
Performing Security Proofs of Stateful Protocols

Andreas V. Hess∗ Sebastian Mödersheim∗

Achim D. Brucker† Anders Schlichtkrull‡

∗DTU Compute, Technical University of Denmark,
Lyngby, Denmark

{avhe,samo}@dtu.dk
†Department of Computer Science, University of Exeter,

Exeter, United Kingdom
a.brucker@exeter.ac.uk

‡Department of Computer Science, Aalborg University,
Copenhagen, Denmark

andsch@cs.aau.dk

Abstract

In protocol verification we observe a wide spectrum from fully auto-
mated methods to interactive theorem proving with proof assistants like
Isabelle/HOL. The latter provide overwhelmingly high assurance of the
correctness, which automated methods often cannot: due to their com-
plexity, bugs in such automated verification tools are likely and thus the
risk of erroneously verifying a flawed protocol is non-negligible. There
are a few works that try to combine advantages from both ends of the
spectrum: a high degree of automation and assurance. We present here
a first step towards achieving this for a more challenging class of pro-
tocols, namely those that work with a mutable long-term state. To our
knowledge this is the first approach that achieves fully automated verifica-
tion of stateful protocols in an LCF-style theorem prover. The approach
also includes a simple user-friendly transaction-based protocol specifica-
tion language embedded into Isabelle, and can also leverage a number of
existing results such as soundness of a typed model.

1 Introduction
There are at least three reasons why it is desirable to perform proofs of security
in a proof assistant like Isabelle/HOL or Coq. First, it gives us an overwhelm-
ing assurance that the proof of security is actually a proof and not just the
result of a bug in a complex verification tool. This is because the basic idea of
an LCF-style theorem prover is to have an abstract datatype theorem so that

1

https://orcid.org/0000-0001-6312-6311
https://orcid.org/0000-0002-6901-8319
https://orcid.org/0000-0002-6355-1200
https://orcid.org/0000-0001-9212-6150

new theorems can only be constructed through functions that correspond to
accepted proof rules; thus implementing just this datatype correctly prevents us
from ever accepting a wrong proof as a theorem, no matter what complex ma-
chinery we build for automatically finding proofs. Second, a human may have
an insight of how to easily prove a particular statement where a “stupid” verifi-
cation algorithm may run into a complex check or even be infeasible. Third, the
language of a proof assistant can formalize all accepted mathematics, so there
is no narrow limit on what aspects of a system we can formalize, e.g., physical
properties.

Paulson [32] and Bella [6] developed a protocol model in Isabelle and per-
formed several security proofs in this model, e.g., [33]. That the proof of a single
protocol (for which even some automated security proofs exist) is worth a pub-
lication, underlines how demanding it is to conduct proofs in a proof assistant.
This raised the question of how one can automatically produce proofs that can
be checked by a proof assistant and thus get the mentioned overwhelming as-
surance. The first works in this direction consider tools based on Horn-clause
resolution like ProVerif [19, 11], as well as the tool Scyther-proof [26] for the
backward-search based tool Scyther [17].

A drawback of these approaches so far is that they only apply to Alice-and-
Bob style protocols where there is no relation between several sessions. When
we consider, however, any system that maintains a mutable long-term state,
e.g., a security token or a server that maintains a simple database, we hit the
limits of tools like ProVerif and Scyther. To cope with the complexity, some
extensions to ProVerif have been proposed [3, 14], but also a tool that went a
completely different way: Tamarin [28] is actually inspired by Scyther-proof and
has the flavor of a proof assistant environment itself, namely combining partial
automation with interactively performing a proof, i.e., supplying the right lem-
mas to show. Interestingly, there is no connection to Isabelle or other LCF-style
theorem provers, while one may intuitively expect that this should be easily
possible. The reason seems to be that Tamarin combines several specialized au-
tomated methods, especially for term algebraic reasoning, that would be quite
difficult to “translate” into Isabelle/HOL—at least the authors of this paper do
not see an easy way to make such a connection. In fact, if it was possible for a
large class of stateful protocols, the combination of overwhelming assurance of
proofs and a high degree of automation would be extremely desirable.

The goal of this work is to achieve exactly this combination for a well-
defined fragment of stateful protocols. We are here using as a foundation the
Isabelle/HOL formalization and protocol model by Hess et al. [22]. One rea-
son for this choice is that the proof technique we present in this paper works
only in a restricted typed model. Fortunately, that formalization ships with a
typing result [25], namely an Isabelle theorem that says: if a protocol is secure
in this typed model, then it is also secure in the full model without the typ-
ing restriction—as long as the protocol in question satisfies a number of basic
requirements. Thus we get fully automated Isabelle proofs for most protocols
even without a typing restriction.

The automated proof technique we employ in this paper is based on the

2

set-based abstraction approach of [12, 30]. The basic idea is that we represent
the long-term state of a protocol by a number of sets; the protocol rules specify
how protocol participants shall insert elements into a set, remove them from a
set, and check for membership or non-membership. (The intruder may also be
given access to some sets.) Based on this, we perform an abstract interpretation
approach that identifies those elements that have the same membership status in
all sets and compute a fixed point, more precisely a representation of all messages
that the intruder can ever know after any trace of the protocol (including the set
membership status of elements that occur in these messages). One may wonder
if considering just intruder-known messages limits the approach to secrecy goals,
but thanks to sets, a wide range of trace-based properties can be expressed by
reduction to the secrecy of a special constant attack. (We cannot, however,
handle privacy-type properties in this way.)

We thus check if the fixed point contains the attack constant, and if so, we
can abort the attempt to prove the protocol correct. This may happen also for a
secure protocol as the abstraction entails an over-approximation. However, vice-
versa, if attack is not in the fixed point, then the protocol should be secure—if
the fixed point is indeed a sound representation of the messages the intruder can
ever know. The proof we perform in Isabelle now is thus basically to show that
the fixed point is closed under every protocol rule: given any trace where the
intruder knows only messages covered by the fixed point, then every extension
by one protocol step reveals only messages also covered by the fixed point.

The main contribution of this paper is the Isabelle implementation of a mech-
anism to both compute the abstract fixed point—the proof idea so to speak—and
to then break it down into digestible pieces for Isabelle. This proof consists of
two main parts: first, we have a number of protocol-independent theorems that
we have proved in Isabelle once and for all, and second, for every protocol and
fixed point, we have a number of checks that Isabelle can directly execute to
establish the correctness of a given protocol. The entire protocol-independent
formalization consists of more than 15,000 lines of Isabelle code (definitions,
theorems and proofs). This figure includes also another minor contribution:
we devise a simple protocol specification language into Isabelle that overcomes
some drawbacks of low-level input languages like (multi-)set rewriting rules used
in some other tools. The complete formalization is available at the Archive of
Formal Proofs as the entry titled Automated Stateful Protocol Verification [23]:

https://www.isa-afp.org/entries/Automated_Stateful_Protocol_
Verification.html

The latest development version and related works can be found at the following
webpage:

https://people.compute.dtu.dk/samo/composec.html

This gives us thus a fully automated approach to generate proofs of highest
assurance for a relevant class of stateful security protocols. This class is limited
by the automated method behind it, most notably we can only insert atomic
messages into the sets, but allows for full automation.

3

https://www.isa-afp.org/entries/Automated_Stateful_Protocol_Verification.html
https://www.isa-afp.org/entries/Automated_Stateful_Protocol_Verification.html
https://people.compute.dtu.dk/samo/composec.html

The rest of this paper is organized as follows: Section 2 introduces prelim-
inaries, Section 3 defines the protocol model, Section 4 explains the set-based
abstraction approach, Section 5 introduces the protocol checks with optimiza-
tions introduced in Section 6, Section 7 presents and reports on the results of a
number of experiments applying our approach to a selection of protocols, and
finally Section 8 is the conclusion where we also discuss related work.

2 Preliminaries

2.1 Terms and Substitutions
We model terms over a countable set Σ of symbols (also called function symbols
or operators) and a countable set V of variables disjoint from Σ. Each symbol
in Σ has an associated arity and we denote by Σn the symbols of Σ of arity n. A
term built from S ⊆ Σ and X ⊆ V is then either a variable x ∈ X or a composed
term of the form f(t1, . . . , tn) where each ti is a term built from S and X, and
f ∈ Sn. The set of terms built from S and X is denoted by T (S,X). Arbitrary
terms t usually range over T (Σ,V), unless stated otherwise. By subterms(t) we
denote the set of subterms of t.

The set of constants C is defined as the symbols with arity zero: C ≡ Σ0. It
contains the following distinct subsets:

• the countable set V of concrete values (or just values),

• the finite set A of abstract values,

• the finite set E of enumeration constants,

• the finite set S of database constants,1

• and a special constant attack.

The analyst, i.e., the author of a protocol specification may freely choose E and
S as well as any number of function symbols F with their arities (disjoint from
the above subsets).

Example 1 Consider a protocol with two users a and b, and where each user a
has its own keyring ring(a), and the server maintains databases of the currently
valid keys valid(a) and revoked keys revoked(a) for a. For such a protocol we
define E = {a, b} and S = {ring(a), valid(a), revoked(a) | a ∈ E}. �

We regard all elements of S as constants, despite the function notation,
which is just to ease specification. This work is currently limited to finite enu-
merations and finite sets, as handling infinite domains would require substantial
complications of the approach (e.g., a symbolic representation or a small system
result).

1These databases are simply sets of messages and we therefore often refer to them simply
as “sets” in this paper.

4

Arbitrary constants are usually denoted by a, b, c, d, whereas arbitrary
variables are denoted by x, y, and z. By x̄ we denote a finite list x1, . . . , xn of
variables.

We furthermore partition Σ into the public symbols (those symbols that are
available to the intruder) and the private symbols (those that are not). We
denote by Σpub and Σpriv the set of public respectively private symbols. By
Cpub and Cpriv we then denote the sets of public respectively private constants.
The constant attack, the values V, the abstract values A, and the database
constants S are all private.

The set of variables of a term t is denoted by fv(t) and we say that t is
ground iff fv(t) = ∅. Both definitions are extended to sets of terms as expected.

A substitution is a mapping from variables V to terms. The substitution
domain (or just domain) dom(θ) of a substitution θ is defined as the set of those
variables that are not mapped to themselves by θ: dom(θ) ≡ {x ∈ V | θ(x) 6= x}.
The substitution range (or just range) ran(θ) of θ is the image of the domain
of θ under θ: ran(θ) ≡ θ(dom(θ)). For finite substitutions we use the notation
[x1 7→ t1, . . . , xn 7→ tn] to denote the substitution with domain {x1, . . . , xn}
and range {t1, . . . , tn} that sends each xi to ti. Substitutions are extended to
composed terms homomorphically as expected. A substitution δ is injective
iff δ(x) = δ(y) implies x = y for all x, y ∈ dom(δ). An interpretation is a
substitution I such that dom(I) = V and ran(I) is ground. A variable renaming
ρ is an injective substitution such that ran(ρ) ⊆ V. An abstraction substitution
is a substitution δ such that ran(δ) ⊆ A.

