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Abstract

The current status in the automotive industry is that each software function is running on a dedicated hardware component. The system integrator purchases components from different vendors and integrates them together into their system. As the number of functions grows, the functionality has to be distributed over the architecture, and several functions have to share the same node. This trend is driven by the need to reduce costs and use the resources more efficiently. For this purpose, middleware software that abstracts away the hardware differences of the nodes, allowing hardware/software independence has to be developed. 
As the systems become more complex and distributed, new methodologies and tools are needed to assist the designer in the analysis, design and implementation of such systems. An important design task that has to be supported by such tools is the mapping of the automotive electronic functionality to the distributed hardware architecture. Such a mapping task has to be performed considering several constraints, such as,  mapping of certain functions is predefined, strict timing requirements must be fulfilled, limitations in hardware resources and communication links must be considered..

The main goal of this thesis is to investigate the mapping design task in such a context, and to find out about the parameters and constraints to be considered when performing such a mapping. An important step of any design task is the modeling of functionality and the architecture of the system. In this thesis, we use the recently proposed EAST Architecture Description Language (EAST-ADL), which is still under development. Hence, as a second goal of the thesis, we will evaluate the current EAST-ADL proposal and suggest changes based on the requirements of the mapping design task investigated. 
The proposed mapping methodology and the changes to the EAST-ADL will be evaluated using the Functional and ARchitecture integration (FAR) case study, which aims at modeling, designing and implementing a car model.
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1.     INTRODUCTION

Automotive systems are today composed of several different types of hardware components (electronic control unit - ECU) interconnected in a network. The application software running on such distributed architectures is composed of several functions, e.g. cruise controller. Until now, each such function has been running on a dedicated hardware node. With the development of the middleware software, the software functions become independent of the particular hardware details of a node, and thus they can be distributed on the hardware architecture. The aim of this thesis is to investigate the problem of mapping functionality to hardware nodes and to find out about the parameters and constraints to be considered when performing mapping of the automotive electronic functionalities to the electronic control units. 

1.1 Background

The current status in the automotive industry is that the supplier delivers “black-boxes” which contain one single function running on a dedicated hardware node. The goal of a system integrator in this context would be to purchase nodes from different vendors and to integrate them together into the system (see Fig. 1.1). The problem with this approach is that there is a continuing increase in the number of nodes in a vehicle. Currently, high-end vehicles can have up to 100 of ECUs, which represent 25% of the total cost of a vehicle. Not only is the complexity and cost increasing, but also the flexibility is reduced and, a lack of standards is forcing the system designers to have knowledge about a myriad of operating systems, hardware, etc. A combined effect of the above problems leads to an increase in the time-to-market. 

[image: image2]
Fig. 1.1: Current Status in Automotive Industry [34].

   1.2 Motivation

To be able to distribute the functionality and at the same time to integrate several functions in a node (see Fig 1.2), there is a need to have a standard middleware that abstracts away the hardware differences of the nodes and assists the designer in the analysis, design and implementation of automotive electronic functionality. This is the focus of the EAST-EEA European Project [18], which aims at proposing a standard automotive electronics middleware, tighter with an architecture description language, EAST-ADL..
As the systems become more complex and distributed, new methodologies and tools are needed to assist the designer in the analysis, design and implementation of such systems. 

[image: image3]
Fig. 1.2: Future Practice in Automotive Industry [34].

1.3 Objective and Method
An important design task that has to be supported by such tools is the mapping of the automotive electronic functionality to the distributed hardware architecture. Such a mapping task has to be performed considering several constraints, such as, mapping of certain functions is predefined, strict timing requirements must be fulfilled, limitations in hardware resources and communication links must be considered. 

The main objective of this thesis is to investigate the mapping design task in such a context, and to find out about the parameters and constraints to be considered when performing such a mapping. An important step of any design task is the modeling of functionality and the architecture of the system. In this thesis, we use the recently proposed EAST Architecture Description Language (EAST-ADL, see Chapter 5), which is still under development. Hence, as a second goal of the thesis, we will evaluate the current EAST-ADL proposal and suggest changes based on the requirements of the mapping design task investigated.

We use, as a starting point, the mapping tool presented in [1]. The tool is extended to handle the mapping requirements investigated in the first part of the thesis, and it is interfaced with the EAST-ADL modeling language. In this context, an important contribution is the translation from a structural representation of functional blocks in EAST-ADL to a run-time representation consisting of interacting processes, which is the input to the mapping task.
In order to investigate the mapping problem, it is desirable to model only those aspects that are important to mapping/scheduling. The FAR project will be used as a case-study. The requirements and constraints of the various functionalities in the FAR project are modeled using EAST-ADL (Chapter 4). 
1.4 Limitations
The limitations of the thesis can be stated as follows:

· During the course of this thesis, the modeling language EAST ADL was continuously under development. So, the artifacts of the language described in this thesis may not exactly correspond to the ones present in the current EAST ADL.

·  The translation of the FAR case-study into EAST-ADL has been done in an ad-hoc basis, considering several simplifying assumptions. Also, we have assigned typical valued for those timing requirements which were not modeled in the FAR case-study.
· The constraints for the mapping are obtained through literature studies, discussion with people from both academia and industry. Attempts are made to cover most of the constraints; however there is no proof that all the constraints are covered.

· The issues related to the fault tolerant architecture are not discussed in detail. For the purpose of making the mapping decision, it is assumed that the designer knows whether the underlying architecture is fault tolerant or not. How the underlying architecture can be made fault tolerant is not discussed.

1.5 Related Work
There is a related project called AIRES whose goal is to develop methodologies for model based integration of embedded real time software. AIRES is a part of MOBIES [20]. It is a toolkit for automatically transforming the non-functional constraints of a system from the design view to runtime view and supports analysis and verification of the timing properties. It is provided with algorithms which supports view transformation, timing assignments and analysis that are integrated with GME (Generic Modeling Environment). The description given here is based on the documentation provided by [21]. It consists of following two main parts:

· Component-to-task interpreter.

· Schedule Analyzer (schedule tasks and messages).

The design method is based on three views:

· Hardware folder: In this view, the user can design and configure the hardware architecture of the system. Objects available are CPU, Can Bus, and OS. Each of these objects is associated with attributes that helps to configure the system. For example, the attributes for the CPU objects include Type of processor, Can ID and Bound. The attribute for the OS object include Timer resolution, Timer overhead, Context Switch, OS Type, Scheduling overhead and OS structure. The attribute for the CAN bus is only the network speed. It affects the execution time for messages in the scheduling algorithm.

· Software folder: In this folder, the user defines the structure of the overall software using software blocks. These software blocks are in turn grouped in subsystems which may be connected with each other using ports. Each subsystem has their attributes as period and deadline. Software blocks contain execution time and priority attribute. The data size (in bytes) can be set for each line that connects the block.  Each subsystem or software block can be manually allocated to a selected processor by placing a reference to the CPU object within the block. The blocks that do not contain a CPU reference can be allocated using the component-to-task interpreter. The software structure has to be designed and the platform needs to be configured in order to perform the component-to-task mapping. The interpreter then bases its calculation on the bound attribute in the processor, period or system deadline, the execution time in the software block and the data size for block connection.      

· Task folder: The result of component-to-task-mapping is placed here. All the tasks executing at the same rate are connected through the same trigger port. The attribute for trigger include deadline, minimum inter-arrival period which forms the period for the trigger. The attributes for task include: task type, path, offset, deadline, priority, period tolerance and schedule. It may also contain data ports, trigger ports and action block which determine the WCET for the tasks.

There is another case study that describes the situation in Scania [23]. All the contents here are described in detail in [23].  The case study describes the modularization of the control system for an adaptive cruise control system developed at Scania. The whole control units are interconnected by CAN communication on a three bus network. The ECUs with same level of criticality are placed on the same bus. There is a gateway which separates the three buses. A group of related functions forms a logical ECU. It is described that the concept of modularity is helpful in adding and removing functionality according to specifications. Adding new functionality means adding new ECU and the current status is that the number of ECUs has increased a lot in the system. When an ECU is to be placed, first the criticality of the ECU is decided. There are three level of criticality:

· Level 1 (Red): It contains all the ECUs essential for the driveline system.

· Level 2 (Yellow): The ECUs here are not part of driveline but necessary for driving.

· Level 3 (green): It contains ECUs that are not necessarily required for driving. 

It is possible to perform some compromise on the system by, for example, placing an ECU on a higher integrity level to reduce some penalties which may arise if the same ECU is placed on the appropriate level of integrity. System design aspect includes reliability, safety, cost and available technology limitation. It is concluded that there is a clear need for modularization which will help in adding and subtracting functions easily. There is a choice to place multiple logical ECUs on one physical ECU.

1.6 Organization 
The rest of the report is organized as follows:

· Chapter 2 provides brief information about the technical background and describes real time systems in general and distributed real time systems in particular.

· Chapter 3 briefly describes the real time systems that characteristic to the automotive industry. 

· Chapter 4 gives an overview of the modeling language called EAST ADL. It describes the various artifacts and presents the status of the language (which is under development).

· Chapter 5 describes the FAR project, in which a prototype vehicle was developed. The chapter gives an overview of the system functionalities that are present in the vehicle.

· Chapter 6 describes in brief the current design of the mapping tool and discusses the potential constraints that are relevant for making the mapping decision. 

· Chapter 7 discusses the issues related to the integration of the current mapping tool with the modeling environment of EAST ADL.

· Chapter 8 uses the FAR case-study to evaluate the approaches presented in the thesis. It tests the capability of the mapping tool and demonstrates the applicability of the concepts described in the previous chapters. 

· Finally, the conclusions and the prospects of the future work are discussed. 

2.     TECHNICAL BACKGROUND

A real time system is a computer system in which the output of computation is said to be useful only when the correct value is delivered at appropriate point in time [10]. The quality of a real time system is judged not only by looking at its high performance aspects but also whether it meets the strict timing constraints and how reliable it is. The design process applied to a real time system is often application specific. Example of areas where a real time system can be used includes computer games, e-commerce, ticket booking, teller machines, airplanes, telephones, manufacturing systems, submarines, cars etc. They can be classified as hard real time and soft real time systems [10]. Hard real time systems include systems where the inability to deliver the computational result in time may result in catastrophic consequences. For example, a fly-by-wire system in an airplane failing to react at appropriate time can result in fatal accident. Soft real time systems on the other hand can tolerate delay of some of the computational results causing some inconvenience but no catastrophic consequences. For example, a multimedia application can tolerate few of the picture frames delivered at irregular interval causing some inconvenience to the viewer.   


. Often, real-time systems are embedded into a host system. For example, the brake-by-wire, drive-by-wire systems in automobile are  integratedin cars, trucks, buses etc.  Such systems are called embedded real-time systems. In the automotive sector, there is a trend to replace the conventional mechanical systems with embedded real time computer systems. The reason behind this is the continuous reduction in the price/performance ratio of microcontrollers. The computer control has entered core area within automobile like engine control, brake control, transmission control, adaptive cruise control etc.         

2.2 Components of a Real Time System
TODO: The contents of this chapter seem to be taken from another document (at least the figures). Take care you don’t paliarize unintentionally.
The following figure illustrates the typical components of a real time system. 
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Fig 2.1: Components of Real Time Systems [35]. 

Application software: At the system level, the application consists of set of interacting tasks. Each task has two types of parameters, namely static and dynamic parameters, which are used to analyze the temporal behavior of task [!!!ref]. 

· Static parameters: These are the parameters which are calculated independently from other tasks and are thus derived from the specification and the implementation of the system. WCET is an upper bound for the time between the task activation and task termination. It should hold for all possible inputs and all possible execution scenarios [10]. Period of a task is the time interval between which a regularly repetitive task iterates. The deadline of a task can be defined as a constraint on the timing requirement that specifies the latest time by which the task must finish its operation. An offset of a task is the time at which the first request of the task execution occurs.    
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· Dynamic parameters: These are the parameters whose values are affected by the execution of a task in its environment. It is related to the run time systems and the characteristics of other tasks. An arrival time of a task is the time at which the task arrives for execution. Start time is the time at which the task starts its execution. Completion time is the time at which the task finishes its execution. Finally, the response time is the time interval between the arrival of a task and the completion of its execution. 
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Architecture: The architecture of a real time system consists of the following components: 

· Run time system: It consists of an online scheduler which decides the order in which the task should execute. It also consists of an online dispatcher that starts the execution of a given task. Hence the scheduler selects the task and the dispatcher starts the execution. From the implementation point of view, it consists of a real time operating system (RTOS) or some form of stand alone system with subroutine calls. The decision of whether the dispatching should be time driven or priority driven and execution of task being preemptive or non-preemptive is also made here. Finally the type of message passing model to be selected may include any combination of the following three:

                         - Time vs. priority driven dispatching.

                         - Synchronous vs. asynchronous message passing.

                         - Unidirectional and bidirectional message passing.

