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Abstract—We address effects of exposure and image gradient
sparsity for total variation-regularized reconstruction: is it better
to collect many low-quality or few high-quality projections,
and can gradient sparsity predict how many projections are
necessary? Preliminary results suggest collecting many low-
quality projections is favorable, and that a link may exist between
gradient sparsity level and successful reconstruction.

I. INTRODUCTION

Sparsity regularization for X-ray computed tomography
(CT) image reconstruction, for example total variation (TV)
regularization [1] for gradient-sparse images, has been seen
to allow drastically reduced numbers of projections compared
to conventional analytical methods, see, e.g. [2]. In medical
imaging and non-destructive testing this may allow reduced
X-ray exposure or data acquisition time. In today’s litera-
ture, there is little quantitative guidance on how much TV-
regularization allows us to reduce the number of projections.
In order for TV and other forms of sparsity regularization
to become appropriately used this lack of knowledge must be
filled. Our recent work [3] has indicated in simulations inspired
by compressed sensing [4] that sparsity of the image gradient
can predict how few projections will suffice for accurate TV-
regularized reconstruction. A main goal of the present work
is to investigate, for the first time, if the same argument holds
using real X-ray CT data.

In the present study we consider exposure as the measure-
ment cost, and – given a fixed total exposure – look at the trade
off between more information obtained at lower quality (more
projections at low exposure) and less information at higher
quality (fewer projections at high exposure). The sparsity-
regularization literature often takes number of projections as
the primary variable, however the total exposure of a CT scan
depends both on the number of projections and the exposure-
per-projection. [2], [4]. So one could also reduce the total
exposure by keeping the usual high number of projections but
decreasing the exposure time of each. It is not immediately
clear in which scenario TV-regularized reconstruction will
perform better. Addressing this issue is the other main goal
of this work.

In the present work we systematically study TV-regularized
reconstruction quality at reduced numbers of projections as a
function of both exposure time and gradient sparsity using real
CT data. Specifically we address:
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Q1: Does TV-regularized reconstruction compensate better
for reduced information from few high-exposure or
many low-exposure projections?

Q2: Is there a connection between gradient sparsity and how
few projections provide enough information that TV-
regularized reconstruction succeeds?

While Q1 considers a fixed total exposure with exposure-
per-projection inversely proportional to the number of projec-
tions, Q2 considers a constant exposure-per-projection and a
total exposure proportional to the number of projections.

We will use the recently published SophiaBeads data set,
which has been designed specifically for systematic studies
of advanced reconstruction algorithms. In addition to using
this data set to address the stated questions, we apply the
present work to examine how appropriately the SophiaBeads
data set can serve the purpose of testing sparsity-regularized
reconstruction methods.

An important note needs to be made here about our defini-
tion of an ‘adequate reconstruction’. In our earlier work [3],
we used a relative 2-norm measure to assess if reconstructions
perfectly recovered the ground truth. This was appropriate for
the idealized scenario and to stay consistent, we also report
2-norm errors in this work. However with real data, we wish
to assess how well important features can be quantified; in this
case known to be disk-shaped and we employ an aspect-ratio
quality measure as explained in §IV-B.

Fig. 1. Ground truths for SophiaBeads data sets S1 (top row) and S2 (bottom
row) obtained by 30 CGLS iterations from pooled projections, followed by
median filtering. Full 1564×1564 images (left), 350×350 region of interest
around the centre (centre), and sparse thresholded gradient magnitude region
of interests (right).
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II. TEST DATA

A. The SophiaBeads test data set

The SophiaBeads Dataset Project [5] is a collection of cone-
beam X-ray CT data sets where the number of projections
are varied while the total photon count (or the total exposure
time) is kept constant, i.e. the exposure-per-projection is
inversely proportional to the number of projections, as in
Q1. This enables a wide range of algorithm comparisons and
information content optimizations to be examined. For more
detailed information on this experimental framework and the
examples of such scenarios, we refer the reader to [6].

The SophiaBeads data set were collected using the 320/225
kV Nikon XTEK Bay at the Manchester X-ray Imaging Facility
(MXIF), the University of Manchester. The apparatus consists
of a cone-beam microfocus X-ray source that projects poly-
chromatic X-rays onto a 2000× 2000 pixel-length and width,
16-bit flat detector panel. The optimal window size for the
SophiaBeads reconstructions is 1564× 1564, see [7].

There are two samples (henceforth referred to as S1 and
S2) that were scanned using the framework described in [6],
and both samples comprised a plastic tube with a diameter
of 25mm, filled with uniform Soda-Lime Glass (SiO2-Na2O)
beads of diameters 2.5mm (S1) and 1.0mm (S2). S1 is publicly
available; S2 on request. Here, we use S1 and S2 to represent
different sparsity levels: the smaller beads of S2 have relatively
more boundary pixels, which equates to more non-zero pixels
in the gradient, and hence is less sparse than S1.