2.2 The Intruder Model
We employ the intruder model from [22] which is in the style of Dolev and Yao:
the intruder controls the communication medium and can encrypt and decrypt
with known keys, but the intruder cannot break cryptography. More formally,
we define that the intruder can derive a message t from a set of known messages
M (the intruder knowledge, or just knowledge), written M ` t, as the least
relation closed under the following rules:

M ` t
(Axiom)
t ∈M

M ` t1 · · · M ` tn
M ` f(t1, . . . , tn)

(Compose)
f ∈ Σnpub

M ` t M ` k1 · · · M ` kn
M ` r

(Decompose)
Ana(t) = (K,R), r ∈ R,

K = {k1, . . . , kn}

where Ana(t) = (K,R) is a function that maps a term t to a pair of sets of terms
K and R. We also define a restricted variant `c of ` as the least relation closed
under the (Axiom) and (Compose) rules only.

The (Axiom) rule simply expresses that all messages directly known to the
intruder are derivable, the (Compose) rule closes the derivable terms under the
application of public function symbols such as encryption or public constants

5

(when f ∈ Σ0
pub = Cpub). The (Decompose) rule represents decomposition oper-

ations: Ana(t) = (K,R) means that t is a term that can be analyzed, provided
that the intruder knows all the “keys” in the set K, and he will then obtain
the “results” in R. This gives us a general way to deal with typical construc-
tor/destructor theories without needing to work with algebraic equations and
rewriting. We may also write Keys(t) and Result(t) to denote the set of keys
respectively results from analyzing t, i.e., Ana(t) = (Keys(t),Result(t)).

Example 2 To model asymmetric encryption and signatures we first fix two
public crypt, sign ∈ F2 and one private inv ∈ F1 function symbols. The term
crypt(k,m) then denotes the message m encrypted with a public key k and
sign(inv(k),m) denotes m signed with the private key inv(k) of k. To obtain
a message m encrypted with a public key k the intruder must produce the pri-
vate key inv(k) of k. Formally, we define the analysis rule Anacrypt(x1, x2) =
({inv(x1)}, {x2}). For signatures we define the rule Anasign(x1, x2) = (∅, {x2})
modeling that the intruder can open any signature that he knows. We also
model a transparent pairing function by fixing pair ∈ Σ2 and defining the rule
Anapair(x1, x2) = (∅, {x1, x2}). �

Note that we have in this example used a simple notation for describing
Ana(t) for an arbitrary term t: each rule Anaf (x1, . . . , xn) = (K,R) defines Ana
for a constructor f ∈ Fn. Here xi are distinct variable symbols, and K and
R are sets of terms such that R ⊆ {x1, . . . , xn} and K ⊆ T (F, {x1, . . . , xn}).
Note that for each constructor we have at most one analysis rule, and for all
constructors without an analysis rule we just have Ana(t) = (∅, ∅). (An example
for the latter is a hash function: the intruder cannot obtain information from a
hash value.)

The reason for this convention is that the formalization of [22] requires that
the Ana function satisfies certain conditions, most notably that it is invariant
under substitutions.2 Without going into detail, our notation of the Ana rules
allows for an automated proof that all these requirements are satisfied. Thus,
this allows the user to specify an arbitrary constructor/destructor theory with
these Ana rules without having to prove anything manually.

2.3 Typed Model
Our result is based on a typed model in which the intruder is restricted to
only making “well-typed” choices. Many protocol verification methods [6, 7, 11,
32, 33] rely on such a typed model since it simplifies the protocol verification
problem. There exist many typing results [16, 25, 1, 24, 21, 2] that show that
a restriction to a typed model is sound for large classes of protocols. That is,
it is without loss of attacks to restrict the verification to a typed model. Each

2 One may wonder why we do not allow for analysis rules of the form Anaf (t1, . . . , tn) =
(K,R), where the ti are arbitrary terms instead of just variables. Because of the substitution
invariance requirement from [22] on Ana such analysis rules would not lead to more expressive
Ana functions.

6

such result show that if a protocol satisfies certain syntactic conditions and is
secure in a typed model then the protocol is secure also in an untyped model.
[25] is such a result that is part of the Isabelle formalization we employ. Since
this result has itself been proved in Isabelle, it is sufficient to obtain the Isabelle
proof of a protocol in the unrestricted model from the Isabelle proof in the typed
model and that the protocol satisfies the requirements of the typing result. As
a minor contribution of this paper that we just mention here is that we have
automated the Isabelle proof of these requirements of the typing result for the
protocol specification language we present. Thus, all that is left to do in the
following section is the automated proof for the protocol in the typed model.

In a nutshell, the typing result requires that messages with different intended
meaning cannot be confused for each other—a condition called type-flaw resis-
tance. More formally, the typed model is parameterized over a typing function
Γ and a finite set of atomic types Ta satisfying the following:

• Γ(x) ∈ T (Σ \C,Ta) for x ∈ V (where Ta here acts like a set of “variables”)

• Γ(c) ∈ Ta for c ∈ C

• Γ(f(t1, . . . , tn)) = f(Γ(t1), . . . ,Γ(tn)) for f ∈ Σ \ C

A substitution θ is then said to be well-typed iff Γ(θ(x)) = Γ(x) for all variables
x. In this paper we use Ta = {value, enum, settype, attacktype}, and the elements
of A ∪ V have type value, the elements of E have type enum, the elements of
S have type settype and attack has type attacktype. We furthermore assume
that all variables that we use in protocol specifications have atomic types, and
we denote by Va the set of variables with atomic type a (e.g., Vvalue is the
set of value-typed variables). As an example, let x, y ∈ Vvalue and a ∈ E, then
Γ(sign(inv(x), pair(a, y))) = sign(inv(value), pair(enum, value)). Suppose an agent
expects to receive a term of this type; then the typed model means the restriction
that the intruder can only send messages of this type, i.e., he cannot send in
place of x and y some terms of a different type. This restriction of the intruder
to typed terms—which is without loss of generality when the requirements of
the typing result hold—is drastically simplifying the task of proving the protocol
correct.

3 Transactions
The Isabelle protocol model of [22] consists of a number of transactions specify-
ing the behavior of the participants. A transaction consists of any combination
of the following: input messages to receive, checks on the sets, modifications
of the sets, and output messages to send. A transaction can only be executed
atomically, i.e., it can only fire when input messages are present, such that the
checks are satisfied, and then they produce all changes and the output messages
in one state transition. Instead of defining a ground state transition system,
[22] considers building symbolic traces as sequences of transactions with their

7

variables renamed apart, and with any instantiation of the variables that satis-
fies the checks and the intruder model in the sense that the intruder can produce
every input message from previous output messages. (Transactions can also de-
scribe additional abilities of the intruder such as reading a set.) Security goals
are formulated by transactions that check for a situation we consider as a suc-
cessful attack, and then reveal the special constant attack to the intruder. Thus
a protocol is safe if no symbolic constraint with the intruder finally sending
attack has a satisfying interpretation. Note that the length of symbolic traces is
finite but unbounded (i.e., an unbounded session model), and that the number
of enumeration constants and databases currently supported is arbitrary but
fixed in the specification.

For the convenience of an automated verification tool, we have defined a
small language based on transactions with a bit of syntactic sugar, and this
language is directly embedded into Isabelle. We introduce this language only
at hand of a keyserver example adapted from [22] that we also use as a running
example for the remainder of this paper.

3.1 A Keyserver Protocol
Before we proceed with the formal definitions we illustrate our protocol model
through the keyserver example. Here users can register public keys at a trusted
keyserver and these keys can later be revoked. Each user U has an associated
keyring ring(U) with which it keeps track of its keys. (The elements of ring(U)
are actually public keys; we implicitly assume that the user U knows the corre-
sponding private key.)

First, we model a mechanism outOfBand by which a user U can register a new
key PK at the keyserver out-of-band, e.g., by physically visiting the keyserver.
The user U first constructs a fresh public key PK and inserts PK into its keyring
ring(U). We model that the keyserver—in the same transaction—learns the key
and adds it to its database of valid keys for user U , i.e., into a set valid(U).
Finally, PK is published:

outOfBand(U: user)
new PK
insert PK ring(U)
insert PK valid(U)
send PK .

Note that there is no built-in notion of set ownership, or who exactly is per-
forming an action: we just specify with such transactions what can happen.
The intuition is that ring(U) is a set of public keys controlled by U (and U has
the corresponding private key of each) while valid(U) is controlled by the server
(who is not even given a name here). Putting it into a single transaction models
that this is something happening in collaboration between a user and a server.

Next, we model a key update mechanism that allows for registering a new
key while simultaneously revoking an old one. Here we model this as two trans-
actions, one for the user and one for the server, since here we model a scenario

8

where user and server communicate via an asynchronous network controlled by
the intruder. To initiate the key revocation process the user U first picks and
removes a key PK from its keyring to later revoke, then freshly generates a
new key NPK and stores it in its keyring. (Again the corresponding private
key inv(NPK) is known to U , but this is not explicitly described.) As a final
step the user signs the new key with the private key inv(PK) of the old key and
sends this signature to the server by transmitting it over the network:

keyUpdateUser(U: user,PK : value)
PK in ring(U)
new NPK
delete PK ring(U)
insert NPK ring(U)
send sign(inv(PK), pair(U,NPK)).

The check PK in ring(U) represents here a non-deterministic choice of an ele-
ment of ring(U). (Note that a user can register any number of keys with the
outOfBand transaction.) Note also that we declare PK as a variable of type
value, because PK is not freshly generated; all freshly generated elements, like
NPK here, are automatically of type value.

When the server receives the signed message, it checks that PK is indeed a
valid key, that NPK has not been registered earlier, and then revokes PK and
registers NPK . To keep track of revoked keys, the server maintains another
database revoked(U) containing the revoked keys of U :

keyUpdateServer(U: user,PK : value,NPK : value)
receive sign(inv(PK), pair(U,NPK))
PK in valid(U)
NPK notin valid(_)
NPK notin revoked(_)
delete PK valid(U)
insert PK revoked(U)
insert NPK valid(U)
send inv(PK).

As a last action, the old private key inv(PK) is revealed. This is of course not
what one would do in a reasonable implementation, but it allows us to prove that
the protocol is correct even if the intruder obtains all private keys to revoked
public keys. (This could also be separated into a rule that just leaks private
keys of revoked keys.)

Actions of the form x notin s(_) for s ∈ Σn are syntactic sugar for the
sequence of actions x notin s(a) for each a ∈ E.