· Hardware platform: It consists of a number of processors. It may consist of a single processor or a multiprocessor platform. Most of the system consists of a multiprocessor platform. The reason for using multi-processor hardware platform is that it provides high throughput, schedulability and reliability.

· Rest: Finally, the architecture consists of a number of sensors, actuators and interface(s) for environment.
Target Environment: This is the place where the whole system will be deployed. The system and the software architecture through the sensors and actuators will provide the desired functionality. For example, consider a distributed real time system which has been deployed in a car to provide the various functionalities, the function providing the speed control will read values from the sensors and send values to the actuators to keep the vehicle in control with the desired speed.

2.2.1 Real time models
Tasks in real time systems can be either of these three:

Periodic tasks: These types of tasks always arrive with a fixed period of time. For example, consider the task in a car which is used to continuously detect the distance of the obstacle ahead of the vehicle. In case, the vehicle is too close to the obstacle ahead, it will send the signal for the car to slowdown or stop. On the other hand if there is no obstacle, it may send the signal to continue moving with the desired speed. Such task should execute with a period of time which is sufficient to detect the obstacle and send the stop signal before there is any collision. On the other the task should not execute too often, thereby consuming resource and reducing the overall performance. 

Sporadic tasks: These types of tasks always arrive within a period of time greater than or equal to a fixed time.

Aperiodic task: There is no guaranteed time between subsequent arrivals. 

Task can be in one of the following states:

Waiting: In this state, the task is waiting for some condition (which maybe a resource or data to be read from the sensors). Once it gets the required resource or data, the state will change to the ready state. Finally, when it gets it turns to execute the state will change to the running state.

Ready state: The task is this state is ready to execute on the processor.

Running state: Here, the task is running on some processor.

2.2.2 Time-triggered and event-triggered real time systems
Another important classification of real time system worth mentioning is whether the system is time-triggered or event-triggered.

Event-triggered systems: The main advantage of these type of real time systems is their flexibility. The execution of an activity is initiated by some external events and is usually done with the help of interrupt driven mechanism. One advantage of such systems is that they provide efficient resource utilization under nominal working condition because the resources are consumed only when the specific event that triggers program execution occurs. So under nominal workload conditions such events may occur infrequently. Another advantage of such systems is that they tend to be more flexible as compared to its time-triggered systems. The disadvantage of such systems is that they could lead to system congestion during peak load when a “storm of events” occurs. Hence the resource utilization is poor during peak load conditions.

Time-triggered systems: These type of systems are designed for handling execution during peak load conditions. The execution of activities is time-triggered, and occurs at predefined points in time. The access the communication medium can also be  time triggered. In this case, clock synchronization is required. The advantage is clearly the converse of event-triggered systems, i.e. the resource utilization is efficient during peak load conditions and poor during low load conditions. The disadvantage in this case is the reduction in the flexibility.

2.2.3 Scheduling in real time systems

A “schedule”, as the name suggests, is a process of reservation of resources which may be either spatial (e.g. processor, RAM, ROM) or temporal for a collection of tasks. The task of a scheduling algorithm is then to generate a schedule for a specified collection of tasks and a given run-time system. The role of a scheduler and dispatcher (mentioned above) then comes into play i.e. a scheduler selects the task and the dispatcher starts the execution of the task. A schedule is said to be feasible if it ensures that all the constraints (whether temporal or spatial) specified for a collection of task are met. A collection of tasks is considered to be schedulable if there exists at least one scheduling algorithm that can generate a feasible schedule. Schedulability analysis is a technique of determining whether a collection of tasks can be scheduled on a given runtime system in such a way that all task instances will be able to meet the specific requirements of the various constraints that has been specified for a particular task.

2.3 Distributed Real Time Systems
The main focus of the thesis is on the real time system embedded in a vehicle. The automotive architectures are today typically implemented as a distributed system. More details related to the hardware architecture will be given in the next chapter when we focus on the time-triggered architecture (TTA). 

Looking from the functional point of view, it should not make difference whether a distributed architecture has been used or a centralized one to implement the specification of the given functionality. Distributed real time system architecture consists of a set of nodes interconnected unsing a communication link. A host computer runs in each node, which may have other components like the communication controller, interface for the communication medium. There are a number of reasons why the implementation of hard real time systems using distributed architecture is preferred over the centralized ones [10]. Namely: 

1. Composability: “An architecture is said to be composable with respect to a specified property if the system integration will not invalidate this property once the property has been established at the subsystem level” [10]. For example, in an automobile system, there may be a number of functions which control different aspects of the system. If each of these functions have been designed, developed and validated in isolation, then the functions are composable if all the required properties still hold after their integration.

2. Scalability: The architecture is scalable if it allows the addition of new functionality without leading to a large negative impact on the system parameters. The addition of new hardware components and software functions is easier when using a distributed architecture. 
3. Dependability: Another important motivation regarding a distributed architecture is that it allows the implementation of fault-containment regions. If a component of the architecture fails, this failure will not propagate through the whole system if fault-containment is used..       

2.4 Communication in Distributed Real Time Systems
A distributed real time system consists of a collection of nodes. In its simplest form, a node consists of two components: the host computer and the communication controller. These two components along with the communication network interface and the underlying communication medium groups together to what is known as the real time communication system. Sine the original problem of the thesis is about mapping of the functionalities to ECUs (which are nodes connected with communication network), it is very important to know how the inter-node communication takes place and what are the overheads involved. More details related to the communication infrastructure will be discussed in the next chapter, where we look at the protocols typically used for communication in the automobile domain.

The main goal of the communication system is to transport data from the source node to the destination node in way that guarantees high reliability, low jitter, and more predictable time interval [10]. From the point of view of the nodes, the actual architecture of the physical medium and the protocol used should be hidden behind the communication network interface. The communication should also ensure that the messages are not corrupted. 
(TODO: this is a strange classification: field-bus and back-bone are also real-time networks if they deliver the messages predictably. Filed-bus has nothing to do with clock-synchronization… I think that the classification below can be removed)





Communication starts when the host computer in the node sends a message to the communication network interface, which then forwards it to the communication controller. Depending upon the underlying network, the communication controller packs the message and sends it to the network such that the specified requirements of the protocol and the network are met. It is the need to meet these requirements that incur it to handle a number of overheads (details are protocol specific). At the receiving side, it depends what is the type of the information that the message relates to. Messages containing event information must be processed exactly once at the receiver’s end and must be removed from the queue after reading. If the message contains state information, it can overwrite the previous version of the same message and it is not always necessary to dispose of state message.       

3. Automotive Electronics
Over a period of time there has been tremendous increase in the  number of electronically controlled functions in the automotive domain. The future of the applications that are controlled by electronic system looks challenging as well as promising. X-by-Wire systems, collision avoidance systems, smart actuators and sensors, global positioning systems, electronic brake distribution functions are just a few examples of such functions.   

3.1 Why is automotive domain a real time problem?

TODO: This section is very convoluted, although the message is simple: there are real-time requirements in the automotive domain. Try to rewrite it more concisely.

There are a number of ways to illustrate that the problem of implementing the automotive functionalities is a real-time computing problem. The one described by Krishna & Shin [11] looks more suitable because of simplicity:: Consider a vehicle with a driver. The vehicle is a controlled process and the driver is the controller. The environment in this scenario is the road along with other vehicles moving on the road. The requirements of the driver (e.g., to reach safely the destination) will help in giving a clue about the real time requirements of the vehicle. The manufacturer of the vehicle would like that the requirements of the driver be met while satisfying other constraints like cost, weight, safety, efficiency, comfort etc.  There are a number of actuators and controls in the vehicle. Engines, wheels, brakes constitute some of the actuators and brake pedal, steering wheel, wipers, light switches, accelerator, gear box are some of the controls. The requirement of the driver is then to move the vehicle from the source to the destination while satisfying constraints like moving with appropriate speed limits, preventing collision with other vehicles on the road, getting efficient fuel consumption (if he desires), meeting other given traffic rules etc. Looking from the real-time computing point of view, the driver seems to be performing a mission. The goal is then to reach the destination and also consider the time it takes to reach there. There are a number of tasks that the driver is performing. Some of them like steering and braking are critical to the success of the mission because these tasks have varying deadline that depends on the environment on which the vehicle is operating. These deadlines may be different depending upon whether the vehicle is moving on an empty road or when there is full rush. While others like tuning the radio are not critical tasks. Other factors like how much brake and acceleration was applied abruptly also affect the fuel consumption and total time taken.  In short, for the mission to be successful a number of real time constraints need to be fulfilled. Not all of these are hard constraints form researches point of view i.e. there will be no catastrophic results if some of the constraints miss their deadline by short period. Timing constraints depends upon the conditions of the road and the physical environment. Other constraints may include variations between consecutive samples or actuations, jitter constraints, sampling rate of the sensors, time taken to read from the sensor and performing the required actuation. Once again from the vehicle developer’s point of view, the above mentioned tasks should be fulfilled at extremely low cost minimizing the CPU time, RAM usage etc. The description can continue for a number of pages. But it is sufficient at this point to sate that the scenario is an example of real time problem. Further, the system platform (described in later section) of automobile consists of a number of nodes with communication medium. The functionalities described above are realized by implementing them on such a system platform. Hence, the problem is that of distributed embedded real-time system.         

3.2 Automotive Electronics Functions
There are increasing demands to add more and more advanced functionality in vehicles. New functions are possible (efficiently and economically) if the functionality is realized in the form of software and electronics in the vehicle. . It is usual in automotive industry to classify the electronics functionalities into two different types [12].

1. Body Electronics:  They provide the basic management and control functionality for the comfort of the customers. Examples of functions in these categories include theft avoidance, window control, key-less vehicle entry system, mirror adjustment, audio system link radio or telephone etc. They are implemented on a number of nodes that are connected with low bandwidth communication network.  It is clear to see that these functions are not very critical from the safety point of view. Body electronics ECUs typically consist of 8-bit micro-controllers with about hundred bytes of RAM and 16Kbytes of ROM, I/O points to connect with the sensors and actuators. Such nodes are interconnected using a simple network interface.

2. System Electronics: These are the functions that actually control the movement of the vehicle. Examples include power train control, braking, suspension, vehicle dynamics control, ABS, ACS etc. These functions are typically safety critical. For instance, sampling of sensors has to be done periodically, the control algorithm has to be executed and the results need to be sent to the actuators within a given interval of time. The system electronics functions typically use 16-bit micro-controllers with about 16 Kbytes of RAM and 256 Kbytes of ROM. 

3.3 System Architecture

A typical automotive electronics is a loosely coupled unit called electronic control unit (ECU). Each of which has its own internal structure which is different from the structure of other ECUs. The diagram below [13,] shows how modern vehicle network architecture looks like. There maybe as many as 70 ECU in today’s high end car, each of which may behave independently. Information is exchanged among ECUs through event-triggered communication with low communication speed (CAN). Many of these ECUs are fault tolerant and can operate even if the communication fails. 
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Fig 3.1: Typical Architecture of a Vehicle [13]

It is clear from earlier discussion that the electronic architecture must satisfy the demanding requirements in terms of availability, safety and fault tolerant. In order to meet these requirements, the time triggered architecture [14] (TTA) which also provides fault–tolerant time-triggered communication protocol (TTP/C) is used. TTA breaks down a large embedded application into clusters and nodes. Each node provides fault tolerant global time. And this global time is used to specify the interface between different nodes, simplify communication, support error detection and provide strict time requirement of real time applications. 

The TTA- structure [10] is given in the next page. The basic building block of TTA is a node. Each node consists of a processor, an input–output subsystem, memory, communication controller, operating system and other relevant application software. There are two replicated communication channel which connects the different nodes to build a cluster. The communication subsystem is then formed from the physical interconnection structure and communication controller of all the nodes in a cluster. The communication subsystem executes periodic time driven multiple access (TDMA) schedule. It reads data from the communication network interface (CNI) of the sender node at a previously defined time instant. It then delivers the data from the CNI to the entire receiver node at a known time instant. The time instant of the various fetch and delivery operations is stored in the message descriptor list (MEDL).  MEDL is a scheduling table in each communication controller and is consistent with the MEDL in all the communication controllers in the other nodes.     
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Fig 3.2 Hardware Structure of a TTP node [10]

The implementation of the TTA is based on two different network topologies [14]. Namely:

Star topology: Looking at the diagram below, we can see that it contains one central guardian that all the nodes in the cluster share. This topology isolates node failure to support applications which are safety-critical.
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Fig 3.3: TTA Star Topology [14]

Bus topology: There is local bus guardian for each node. From the cost point of view the previous topology is better because it requires only one bus guardian per channel. 
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Fig 3.4: TTA Bus Topology [15]

3.4 Protocols in Automotive Domain 

The objective of the time triggered protocol is to provide message transport with low latency and minimal jitter. It should provide minimal overhead both in terms of the message length and number of messages. There should be provision for scalability to high data rate and support for distributed redundancy management. The protocols which are used in the automobile industries are:

TTP/C protocol:  It is a full version of Time triggered protocol which support fault tolerance and requires hardware implementation of protocol functions. The layers in the protocol looks like this [10]. For details see [10].
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Fig 3.5: TTP/C Protocol Layers [10]

CAN: The CAN vehicular network with typical settings consists of two or more CANs operating at different speeds [13]. A faster CAN, with speed up to 1Mbps, is used in high real time critical functions like antilock brakes, cruise control, engine management etc. A low speed CAN is used for non-real-time critical control applications. Slower CAN usually runs at a speed of less than 125Kbps and are used for comfort applications like seat and window management controls, mirror adjustment controls etc. Even though CAN provide a cost – effective and robust network, there are certain applications like X-by-wire which require high reliability.          