The present study uses a single central row of the 3D cone-
beam data, and a 2D fan-beam geometry. For the constant-
exposure series, the available data sets labelled 64-, 128-, 256-,
512- and 1024-projection are used. For the reduced-exposure
series the 1024-projection data set is downsampled by repeat-
edly halving the number of projections while keeping every
other one, thereby preserving the equiangular distribution.

B. Determining a ground truth image and its sparsity

The SophiaBeads data set is designed with fixed total expo-
sure ranging from few high-exposure projections to many low-
exposure projections. No high-quality data set (many high-
exposure projections) is provided for the construction of a
ground truth. However, each data set is recorded at slightly
offset angular positions and we obtain a ground truth by
pooling all projections for each of S1 and S2 and reconstruct
using 30 iterations of the Conjugate Gradient Least Squares
(CGLS) algorithm, followed by median filtering with a 5× 5
filter to reduce noise. The resulting S1 and S2 ground truths
are shown in full and close-up in Fig. 1.

To determine gradient sparsity of the ground truth images
we count only nonzero gradient magnitude values greater than
a threshold chosen empirically to preserve only bead edges and
not noise. Thresholded gradient magnitude images are shown
in Fig. 1. The S1 ground truth has 54543 nonzero values in
its gradient, corresponding to a sparsity level (relative to the
total number of pixels) of 54543/15642 = 2.2%. The same
numbers for S2 are 123870 and 5.1%. This quantifies the

Fig. 2. TV-regularized reconstructions using regularization parameters 10−3,
10−2 and 10−1 (left to right). Full 1564 × 1564 images (top row) and
350× 350 region of interest around the center (bottom row).

intuition that S1 is more gradient-sparse than S2, though exact
numbers may vary depending on thresholds chosen.

III. RECONSTRUCTION PROBLEM AND ALGORITHM

A. Total variation optimization problem

We denote the log-transformed projection data by b, the
2D fan-beam system matrix by A, an image such as a
reconstruction by u, in particular a TV-regularized solution by
uTV, and the number of projections by Nθ. To determine a TV-
regularized reconstruction (which can be seen as the maximum
a posteriori estimate in a Bayesian formulation) of the discrete
imaging model Au = b we solve the optimization problem

uTV = argmin
u

1

2Nθ
‖Au− b‖22 + αTτ (u), u ≥ 0, (1)

where we employ a standard Huber-smoothed TV defined as

Tτ (u) =
∑
j

Φτ (‖Dju‖2), where (2)

Φτ (z) =

{
|z| − 1

2τ if |z| ≥ τ,
1
2τ z

2 else. (3)

Here, α is the TV regularization parameter, Dj is a finite
difference approximation to the gradient at pixel j and ‖ · ‖2
denotes the vector 2-norm (or Euclidian norm).

Smoothing is used to make the problem solvable by smooth
optimization techniques which are generally faster than their
non-smooth counterparts. Depending on the choice of smooth-
ing parameter, τ , this might modify the reconstruction; how-
ever here we use a sufficiently small value of τ = 10−5 relative
to the image values that smoothing effects are negligible.

Non-negativity is enforced as the object’s attenuation co-
efficients are known to be non-negative and in general non-
negativity can lead to substantial reconstruction improvement.

The normalization by Nθ helps to compare reconstructions
obtained at different Nθ by compensating the magnitude of the
first term which is otherwise proportional to Nθ. As a result, a
fixed α value yields the same balance between the two terms
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Fig. 3. TV-regularized reconstructions of 64-, 128-, 256-, 512-, 1024-projection data sets and pooled-data ground truths (left to right), showing a 350×350-pixel
region of interest. S1 data set of fixed total exposure (top row), S1 and S2 data sets with fixed per-projection exposure (middle and bottom rows).

at different Nθ. This reduces the search for the optimal α to
a single initial sweep, the resulting α of which can be reused.
In practice we verified this through α sweeps at different Nθ

but for brevity have not included results here.

B. High-accuracy optimization algorithm

To solve (1) we used the toolbox TVReg [8], which offers
implementations (written in C with MATLAB interface) of
accelerated gradient projection methods; specifically we used
the provided GPBB (Gradient Projection Barzilai-Borwein)
method which among other techniques employ acceleration
in form of the Barzilai-Borwein step-size selection. To fur-
ther accelerate the reconstruction, we employed the ASTRA
Tomography Toolbox [9] for GPU-acceleration of the compu-
tationally expensive forward and back-projection operators.

We emphasize that our goal here is not necessarily to use
the fastest algorithm but one that can reliably solve (1) to
high accuracy in reasonable time in order that we indeed
assess the quality of the TV-regularized reconstruction and not
of an arbitrary early-termination result. TVReg is capable of
this through a non-heuristic termination criterion based on the
gradient norm magnitude, in contrast to, for example, running
a pre-set fixed number of iterations or terminating when a
small difference between iterates is encountered.