Finally, we define that there is an attack if the intruder learns a valid key of
an honest user. This, again, can be modeled as a sequence of actions in which
we check if the conditions for an attack holds, and, if so, transmit the constant
attack that acts as a signal for goal violations. Let honest be a subset of user

9

that contains only the honest agents. Then we define:

attackDef(U: honest,PK : value)
receive inv(PK)
PK in valid(U)
attack.

The last action attack is just syntactic sugar for send attack.

3.2 Protocol Model
The keyserver protocol that we just defined consists of transactions that we
now formally define. To keep the formal definitions simple we omit the vari-
able declarations and the syntactic sugar employed in our protocol specification
language. Thus only value-typed variables remain in transactions since the enu-
meration variables are resolved as syntactic sugar. A transaction T is then of
the form T = Sr ·Sc ·F ·Su ·Ss where the Si are strands built from the following
grammar:

Sr ::= receive t · Sr | 0
Sc ::= x in s · Sc | x notin s · Sc | x 6

.
= x′ · Sc | 0

F ::= new x · F | 0
Su ::= insert x s · Su | delete x s · Su | 0
Ss ::= send u · Ss | 0

where x, x′ ∈ Vvalue, s ∈ S, t ∈ T (E ∪ F,Vvalue), u ∈ T (E ∪ F,Vvalue) ∪ {attack},
and where 0 denotes the empty strand.

The function fv is extended to transactions as expected, and for a transaction
T = Sr · Sc · F · Su · Ss we define fresh(T) ≡ fv(F) (i.e., x ∈ fresh(T) iff new x
occurs in T).

Protocols are defined as finite sets of such transactions P = {T1, . . . , Tn}.
Their semantics is defined in terms of a symbolic transition system in which
constraints are built up during transitions. A constraint essentially records
what transactions have been taken, but from the intruder’s point of view in
the sense that the directions of transmitted messages are swapped (so receives
become sends and vice-versa). For this reason the syntax of constraints A is
similar to the syntax for transactions, but without the new construct:3

A ::= send t · A | receive t · A | t 6 .= t′ · A | insert t t′ · A |
delete t t′ · A | t in t′ · A | t notin t′ · A | 0

where t, t′ ∈ T (Σ,V) and where 0 is the empty constraint.
For the semantics of constraints we define a relation I |=M

D A where A is a
constraint, M is the intruder knowledge (the messages sent so far), D is a set

3When building up constraints during transitions the variables x occurring in new x actions
will be instantiated with fresh values. Hence, new x actions will never occur in constraints.
For the same reason the constraint syntax needs to be slightly more flexible compared to the
transaction syntax, so as to allow for actions such as insert t s where t /∈ V.

10

of pairs representing the current state of the databases (e.g., (k, s) ∈ D iff k is
an element of the database s), and I is an interpretation:

I |=M
D 0 iff true

I |=M
D send t · A iff M ` I(t) and I |=M

D A
I |=M

D receive t · A iff I |=M∪{I(t)}
D A

I |=M
D insert t s · A iff I |=M

D∪{I((t,s))} A
I |=M

D delete t s · A iff I |=M
D\{I((t,s))} A

I |=M
D t 6 .= t′ · A iff I(t) 6= I(t′) and I |=M

D A
I |=M

D t in s · A iff I((t, s)) ∈ D and I |=M
D A

I |=M
D t notin s · A iff I((t, s)) /∈ D and I |=M

D A

We say that I is a model of A, written I |= A, iff I |=∅∅ A. We may also
apply substitutions θ to constraints A, written θ(A), by extending the definition
of substitution application appropriately. The function fv is also extended to
constraints.

We can then define a transition relation ⇒•P for protocols P in which states
are constraints and the initial state is the empty constraint 0. First, we define the
dual of a constraint A, written dual(A), as “swapping” the direction of the sent
and received messages of A: dual(0) = 0, dual(receive t · A) = send t · dual(A),
dual(send t · A) = receive t · dual(A), and dual(a · A) = a · dual(A) otherwise.
The transition

A ⇒•P A · dual(ρ(σ(Sr · Sc · Su · Ss)))

is then applicable for a transaction T ∈ P if the following conditions are met:

1. T = Sr · Sc · F · Su · Ss for some F ,

2. σ is a substitution mapping fresh(T) to fresh values (i.e., dom(σ) =
fresh(T), ran(σ) ⊆ V, and the elements of ran(σ) do not occur in A),
and

3. ρ is a variable renaming sending the variables of T to new variables that do
not occur inA or P (that is, dom(ρ) = fv(T) and (fv(A)∪fv(P))∩ran(ρ) =
∅).

A constraint A is said to be reachable in P iff 0⇒•?P A where ⇒•?P denotes
the transitive reflexive closure of ⇒•P . The protocol then has an attack iff there
exists a reachable and satisfiable constraint where the intruder can produce the
attack signal, i.e., there exists a reachable A in P and an interpretation I such
that I |= A · send attack. If P does not have an attack then P is secure.

3.3 Well-Formedness
We are going to employ the abstraction-based verification technique from [30]
in the following to automatically generate security proofs. The technique has
a few more requirements in order to work and which we bundle in a notion of
well-formedness.

11

First, when a transaction uses a variable when sending a message or per-
forming a set update, then that variable must either be fresh or have occurred
positively in a received message or check. Intuitively, transactions cannot pro-
duce a value “out of the blue”, but the value either has to exist before the
transaction (in some message or set) or is created by the transaction. Formally,
let T = Sr · Sc · F · Su · Ss , then we require:

C1: fv(Su) ∪ fv(Ss) ⊆ fv(Sr) ∪ fv(Sc) ∪ fresh(T)

C2: fresh(T) ∩ (fv(Sr) ∪ fv(Sc)) = ∅

(The second condition simply states that values that are freshly generated by a
transaction T should not also occur in the received messages and the checks of
T .)

The abstraction approach that we employ, furthermore, would not work if,
e.g., an agent freshly creates a value and stores it in a set, but never sends
it out as part of a message. This is because the abstraction discards the ex-
plicit representation of sets, and just keeps the abstracted messages. An easy
workaround is to define a special private unary function symbol occurs and aug-
ment every rule containing action new x with the action send occurs(x); and we
augment every transaction where variable x occurs but is not freshly generated
with receive occurs(x). In order not to bother the user with this, our tool can
make this transformation automatically.

This addition of occurs has, however, a subtle consequence. Suppose a spec-
ification contains no transaction that generates any fresh value, but, say, only
an attack rule like this:

attackDef2(PK : value)
receive PK
attack.

This rule cannot fire after the occurs transformation, because it adds the require-
ment to receive occurs(PK) which nobody can produce. One would, however,
naturally expect that said protocol is not secure. Thus, we require (and au-
tomatically check) that each protocol specification includes a value-producing
transaction, i.e., a transaction that is applicable in every state and generates a
fresh value.

One may wonder in the above example why the intruder is not able to provide
the value, since he has an unlimited supply of constants of every type, including
type value. However, for such a constant c he does not have occurs(c) (because
it is not fresh and occurs is private) and thus cannot use it in any transaction.
Thus, we have a model where the intruder by default cannot generate fresh
values, and it is thus the design choice of the user to define a transaction that
allows the intruder to generate fresh values, if this is desired. This is in our
opinion more flexible than a fixed intruder rule, since the rule can be adapted
to the context of a particular model. For instance, in the keyserver example
where values represent public keys one may define the intruder rule that gives

12

also the corresponding private key to the intruder and inserts it into a dedicated
set:

intruderValues()
new PK
insert PK intruderkeys
send PK
send inv(PK).

Finally, a small technical difficulty arises when a transaction has two vari-
ables x, y that could be the same value, i.e., that allows for a model I with
I(x) = I(y). This is difficult to handle in the verification since the transaction
may require to insert x into a set and delete y from that very set. To steer clear
of this, the paper [30] simply defines the semantics to be injective on variables.
For user-friendliness we do not want to follow this, and rather do the following:
for any rule with variables x and y that are not part of a new construct, we
generate a variant of the rule where we unify x and y, checking whether this
gives a consistent transaction. If so, we add it to the rule system. Then we
add the constraint x 6 .= y to the original rule. We do that until all rules have
x 6 .= y for all pairs of variables that are not freshly generated. For instance, in
the keyserver example, we have only one rule to look at: keyUpdateServer with
variables PK and NPK . Since unifying PK and NPK gives an unsatisfiable
rule, it is safe to add PK 6 .= NPK to it.

4 Set-Based Abstraction
We now come to the core of our approach: for a given protocol, how to automat-
ically verify and generate a security proof that Isabelle can accept. As explained
earlier this is based on an abstract interpretation method called set-based ab-
straction [29, 12, 30]. Of course this approach is rather complicated and lengthy
when explained in all detail, and even more so is the contribution of the present
paper, i.e., the Isabelle machinery and proofs building on this idea. Thus, the
following explanations can only summarize the approach, leaving out many de-
tails (especially ones published in existing works), and can give the reader only
an idea. We therefore emphasize again that the final Isabelle-accepted proofs
do not depend on the correctness of this machinery we sketch in the following:
the machinery is just to provide a proof that Isabelle can check, and an error in
this machinery (or an attack in the protocol) only leads to failure to prove it in
Isabelle.

Recall that in the previous section we formalized a protocol model by reach-
able constraints A (i.e., a sequence of transactions where variables have been
named apart and the send/receive direction has been swapped in order to ex-
press it from the intruder’s point of view) with their satisfying interpretations
I |= A. Note that |= is defined via a relation |=M

D , representing the intruder
knowledge—all the messages received so far—and the state of the sets S—all
values inserted into a set that were not deleted so far. We could thus character-

13

ize the “state” of the entire system after a number of instantiated transactions
by these two items, M and D.

Example 3 In our keyserver example the following instantiated constraint is
possible (after taking a transition with outOfBand followed by one with keyUpdateUser):

insert pk1 ring(a)
insert pk1 valid(a)
receive pk1
pk1 in ring(a)
delete pk1 ring(a)
insert pk2 ring(a)
receive sign(inv(pk1), pair(a, pk2))

After this trace we have

M = {pk1, sign(inv(pk1), pair(a, pk2))}, and
D = {(pk1, valid(a)), (pk2, ring(a))}.

The idea is that the abstract representation replaces each concrete value of V
with a constant from A that represents the set memberships. For this reason,
we choose A to be isomorphic to the power set of S, i.e., for every subset of S,
we have a corresponding constant in A. We write A for the abstract value that
corresponds to the subset A of S, e.g., if s1, s2 ∈ S then {s1, s2} ∈ A.

Thus, given a state D of the databases we define an abstraction function
from V to A as follows:

αD(c) = {s | (c, s) ∈ D}

and we extend it to terms and sets of terms as expected.