TTCAN: It is based on the well known event triggered protocol CAN. It provides mechanisms which allow CAN messages to be transferred both in a time-triggered and event triggered way. It includes hybrid system in which the time-triggered TDMA schedule also accommodates event-triggered communication. Typical application area of TTCAN include engine management system and also in various X-by-wire applications. 

FlexRay:  It is another fault tolerant protocol which is a combination for two different schemes that provides both time triggered and event triggered transmission. It is designed for high data rate. Typical application area includes control application like X-by wire system, body and power train system. 

Bluetooth: It helps in exchanging of data between the between Bluetooth enabled devices where there is no need of cables. Typical areas of application include portable DVD & CD player, MP3 driver.

Media Oriented System Transport (MOST): The idea behind most is to provide low cost network interface with minimum overhead to even the most simple multimedia device. It provides capacity for high volume stream including automotive media and personnel computer networking application. For details see [15].

LIN: There is one master node and one or more slave node in the LIN network. A node in this network does not make use of the system configuration, except in the case of master’s node. As a result, nodes can be added in the LIN network without changes to the configuration of hardware and software in the other nodes. LIN provides single wire implementation at low cost. It can provide speed up to 20Kbit/s. The original idea was to link LIN to other higher-speed networks like CAN. Typical area of application includes rain sensor, door lock, turning light, climate control etc. For details see [17]. 

4.     MODELING IN EAST ADL

In any phase of product development, modeling and documentation plays a very important role. As repeatedly mentioned in the previous chapters, the electronics and software control is penetrating in all the spheres of automotive functionalities. There is no doubt that the software provides opportunities in terms of implementation of new functionalities, but the side effect is that there is tremendous increase in the complexity. In addition to all these, the development process needs to take into consideration different requirements such as safety, desired behavior, reliability, flexibility etc. Clearly there is need for the models that can assist the development engineers by describing, relating and analyzing the different aspects and views of the system.  A part of this thesis is done in synchronization with other thesis [16] also done at Volvo Technology Corporation. The latter involves studying and evaluating the language known as East-ADL* (which is currently under development). A part of the goal of my thesis is to integrate the mapping tool with East-ADL. Hence the focus of this chapter is to see modeling from East-ADL point of view. 

4.1 Introduction

The main challenge for the automotive industry is the integration of different electronics parts, modules, subsystems supplied by different vendors. And the complexity of the above mentioned process can be managed by using a standard open architecture language. There exists a number of modeling language for different kinds of applications including the X-by-wire systems. The requirement therefore is to find a proper tool suite that can help in the development of complex automotive electronics.  The goal of East-ADL is to make it possible “the proper electronic integration through definition of an open architecture” [18].  This chapter contains documentation of third deliverable of EAST WP3. All the contents in this chapter have been obtained through literature study of [19]. This chapter only provides an overview of East-ADL (for details required in modeling see [19]).  Before proceeding further, an important point to note is that the approach adopted in East-ADL is to make its definition complaint with UML2 (a new version of UML that is currently developed by OMG). Hence, depending upon the further development of UML2, the final version of the language will have to be updated accordingly.

4.2 Description of the Artifacts

The intention is that the language is to be used throughout the design cycle by people in different domains of automotive industry. Thus, open and redundant (but not ambiguous) set of artifacts are specified. The figure below illustrates the artifacts and their corresponding relationships. The details about each artifact including its concepts and usage can be found in [19].
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Fig 4.1: Artifacts of EAST ADL and their Relationships [19] 

Vehicle View: It describes in a non-ambiguous way the different architectures that must be developed. In other words, it describes the combination of electronic functionalities implemented for a particular vehicle. The following things are represented at this layer:

· The electronic features required by the vehicle.

· Variants of the different electronic feature.

· For a particular vehicle type, the different “off the self” systems that can be selected by the customers by choosing one among several variants of a given electronic feature.

· The specification of the requirements.

The definition of a vehicle view mainly consists of two structures. The first structure decomposes the project into different subtype’s hierarchy. Each subtype is characterized by a set of specified features which distinguish it from other subtypes. The second structure describes all features available for a project and its subtypes.

Functional Analysis Architecture: It describes the functionalities of the system at a level of abstraction between the informal specification of the features at the Vehicle View and the implementation of the functionalities at the Functional Design Architecture. It gives a precise answer to the question “what the client wants” and also provides a formal specification for the implementation. It consists of a hierarchical and structured decomposition of functionalities with a static description of the interchanged data and control flows. It also provides behavior specification at different levels of the hierarchy. The efficiency of these functionalities is expressed in terms of requirements that are refined along the hierarchical decomposition. In short, the Functional Analysis Architecture takes the functionalities at the vehicle view and describes the corresponding functional decomposition with data exchanges. 

Functional Design Architecture: It describes the realization of the Functional Analysis Architecture by means of software. A particular Functional Analysis Architecture is an instance of the associated Functional Analysis Architecture. And the relation is such that one or more software functions realize one or more analysis function. There will be a network of possibly decomposed software functions. There are entities by which it is possible to create functional hierarchy to construct more complex software functions based on other software functions. The architecture also contains information about data types of parameters and signals. The constructs in this level will be defined independently of any hardware on which the realizing software will be allocated. In short, this architecture adds further description to the interface aspects. 

Logical Architecture: In this level the abstract data types have been transformed into concrete data types, depending upon the employed sensor, actuators and controllers. It is the lowest level at which there is a description about the software that implements the various functionality of a vehicle. It contains map able code and message elements corresponding to the Functional Design Architecture on the higher abstraction level. It is generated based on the entities present on the higher level of the design architecture and their association with other entities. In short, it is the low level flat software description. 

Hardware Architecture: It contains physical entities of the embedded system present in a vehicle. In this architecture the hardware entities are described in details which make it possible to perform tentative allocation decision. The allocation decision is based depending upon the various constraints specified by the designer. The constraints may be specified in the form of requirements such as timing, storage, data throughput, processing power, etc. Analysis in this architecture may enforce revisiting and performing modifications to the Functional Analysis and Functional Design Architecture. The reason for this can be, for example, algorithm may need modification to cater to the communication and computational delays. It also contains information about the physical configuration which forms input to the configuration of the Technical Architecture. It includes hardware components such as processor, memory, ECU, Channel, Sensor and Actuator. In short, the Hardware Architecture describes the physical elements of the vehicle.

Technical Architecture: It compromises of Hardware Architecture, middleware, communication software and operating systems. Pictorially, it can be show as:
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Fig 4.2: Technical Architecture [19]

Application can access the IPC-Buffer through the middleware. The communication software provides an API interface to the middleware routines. The hardware abstraction layer provides an API to access the non-communication peripherals from the middleware. The Technical Architecture consists mainly of configurable source code. In short, the architecture includes hardware related communication and system management components which provides the “environment” in which the application software executes.

Operational Architecture: This architecture is the result of the mapping of the Logical Architecture elements on the Technical Architecture elements. Some sensors and actuators can have allocation constraints i.e. they are already assigned to the ECU in the Hardware Architecture, while others can be allocated to ECU(s) depending upon the result of the mapping operation. In short, this Architecture describes the mapping of software components of the Logical Architecture onto the components of the Technical Architecture. 

4.3 Additional details
The detailed description of the language elements is given in [19]. It is divided into six parts corresponding to the different language domains:

· Structure: It describes the structural relations.

· Behavior: It describes the behavioral models.

· Requirements: It describes requirements and their relations to other entities.

· Verification/Test: it describes entities related to testing and verification.

· Support: It describes entities related to versioning and configuration management.

· Variant Handling: It describes entities related to variants.    

5.    THE FAR PROJECT
It becomes very difficult without having a case study to determine or evaluate alternative solutions to the mapping problem. The FAR (Functional and ARchitecture integration) project was a collaboration between DAMEK (Division of Mechatronics within the department of Machine Design at KTH) and Volvo Car Corporation [22]. Before proceeding further, an important point to remember is that all the description in this chapter has been extracted from the FAR technical report [4]. The task in the FAR project was to develop and evaluate a chain of tools for automatic code generation. It involves building a model prototype car for implementing, verifying and demonstrating various vehicle functions.         

5.1 Introduction

The FAR car is characterized by individual wheel, steering, driving and braking. It has several modes of operation including the normal driving mode, driving with adaptive cruise control and driving with collision avoidance. The hardware consists of six nodes interconnected with TT-CAN network. The Human Machine Interface is implemented by an additional HMI node, which is connected to the central node via radio links. Simulink was used for modeling the mode control and advanced functions like CAS and ACC. Target link from dspace was used for code generation.  There were two front half from two identical RC-cars which were joined together to enable steering on all four wheels. There were four DC motor and four servomotors for steering. The tools and run-time system of the FAR vehicle allow functional replication to be defined. It is, for instance possible to fully replicate both local and global control functions, while incorporating comparisons and voting mechanism. In the prototype vehicle, the I/O tasks and computational tasks are mapped onto six ECU node connected through a TT-CAN network for execution.   

5.2 System Overview

· Software Architecture:  The basic concept underlying the software architecture involves separation of the development of functionality from tasking structure and I/O handling. There is synchronization of the global tick provided by TTCAN to the operating system tick which enables global scheduling. The tools used for developing the software includes: 

· TODO: The indentation is too deep in this chapter. Reduce the indents using shift-tab.

· XCC (An integrated development environment for the Motorola processors) for compiling linking and downloading.

· Simulink/Stateflow for carrying out programming of applications including simulation of functionality.

· TargetLink for code generation.

· Rubus VS for programming the task structure of the system including the timing behavior of tasks and the mapping of C-code functions to tasks. It provides modes at the top level (defining the behavior of the system) and for each mode defines which component (aggregate of tasks) are active and how they execute. A rubus system is graphically configured tool in which the code is then generated to implement the configuration.

 
In the realization of the software architecture, a software component can be seen as a rubus task that encapsulates a C-function which has been generated by TargetLink from Simulink/Stateflow. Two types of tasks can be identified: -I/O tasks that carry out the sampling, TT-CAN communications and activation; - Computational tasks that execute code implementing the functionality programmed in Simulink/Stateflow. 

· Hardware Architecture: As mentioned before, two half from two similar cars have been joined together. Each wheel is controlled by a wheel node consisting of a microcontroller and TTCAN chip. Two dynamics nodes are placed on the car. Hence, the car has six nodes. One dynamic node for radio modem and the other one for laser distance equipment. Communication between the nodes is handled by TTCAN. There is a video transmitter mounted on the car. The car is controlled using HMI consisting of a micro-controller video receiver and radio modem. A steering device is connected to the HMI node. 
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Fig 5.1: Hardware Overview of FAR [4]

The hardware architecture of the control and communication system is based on Motorola’s processor MC68340. It is integrated in a set of boards (designed and built by GMV-Microlf). The physical characteristics of the processor include:

· Maximum clock frequency of 16MHz.

· 32 bit address line.

· 16 bit data line.

· 128 kb RAM.

· 512 kb Flash memory.

· Two 8-bit parallel in and out ports.

· 2 expansion buses.

In addition to the micro controller itself, the project uses some expansion boards belonging to the ML series. These boards can be installed on the MC68340 on top of the micro-controller. Apart from various electronics circuit, the board contains a TTCAN chip for the communication control through CAN bus and an encoder counter. The ML5 board is used in the HMI node for radio communication and is placed on MC68340 outside the car. The ML10 board which has many electrical components also contains a CAN controller. It is placed on the HMI node to read the analog outputs from the steering device. The ML16 board is a display board also for the HMI node and placed on the MC68340 outside the car. The 6 nodes can be connected to the host computer with a ML17 card. This card is used to flash the six nodes on the vehicle. The software for the HMI is located in the microcontroller MC68340. It controls the behavior of HMI node, including the radio modem. At startup, an initialization is made which sets variables and makes everything ready to run. When HMI starts to execute its cyclic program, it reads signal from the joystick (or steering wheel/pedal set) and controls the menu system. It then receives data package from car and transmits the variables to the car thereby updating the display. The data is sent to the PC with RS-232.   

