 7→ sk(x1, a), d2 7→ R1,
d3 7→ scrypt(sk(x1, a), ballot(R1, candA)) |}

structx1 = {| d1 7→ sk(X1, a), d2 7→ R1,
d2 7→ scrypt(sk(X1, a), ballot(R1, V1)) |}

There is no way for the voter x1 to lie about their true vote because they know
neither the secret key that the other voters share with the administrator, nor the other
random values. This means that the intruder can exclude some models of α when we
require as part of β the receipt-freeness axiom: this protocol is not receipt-free.

Receipt-freeness is a difficult property to express with approaches such as the ones
based on Applied-π calculus [12]. We have shown here how to refine our privacy goal
in dynamic (α, β)-privacy. Note that was done with an additional axiom to β rather
than something we could already express with (α, β)-privacy directly.

46