Example 4 In the previous example we have αD(pk1) = {valid(a)} and αD(pk2) =
{ring(a)}. Thus αD(M) = {{valid(a)}, sign(inv({valid(a)}), pair(a, {ring(a)}))}.

The key idea is to compute the fixed point of all the abstract messages that
the intruder can obtain in any model of any reachable constraint. Note that this
fixed point is in general infinite, even if S is finite (and thus so is A), because
the intruder can compose arbitrarily complex messages and send them. This is
why tools like [29, 12, 30] do not directly compute it but represent it by a set
of Horn clauses and check using resolution whether attack is derivable.

However, remember that we can restrict ourselves to the typed model and use
the typing result of [25] to infer the security proof without the typing restriction.
All variables that occur in a constraint are of type value (the parameter variables
of the transactions are de-sugared) and thus, in a typed model it holds that
I(x) ∈ V for every variable x and well-typed interpretation I. While V is still
countably infinite, the abstraction (in any state D) maps to the finite A. Thus
the fixed point is always finite in a typed model.

There is a subtle point here: even though we limit the variables to well-typed
terms, and thus all messages that can ever be sent or received, the Dolev-Yao

14

closure is still infinite, i.e., for a (finite) setM of messages there are still infinitely
many t such thatM ` t. Only finitely many of these t can be sent by the intruder
in the typed model, but one may wonder if the entire derivation relation ` can
be limited to “well-typed” terms without losing attacks. Indeed, we define well-
typed terms as the set of terms that includes all well-typed instances of sent
and received messages in transactions, and that is closed under subterms and
Keys. We have now proved in Isabelle that for the intruder to derive any well-
typed term, it is sound to also limit the intruder deduction to well-typed terms,
so no ill-typed intermediate terms are needed during the derivation. (This is
indeed very similar to some lemmas we have proved for parallel compositionality,
namely for so-called homogeneous terms the deduction does not need to consider
any inhomogeneous terms [22].) Thus, it is sufficient to limit the fixed point,
including intruder deduction, to well-typed terms, and thus have a finite fixed
point.

4.1 Term Implication
Let us now see in more detail how to compute the fixed point. An important
aspect of the abstraction approach is that the global state is mutable, i.e., the
set membership of concrete values can change over transitions, and so their
abstraction changes. For this we have the notion of a term implication:

Definition 1 A term implication (a, b) is a pair of abstract values a, b ∈ A and
a term implication graph TI is a binary relation between abstract values, i.e.,
TI ⊆ A× A. Instead of (a, b) ∈ TI we may also write a→→ b.

The reason we use the word “implication” is as follows. An abstract value
a ∈ A in general represents a multitude of concrete values c1, c2, . . . ∈ V; when
a concrete value c1 changes its set memberships, then its abstraction changes,
say to b ∈ A; however, the other concrete values c2, . . . ∈ V that had the same
abstraction before this change do not necessarily change their set memberships.
Thus for an abstract message like f(a) that contains the abstract value a, this
a could either represent the concrete value c1 that changes its set-membership,
i.e., produce f(b), or it could represent one of the other concrete values c2, . . .
and thus f(a) would be the abstract message after the change. The abstraction
must thus include both: every term implication a→→ b means that for every fact
f(a) we additionally have f(b). Note that in case of several occurrences, e.g.,
f(a, a), we have additionally f(a, b), f(b, a), and f(b, b), since each occurrence
of a could represent a different concrete value. This is captured by the following
definitions:

Definition 2 (Term transformation) Let (a, b) be a term implication. The
term transformation under (a, b) is the least relation a→→b closed under the fol-
lowing rules:

x a→→b x x ∈ V a a→→b b

t1 a→→b s1 · · · tn a→→b sn
f(t1, . . . , tn) a→→b f(s1, . . . , sn)

f ∈ Σn

15

Note that this relation is also reflexive since a a→→b a follows from a ∈ Σ0. If
t a→→b t

′ then we say that t′ is implied by t under (a, b), or just t′ is implied by
t for short.

Definition 3 (Term implication closure) Let TI be a term implication graph
and let t be a term. The term implication closure of t under TI is defined as
the least set clTI (t) closed under the following rules:

t ∈ clTI (t)

t′ ∈ clTI (t)

t′′ ∈ clTI (t)

(a→→ b) ∈ TI ,
t′ a→→b t

′′

This definition is extended to sets of terms M as expected. If t′ ∈ clTI (t) then
we say that t′ is implied by t (under TI).

The idea is that the fixed point should ultimately be closed under the term
implication graph. However, this closure is actually quite large in many practical
examples, and thus we just record the messages that are ever received by the
intruder together with the term implication graph, but without performing this
closure explicitly:

Definition 4 A protocol fixed-point candidate, or fixed point for short,4 is a
pair (FP ,TI) such that

1. FP is a finite and ground set of terms over T (Σ \ V, ∅).

2. TI is a term implication graph: TI ⊆ A× A.

4.2 Limitations
There are some limitations of our approach that we now mention. First, we
inherit the free algebra term model from [22] (two terms are equal iff they
are syntactically equal) and so we do not support algebraic properties such as
needed for Diffie-Hellman. Secondly, we inherit the limitations of AIF’s set-
based abstraction approach:

• We require each protocol to have a fixed and finite number of enumeration
constants and sets. This typically means that also the number of agents
is fixed—at least if the protocol has to specify a number of sets for each
agent.

• We require that the sets can only contain values. The reason is to allow
these values to be abstracted by set membership.

• We cannot refer directly to particular constants of type value. This would
not be very useful as every value with the same set-membership status are
identified with the same abstract value under the set-based abstraction.

4Here “candidate” is to emphasize that this is just a proof idea that has yet to be verified
by Isabelle.

16

Our approach allows for an unbounded number of sessions. The only differ-
ence here between our work and e.g. Tamarin [28] and ProVerif [9] is that we
need, as mentioned, to fix the number of enumeration constants and sets, and
thereby, in a typical specification, also fix the number of agents. However, there
is no difference in the notion of unbounded sessions: We allow for an unbounded
number of transitions, every set can contain an unbounded number of values,
and the intruder can make an unbounded number of steps.

Because we use the typing result from [25], we also require that protocols
have to satisfy the type-flaw resistance requirements of that result. These
requirements are a generalization of the common tagging mechanisms which
should in many applications not be a practical limitation. Note that this re-
quirement is checked automatically.

Finally, we do not directly support private channels, but one can instead send
messages under a private function. For instance, one can write in a transaction
send privChan(A,B, t) where A and B are of type enum and t is a message. Such
communication is asynchronous. One can model synchronous communication
only in a limited way here through sets, e.g., as insert Nonce privCh(A,B).

4.3 Example of a Fixed-Point Computation
Consider again the keyserver protocol defined in Subsection 3.1; for simplicity
we do this example for just one user a who is also honest: user = honest = {a}.
We show how the fixed point (or rather the candidate that we then check with
Isabelle) is computed; to make it more readable, let us give the fixed point right
away and then see how each element is derived: FPks ≡ (FPks ,TI ks) where

FPks ≡ { {ring(a), valid(a)}, {ring(a)}, inv({revoked(a)}),
sign(inv({valid(a)}), pair(a, {ring(a)}))
sign(inv(∅), pair(a, {ring(a)})) }

and where the term implication graph TI ks can be represented graphically as
follows where each edge a→→ b corresponds to an element of TI ks :

{ring(a)}

{ring(a), valid(a)}

∅ {valid(a)} {revoked(a)}

Note that we can actually reduce the representation of the fixed point a little
bit as we do not need to include facts that can be obtained via term implication
from others; with this optimization we obtain actually:

FP ′ks ≡ { sign(inv(∅), pair(a, {ring(a)})),
{ring(a)}, inv({revoked(a)}) }

To compute this, we first consider the transaction outOfBand where a fresh
key is inserted into both ring(a) and valid(a) and sent out. The abstraction of this
key is thus the value {ring(a), valid(a)}. This value is in the intruder knowledge

17

in FPks but redundant due to other messages we derive later).5 Note that this
rule cannot produce anything else so we do not consider it for the remainder.

Next let us look at the transaction keyUpdateUser. For keyUpdateUser we
need to choose an abstract value for PK that satisfies the check PK in ring(a).
At this point in the fixed-point computation we have only {ring(a), valid(a)}.
Since the transaction removes the key PK from ring(a), we get the term im-
plication {ring(a), valid(a)} →→ {valid(a)}. A fresh value NPK is also generated
and inserted into ring(a), and a signed message is sent out which gives us:
sign(inv({valid(a)}), pair(a, {ring(a)})). Also, this one is a message that later be-
comes redundant with further messages. By analysis, the intruder also obtains
{ring(a)}.

The new value {ring(a)} allows for another application of the keyUpdateUser
rule, namely with this key in the role of PK . This now gives the term implication
{ring(a)} →→ ∅ and the message sign(inv(∅), pair(a, {ring(a)})). After this, there
are no further ways to apply this transaction rule, because we will not get to
any other abstract value that contains ring(a).

Applying the keyUpdateServer transaction to the first signature we have ob-
tained (i.e., with PK = {valid(a)} and NPK = {ring(a)}), we get the term
implications {valid(a)} →→ {revoked(a)} and {ring(a)} →→ {ring(a), valid(a)}, and
the intruder learns inv({revoked(a)}). Applying it with the second signature
(i.e., with PK = ∅ and NPK as before), we get additionally the term implica-
tion ∅ →→ {valid(a)}. Note that we must also check if the intruder can generate
a signature that works with keyUpdateServer: however, the only private keys he
knows are those represented by inv({revoked(a)}) and they are not accepted for
this transaction. (In a model with dishonest agents, the intruder can of course
produce signatures with keys registered to a dishonest agent name, but here we
have just one honest user a.)

No other transaction can produce anything we do not have in FPks already—
in particular we cannot apply the attack transaction and this concludes the fixed-
point computation. Thus—according to our abstract interpretation analysis—
the protocol is indeed secure. Next we try to convince Isabelle.

5 Checking Fixed-Point Coverage
A major contribution of this work is now to use the fixed point that was auto-
matically computed by the abstract interpretation approach as a “proof idea”
for conducting the security proof in Isabelle on the concrete protocol. Essen-
tially, we prove that the fixed point indeed “covers” everything that can happen.
We break this down into an induction proof: given any trace that is covered
by the fixed point, if we extended it by any applicable transition, then the re-
sulting trace is also covered by the fixed point. This induction step we break
down into a number of checks that are directly executable within Isabelle us-

5In fact, the well-formedness conditions of the previous section require to also include
occurs facts, but for illustration, we have simply omitted them (as the intruder knows every
public key that occurs).