       5.3 Data Flow

The data flow starts at the HMI node. Signals from the joystick are sent to the car with radio modem. The radio modem on the car receives the signal and sends it to the dynamic node. A global control function outputs correct values to each wheel node. These values are based on which drive, steer and function mode is used. These signals are transmitted to the wheel nodes with TTCAN network. On the wheel node, these values go into a regulator that outputs signal to the drive units. The local node sends actual value back to the dynamic node for analysis. If ACC or CAS is activated, the second dynamic node starts the laser and reads its value. The active value from all the nodes are transmitted back to the HMI node for data logging and loop is closed. 

Six different types of messages including the status messages are used. The global node sends separate messages for speed, steer, and brake reference value which the local node receives. The local node sends one message each containing the actual speed, steer and brake value of the wheel to the cyclic node. The laser node sends one message with the distance measured with laser to the global node.

5.4 Functionalities

The different modes that have been used in this project are as shown in the figure:
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Fig 5.2: Modes of Operation [4]

The same program is used for all of the six nodes on the car. In the first mode (start mode), the program checks what kind of node it is running on. Based on the result the program goes to the respective initialization mode. The main functionalities are: 

· Steer: The driver give reference value through “Steering Wheel Angle“, which then becomes input data for the ECU. This ECU also takes care of CAS, Car speed, Steering Wheel Angle and actual values of “Wheel Angle” is calculated and is entered as reference value to the steering servos.

· Accelerate: The driver gives some form of “Gas Pedal Angle” which becomes input data for ECU. To calculate the reference value of the total driving torque, the following data must be considered:

· “Gas Pedal Angle”.

· “Brake Pedal Angle”.

· “Car Speed”.

The driving torque must be divided into every wheel, and this must be done considering:

· Distribution between front and rear wheels.

· Distribution (if the car turns) between the inner and outer wheel.

· Brake: “Brake Pedal Angle” becomes input data for ECU. To calculate the reference value of the total braking torque, the following data must be considered:

· “Brake Pedal Angle”.

· “Car Speed”.

The total braking torque must be divided into every wheel and this must be done considering:

· Distribution between front and rear wheel.

· ABS.

· HMI and Communication: Car is controlled from a HMI node. It sends reference values and selects drive mode for the car. The reference values are obtained from either a joystick or a steering wheel/pedal set. The mode selection and other setting can be controlled with a 12-button keyboard. The data from the node are transmitted to car with a radio modem. Actual values from the car will be transmitted to the HMI node and will be displayed on the HMI display. 

· Global Control: The data flow in the global control is the heart of the control structure, where the input signals such as driver’s mode choice determines the actual mode of operation. The outputs from here are several “enable” signals to the blocks in simulink, which manipulate the vehicle’s movement through the speed reference signal and steer reference signal according to the various modes. For example, if Normal mode is used, speed and steering are controlled directly by the driver and mode select signal produces the right signal in order to pass the driver’s signal to the signal selector module. If CAS is chosen in the Mode Control chart, the CAS subsystem is activated and the driver’s signals are enabled until the vehicle is getting too close to an object. The driver’s command are gradually removed, first the right to accelerate, followed by disabling the permission to steer. The priority is:

1. Auto Stop.

2. CAS.

3. Normal.

4. ACC.

· Local Control: It is the place where I/O data are transformed to values which can be used by global control. The various components include:

· Servo Amplifier:  It controls the motor.

· Steering: Four servomotors, two for every pair of wheel perform the steering.

· Braking: The braking is performed by four servo motors, one for every wheel.

· Speed feedback: Its value is given by the encoders on the motors. 

· Speed Control: The DC motors that are used have an internal encoder, which is connected to the servo-amplifier. The servo amplifier is quite smart. When the encoder is connected, the servo amplifier regulates the DC motor by itself, against the control signal.

· Enable control: When local control gets an input that is equivalent to the speed reduction the servo amplifier is disabled.

Before concluding the chapter, it is important to mention that only the parts that are assumed to be relevant have been described in this chapter. For a detailed description about the FAR car, the reader should refer [4].

6.     DESIGN OF THE MAPPING TOOL

Most of the real time applications that exist today run on a distributed architecture. Such a distributed architecture is formed by interconnecting clusters of processors. Each such cluster runs its own protocol and the communication is done via gateways. Automotive domain is one among many domains of application that uses this kind of architecture. There exists a preliminary version of the mapping tool that is based on the concepts described in [1]. The focus here will be mainly on automotive applications. The way that the new functionalities have been mapped to architecture has changed a lot. The approach is to first discuss about the potential constraints that an application (automotive perspective) can impose and then deciding which among them are relevant for making the mapping decision. This chapter describes the constraints and then focuses on how the existing mapping tool can be altered to cater to the requirements of the automotive applications.  

6.1 Introduction

In this section the basic approach used in the existing mapping tool will be described. With the increase in the number of functionality it becomes feasible to map more than one function to a single node or to distribute a bigger function into more than one node. As mentioned in [1], from the research perspective communication infrastructure has often been neglected and it requires more attention. So, the approach used is to consider communications as processes with a given execution time (depending upon the amount of information exchanged). Once this is done the messages is scheduled in a similar manner as other processes and issues of clock synchronization, protocol, bus arbitration etc are ignored. Tasks are handled in real time systems depending on whether the approach is event triggered or time triggered. Initiation of some activity takes place in ET approach when a particular event occurs. In TT approach, activity initiation takes place at predefined time slots. The question of which approach is better is still a concern. From automotive industry point of view a comparison can be looked in [30]. The focus here is on heterogeneous multi cluster system with cluster being either event triggered or time triggered. In the TTC, scheduling of messages and processes are done according to static cyclic policy and the bus implements the TDMA protocol. In ETC, scheduling is done according to priority based preemptive approach and the bus implements a priority based CAN protocol. The problem solved here is “Partitioning of application between the TT and ET clusters, mapping the functionality of the application on the heterogeneous nodes of a cluster and adjusting the parameters of the communication protocols such that the timing constraints of the final implementation are guaranteed” [1]. 

In each cluster there is a collection of nodes which share a broadcast channel.  Every node consists of a communication controller and a CPU. There is a gateway which connects the two clusters and it consists of two communication controller, one for the TTP and the other one for the CAN. The communication controller implements the protocol service and runs independently of the CPU in the node. Every TTP communication controller has a MEDL which imposes how to access the TDMA. For the CAN protocol in the ETC, messages have unique priority and are encoded in frame identifier. A software architecture is designed which runs on the CPU in each node and which has a real time kernel as its main component. A real time kernel is responsible for activation of processes and transmission of message in each node. On TTC, processes are activated based on local schedule table and messages are transmitted according to the MEDL. On ETC, there is a scheduler that decides the activation of ready process and transmission of messages based on their priorities. For a more detailed description of the above mentioned concepts and the algorithms used in the mapping tool, the reader must refer to [1].    

6.2 Potential constraints

Before starting the modification of the existing tool, it is important to find about the constraints that has to be considered when performing the mapping. These constraints will come from the applications that have to be mapped. Most of the constraints will be specified by the designer of the application and few will have to be derived based on the type of the application. It is therefore important to know about all the feasible constraints that an application can pose. These constraints will then become the basis for making the correct decision. The approach used here to get the constraints is through literature studies, discussion with people from both academia and industry. It was realized that one way of extracting constraints is to start looking into the types of the applications that exist in the automotive industry. One possible classification of applications would be as given in [23]:

Classification based on Timing of Services: The various applications running in a vehicle will have different behavior depending on the time instance at which they are used. Three different types of situation can exist in a vehicle depending on timing usage.

· Riding: This is the standard situation in which the vehicle is in a moving state. All the applications that should be running in this situation (mode) should be mapped to an ECU(s) which is (are) always running when the vehicle is in motion.
· Resting: In this situation the driver is in the vehicle, but not in a state of driving. He may be taking rest on road side or using it for the overnight sleep. Most of the functions that are used for controlling the vehicle need not to be running in this mode. 

· Parked: The vehicle is in a place like parking space and the user is not in the vehicle. So, clear examples of functions in this situation are: alarm and anti-theft systems.

The information that can be derived from such classification is that one possible way of specifying the locality constraint is to tag each function (application) at the top level with an attribute stating the mode of operation in which the function needs to be running. One way of thinking would then be, if there are functions that need to be operative in more than one mode then multiple instances of that function can be mapped to different ECU(s). 

Another way of classifying the applications, also given in [23]:

The applications can be related to one (or more) of the following types: 

· Environmental/Economy.

· External Coordination (e.g. convoying).

· Safety.

· Handling/Vehicle dynamics (e.g. By-wire control applications).

· Navigation/Driver support (e.g. GPS System).

· Communication (e.g. cell phone).

· Infotainment (game consoles, video screen, audio system).

Till now we have classified the application from timing and business point of view. The reason for this is that all these applications will imply requirements on technology. The technological requirement of future can be extracted once we have understood these requirements. After having the technological requirements it is possible to find the relationships between applications properties and technical needs [23]. The more an application is related to the task which performs driving the more critical it is. If we look at the previous classification of applications from timing point of view, it can be said that the most critical application is one which runs in the riding mode. Resting is less critical and parking is not critical at all. Applications with high criticality impose higher requirements on dependability [23]. 

The growing number of functions means management of system architecture and integration will be one of the major challenges. Earlier most of the functions were independent and therefore were mapped to independent ECU. But with time the dependencies have become more and more complex due to the introduction of different applications like cruise control. Building hierarchy is the only way to handle such complexity. Hence, research in both component and model based development may improve the integration management.

One way of classifying the potential constraints that an application can impose is:

· Functional behavior constraints:  

Here we are not interested in how the functions execute, but we are interested to determine that when functions execute what input they need, what output they produce, where the input comes from and where the output goes. This will help in finding out the potential dependencies between the various functions and finding about the amount of data that two or functions communicate. Once this is done it can be helpful in transformation of the function instances to acyclic process graph(s), which is required as input for the current implementation of the mapping tool. Since the dependencies in the process graph affect the mapping decision, the functional behavior constraints affect the final output of the mapping tool.  

· Temporal behavior constraints:

This is related to the timing behavior of the functions (tasks). Issues such as period, deadline and wcet should be considered here. The period affects how often the task executes and interacts with the environment. Since meeting deadline is most important in real time systems, temporal properties become very important constraint for the mapping tool.

· Safety – critical constraints:

Since the requirements for the safety- critical systems in automobile is a long one, only a few aspects from system producer & end user point of view can be described. The criticality of automotive applications is defined by MISRA [24]. The applications can be classified as uncontrollable, difficult to control, debilitating, distracting and nuisance only. All these different level of criticality implies different kind of requirements. For any result to be of use in real time systems, it is necessary that the result be correct both in the time & value domain. And this requirement should be met at all time in all situations (for instance, the bandwidth may be limited, the system may be running with full load). Furthermore in automobile domain, this has to be achieved in cost effective way and fulfilling all safety aspects. An important requirement for the architecture of automobile domain (TTA & TT-CAN) is to provide guarantee in terms of reliable and fault tolerant operations. Providing fault tolerant and reliable architecture is another wide area of research in the automotive industry. So for the sake of the mapping decision it will be assumed that for each ECU we know a prior whether it is reliable or not. One approach then would be to let each functions have an extra attribute telling that it safety – critical or not. Example of safety critical functions would be X-by wire functions. Non - safety critical functions include GPS, DVD controller, climate control, key control. This may help in prioritizing the tasks. When performing the mapping, it can be taken into account that all the safety critical functions are mapped to reliable ECU(s).   

· Cost constraints: 

In the end, everything comes down to reduce the cost. One way of achieving this is by performing the mapping in such a way that it minimizes the number of ECUs to which the functionalities are mapped (this has to be done by ensuring that other constraints are not violated). Another way, for instance, of achieving cost reduction would be to reduce the amount of memory usage at each node. Bus optimization can also be seen as one way of reducing the cost. Four different types of costs can be identified for the automotive domain [23]. These include:

· Development cost.

· Production cost.

· Maintenance cost.

· Availability cost.

· Performance constraints:

An important aspect of performance in automobile is power consumption. It may look feasible to shift from the control systems point of view to full X-by-wire system, but the requirements imposed by the use of electronics activities demand more power. Here, we are interested in determining the part of the systems that will operate when the engine is turned off. These systems will consume the battery, unless we start looking at their power consumption aspects. For example, consider the door module which should always be ready even when the ignition is switched off. Another example is “crash bag”, this need to operate in case of vehicle collision and even when the power to the ECU (to which the “crash bag” is mapped) has been disconnected. Such functions can give way for locality constraint, imposing the mapping tool to place such functionality on the ECU which needs to be running when there is no ignition. The idea would be to put all the functions that operate in the same mode to same node.

· Physical constraints:

Decision here includes the number of ECUs, amount of memory at each node, number of buses for communication, their capacity, number of gateways depending upon the partitioning of the nodes into event- triggered & time triggered clusters. All these should be taken care of keeping the cost and the flexibility constraints in mind.