IV. RESULTS

A. Choosing the regularization parameter

Fig. 2 shows reconstructions for α = 10−3, 10−2 and 10−1

showing the well-known transition from an under-regularized
noisy/patchy TV-regularized reconstruction, through to an

over-regularized solution where separated beads appear con-
nected due to excessive smoothing. Among a range of values
we found α = 10−2 to provide the best trade-off and this fixed
value was reused in the remaining reconstructions.

B. Assessment of reconstruction image quality

We assess the reconstructions qualitatively through visual
inspection. For quantitative assessment we use two error
measures with respect to the constructed ground truth uGT:
First, the standard relative 2-norm of pixelwise differences:
E1(uTV) = ‖uTV − uGT‖2/‖uGT‖2, where ‖ · ‖2 denotes the
(Euclidian) 2-norm. The relative 2-norm provides a standard-
ized comparison but is not necessarily the most informative
about whether important features have been reliably recon-
structed. For the second error measure E2(uTV), we evaluate
the aspect ratio (width:height) of 25 reconstructed beads and
report the mean relative error with respect to determined aspect
ratios of the ground truth beads. This measure describes how
well bead reconstructions reproduce the known bead shapes.

C. Q1: Is it better to collect few high-exposure or many low-
exposure projections?

We first address Q1 by determining the TV-regularized
reconstruction of the fixed total exposure S1 data set for 64,
128, 256, 512 and 1024 projections. We visually compare a
350×350-pixel region of interest of all reconstructions with the
constructed ground truth in the top row of Fig. 3. Visual quality
clearly improves with increasing number of projections.

The error measures E1 and E2 are plotted in Fig. 4 using a
full line. Both error measures agree with visual assessment that
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Fig. 4. Relative 2-norm error (left) and mean aspect ratio error (right) for
data sets S1 and S2 with fixed total or per-projection exposure, Q1 and Q2.

the 64-projection reconstruction is substantially worse than the
others and that error decays with more projections.

D. Q2: What is the dependence on sparsity?

To address Q2 the middle and bottom rows of Fig. 3 show
reconstructions for the case of fixed exposure-per-projection
for data sets S1 and S2. Corresponding error measures are
plotted in Fig. 4 using dashed lines. First, again a clear
trend of improved TV-regularized reconstruction quality with
increasing number of projections is observed. This is less
surprising than in the previous case, since more projections
correspond to a higher X-ray exposure. However, for S2 the
mean aspect ratio error for 256 and 512 projections is larger
than the general trend. We also note that E1 for S1 in this
case almost coincides with the fixed total exposure case.

In case the gradient sparsity does in fact affect the number
of projections sufficient for accurate reconstruction, we would
expect to see clear differences between S1 and the more
gradient-sparse S2 data set. However, visually the S1 and S2
reconstructions show no clear difference in their dependence
on the number of projections. The error plots also do not reveal
clearly different behavior of S1 and S2 as function of numbers
of projections, apart from the previously mentioned E2 values
for S2 at 256 and 512 projections.

V. DISCUSSION AND CONCLUSIONS

In all considered cases the 64-projection reconstructions
stand out from the rest as substantially poorer. It seems
that artifacts caused by having only 64 projections cannot
be effectively removed by TV-regularized reconstruction, no
matter whether high- or low-exposure projections are used.
This is particularly interesting considering the highly gradient-
sparse and round, piece-wise flat regions, for which TV-
regularized reconstruction could be expected to excel.

For Q1, we conclude that given a fixed total exposure it
appears beneficial to distribute across the highest possible
number of projections. Even though each projection is of low
quality it appears intuitively sensible to aim for obtaining
in a loose sense more independent information about the
scanned sample through more projection angles, rather than
few high-quality ones. This is however in contrast to the
typical message from the sparsity-regularization literature,
namely that reconstruction from few projections is possible.

Regarding a possible connection to sparsity in Q2, present
results are inconclusive since no clear difference is observed
between S1 and S2. However for both S1 and S2 results, there
is a large error reduction between 64 and 128 projections.
This may hint that there is a number of projections, possibly
different for each of S1 and S2, below which TV-regularized
reconstruction will not be successful. The SophiaBeads data
set only allows subsampling by factors of 2 to preserve
equiangular projections. Relevant future work includes the
acquisition and analysis of data sets with finer increments of
numbers of projections, as well as more sparsity levels.

It should be mentioned that the presented preliminary con-
clusions may depend on several aspects of the study. For
example it is unclear if the pooling approach produces a
reliable enough ground truth, and in potential future work,
extra care should be taken to acquire ground truth data. Also
it is not certain that the error measures used here are the most
informative and other options could be considered.

Lastly, regarding how SophiaBeads data sets serve as
sparsity-regularization test data, we found TV-regularized re-
construction to work well on the piecewise constant bead
images. In that sense, SophiaBeads is quite useful. However
for assessing the influence of gradient sparsity we faced short-
comings which we have offered suggestions to address in
future work.
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