18

ing the built-in term rewriting proof method code-simp. We have also proved
some protocol-independent Isabelle theorems that show that any protocol that
passes said checks is indeed correct. Note that these checks are not only fully
automated, but they are also terminating in all but a few degenerate cases.6

Term rewriting within Isabelle benefits from the exact same correctness guar-
antees as the rest of Isabelle since every rewriting step is verified by the system.
This, of course, also means that evaluation through the built-in term rewrit-
ing proof methods can be several orders of magnitudes slower than executing a
program since every application of a rewrite rule is checked by Isabelle’s core
inference system. Fortunately, Isabelle provides a means of evaluating terms
through code generation using, e.g., the built-in proof method eval. This allows
us to offer a trade-off to our users: one can use either code-simp for the over-
whelming assurance of Isabelle proofs, or one can use eval to get the full speed
of running code outside of Isabelle but with the disadvantage of having to trust
in the correctness of the code generation infrastructure. For instance, one could
use eval during development of a protocol specification and only use code-simp
as a final step to get a fully Isabelle-verified proof of security.

5.1 Automatically Checking for Fixed-Point Coverage
Let us look at how we can automatically check if a fixed-point covers a protocol.
We first explain how this works in general and thereafter give an example, in
Example 5, of how it works using the keyserver example.

A transaction of the protocol after resolving all the sugar has only variables
of type value. Thus, in a typed model and under the abstraction, we can in-
stantiate the variables only with abstract values, i.e., elements from A. We first
define what it means that a transaction is applicable under such a substitu-
tion of the variables with respect to the fixed point computed by the abstract
interpretation:

Definition 5 (Fixed-point coverage: pre-conditions) Let T = Sr ·Sc ·F ·
Su ·Ss be a transaction and let FP = (FP ,TI) be a fixed point. Let further δ be
an abstraction substitution mapping the variables of T to abstract values of A.
We say that δ satisfies the pre-conditions (for T and FP), written pre(FP, δ, T),
iff the following conditions are met:

F1. clTI (FP) ` δ(t) for all receive t occurring in Sr

F2. s ∈ δ(x) for all x in s occurring in Sc

F3. s /∈ δ(x) for all x notin s occurring in Sc

6It is technically possible to specify protocols for which the checks do not terminate. For
instance, an analysis rule of the form Anaf (x) = ({f(f(x))}, R), for some f , x and R, would
lead to termination issues when automatically proving the conditions for the typing result
which we rely on, because we here need to compute a set that contains the terms occurring in
the protocol specification and is closed under keys needed for analysis, and such a set would
in this case be infinite. However, this is an artificial example that normally does not occur
since it is usually the case that keys cannot themselves be analyzed.

19

F4. δ(x) = ∅ for all x ∈ fresh(T)

(We write here s ∈ δ(x) as a short-hand for s ∈ A for the set A such that δ(x) =
A. s /∈ δ(x) is defined similarly.) Here, F1 checks that the intruder can produce
all input messages for the transaction under the given δ. Note that the intruder
has control over the entire network, so he can use here any message honest agents
have sent and also construct other messages from that knowledge (hence the `).
Moreover, we consider here the closure of the intruder knowledge FP under
the term implication rules, since that represents all variants of the messages
that are available to the intruder; we will later show as an optimization that
we can check whether clTI (FP) ` δ(t) holds without first explicitly computing
clTI (FP). The next checks F2 and F3 are that all set membership conditions
are satisfied, and F4 checks that all fresh variables represent values that are not
member of any set.

Now for every δ under which the transaction T can be applied (according
to FP), we compute what T can “produce” and that that is also covered by
FP. What the transaction can produce are the outgoing messages and the
changes in set memberships. The latter is captured by an updated abstraction
substitution δu that is identical with δ except for those values that changed their
set memberships during the transaction:

Definition 6 (Abstraction substitution update) Let T = Sr ·Sc ·F ·Su ·Ss

be a transaction and δ an abstraction substitution. We define the update of δ
w.r.t. T , written δu, as follows:

δu(x) ≡ upd(Su , x, δ(x)), where

upd(0, x, a) = a

upd(t.S, x, a) =


upd(S, x, a ∪ {s}) if t = insert(x, s)

upd(S, x, a \ {s}) if t = delete(x, s)

upd(S, x, a) otherwise

Note that according to this definition, if a transaction contains insert and delete
operations of the same value x for the same set, then “the last one counts”. But
there is a more subtle point: suppose the transaction includes the operations
insert(x, s) and delete(y, s). The above definition would not necessarily formalize
the updates of the set memberships if the transaction were applicable (in the
concrete) under an interpretation I with I(x) = I(y). Note that for this very
reason the concrete semantics requires I to be injective, and, as explained earlier
in Subsection 3.3, we automatically achieve this through appropriate syntactic
sugar so as to not bother the user.

Based on this update, we can now define what it means for a transaction to
be covered by a fixed point:

Definition 7 (Fixed-point coverage: post-conditions) Let T = Sr · Sc ·
F · Su · Ss be a transaction and let FP = (FP ,TI) be a fixed point. Let δ
be an abstraction substitution and δu the update of δ w.r.t. T . We say that

20

δ satisfies the post-conditions (for T and FP), written post(FP, δ, T), iff the
following conditions are met:

G1. (δ(x)→→ δu(x)) ∈ TI ∗ for all x ∈ fv(T) \ fresh(T)

G2. clTI (FP) ` δu(t) for all send t occurring in Ss

Here G1 expresses that every update of a value must be a path in the term
implication graph (it does not need to be a single edge). G2 means that the
intruder learns every outgoing message δu(t) and thus it must be covered by the
fixed point when closed under term implication.

We can now put it all together: for the pre-conditions we are restricting the
coverage check to those abstraction substitutions that are actually possible in
the fixed point. For the post-conditions we are then checking that the fixed point
covers everything that the transaction produces under those same substitutions:
fixed-point coverage is thus defined as follows:

Definition 8 (Fixed-point coverage) Let T be a transaction and let FP =
(FP ,TI) be a fixed point. We say that FP covers T iff for all abstraction substi-
tutions δ with domain fv(T), if pre(FP, T, δ) then post(FP, T, δ). For a protocol
P we say that FP covers P iff FP covers all transactions of P.

With this defined we can prove the following theorem:

Theorem 1 7 Let P be a protocol and let FP be a fixed point. If attack does
not occur in FP, and if P is covered by FP, then P is secure.

Example 5 Consider the key update transaction keyUpdateServer from Subsec-
tion 3.1. We now show that the fixed point FPks defined in Example 4.3 covers
this transaction, i.e., satisfies Definition 8.

The only variables occurring in keyUpdateServer are PK and NPK , so we
can begin by finding the abstraction substitutions with domain {PK ,NPK} that
satisfy the pre-conditions given in Definition 5. We denote by ∆ the set of those
substitutions. Afterwards we show that all δ ∈ ∆ satisfy the post-conditions
given in Definition 7.

The variables PK and NPK are not declared as fresh in keyUpdateServer so
condition F4 is vacuously satisfied. From F2 and F3 we know that valid(a) ∈
δ(PK) and valid(a), revoked(a) /∈ δ(NPK), for all δ ∈ ∆. From F1 we know
that clTI ks

(FPks) ` δ(sign(inv(PK), pair(a,NPK))). The intruder cannot com-
pose the signature himself since he cannot derive a private key of the form
inv(b) where b ∈ A and valid(a) ∈ b. Hence the only signatures available to
him—that also satisfy the constraints for ∆ that we have deduced so far—are
sign(inv({valid(a)}), pair(a, b)) for each b ∈ {{ring(a)}, ∅}. The only surviving
substitutions are

δ1 = [PK 7→ {valid(a)},NPK 7→ ∅], and
δ2 = [PK 7→ {valid(a)},NPK 7→ {ring(a)}].

7This theorem is called protocol_secure in the Isabelle code and can be found in the
Stateful_Protocol_Verification.thy theory file.

21

That is, ∆ = {δ1, δ2}.
Next, we compute the updated substitutions w.r.t. the transaction keyUpdateServer:

δ1u = [PK 7→ {revoked(a)},NPK 7→ {valid(a)}], and
δ2u = [PK 7→ {revoked(a)},NPK 7→ {ring(a), valid(a)}].

Now we can verify that conditions G1 and G2 hold for δ1 and δ2: We have that
δi(x) →→ δiu(x) is covered by TI ks , for all i ∈ {1, 2} and all x ∈ {PK ,NPK}.
We also have that the outgoing message inv(PK) is in clTI ks

(FPks) under each
δiu. Thus keyUpdateServer is covered by FPks .

We can, in a similar fashion, verify that the remaining transactions of the
keyserver protocol are covered by the fixed point. Thus the keyserver protocol is
covered by FPks . �

5.2 Automatic Fixed-Point Computation
An interesting consequence of the coverage check is that we can also use it to
compute a fixed point for protocols P. In a nutshell, we can update a given a
fixed-point candidate FP0 for P as follows: For each transaction of P we first
compute the abstraction substitutions ∆ that satisfy the pre-conditions F1 to
F4. Secondly, we use the post-conditions G1 and G2 to compute the result of
taking T under each δ ∈ ∆ and add those terms and term implications to FP0.
Starting from an empty initial iterand (∅, ∅) we can then iteratively compute a
fixed point for P. Definition 9 gives a simple method to compute protocol fixed
points based on this idea.

Definition 9 Let P be a protocol and let f be the function defined as follows:

f((FP ,TI)) ≡ (FP ∪ {t ∈ F̂PTδ | T ∈ P, δ ∈ ∆T
FP,TI },

TI ∪ {ab ∈ T̂I Tδ | T ∈ P, δ ∈ ∆T
FP,TI })

where
∆T

FP,TI ≡ {δ | dom(δ) = fv(T), pre((FP ,TI), T, δ)}
F̂PTδ ≡ {δu(t) | send t occurs in T}
T̂I Tδ ≡ {(δ(x), δu(x)) | x ∈ fv(T) \ fresh(T)}

Then we can compute a fixed point for P by computing a fixed point of f , e.g.,
by computing the least n ∈ N such that fn((∅, ∅)) = fn+1((∅, ∅)).

We provide, as part of our Isabelle formalization, a function to compute
such a fixed point (with some optimizations to avoid computing terms and term
implications that are subsumed by the remaining fixed point), using the built-in
code generation functionality of Isabelle.

6 Improving the Coverage Check
We now describe a number of improvements that are essential to an efficient
check (small experiments show that without these, performance is quite poor

22

even in minimal examples). We emphasize again that even if we had introduced
mistakes here, it would not affect the correctness of the entire approach, since
in the worst case the proofs would be rejected by Isabelle.