· Locality constraints:

Functions very often require specific resource (e.g. being close to particular sensor, actuator or have special memory requirement) and have to be placed only to a specific node or a subset of nodes.

· Security constraints:

Security still remains a low concern in the automotive industry as compared to the field of information technology. Consider an example of security system in automobile without a key. This system is vulnerable to theft because the signal from the key – less security system can be intercepted. When the person leaves the vehicle after locking it, a malicious person could simply repeat the recorded signal to gain access to the vehicle. The constraint here would be then to place such functionality on an ECU which is connected to a bus or wireless system which provides encrypted communication when the ignition is turned off and the doors are locked. Since the automobile industries are planning to equip vehicle with communication, internet & other computing features, there maybe a number of security loop holes that may arise.

· Flexibility (scalability) constraints:

The result of mapping may take into consideration the fact that the resulting operational architecture is reusable in the sense that it should be possible to add new functionality with least modification to the existing architecture. Another aspect of flexibility is modifiability, which means that it should be possible to modify the functions in a way that does not violate constraints specified by designer. 

An attempt is made to identify as many constraints as possible, but there is no guarantee whether everything has been covered. So if a new constraint arises later, then the tool would need an appropriate modification. Keeping the earlier classifications of applications in mind and having a general idea about the constraints, further refinements and details of all the above mentioned constraints are discussed below:

Functional behavior constraints: At the analysis level of EAST ADL, we have functionalities with a static description of the interchanged data and control flows. With such a description it is possible to determine about the flow of inputs and outputs. Refining this description from the analysis level to the design level will help in extracting information about the amount of data that two or more functions communicate. 

Temporal behavior constraints: The idea from the timing and triggering diagrams of AIDA is used here [25]. It is important to define what an activity means. It means a group of elementary functions which performs a set of operations when triggered. The triggering can either be explicit or defined by the precedence relation. One possible way of grouping the elementary software functions into an activity is by looking at the frequency with which they are invoked. In the case of event triggering conditions, the criteria for grouping may be obtained by looking at all the elementary functions that are triggered by the same triggering condition. 

At the analysis level, as suggested in [26], it may be a good idea to classify the triggering condition into 3 types:

· Time triggered.

· Event Triggered.

· Loop Triggered.

And the source can be either a clock or an event. In case of time trigger, the period needs to be specified. It is also possible to associate period with event and loop triggers. In case of event trigger, the period specifies the minimum time within which the event triggered activity can be executed. In case of loop trigger, it specifies the time interval from the end of the last activity to the start of the next. In loop trigger (as the name suggests) the activity executes in an endless loop. When the last elementary function of the loop activity completes execution, it triggers the start of the first.

At the design level, the timing details from the analysis level are refined keeping in mind the effect that the implementation has on the timing. 

Safety Critical Constraints: Each application may have different integrity level depending upon the mode of application. Therefore it is not straightforward to specify each application belonging to one integrity level.  One the other hand, if the development and integration of the platform is done by ignoring the safety critical constraint (i.e. by assuming that all the functions are of highest safety critical level), then cost of development would be very high [27]. At the analysis level, each function will be annotated depending upon the category of safety criticality it falls into. Refining these constraints as we go to the design level will be straight forward (assumption). One possible way of classification of the integrity level was mentioned previously in the more general description of the safety critical constraints. Another important classification depending upon the integrity level is one given in [28]. Three kinds of objects are defined:

· Single Level Objects (SCO).

· Multilevel Object (MLO).

· Validation Object.

Each application (object) is assigned a single constant integrity level.

Cost Constraints: The design integration in our case means flow of methodologies right from the vehicle view down to the operational level. By using a modular approach which supports design reuse and commonality of components, it is possible to reduce the production cost. And this is one of the goals of having a standard language like EAST ADL.

The knowledge about the cost should be implicit to the tool. And the mapping should be done in a way that minimizes the use of hardware (memory, processor, bus, space etc). So, the modeling environment has a bigger role to play in order to reduce the cost. If the rules for the refinements of the constraints are clearly defined, then it will help in performing the modeling at the different level at a faster rate. And this will clearly speed up the development time. And if the time to market is reduced, there is reduction in the cost. In short, from the mapping point of view a tradeoff between minimizing the resource usage and the time taken to obtain a feasible solution will have an impact on the cost. For the mapping tool, the hardware is given. So, the issue of cost improvement through the use of appropriate hardware will not be discussed. The cost gain on the other hand can potentially be achieved by minimizing the use of resources.   

Performance constraints: It may imply locality constraints for the mapping tool. For instance, there are certain applications that are required only when the vehicle is in motion. It would be feasible to map such applications to an ECU(s) which is running when the vehicle is in running mode. The idea is to give an attribute to each function, specifying the mode of operation in which the function needs to be running. One possible classification of different modes of operation is:

· Riding.

· Resting.

· Parked.

If there is an application that needs to be running in one mode, then such application may imply locality constraint. There is always a tradeoff between the cost and performance.

Physical constraints: These will be provided by the designer. The hardware details such as amount of ECU, along with the memory, processing speed will be given by the designer. Also, the type and number of buses will be given. The designer may also specify the memory requirements of each application, the amount of communication between different applications. The task of the mapping tool in such a scenario would be then to ensure that all the physical constraints (memory, bus capacity) of the applications are fulfilled. In other words, all the applications are mapped to ECU(s) which will guarantee fulfillment of these physical requirements.

Locality constraints: These constraints can be derived from other kind of constraints. For example, safety critical constraints require that the application with specific level of integrity is mapped to an ECU(s) that provides the required level of integrity. This is nothing but a locality constraint for the mapping tool. Also, other constraints like cost and performance implies locality constraint. Apart from all these, even the designer can explicitly specify locality constraint (by requirements such as need to be close to a particular sensor or actuator). Hence, locality constraint can either need to be derived implicitly or explicitly.

Security constraints: It is particularly important for multimedia applications. For tool point of view, it is just another locality constraint. 

Flexibility constraint: The use of industry standard OS like OSEK VDX (which provides open ended architecture for distributed control systems in vehicles), will make it possible for software modules from different vendors to be integrated together. Having such an OS would remove most of the barrier in the path of providing a flexible architecture.

There can be a number of other requirements like testability, integrating ability portability, etc.

6.3 Interface of the tool

6.3.1 Input to the tool: The tool takes as input the following details:

· Process Graph: The mapping tool takes a single, directed, acyclic, polar graph G (V, E) as input.  Each node Pi 
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 V represents one process and is a 2-tuple (name, attributes); where
name = name of the process.

attributes = set of all attributes, where each attribute can be defined as (name, type, value), e.g. (period, ms, 100).  

An edge eij 
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 E from Pi  to Pj means that once the process Pi finishes execution it gives its output to process Pj. An edge is a 3-tuple (src, dst, attributes); where

src, dst 
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 set of all nodes described above.

attributes = set of all attributes, where each attribute can be defined as (name, type, value), e.g. (msg1, noOfBytes, 3).


The graph is a polar in the sense that there are two dummy nodes called sink & source which corresponds to the first and the last node in the process graph. In the input file to the tool, the process graph will be specified as follows (bold parts):

period 
150: 

This indicates the period of the process graph.

process 
PR4     150
150
10
3 

PR4:  is the id of the process.

150: is the period of the process. 

150: is the deadline of the process. This also may not always be equal to the period. But in this example, I have made this simple assumption. 

10: this is the worst case execution time value. 

3: this indicates the memory requirement in kB.

message

ARC6    PR6     PR7     4 
0 :

ARC6: is the id of the message. 

PR6: the source. 

PR7: the destination.

4: size in bytes.

0: this value indicates the deadline for the message and is used when the message indicates constraints like “receive message within D” or “no older than D”. But in this example, I have assumed these constraints are not there. So a default value of 0 is given.

· Platform Details: Another input to the tool specifies certain attributes for the ECUs and the buses. For the ECU, it will contain the following details:   

processor
P2
50
256
TTC :

P2: is the id of the processor.

50: speed (how lower is the speed relative to the fastest processor). 

256: memory in KB.

TTC: type of network.

For the bus, it will contain the following details:

 bus
B1
1
TTP : 

B1: is the id of the bus.

1: is the speed of the bus in Mbits/s.

TTP: is the type of protocol.

· Constraints: This particular input specifies two type of constraints:
strictconstraint

P1
PR22,PR23 :

P1: type of resource.

PR22, PR23: this indicates constraint that nodes PR22 & PR33 should be mapped to processor P1.

looseconstraint

PR20
P1,P2 :

PR20: id of the process.

P1, P2: this indicates constraint that process PR20 can be mapped to either processor P1 or P2. 

clusterconstraint
processSet1
PR1,PR3,PR4

processesSet1:  id of the set of processes.

PR1, PR3, PR4: this indicates constraint that processes PR1, PR3, PR4 should be mapped together.

As an example, for demonstrating the input format for the mapping tool, consider a cruise controller (see appendix A) which is a modified version of the one specified in [31].

6.3.2 Output from the tool: The tool gives as output the following details:

· Mapping on processor: It indicates for each processor the set of all processes that have been mapped to it. For a processor P1 on the TTC, it will give the output in the following form:

 proc.:P1

<PR33> o=0 r=0

<PR5> o=31 r=5

<PR6> o=36 r=18

<PR17> o=54 r=15

<PR18> o=69 r=6

<PR19> o=75 r=13

<PR20> o=88 r=5

<PR22> o=96 r=17

<PR25> o=150 r=6

<PR29> o=159 r=10

<PR31> o=179 r=6
This indicates that processes PR33, PR5, PR6, PR17...  PR31 have been mapped to the processor P1 on the TTC, “o=value” indicates the offset (earliest start time) and “r = value” indicates the response time.  If the processor was on an ETC, then in addition to the offset and the response time, the output will also show the priority of a particular process on the particular processor. For example, considering a processor P4 on the ETC, the output will indicate the following:

proc.:P4

<PR15> priority=2 o=138 r=17

<PR21> priority=1 o=99 r=32

<PR26> priority=3 o=163 r=10

· Mapping on bus: As stated earlier, even the messages are scheduled in a similar manner as other processes and issues of clock synchronization, protocol, bus arbitration etc are ignored. This part of the output indicates for each bus the set of all messages that have been mapped to it. For a CAN bus on the ETC on the TTC, it will give the output in the following form:

bus:CAN

<ARC4> priority=1 o=29 r=2 size=2 PR4 --> PR5

<ARC13> priority=2 o=105 r=2 size=2 PR12 --> PR13

<ARC15> priority=3 o=136 r=2 size=2 PR14 --> PR15

<ARC16> priority=7 o=155 r=2 size=2 PR15 --> PR16

<ARC23> priority=5 o=139 r=2 size=2 PR21 --> PR24

<ARC27> priority=6 o=148 r=2 size=2 PR24 --> PR25

<ARC29> priority=8 o=173 r=2 size=2 PR26 --> PR27

<ARC31> priority=4 o=138 r=1 size=1 PR1 --> PR28


This indicates that messages ARC4, ARC13…ARC31 have been mapped to the CAN bus, “priority=value” gives the priority of the particular message on the CAN bus, “o=value” indicates the offset (earliest start time) and “r = value” indicates the response time, “size= value” is the amount of information in bytes exchanged and “X --> Y” indicates that X and Y are respectively the sender and the receiver of the message. For a mapping on the TTP bus in the TTC, the mapping will be shown in a similar manner as indicated above, except that the priority will not be stated. 

Before concluding this chapter, it is important to mention in brief about the average execution times of the mapping heuristics considered in the mapping tool. There are several mapping heuristics specified in [1]. The IPM algorithm in [1] is fast, but does not give good quality results and can be recommended to be used in the initial stages of the design. The PMH algorithm (see [1]) is slower, but gives very good quality results and can be recommended to be used in the final stages of the design and implementation. For simplicity reasons, the mapping heuristic considered during the course of this thesis work is based on simulated annealing (SA), which is different from the IPM and PMH mentioned in [1].     

7.     TOOL INTEGRATION WITH EAST ADL

In the previous chapter we discussed about the tool interface after considering the potential constraints from the automotive domain point of view. For such a tool to be of any use in a realistic environment, it is very important that the tool be integrated with the modeling environment of a language. And such a language should have the feature of describing the functionalities of the applications to be mapped, the system platform where the mapping is to be done and the output representation after the mapping. EAST ADL is a language which provides the necessary features which will make it possible for the tool to be integrated with its modeling environment. During the course of this thesis work, the modification to the design of the mapping tool is not done in isolation but by constantly looking at the requirements of the EAST ADL and also suggesting changes wherever possible to the different level of EAST ADL. It is assumed at this point that the reader is familiar with the different level of EAST ADL, because the terminology of the artifacts from the different level of the language will be used here. In case of doubts, the reader must refer [19]. The focus of this chapter is to describe how and where the tool will be integrated with the environment of EAST ADL. 