There are two major issues that make the coverage check from the previous
section quite inefficient when implemented directly. One concerns the fact that
the fixed point should be considered closed under intruder deduction and term
implication. Even though the typed model allows us to keep even the intruder
deduction closure finite, explicitly computing the closure is not feasible even on
rather modest examples. The second issue is about the abstraction substitutions
δ of the check: recall that in the check we defined above, for a given transaction
we consider every substitution δ of the variables with abstract values, which is
of course exponential both in the number of variables and the number of sets.

Let us first deal with this second issue. We can indeed compute exactly those
substitutions that satisfy conditions F2 to F4: every positive set-membership
check x in s of the transaction requires that s ∈ δ(x), and similarly for the
negative case. Moreover, δ(x) can be only an abstract value that actually occurs
in the fixed point. Starting from these constraints often substantially cuts down
the number of substitutions δ that we need to consider in the check, especially
when we have more agents than in the example. This is because typically (at
least in a good protocol) most values will not be members of many sets that
belong to different agents (but rather just a few that deal with that particular
value).

The first issue, i.e., avoiding computing the term implication closure clTI (FP)
when performing intruder deductions, is more difficult. The majority of this sec-
tion is therefore dedicated to improving on conditions F1 and G2 so that we
can avoid computing the entire closure clTI (FP)—only in a few corner cases,
we need to compute the closure for a few terms of FP . A key to that is to
saturate the intruder knowledge with terms that can be obtained by analysis
and then work with composition only, i.e., `c.

6.1 Intruder Deduction Modulo Term Implications
Recall that `c is the intruder deduction without analysis, i.e., only the (Axiom)
and (Compose) rules. We first consider how we can handle in this restricted
deduction relation the term implication graph TI efficiently, i.e., how to decide
clTI (M) `c t (for given TI , M and t) without computing clTI (M). In a second
step we then show how to handle also analysis, i.e., the full ` relation.

In fact it boils down to checking the side condition of (Axiom), i.e., in our
case, whether t ∈ clTI (M), without having to compute clTI (M) first. (The
composition rule is then easier because it does not “directly look” at the knowl-
edge.) For this, it is sufficient if we can check whether t ∈ clTI (t′) for any
t′ ∈M , without having to compute clTI (t′).

Consider again Definition 3. We can use this to derive a recursive check
function t′ TI t for the question t ∈ clTI (t′): it can only hold if either

• t and t′ are the same variable,

23

• or t, t′ are abstract values with a path from t′ to t in TI ,

• or t = f(t1, . . . , tn) and t′ = f(t′1, . . . , t
′
n), where recursively t′i TI ti

holds for all 1 ≤ i ≤ n.

With this we can now define a recursive function
c that checks for given
M , TI , and t whether clTI (M) `c t without computing clTI (M), defined as
follows:

M
TI
c t iff (∃t′ ∈M. t′ TI t) or

t is of the form t = f(t1, . . . , tn) where
f ∈ Σnpub and M
TI

c ti for all i ∈ {1, . . . , n}

This function indeed fulfills its purpose:

Lemma 1 clTI (M) `c t iff M
TI
c t

Next, we show how to reduce the intruder deduction problem ` to the re-
stricted variant `c.

6.2 Analyzed Intruder Knowledge
The idea is now that `c is actually already sufficient, if we have an analyzed
intruder knowledge: we define that a knowledge M is analyzed iff M ` t implies
M `c t for all t. More in detail, we can consider a knowledge M that is satu-
rated by adding all subterms of M that can be obtained by analysis. Then M
is analyzed, i.e., we do not need any further analysis steps in the intruder de-
duction. This is intuitively the case because the intruder cannot learn anything
from analyzing messages he has composed himself.

We now define formally what if means for a term t to be analyzed using the
keys (Keys(t)) and results (Result(t)) from the analysis as defined in Subsection
2.2:

Definition 10 (Analyzed term) Let M be a set of terms and let t be a term.
We then say that t is analyzed in M iff M `c Keys(t) implies M `c Result(t)
(where M `c N for sets of terms M and N is a short-hand for ∀t ∈ N. M `c t).

The following lemma then provides us with a decision procedure for deter-
mining if a knowledge is analyzed:

Lemma 2 M is analyzed iff all t ∈M are analyzed in M .

We now consider again an intruder knowledge given as the term implication
closure of a set of messages, i.e., clTI (M) instead of M . Efficiently checking
whether an intruder knowledge’s term implication closure is analyzed, without
actually computing it, is challenging. The following lemma shows that if we can
derive the results of analyzing a term t in the knowledge M then we can also
derive the results of analyzing any implied term t′ ∈ clTI (t):

Lemma 3 Let t ∈ M . If clTI (M) `c Result(t) then for all t′ ∈ clTI (t),
clTI (M) `c Result(t′).

24

Therefore, if all k ∈ Keys(t) can be derived and t is analyzed in clTI (M) then
we can conclude that all implied terms t′ ∈ clTI (t) are analyzed in clTI (M). If,
however, some of the keys for t are not derivable then we are forced to check
the implied terms as well as the following example shows:

Example 6 Let f, g ∈ Σ1
priv , TI = {a→→ b}, and M = {f(a), g(b)}. Define the

analysis rules Anaf (x) = ({g(x)}, {x}) and Anag(x) = (∅, ∅). Then clTI (M) =
{f(b)}∪M . The term f(a) is analyzed in clTI (M) because the key g(a) cannot be
derived: clTI (M) 6`c g(a). However, f(a) a→→b f(b) and f(b) is not analyzed in
clTI (M): Ana(f(b)) = ({g(b)}, {b}) but the key g(b) is derivable from clTI (M)
in `c whereas the result b is not. Thus clTI (M) is not an analyzed knowledge.
�

So in most cases we can efficiently check if clTI (M) is analyzed, and in
some cases we need to also compute the term implication closure clTI (t) of
problematic terms t ∈M (but not necessarily compute all of clTI (M)):

Lemma 4 clTI (M) is analyzed iff for all t ∈M , the following holds

if clTI (M) `c Keys(t) then t is analyzed in clTI (M)
else all t′ ∈ clTI (t) are analyzed in clTI (M).

This lemma also provides us with the means to extend a knowledgeM to one
whose term implication closure is analyzed: The idea is to close M under the
rule that extends it with the result Result(t) of those analyzable terms t ∈ M
for which the conditions on the right-hand side of the biconditional in Lemma 4
fails. For instance, in Example 6 we need to extend M = {f(a), g(b)} with b,
resulting in the analyzed knowledge M ′ = {f(a), g(b), b}.

7 Proof of Concept
Table 1 shows the fixed-point sizes of various example protocols together with
measurements of the elapsed real time it takes to generate and verify the Is-
abelle specifications. First, we report the time for translating the protocol
specifications into Isabelle/HOL (Translation), the time for showing that the
given protocol is an instance of the formal protocol model (Setup), and the time
for computing the fixed-point and its size. In the last three columns, we report
the run-time of three different strategies for the security proof: Safe employs
symbolic evaluation using Isabelle’s simplifier code-simp. In this configuration,
all proof steps are checked by Isabelle’s LCF-style kernel. NBE employs nor-
malization by evaluation, a technique that uses a partially symbolic evaluation
approach that, to a limited extend, relies on Isabelle’s code generator. Finally,
Unsafe is an approach that directly employs the code generator and internally
uses the proof method eval. In general, the configurations NBE and Unsafe
require the user to trust the code generator. While Isabelle’s code generator is
thoroughly tested, it is not formally verified. We mainly provide these config-
urations to provide faster alternatives during interactive protocol explorations.

25

Protocol Initialization Fixed-Point Verification
Translation Setup Computation |FP| |TI| Safe NBE Unsafe

Keyserver_2_1 00:00:04 00:00:09 00:00:04 22 27 00:00:45 00:00:10 00:00:07
Keyserver_3_1 00:00:05 00:00:10 00:00:04 31 40 00:01:56 00:00:14 00:00:07
Keyserver_4_1 00:00:05 00:00:09 00:00:04 40 53 00:04:41 00:00:24 00:00:07
Keyserver2_2_1 00:00:05 00:00:10 00:00:04 9 4 00:00:28 00:00:09 00:00:07
Keyserver2_3_1 00:00:05 00:00:10 00:00:04 12 6 00:00:41 00:00:09 00:00:07
Keyserver2_4_1 00:00:05 00:00:10 00:00:04 15 8 00:00:58 00:00:10 00:00:07
Keyserver_Composition_2_1 00:00:07 00:00:10 00:00:04 40 105 00:37:09 00:02:12 00:00:08
Keyserver_Composition_3_1 00:00:07 00:00:11 00:00:05 56 153 02:58:28 00:08:26 00:00:09
Keyserver_Composition_4_1 00:00:07 00:00:10 00:00:08 70 201 10:02:24 00:22:45 00:00:09
TLS12simp 00:00:08 00:00:10 00:00:21 48 20 timeout 08:57:43 00:00:13
NSLclassic 00:00:05 00:00:10 00:00:06 43 6 00:05:27 00:00:13 00:00:08
NSPKclassic 00:00:05 00:00:10 00:00:06 69 6 attack attack attack
PKCS_Model03 00:00:05 00:00:10 00:00:05 8 2 00:00:14 00:00:09 00:00:07
PKCS_Model07 00:00:11 00:00:11 00:00:07 15 5 01:06:11 00:01:36 00:00:11

Table 1: Runtime Measurements (Time Format: hh:mm:ss). Experiments that
took longer than 18 hours are marked with “timeout”.

Ultimately, it is up to the user to decide which approach to use, preferably after
consulting [20], which discusses the software stack that needs to be trusted in
each of these configurations in more detail.

All experiments have been conducted on a Linux server with an Intel Xeon
E5-2680 CPU and 256GB main memory. Our implementation provides an op-
tion to measure the time required for executing individual “top-level” commands
(e.g., protocol_security_proof). We only report the times that are specific
to the individual protocols using a “pre-compiled” session that contains our
generic protocol translator as well as the protocol-independent formalizations
and proofs. Compiling this session takes ca. 4 minutes and 30 seconds.

The example Keyserver_h_d is our running keyserver example for h honest
agents and d dishonest agents.8 The example Keyserver_Composition_h_d
with h honest agents and d dishonest agents is inspired by [22] where another
keyserver protocol—named Keyserver2_h_d here—runs in parallel on the same
network and where databases are shared between the protocols.

We made further experiments where our focus is not the precise modeling and
verification of particular protocols, but rather to experiment with our method
on more complex examples and get an understanding of how our method scales.

With TLS12simp we have looked at one practical protocol, TLS 1.2, with
8We verify here a generalized version of the keyserver example (as compared to the running

example): we include dishonest agents who can participate in the protocol. This also requires
that agents maintain a set of deleted keys, because otherwise the abstraction ∅ leads to false
attacks.

26

two honest agent and one dishonest agent, albeit with some simplifications, in
particular modeling only one variant of the flow and simplifying the hashing.

NSLclassic and NSPKclassic are based on the NSL and Needham–Schroeder
protocol specifications shipped with AIF-ω [30].

Finally, scenario 3 and 7 (PKCS#11_3 and PKCS#11_7), from the “PKCS#11”
model that is distributed with AIF-ω [30] are examples of another flavor of state-
ful protocols, namely security tokens that can store keys and perform encryption
and decryption and with which the intruder can interact through an API. Gen-
erally modeling such tokens and their APIs works quite well with the set-based
abstraction. We report only two scenarios as they are the only ones that do
not lead to an attack. In fact there is a third one (scenario #9) that is marked
as correct in the AIF-ω distribution, but that is actually due to a mistake that
our attempt to verify it in Isabelle has revealed. We discuss this example in
more detail in the appendix. This illustrates our main point that there can be
surprises when one tries to verify in Isabelle the results of automated tools.

8 Conclusion and Related Work
The research into automated verification of security protocols resulted in a large
number of tools (e.g., [9, 10, 15, 4, 17]). The implementation of these tools usu-
ally focuses on efficiency, often resulting in very involved verification algorithms.
The question of the correctness of the implementation is not easy to answer and
this is in fact one motivation for research in using LCF-style theorem provers
for verifying protocols (e.g., [32, 24, 13, 5, 6, 7]). While these works provide a
high level of assurance into the correctness of the verification result, they are
usually interactive, i.e., the verification requires a lot of expertise and time.

This trade-off between the trustworthiness of verification tools and the de-
gree of automation inspired research of combining both approaches [19, 11, 26].
Goubault-Larrecq [19] considers a setting where the protocol and goal are given
as a set S of Horn clauses; the tool output is a set S∞ of Horn clauses that
are in some sense saturated and such that the protocol has an attack iff a con-
tradiction is derivable. His tool is able to generate proof scripts that can be
checked by Coq [8] from S∞. Meier [26] developed Scyther-proof [27], an exten-
sion to the backward-search used by Scyther [17], which is able to generate proof
scripts that can be checked by Isabelle/HOL [31]. Brucker and Mödersheim [11]
integrate an external automated tool, OFMC [4], into Isabelle/HOL. OFMC
generates a witness for the correctness of the protocol that is used within an
automated proof tactic of Isabelle.

Our work generalizes on these existing approaches for automatically obtain-
ing proofs in an LCF-style theorem prover, first and foremost by the support
for stateful protocols and thus a significantly larger range of protocols—moving
away from simple isolated sessions to distributed systems with databases, or
devices that have a long-term storage.

We achieve this by employing the abstraction-based verification technique
of AIF [29], but with an important modification. The method of AIF produces

27

a set of Horn clauses that is then analyzed with ProVerif [9] (or SPASS[36]),
and the same holds true also for several similar methods for stateful protocol
verification, namely StatVerif [3], Set-π [12], AIF-ω [30] and GSVerif [14]. Note
that definite Horn clauses in first-order predicate logic always have a trivial
model (interpret all predicates as true for all arguments), and we are actually
interested in the free model (free algebra for the functions and least model of
the predicates). This is achieved in ProVerif (and SPASS) by checking whether
the Horn clauses imply a given attack predicate. If they do, then the attack
predicate is true also in the free model. If they do not, i.e., if the Horn clauses are
consistent with the negation of the attack predicate, then the attack predicate is
not true in all models, and in particular not in the free model since it is the least
model. Thus, in a positive verification, the result from ProVerif is a consistent
saturated set of Horn clauses. As first remarked by Goubault-Larrecq [19],
this is not a very promising basis for a proof, as one does not get a derivation
of a formula (the way SPASS for instance is often used in combination with
Isabelle) but rather a failure to conclude a proof goal. The only chance to verify
the resulting saturated set of Horn clauses, is to recompute the saturation and
compare. Therefore [19] uses a different idea: showing that the Horn clauses and
the negation of the attack predicate are consistent by trying to find some finite
model and, if found, then using this finite model to generate a proof in Coq that
the Horn clauses are consistent with the negation of the attack predicate.

The limitation of [19] is that it checks the protocol proofs only on the Horn
clause level, i.e., after a non-trivial abstraction has been applied. In order to
obtain Isabelle proofs for the original unabstracted stateful protocols, we use
therefore another approach: rather than Horn clauses, we directly generate a
fixed point of abstract facts that occur in any reachable state. This would in
fact normally not terminate on most protocols due to the intruder deduction;
however, we employ here the typing result we have formalized in Isabelle [25] to
ensure that the fixed point is always finite and our method is in fact guaranteed
to terminate. This fixed point, if it does not contain the attack predicate, is the
core of a correctness proof for the given protocol, namely as an invariant that
the fixed point covers everything that can happen and we essentially have to
check that this invariant indeed holds for every transition rule of the protocol.

An interesting difference to previous approaches is that we do not rely on an
external tool for the generation of the proof witness, but that it is implemented
within Isabelle itself. The reason is more of a practical than a principle matter:
Computing the fixed point in Isabelle is actually not difficult and—thanks to
Isabelle’s code generation—without much of a performance penalty; however,
the fact that we do not rely on an external tool for the generation of the proof
witness reduces the chances of synchronization and update problems (e.g., with
new Isabelle versions). In fact, this work is part of the Archive of Formal Proofs9,
a collection of Isabelle proofs that are kept up to date with each new version
of Isabelle. This means that for each protocol that works in today’s version it
is highly likely that the proof works in future versions, because the proofs of

9See https://www.isa-afp.org.

28

https://www.isa-afp.org

all theorems of our (protocol-independent) Isabelle theory will be updated, and
the fixed point and the checks about it do not have to change. Thus we will
also automatically benefit from all advances of Isabelle.

Another difference to previous approaches is that we do not directly gen-
erate proof scripts that Isabelle has to then check. Rather, we have a fixed
(protocol-independent) set of theorems that imply that any protocol is secure
if we have computed a fixed-point representation that gives an upper bound
of what (supposedly) can happen and this representation passes a number of
checks. These checks can either be done by generated code or entirely within
Isabelle’s simplifier. Especially with the generated code we have a substantial
performance advantage, while using Isabelle’s simplifier gives the highest level
of assurance since we only rely on the correctness of the Isabelle kernel. We note
that also the generated code is correct “by construction” and thus extremely un-
likely to compute wrong results. Many small practical advantages arise from the
integration: We do not have an overhead of parsing of proof scripts (which can
be substantial for a larger fixed point). By using the internal API of Isabelle,
we avoid the need for the Isabelle front-end parser to parse and type-check the
fixed point (as we can directly generate a typed fixed-point on the level of the
abstract syntax tree). Parsing and type-checking (on the concrete syntax level)
of large generated theories (as, e.g., ones containing the generated fixed point)
is, in fact, slow in Isabelle [11].

Another point is that there exist a number of protocol verification methods
and results that use slightly different models. Here we actually seamlessly inte-
grate a verification method into a rich Isabelle theory of protocols without any
semantic gaps: We provide here a method that is integrated into a large frame-
work of Isabelle theories for protocols (approximately 25,000 lines of code), in
particular a typing and compositionality result. This allows for instance to prove
manually (in the typed model) the correctness of a protocol, use our automated
method to prove the correctness of a different protocol, and then compose the
proof to obtain the correctness of the composition in an untyped model. This
seamless integration of results without semantic gaps between tools we consider
as an important benefit of this approach. Even though many protocol models
are not substantially different from each other, bridging over the small differ-
ences can be very hard to do, especially in a theorem prover that prevents one
from glossing over details. Our deep integration into the existing formalization
of security protocols in Isabelle ensures that the same protocol model (same
semantics) is used—which would otherwise require additional work (e.g., to en-
sure that the semantics of the protocol specified in a tool such as Scyther-proof
is faithfully represented in the generated Isabelle theory).

It is in general desirable to have proofs that are not only machine-checked but
also human-readable. A reason is that, for instance, mistakes in the specification
itself (e.g., a mistake in a sent message so that it cannot be received by anybody)
may lead to trivial security proofs which a human may notice when trying to
understand the proof. Here Scyther-proof has the benefit that it produces very
readable Isar-style proofs; in our case, there is, however, something that is also
accessible: the fixed point that was computed is actually a high-level proof

29

idea that is often quite readable as well (see for instance our running example).
Moreover, the entire set of protocol-independent theorems are hand-written Isar-
style proofs.

Furthermore, our work shares a lot of conceptual similarities with Tamarin [28]
in the sense that we also provide a protocol verification environment that allow
for the seamless transition between a fully automated verification and an inter-
active verification approach. As the interactive verification component of our
tool is based on Isabelle/HOL, the user can make use of all available Isabelle fea-
tures, including its generic proof automation tools such as sledgehammer [34].
In contrast, Tamarin is a domain-specific theorem prover whose implementa-
tion is not based on a generic, widely reviewed, interactive theorem prover. As
its design is, in our understanding, not based on an LCF approach, the risks
of bugs in Tamarin resulting in wrong verification results is potentially higher
compared to a tool following an LCF approach. As Tamarin shares ideas with
Scyther, generating Isabelle proofs from Tamarin using a similar approach as
Scyther-proof should in principle be possible. While this would be a very in-
teresting extension—enabling automated or semi-automated support for a very
large class of protocols—it does not seem immediate to achieve.

Finally, another approach that, like Tamarin, is very much related to per-
forming actual proofs of security protocols automatically and semi-automatically
is CPSA [18, 35]. Also here it might be possible to make a connection to a the-
orem prover of Isabelle; however, the approach is even further away from our
approach than Tamarin, because CPSA does not necessarily assume a closed
world of transactions. Rather, it performs an enrich-by-need analysis obtain-
ing all ways to complete a particular scenario and thereby yielding the strongest
security goals a given system would satisfy (even in the presence of other transac-
tions). We believe it is even more challenging to integrate this kind of reasoning
into a theorem prover like Isabelle, but achievable. We like to investigate this
as future work as it could give interesting ways for an analyst to interact with
the proving process and inject proof ideas.

Acknowledgments

We thank Joshua Guttman and the anonymous reviewers for helpful feedback
on this paper. This work was supported by the Sapere-Aude project “Com-
posec: Secure Composition of Distributed Systems”, grant 4184-00334B of the
Danish Council for Independent Research, by the EU H2020 project no. 700321
“LIGHTest: Lightweight Infrastructure for Global Heterogeneous Trust manage-
ment in support of an open Ecosystem of Trust schemes” (lightest.eu) and by
the “CyberSec4Europe” European Union’s Horizon 2020 research and innovation
programme under grant agreement No 830929.