7.1 Introduction

In this initial phase of the thesis work, it was reasonable enough to make an assumption that the tool will take inputs from the logical architecture level and the hardware architecture level. After performing the mapping the output will be represented at the operational level. But at one point, there appeared a possibility for the mapping to be done by looking at the design architecture level and the hardware architecture level, with the logical architecture level only acting as a constraint (all the function instances within one logical cluster should be mapped to one OS task). And the reason for such a possibility was that it may not be always possible for the designer to build logical clusters at the logical level and the output from the tool can help the designer build the logical clusters. But it was decided after discussion with people working on the development of EAST ADL that it is important to stick with the original idea of doing mapping from the logical level & hardware level to the operational level.
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Fig 7.1: Interface of the mapping tool with EAST ADL

 Once this was decided, there arose other issues like how to build logical clusters, how to get the representation in the language transformed to the exact format that will be required for performing the mapping, how the operational level will look like, how will the output represented at the operational level, what portion of the interface can be automated etc. It is important to note at this point that certain assumptions were made after considering the limitations and the requirements of both the mapping tool and the artifacts of the EAST ADL. These assumptions will be stated at various points during the explanation of how the above mentioned problems were solved. 

7.2 Obtaining input for the tool from EAST ADL
7.2.1Conversion from a structural model to a runtime model:

It is known that model based development methodology of software minimizes the development time and cost. Different kinds of models are used in such development methodology to specify the software behavior, structure and implementation. The development process in such a methodology can be viewed as transforming models from one stage to another. Propagating from the higher stage to lower stage requires refinement which is closer to the implementation details. There is a big problem of going from a structural model (e.g. EAST- ADL) to a runtime model (e.g. dataflow graph) [33]. A structural model describes components and their interactions in software mostly represented by data flow diagrams, object collaboration diagram etc. A run time model captures the interactions, dependencies and organization of the entities of the structural model using the semantics of runtime tasks and describes the distribution of the tasks on the target execution platform. It is very important that requirements derived from the structural design of system models be correctly captured in the resultant runtime system. All kinds of requirements including the timing, synchronization and communication must be represented in the runtime model. It is comparatively easier to express these requirements at the structural level, but the question is how one captures these at the runtime level. Such a transformation is complex especially when the models in question are that of control application like automotive electronics functionalities. Methods does exist for the transformation form the structural model to a runtime model, but constraints like schedulability, timing details and resource requirements are often ignored. It is therefore difficult to ensure that the resultant runtime system will meet the timing requirements of the application being modeled. Further description of the problems in transforming from the structural model to a runtime model can be looked upon in [33], where a transformation method is proposed to convert an embedded software structural model to a runtime model.    

7.2.2Conversion from the Logical Architecture to a Process Graph:

Before going into the details of how such translation from the structural model to a runtime model is done, it is important to describe in brief about the structural and runtime models.

EAST ADL Structural model: Applications are modeled structurally using EAST ADL. The conversion is done from the logical level, so we are specifically interested in the logical architecture level of EAST ADL. It consists of logical clusters, which is a mappable entity that can be allocated to an OS task in the operational architecture level. Each logical cluster consists of one or more function instances with a defined execution order. Depending upon the precedence constraints and period of the logical clusters, it may be possible to allocate several logical clusters to the same OS task in the operational architecture. Another view of looking at the logical cluster is considering it as a C code with one entry point. It reads input from the signal instances (used for communication between logical clusters) corresponding to its input data. When the execution terminates, it writes output to signal instances corresponding to the output data.


[image: image20.wmf]Read 

Input

SignalInstances

Execute 

Sequence 

of

FunctionInstances

Write 

Output

SignalInstances

t


Fig 7.2: Execution of Logical Cluster

Runtime model: The runtime model in described using a process graph [31]. A process graph consists of sets of interacting processes, where each process performs a sequence of computations. The computation in each process starts when all its input have arrived. Upon completion of execution, the process produces the output. A process in the graph can only start execution once all its input has arrived. A process graph is represented using directed acyclic graphs, where a node represents a process and the directed edge represents the dependences between the processes. Formally, a process graph is represented using a directed acyclic polar graph G (V, E). Each node Pi  
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 V represents one process. An edge eij  
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 E from Pi to Pj indicates that the output of Pi is the input of Pj: The graph is polar in the sense that there are two dummy nodes called sink & source which corresponds to the first and last node in the graph. A message transmission between process Pi and Pj is represented by so called communicating processes. Each process is characterized by a worst case execution time, a period Ti, and other attributes representing the constraints for the mapping. The communicating processes representing the messages have an associated message size. The execution semantics is that of a single rate system. It is assumed that a node is executed at most once for each activation of the process graph. Processes with different periods are handled by generating several instances of the same process. There will be a single merged process graph which corresponds to a set of processes (each with a time period that is equal to the least common multiple of the periods of the individual processes). Hence, each process in the process graph will have the same period, which is the period of the process graph. It is possible foe each process in the graph to have individual local deadline. Release time of processes as well as deadlines is modeled by inserting dummy node between certain processes and the source or the sink node respectively. All this is done, by considering the activation time of the source process as a reference. The dummy nodes simply represent process with a certain worst case execution time but are not allocated to any resource. The underlying system platform is a heterogeneous multi cluster system with cluster being either event or time triggered. In the TTC, scheduling of messages and processes are done according to static cyclic policy and the bus implements the TDMA protocol. In ETC, scheduling is done according to priority based preemptive approach and the bus implements a priority based CAN protocol. On each node there is a real time kernel which is responsible for the activation of processes and transmission of messages. Process activation on the TTC is thus done based on the local schedule table and the messages are transmitted according to the message descriptor list (MEDL). On the ETC, scheduler uses the priority as the basis for the activation of processes and transmission of messages.   

The problem is to perform the transformation from the EAST ADL based structural model to the runtime model described by dataflow diagram in the form of process graph. The objective is to obtain the runtime model that will allow the mapping & design constraints to be met and at the same time ensures the fulfillment of strict timing requirements. Such a conversion is critical because the runtime model, which eventually runs on the target platform, should correctly inherit the timing requirements of the structural model. If such a conversion is done incorrectly, the runtime model may fail to meet the system timing requirements.

Certain approaches has been proposed, for example, [33] uses the notion of transition to generate runtime model from a structural model. A transition in [33] is defined as a “sequence of actions of components performed in the end-to-end processing of an input signal”. Their approach of generating a runtime model involves a three step procedure. The first step is to identify the transactions. In the second step, priorities are assigned to component actions in each transaction in order to generate the timing and scheduling constraints. Finally, threads are used to allocate actions in transactions. The approach used in this thesis is described below:

Considering the EAST ADL logical level, it may not be always possible for the designer to group function instances (corresponding to the elementary functions at the FDA level) into logical cluster at the LA level. For those elementary functions for which the designer knows that they should go to the same OS task, he can group the corresponding function instances into one logical cluster. And for the remaining cases, each elementary function instance becomes one logical cluster. After obtaining the output from the mapping tool, it may be possible to iterate back and tighten the grouping within certain logical clusters. Once we have the logical clusters at the logical level, the next step is to capture the requirements of the artifacts of the logical level using the semantics of process graph.      

In this section, an algorithm that describes how such a conversion is possible is explained. (The actual algorithm starts on next page). The various steps in the algorithm can be best explained using an example. Ignoring the details of other attributes and looking at a very simplified view, consider an example of a Logical Architecture Level in EAST ADL, which looks like this (assume that each of the signal instance below represents a synchronous communication): 
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Fig 7.3: Example view of Logical Architecture

The general strategy in the algorithm is as follows:

ProcessGraphCreation (Logical level) -- The algorithm takes logical level as input and returns a directed, acyclic, polar graph. 

1. G’ (V’, E’) = CreateInitialProcessGraph (Logical level) – returns a dataflow graph in which each process/message will have its own period and deadline.

2. G = SplitProcessGraph (G’ (V’, E’)) -- Splits the process graph and returns a set of connected dataflow graphs.

3. for each gi  
[image: image24.wmf]Î

 G do -- remove the loops in the graph

if gi   is cyclic then -- this can be checked (for example) by running DFS. 


gi = RemoveCycles (gi ) -- returns a graph with no loops 

end if

 end for

4. Gi = MergeGraph (G) -- This step is for final formatting of the input required by a specific mapping tool. 

5. return Gi.
end ProcessGraphCreation
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Fig 7.4: Translation by the ProcessGraphCreation

It is important at this point to briefly mention about step 4 of the algorithm. This step takes in a set of dataflow graphs as described before, and produces a model required by the mapping and scheduling tool. The current mapping tool requires a single process graph with one single period because it has to do static cyclic scheduling and this means creating one schedule table for all the TT activities. So the idea is to merge all the graphs in the set G and returns a single directed, acyclic, polar graph Gi. The resultant process graph which corresponds to a set of processes (each with a time period that is equal to the least common multiple of the periods of the individual processes). Hence, each process in the obtained process graph will have the same period, which is the period of the process graph.

Below it is explained in a stepwise manner how the process graph on the right hand side of figure 7.4 is obtained. Each function and their corresponding sub functions in the algorithm are described in a step wise manner. 

The step 1 in the algorithm calls the sub function CreateInitialProcessGraph. This function first does a one to one mapping between the logical clusters and the nodes in the graph and also between the signal instances and the edges in the graph. It is possible that there exists multiple signal instances between two logical clusters, but in the process graph there can be only one edge between two nodes. An important point to note is that henceforth only the name “node” (vertex) and “edge” will be used to refer to any “logical cluster” and “signal instance” respectively. Hence in the next step of the function CreateInitialProcessGraph, any such occurrences of multiple edges between two nodes are merged together into one edge by calling the sub function MergeEdges.

For example: Consider that there are three edges between two nodes n1 and n2. For the moment ignoring all other attributes that an edge can have, and looking only at the period attribute to illustrate the purpose of merging edges, the output from sub function MergeEdges is illustrated below: 
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 Fig 7.5: Merging edges

In the figure 7.5, the minimum period is taken as the period for the message in the dataflow graph because taking the minimum will guarantee that if the timing constraints are met for this period, they are also met for the other periods. However, this is a too pessimistic assumption, and can lead to an unschedulable system. It is too pessimistic because it assumes that more information is transmitted more often than what actually the model specifies. One other option would be to introduce dummy nodes between n1 and n2, and this can be illustrated as follows:
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Fig 7.6: Introducing edges

The final step in the function CreateInitialProcessGraph is to handle the different kinds of asynchronous communication. Three different cases of asynchronous communication can be recognized:

Case1: When there exists an asynchronous communication between two nodes with no constraints. In such a case since there are no constraints on when the message is to be delivered, such messages can be ignored for timing analysis purpose. If such an edge exits, it is removed from the process graph i.e. 
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Case2: When there exists an asynchronous communication between two nodes with constraints stating that message should be received within time D (ms). Such message represent state change signal. An important thing to know for such kind of signal is the maximum time between which and incident occurs and the signal arrives. It places an end to end timing deadline which acts as constraint for the system [32]. In order to handle such constraint on the signal, the edge representing the message will have an attribute added to it stating that the message be reached within deadline D. i.e.
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Case3: When there exists an asynchronous communication between two nodes with constraints stating that message should be received no later than time d (ms). Such message communicates state information [32]. An important thing to know for such kind of signal is how fresh the value is at the time of reading the signal. In order to handle such constraint on the signal, the edge representing the message will have an attribute added to it stating that the message be reached within deadline “d - D2“ (where D2 is the deadline of the receiver node). i.e. 
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If the communication is synchronous, there will be no change in the attributes of the edge representing the message.

However, the types of constraints mentioned in case2 and case3 are not present in the current version of EAST ADL. But, such constraints may appear in later version. 

CreateInitialProcessGraph (Logical level) -- Takes logical level as input and returns an initial version of the graph. 

1. Let L be the set of logical clusters present at the logical level of EAST ADL.
2. Consider a graph in which a vertex can be defined as a 2-tuple(name, attributes); where 

a. name = name of the vertex.

b. attributes = set of attributes where each attribute can be defined as (name, type, value) e.g. (period, ms, 100).

An edge is a 4-tuple (name, src, dst, attributes); where

· name = name of the edge.

· src, dst  
[image: image31.wmf]Î

 set of vertex as defined above.

· attributes = set of attributes where each attribute can be defined as (name, type, value) e.g. (offset, ms, 20). 

3. Let G’ (V’, E’) be a graph (as defined above) such that

a. Each vertex Pi 
[image: image32.wmf]Î

 V’ represents (and corresponds to) one logical cluster Li  
[image: image33.wmf]Î

 L; where, Pi.name = name of the logical cluster and Pi.attributes = set of all the attributes of the corresponding logical cluster.    

b. An edge eij# 
[image: image34.wmf]Î

 E’ from Pi to Pj represents (and corresponds to) one signal instance from the logical cluster Li to logical cluster Lj; where, eij#.src = Pi , eij#.dst = Pj, eij#.attributes = set of all the attributes of the corresponding signal instance and “#” is a number from 1..number of signal instances between the logical clusters.   
4. for all Pi , Pj 
[image: image35.wmf]Î

 V’ do -- merge multiple edges between vertices to 1 edge 

if there are more than one edge between Pi and Pj then 

a) Let Eij be the set of edges between Pi and Pj.

b) eij = MergeEdges (Pi, Pj, Eij).

c) replace Eij between Pi and Pj by a single edge eij
end if 

end for 

5. --Adding further attributes to certain edges (signal instances) to handle different types of asynchronous and synchronous communication.

for each eij 
[image: image36.wmf]Î

 E’ do 
if eij represents an asynchronous communication between Pi and Pj then


if there are no constraints for the asynchronous then

E’ = E’ – {eij} -- remove the edge eij. 

else if there is a constraint which says that message “eij.name” should be received within deadline Dij then   

eij.attributes = eij#.attributes 
[image: image37.wmf]È

 {(deadline, ms, Dij)}.

else if there is a constraint which says that message  “eij.name” should be received no older than 
[image: image38.wmf]d

 then 
a.
Say, (deadline, ms, Dj) 
[image: image39.wmf]Î

 Pj.attributes,

b.
 eij.attributes = eij#.attributes 
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 {(deadline, ms, 
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 - Dj)}.

end if 

else if eij represents synchronous communication between Pi and Pj then

 do nothing. 

end if 

end for 

6. return G’ (V’, E’)

end CreateInitialProcessGraph

MergeEdges (Pi, Pj, Eij) -- Returns a single edge between Pi, and Pj which represents the merger of all the edges in the set Eij.  

1. let eij be an edge such that 

i. eij.src = Pi.
ii. eij.dst = Pj.

iii. eij.name = #message name # 

iv. eij.attributes = CombineAttributes (Eij). 

2. return eij. 

end MergeEdges

The combine function in step 3 of the sub routine “CombineAttributes” will do the combination depending upon the attribute under consideration. At the moment, signal instance at the logical level of EAST ADL has two attributes “period” and “size”. If the attribute is “period”, the combine function will obtain the minimum period value among all the periods. If the attribute is “size”, the combine function will sum up the size attribute of all the edges. 

CombineAttributes (E) -- combines the corresponding attributes present in the “attributes” set of all the edges 
[image: image42.wmf]Î

 E and returns the resultant set. 

1. Let n = |E| and m = |e.attributes|; where e is any edge 
[image: image43.wmf]Î

 E.     

2. Let “{ai1, ai2, ……. aim}” represent the attributes set for an edge ei 
[image: image44.wmf]Î

 E.

3. for j = 1 to m  do – for each attribute
aj = combine (a1j, a2j, ……. anj) -- combines the corresponding attributes of each edge into a single attribute ai ,  

end for

4. Let A= {a1, a2 …… am}.

5. return A.

end CombineAttributes

Going back to our example (all the signal instances in this case represents synchronous communication), we have the following result from the function CreateInitialProcessGraph i.e. after step 1 of the main algorithm:
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There may be loops in the graph obtained after the above mentioned step. So it is important to remove such loops before proceeding further. It becomes easier to remove the loops if the graph is fully connected and makes it feasible to traverse the graph. The graph G’ (V’, E’) in the above figure is not fully connected. So the step 2 of the main algorithm calls the sub function SplitProcessGraph which is described below:

SplitProcessGraph (Ginput (Vinput, Einput)) – Takes one dataflow graph (possibly not connected) and returns a set of connected dataflow graphs.

1. for each v 
[image: image46.wmf]Î

  Vinput  do
mark v in Vinput as unvisited

end for

2. for each e 
[image: image47.wmf]Î

  Einput  do
mark e in Einput   as unvisited

end for

3. Let G be a set of connected process graph initialized to 
[image: image48.wmf]f


4. while (
[image: image49.wmf]$

 an unvisited v 
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  Vinput ) do
a. Let Pi 
[image: image51.wmf]Î

 Vinput   be any vertex that is unvisited,

b. Mark Pi in Vinput  as visited,

c. Let Vi be the set of all vertices such that for each Pj 
[image: image52.wmf]Î

 Vi, either 
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 a path from Pi to Pj or 
[image: image54.wmf]$

 a path from Pj to Pi,

d. Mark each such Pj 
[image: image55.wmf]Î

 Vi in Vinput as visited,

e. Let V = {Pi} 
[image: image56.wmf]È

 Vi,

f. Let E = set of all edges elk 
[image: image57.wmf]Î

 Einput from Pl to Pk ;where Pl, Pk 
[image: image58.wmf]Î

 V,

g. Mark all such elk 
[image: image59.wmf]Î

 E in Einput as visited,

h. Create a graph g (V, E),

i. G = G 
[image: image60.wmf]È

 {g}.

end while

5. return G.

end SplitProcessGraph

The result of the example under discussion after step 2 of the main algorithm now looks as follows:
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As mentioned repeatedly, functionalities in automotive is moving from mechanics to software. An important characteristic of applications found in automotive electronics is that of feedback control loops. Example of applications that uses these kinds of control feedbacks loops are engine control, transmission control, cruise control, climate control etc. Most of these feedback control loops are active (feedback control) loops which uses sensors and actuators to modify the dynamics of the system. 
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Fig 7.7: R. M. Murray, Caltech (lecture slides)

Also, with the upcoming of advance applications like smart engines, intelligent vehicle systems, etc. these loops will become more common in future. The focus here is how to take care of these loops in the dataflow graph. Considering a simple example, where the graph has a period “T”. Process P1 sends a message “m1” to process P2, and P2 sends a feedback control message “m2” to P1. 
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These types of feedback loops can be removed because the feedback arrow does not impact schedulability. However, if these loops are simply removed, then in this particular example message “m3” would disappear. If this message would have to be transmitted on the bus they should be considered because, as they could impact the transmission of other messages. In this example, m2 should arrive at P1 before the next execution of P1 (in the next period). One possibility could be to place m2 between P2 and sink, and another possibility would be to place m2 between the source and P1. Both these options would be more restrictive. In this algorithm, the approach used is to introduce a dummy process indicating a copy of P1and then placing the message “m2” between P2 and the dummy node. This dummy node would be given a constraint indicating that it should be mapped to the same ECU as P1. This will ensure that the message “m2” is mapped to the correct bus if P1 and P2 are mapped to different ECUs.

There can be other kind of loops called software algorithmic loops. For example, if there is a sequence of blocks that has to be repeated four times, then such loops have to be unrolled in the dataflow graph and not removed. At the moment EAST ADL does not have constructs that could specify that this sequence (or this composite function consisting of four blocks) should be repeated four times. 

In the next step (3. in the main algorithm), the loops in the graphs are removed. The following routine is used to remove the cycles:

RemoveCycles (g(V,E)) – returns a graph with no loops.

1. The edge which is causing the cycle can be detected by running a DepthFirstSearch from the root. In the DFS algorithm, a vertex i is the owner of vertex j if i occurs in the path from the root to j. 

2. if  
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 an edge eij 
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 E  from j to i such that (i, j 
[image: image66.wmf]Î

 V) 
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 (i is the senior of j) then 

a. Create a new vertex dummyi, which indicates a copy of the vertex Pi.

b. V = V 
[image: image68.wmf]È

 {dummyi }.

c. dummyi .attributes = dummyi .attributes 
[image: image69.wmf]È

 {(wcet,ms,0)}.

d. eij.dst = dummyi.

end if 

3. return g .

 end RemoveCycles

In the example under discussion there are no cycles and hence there is no change after this step. So at this point we have a set (G in the example) of loop free graphs.

As mentioned previously, the final merging step is specific for a mapping tool. The current mapping tool requires a single graph with one single period. Before performing the effective mapping and scheduling on the current mapping tool the dataflow graphs have to be merged into a single graph by unrolling of dataflow graphs and inserting dummy nodes. An example to illustrate such merging is shown in the figure below (figure taken from [31]).  More details can be looked upon in [31]. 
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Fig 7.8: Process Graph Merging Example [31]

The period of the obtained graph will be equal to the least common multiplier of the periods of all the graphs that are being merged. Dummy nodes here indicate process with a certain execution time but are not mapped to any processor or bus.  

Going to back to the previous example where we obtained a set of loop free graphs (after step 3 of the algorithm), the resultant merged process graph after merging all the graphs in the set G  which will look like this: 
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Fig 7.9: Final view of the process graph. 

7.2.3 Platform Details:

The platform details can be obtained directly from the HA level of EAST ADL. The system platform is implemented as heterogeneous distributed systems composing of several networks. Gateway is used to communicate between two different networks, with each network running its own communication protocol. For each ECU, information about the speed of the processor (speed relative to the fastest processor), the memory capacity and the type of the cluster to which the ECU belongs is extracted. For the bus, its speed and protocol type is obtained.       

7.2.4 Constraints: The third input to the tool is obtained by using the previous two inputs. Once we have the process graph from the first input (graph obtained after step 4 of the main algorithm), we can extract the requirements of the nodes (processes) and edges (messages) in the graph. Then we can look at the Platform details and derive the strict, loose and cluster constraints. For example, if a process P1 has a requirement that it should be mapped to an ECU which belongs to a TTC, a looseconstraint is specified stating that P1 should be mapped only to an ECU which lies in the TTC. Strictconstraint (locality constraint) is specified for a process if it is known that there is only one ECU that can specify the requirement of this particular process. Clusterconstraint is specified if it is known that certain set of processes should be mapped together. For some processes/messages, there may not be the need for derivation of these constraints if the designer would have already specified them in the model. 

7.2 Representing output from the tool in EAST ADL
Once we have obtained the output from the tool, it has to be represented at the operational architecture level of EAST ADL. At the OA level the important artifacts are:

· OS Task:  The problem here is regarding the grouping of the nodes (processes) in the graph to OS tasks. The definition states that an OS task executes the allocated logical clusters in a specified order. In other words, an OS task consists of a sequence of processes, and when one finishes execution the next one starts immediately. Whether two or more processes shares the same OS task is decided by the data dependencies (assuming that the processes have the same period). For example if the dependencies are as follows and there are no other arc going into process P2 and P3, they can share an OS task.  
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However, if the dependencies are something like this: 
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In this case only P2 and P3 can be placed on the same OS task. P1 and P2 cannot be placed on the same OS task because when P1 finishes execution, according to the OS task definition, P2 should start executing immediately next. However, P4 might not have finished. Same reasoning can be given for not placing P4 and P2 in the same OS task.

· Communication Buffer: It represents the memory area that is used for data exchange between OS tasks that have been mapped to the same ECU. 

· Frame: It describes the physical frame and all the messages that are communicated between the OS tasks mapped to different ECU will be sent within the frame.  

The process of integrating the mapping tool with the modeling environment of EAST ADL is automated and the details can be looked upon in appendix B.

8. MAPPING APPLIED TO THE FAR VEHICLE    

For the evaluation of the concepts in the previous two chapters, and to demonstrate the interaction with mapping tool, the application functionalities present in the FAR car are used for experimental purpose. FAR vehicle can act as good demonstrator because it has properties and functionalities that can be found in a real vehicle. However, it is important to mention that the numerical values given for the timing requirements are speculative with attempts being made to stay closer to the real FAR prototype model. The objective of this chapter is to illustrate how the different parts of the thesis work fits to assist the designer in the mapping of electronic functions to ECU’s and ensuring that the specified constraints are met. 

8.1 Introduction

As mentioned in chapter 5, the FAR vehicle is characterized by individual steering, driving and braking. There are several modes of operation, which includes normal driving, driving with adaptive cruise control and driving with collision avoidance. The hardware consists of six nodes connected through a TT-CAN network and the Human Machine Interface is implemented by an additional HMI node outside the vehicle. The original FAR vehicle had four modes of operation, but while applying the case study in this chapter the CAS and AutoStop modes are not considered.  In the next section, modeling of FAR using EAST ADL is illustrated. Section 8.3 describes how the concepts in the previous chapter are applied to obtain dataflow graph from the logical architecture level. Section 8.4 illustrates the final formatting of the dataflow graph to produce a model required by the current mapping and scheduling tool. Finally, section 8.5 shows how the output obtained from the mapping tool is represented at the operational level of EAST ADL.  

8.2 Modeling the FAR car using EAST ADL

The modeling of FAR is done at the different levels of EAST ADL. However, in this section a brief description of the FAR modeling at the logical architecture and the hardware architecture level is mentioned. This is because the current approach of obtaining the dataflow graphs, system platform details and other mapping constraints can be derived from these two levels. For a complete description of FAR modeling at other levels of EAST ADL, reader should refer [16]. 

Logical Architecture Level:  This level is situated before the allocation and scheduling step. Allocation constraints are used to identify the software functions that must be allocated together. It consists of logical clusters and signal instances. Logical cluster consists of one or more function instances. Each of these function instance corresponds to an elementary function at the design level. Similarly signal instances correspond to the respective connector signals at the design level. For the FAR case study, we have the following logical clusters:    

· HMILogicalCluster: It consists of function instances that correspond to elementary software functions implementing the HMI functionality. It is specified with a strict mapping constraint that requires it to be mapped only to the HMI node. 