30

References
[1] Almousa, O., Mödersheim, S., Modesti, P., Viganò, L.: Typing and com-

positionality for security protocols: A generalization to the geometric frag-
ment. In: European Symposium on Research in Computer Security. pp.
209–229 (2015)

[2] Arapinis, M., Duflot, M.: Bounding messages for free in security protocols
- extension to various security properties. Information and Computation
239, 182–215 (2014)

[3] Arapinis, M., Phillips, J., Ritter, E., Ryan, M.D.: Statverif: Verification of
stateful processes. Journal of Computer Security 22(5), 743–821 (2014)

[4] Basin, D.A., Mödersheim, S., Viganò, L.: OFMC: A symbolic model
checker for security protocols. International Journal of Information Security
4(3), 181–208 (2005)

[5] Bella, G., Butin, D., Gray, D.: Holistic analysis of mix protocols. In: In-
formation Assurance and Security. pp. 338–343 (2011)

[6] Bella, G.: Formal Correctness of Security Protocols. Information Security
and Cryptography, Springer (2007)

[7] Bella, G., Massacci, F., Paulson, L.C.: Verifying the SET purchase proto-
cols. Journal of Automated Reasoning 36(1-2), 5–37 (2006)

[8] Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program De-
velopment. Coq’Art: The Calculus of Inductive Constructions. Texts in
Theoretical Computer Science. An EATCS Series, Springer (2004)

[9] Blanchet, B.: An efficient cryptographic protocol verifier based on Prolog
rules. In: Computer Security Foundations Workshop. pp. 82–96 (2001)

[10] Boichut, Y., Héam, P.C., Kouchnarenko, O., Oehl, F.: Improvements on
the Genet and Klay technique to automatically verify security protocols.
In: Automated Verification of Infinite-State Systems. pp. 1–11 (2004)

[11] Brucker, A.D., Mödersheim, S.: Integrating automated and interactive pro-
tocol verification. In: Formal Aspects in Security and Trust. pp. 248–262
(2009)

[12] Bruni, A., Mödersheim, S., Nielson, F., Nielson, H.R.: Set-π: Set mem-
bership π-calculus. In: Computer Security Foundations Symposium. pp.
185–198 (2015)

[13] Butin, D.F.: Inductive analysis of security protocols in Isabelle/HOL with
applications to electronic voting. Ph.D. thesis, Dublin City University
(2012)

31

[14] Cheval, V., Cortier, V., Turuani, M.: A little more conversation, a little
less action, a lot more satisfaction: Global states in ProVerif. In: Computer
Security Foundations Symposium. pp. 344–358 (2018)

[15] Chevalier, Y., Vigneron, L.: Automated Unbounded Verification of Security
Protocols. In: Computer Aided Verification. pp. 325–337 (2002)

[16] Chrétien, R., Cortier, V., Dallon, A., Delaune, S.: Typing messages for free
in security protocols. ACM Transactions on Computational Logic 21(1),
1:1–1:52 (2020)

[17] Cremers, C.: Scyther: Semantics and verification of security protocols.
Ph.D. thesis, Eindhoven University of Technology (2006)

[18] Doghmi, S.F., Guttman, J.D., Thayer, F.J.: Searching for shapes in cryp-
tographic protocols. In: Tools and Algorithms for the Construction and
Analysis of Systems. pp. 523–537 (2007)

[19] Goubault-Larrecq, J.: Towards producing formally checkable security
proofs, automatically. In: Computer Security Foundations Symposium. pp.
224–238 (2008)

[20] Haftmann, F., Bulwahn, L.: Code generation from Isabelle/HOL theories
(2020), http://isabelle.in.tum.de/doc/codegen.pdf

[21] Heather, J., Lowe, G., Schneider, S.: How to prevent type flaw attacks on
security protocols. Journal of Computer Security 11(2), 217–244 (2003)

[22] Hess, A., Mödersheim, S., Brucker, A.: Stateful protocol composition.
In: European Symposium on Research in Computer Security. pp. 427–446
(2018)

[23] Hess, A.V., Mödersheim, S., Brucker, A.D., Schlichtkrull, A.: Au-
tomated stateful protocol verification. Archive of Formal Proofs (Apr
2020), http://isa-afp.org/entries/Automated_Stateful_Protocol_
Verification.html, Formal proof development

[24] Hess, A.V., Mödersheim, S.: Formalizing and proving a typing result for
security protocols in Isabelle/HOL. In: Computer Security Foundations
Symposium. pp. 451–463 (2017)

[25] Hess, A.V., Mödersheim, S.: A typing result for stateful protocols. In:
Computer Security Foundations Symposium. pp. 374–388 (2018)

[26] Meier, S., Cremers, C., Basin, D.A.: Efficient construction of machine-
checked symbolic protocol security proofs. Journal of Computer Security
21(1), 41–87 (2013)

[27] Meier, S., Cremers, C.J.F., Basin, D.A.: Strong invariants for the efficient
construction of machine-checked protocol security proofs. In: Computer
Security Foundations Symposium. pp. 231–245 (2010)

32

http://isabelle.in.tum.de/doc/codegen.pdf
http://isa-afp.org/entries/Automated_Stateful_Protocol_Verification.html
http://isa-afp.org/entries/Automated_Stateful_Protocol_Verification.html

[28] Meier, S., Schmidt, B., Cremers, C., Basin, D.A.: The TAMARIN prover
for the symbolic analysis of security protocols. In: Computer Aided Verifi-
cation. pp. 696–701 (2013)

[29] Mödersheim, S.: Abstraction by set-membership: verifying security proto-
cols and web services with databases. In: Computer and Communications
Security. pp. 351–360 (2010)

[30] Mödersheim, S., Bruni, A.: AIF-ω: Set-based protocol abstraction with
countable families. In: Principles of Security and Trust. pp. 233–253 (2016)

[31] Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL - A Proof Assis-
tant for Higher-Order Logic. Lecture Notes in Computer Science, Springer
(2002)

[32] Paulson, L.C.: The inductive approach to verifying cryptographic proto-
cols. Journal of Computer Security 6(1-2), 85–128 (1998)

[33] Paulson, L.C.: Inductive analysis of the internet protocol TLS. ACM Trans-
actions on Information and System Security 2(3), 332–351 (1999)

[34] Paulson, L.C., Blanchette, J.C.: Three years of experience with Sledgeham-
mer, a practical link between automatic and interactive theorem provers.
In: International Workshop on the Implementation of Logics. pp. 1–11
(2010)

[35] Rowe, P.D., Guttman, J.D., Liskov, M.D.: Measuring protocol strength
with security goals. International Journal of Information Security 15(6),
575–596 (2016)

[36] Weidenbach, C., Dimova, D., Fietzke, A., Kumar, R., Suda, M., Wis-
chnewski, P.: SPASS version 3.5. In: Conference on Automated Deduction.
pp. 140–145 (2009)

A problem with the AIF-ω specification 09-lost_-
key_att_countered.aifom

When we tried to model this specification from the AIF-ω distribution, which
is classified as secure by the AIF-ω tool, we failed to prove it secure with our
approach in Isabelle, and in fact, our fixed-point generation was generating the
attack constant. Going back to the AIF-ω verification we noticed that there
was a problem with the public functions, in this case symmetric encryption
and hashing. They were declared as public in the AIF-ω specification, but the
intruder seemed unable to make use of them and get to the attack we had
obtained.

In fact the problem was that AIF-ω does not generate intruder rules for
the function symbols that are declared as public, so unless the user explicitly

33

states rules like “if the intruder knows x then he also knows h(x))”, the function
symbol is like a private one that the intruder cannot apply himself. When we
add appropriate rules for all public function symbols to the specification, also
AIF-ω finds the attack.

One could argue that this is a problem of the specification (the modeler was
in fact aware of this behavior), however, it can be considered a bug of AIF-
ω, since the keyword “public” for a function symbol at least suggests that the
composition rule would be automatically included. In this sense, our Isabelle
verification has revealed a mistake, in particular one that has led to an erroneous
“verification” of a flawed protocol by an automated tool. In fact, the attack is
not a false positive (i.e., the original specification also has an attack).

Isabelle/PSPSP
We implemented our approach on top of Isabelle/HOL. This includes a formal-
ization of the protocol model in Isabelle/HOL, a data type package that provides
a domain specific language (called trac) for specifying security protocols, and
fully automated proof support.

Figure 1 shows the Isabelle IDE (called Isabelle/jEdit). The upper part of
the window is the input area that works similar to a programming IDE, i.e., sup-
porting auto completion, syntax highlighting, and automated proof generation
and interactive proof development. The lower part shows the current output
(response) with respect to the cursor position. In more detail, Figure 1 shows
the specification, and both the fully-automated and the interactive verification
of a toy keyserver protocol:

• The protocol is specified using a domain-specific language that, e.g., could
also be used by a security protocol model checker (line 9–59). Our im-
plementation automatically translates this specification into a family of
formal HOL definitions. Moreover, basic properties of these definitions
are also already proven automatically (i.e., without any user interaction):
for this simple example, already 350 theorems are automatically generated.

• Next (line 62) our implementation automatically shows that the proto-
col satisfies the requirement of our model (Technically, this is done by
instantiating several Isabelle locales, resulting in another 1750 theorems
“for free.”).

• In line 65, we compute the fixed point. We can use Isabelle’s value-
command (line 75) to inspect its size.

After these steps, all definitions and auxiliary lemmas for the security proof are
available. We can now have two options:

1. we can do a fully automated proof (line 71). This top-level command
proofs automatically a lemma showing the security of the defined protocol.

34

Figure 1: Using Isabelle/PSPSP for verifying a toy keyserver protocol.

35

2. we can interactively (manually) proof the security of the defined protocol.
For this, we provide a top-level command (manual_protocol_security_proof,
line 74) that generates a proof obligation that can be discharged by an
interactively developed proof script (line 76–82).

Finally, we can inspect the theorem using the thm command (line 85 and fol-
lowing).

Summarizing, our implementation allows a non Isabelle-expert to specify
security protocols and to verify them automatically. If the fully automated
proof attempt fails, a seamless switch to an interactive proof attempt (requiring
at least some knowledge of Isabelle/HOL) is possible.

36

	Introduction
	Preliminaries
	Terms and Substitutions
	The Intruder Model
	Typed Model

	Transactions
	A Keyserver Protocol
	Protocol Model
	Well-Formedness

	Set-Based Abstraction
	Term Implication
	Limitations
	Example of a Fixed-Point Computation

	Checking Fixed-Point Coverage
	Automatically Checking for Fixed-Point Coverage
	Automatic Fixed-Point Computation

	Improving the Coverage Check
	Intruder Deduction Modulo Term Implications
	Analyzed Intruder Knowledge

	Proof of Concept
	Conclusion and Related Work