· DistanceMeasure: It contains function instances that implement the functionality of measuring the distance with laser.

· VehicleModeControl:  It contains function instances that implement the functionality of selecting the mode of operation. 

· CC: It contains function instances that implement the functionality of assisting the driver in keeping the car at a constant speed.

· Normal:  The function instances in this logical cluster make it possible for the driver to directly control the speed and steering. 

· OutputDistributionCluster: This logical cluster contains function instances that implement the functionality of distributing the output from the normal and/or cruise control mode to the four wheel nodes of the vehicle.

· FRWheelContolCluster: It contains function instances which implements the local control functionality in the front right wheel node. It is specified with a strict mapping constraint that requires it to be mapped only to the FR wheel node. 

· RLWheelContolCluster: It contains function instances which implements the local control functionality in the rear left wheel node. It is specified with a strict mapping constraint that requires it to be mapped only to the RL wheel node. 

· FLWheelContolCluster: It contains function instances which implements the local control functionality in the front left wheel node. It is specified with a strict mapping constraint that requires it to be mapped only to the FL wheel node.

· RRWheelContolCluster: It contains function instances which implements the local control functionality in the rear right wheel node. It is specified with a strict mapping constraint that requires it to be mapped only to the RR wheel node.

· FeedbackCluster: The function instances contained in this logical cluster implements the functionality of sending the feedback values to the HMI and cruise controller. 

In most general case, a system platform is composed of several networks, interconnected with each other. The communication between networks is done via gatway. Such a gateway is connected to both networks. There are certain assumptions made in the modeling of FAR in EAST ADL to access the capability of mapping tool to perform the mapping on both the event and time triggered cluster. It is assumed that the HMILogicalCluster is on the ETC and all the other logical clusters are on the TTC. With this assumption, it is important that all the communication between HMILogicalCluster and other logical clusters should pass through a gateway. And such a gateway should be implemented as software, and should appear at the technical architecture of EAST ADL. However, during the course of this thesis, the artifacts to appear in the technical architecture of EAST ADL were not decided. Hence, for the sake of simplicity, gateways were introduced as logical clusters at the logical level of EAST ADL. Also at the hardware architecture level a gateway ECU was introduced where all the gateway logical clusters will be mapped. Hence, we have four more logical clusters, namely, Gateway1, Gateway2, Gateway3 and Gateway4. The reason why four gateway logical clusters are introduced will become clear when the interactions between the various logical clusters are shown (see below). The logical level looks as follows:
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 Fig 8.1: Logical architecture level of the FAR model in EAST ADL.

Hardware Architecture Level:  It describes the physical entities of the system. The purpose of this architecture is to model the hardware architecture in sufficient detail to allow tentative allocations decision. The allocations decisions are made depending upon the requirements on timing, storage, processing power etc. Artifacts here include Processor, Memory, ECU, Channel, Sensor and Actuator. For the FAR case we have the following ECUs (other details like Processor, Memory, Channel, Sensor, Actuator can be looked upon in figure 8.2): 

· ECU: These are the ECUs in the FAR vehicle:

· HMI_ECU.

· CentralNode.

· RadarNode.

· FLWheel_ECU.

· RLWheel_ECU.

· RRWheel_ECU.

· FRWheel_ECU.

· Gateway.

[image: image75.wmf]
Fig 8.2: Hardware architecture level of FAR model in EAST ADL.

8.3 Obtaining data flow graph

Once we have the logical architecture level as described in the previous section, the first step is to obtain a dataflow graph in which each process/message will have its own period and deadline. From the first step in the algorithm described in the previous chapter, the obtained dataflow graph for the FAR vehicle will look like this: 
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Fig 8.3: Dataflow graph of the FAR vehicle

It can be observed that there are feedback loops in the above data flow graph. The designer has to specify these kinds of feedback edges. In case of FAR (figure 8.3), the feedback edges are:

· The edge going from the FeedbackCluster to CC

· The edge going from the FeedbackCluster to Gateway4. 

The next step is to remove these loops so that the dataflow graph becomes acyclic. The approach is to introduce dummy nodes in the dataflow graph. Each such dummy node will indicate the copy of the corresponding original node into which the feedback message is sent. In case of FAR, the loop free data flow graph will look like this:
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Fig 8.4: Loop free dataflow graph of the FAR vehicle

It can be observed that two new nodes (CCfbcopy1 and Gateway4copy2) are added in the graph. CCfbcopy1 indicates a copy of CC and Gateway4copy2 indicates a copy of Gateway4. CCfbcopy1 (Gateway4copy2) will be given a constraint that will ensure that it is mapped to the same ECU as CC (Gateway4). This will then ensure that the feedback messages are mapped to the correct bus/memory location. 

8.4 Application of the mapping tool

The objective here is to produce a model that is required by the current mapping /scheduling tool.  The data flow graph in the previous section consists of processes (nodes) and messages (edges). Each process/message in the dataflow graph will have its own period and deadline. A hyper graph consisting of a set of processes is constructed. Each process in the obtained hyper graph will have a period that is equal to the least common multiple of the periods of the individual processes. In case of FAR, the obtained hyper graph looks as follows:

[image: image78.jpg]il

\‘_‘_',_"

""'-""

e ‘j(’ L& LLL \ T )T

é.

)
‘
_—

=





Fig 8.5: Merged process graph of the FAR vehicle                                        

The merged process graph forms one of the inputs for the mapping tool. Another input for the mapping tool will be the details about the system platform. The system platform for FAR is specified to the tool as follows:

	Resource
	Name
	Relative Speed
	Memory

(KB)
	Type of Cluster

	processor
	FLProcessor
	0
	128
	TTC

	processor
	DyNodeProcessor2
	0
	128
	TTC

	processor
	RLProcessor
	0
	128
	TTC

	processor
	RadarNodeProcessor1
	0
	128
	TTC

	processor
	FRProcessor
	0
	128
	TTC

	processor
	GatewayProcessor
	0
	128
	TTC

	processor
	HMIProcessor
	0
	128
	ETC

	processor
	RRProcessor
	0
	128
	ETC


Table 8.1: Processor details of the FAR vehicle 

	Resource
	Name
	Speed (Mbit/s)
	Protocol

	Bus
	ETChannel
	1
	CAN

	Bus
	MainChannel
	1
	TTP


Table 8.2: Bus details of the FAR vehicle 

Other details about the various mapping constraints are given to the mapping tool. These constraints include strictconstraint, looseconstraint and clusteconstraint. 

8.5 Output representation

The output obtained from the mapping tool has to be represented at the operational architecture level of EAST ADL. The following table indicates the output of the mapping tool in brief:

	ECU
	Mapped Logical Cluster(s)

	HMI_ECU
	HMILogicalCluster

	CentralNode
	FeedbackCluster

	RadarNode
	DistanceMeasure

	FLWheel_ECU
	FLWheelContolCluster, VehicleModeControl, Normal

	RLWheel_ECU
	RLWheelContolCluster, OutputDistributionCluster

	RRWheel_ECU
	RRWheelContolCluster

	FRWheel_ECU
	FRWheelContolCluster, CC

	Gateway
	Gateway1, Gateway2, Gateway3, Gateway4


Table 8.3: Mapping Results 

When applying the mapping tool to FAR project, an assumption that each logical cluster becoming one OS Task in the operational architecture is made. However, it is important to discuss about the possibility of grouping the logical clusters into OS Task. In case of those ECU’s to which there is only one logical cluster mapped, there will be one OS Task (containing the mapped logical cluster). For example, “HMILogicalCluster” mapped on the HMI_ECU will become one OS Task. There are four ECU’s to which more than one logical cluster has been mapped. Namely:

· FLWheel_ECU: Three logical clusters have been mapped to this ECU. Looking at the dependencies in the dataflow graph in figure 8.4, we can observe that “FLWheelContolCluster” and “Normal” cannot be grouped into one OS Task, because when “Normal” finishes execution, “FLWheelContolCluster” cannot start immediately (it has to wait for “OutputDistributionCluster” to finish execution). Similar reasons can be given for not grouping “FLWheelContolCluster” and “VehicleModeControl” into one OS Task. Consider the following subgraph of the dataflow graph in figure 8.4 (to illustrate the dependency between “Normal” and “VehicleModeControl”): 

[image: image79.png]



If the Gateway2, logical cluster was not there, then it may have been possible to group “Normal” and “VehicleModeControl” into one OS Task (both “Normal” and “VehicleModeControl have the same period of 20ms).

· RLWheel_ECU: “RLWheelContolCluster” and “OutputDistributri- butionCluster” have been mapped to this ECU. Their dependencies are as follows:

[image: image80.png]



It appears from the figure above that as soon as “OutputDistributri- butionCluster” finishes execution, RLWheelContolCluster” can start execution. However, since RLWheelContolCluster” has a period of 25ms and “OutputDistributributionCluster” has a period of 20 ms, they cannot be grouped into one OS Task. Hence, there will be two different OS Tasks running. 

· FRWheel_ECU: The logical clusters that have been mapped on this ECU are FRWheelContolCluster and CC. Looking at their dependencies in the dataflow graph in figure 8.4, it is clear that they cannot be grouped into one OS Task. Hence, there will be two different OS Tasks running on this ECU. 

· Gateway: The Gateway4 logical cluster will become one OS Task. It may be possible to group the three logical clusters Gateway1, Gateway2 and Gateway3 into one OS Task. The reason being that all of them have the same period and they are dependent on only one logical cluster “HMILogicalCluster”. However, in this experiment the three Gateway logical clusters mentioned above are not grouped into one OS Task. One of the reasons for this is that the current implementation of the mapping tool does not support frame packing. One message is sent per frame. So the messages from the “HMILogicalCluster” to each one of the three Gateway logical clusters will arrive at different time. If the three Gateway logical clusters are grouped into one OS Task, then they will be arranged in some sequential order (say the sequence is Gateway1, Gateway2, Gateway3). According to the semantics of an OS Task, when Gateway1 finishes execution Gateway2 should start immediately. But this may not be possible if the message for Gateway2 has not already arrived. Thus, there will be four OS tasks running on the Gateway ECU.
In this experiment each logical cluster is represented as one OS task in the operational architecture. The communication between logical clusters mapped to the same ECU is done through communication buffer. Frames are used for inter ECU communication, with the assumption that one message is sent per frame. Finally, the obtained operational architecture level is represented in EAST ADL. 

Conclusion
Currently, the mapping design is carried out in an ad-hoc function, based on the knowledge of the automotive engineer. As the automotive systems become more complex and distributed, new methodologies and tools are needed to support the designer during the mapping task.
The mapping task has to take into account several constraints specific to the automotive electronics area. In this thesis, an analysis has been done on the relevant requirements of a mapping tool, which performs the mapping of the automotive electronic functionalities to the distributed architecture consisting of the electronic control units. The thesis also suggested few modifications and update to a modeling language which will support such a mapping tool. 
An important part of the thesis was developing an algorithm for translating the behavior specification from function analysis level to a process level consisting of interacting processes. The most challenging part during such translation was to ensure that the timing properties described by the functional blocks of a modeling language are correctly captured by the interacting processes after the translation. 

Implementation was also carried out to demonstrate an automated translation from EAST ADL to data flow graphs, and an integration of the mapping tool with the Generic Modeling Environment .


Future work
The following points highlight some of the issues that will be desirable to be considered in future:

· Considering the TTP and CAN protocol, messages are sent by packing them into frames. But the current version of the mapping tool does not support frame packing and only one message is sent per frame.

· The current implementation of the mapping tool indicates whether the constraints are met or not. It will be desirable in future, to get an output from the mapping tool which describes (in cases where the constraints are not met), the following (for instance):

· How much redundancy to add and where?

· Which ECU(s) needs to be replaced?

· Should a new ECU be added? 

· An integration of the scheduling results with a visualization tool in GME.

· It may be useful to define formally the semantics of objects at each level in EAST ADL. This will help in development of various techniques, tools and algorithms for modeling, refinement, exploration and synthesis [6].

· Research in the field of integrating dependability attributes into a UML based design flow is in its early phase. Since EAST ADL has its definition compliant with UML 2, one possible area from research perspective would be to look into dependability in EAST ADL. Having the result of dependability analysis early in the phase of development makes it possible to arrive at better decisions about architectural alternatives [34].

· At present, the mapping tool assumes implicitly static cyclic scheduling policy on TTC and fixed priority preemptive scheduling on ETC. One possibility in future, for the designer, would be to specify (at the technical architecture) the kind of scheduling policy that he wants at each node. The tool can then take into consideration mixed scheduling policy on each ECU.
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Appendix A:

Cruise Controller (input to the mapping tool):

period
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0
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0
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0 
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Appendix B:

Integrating mapping tool with the EAST ADL:

Introduction: EAST ADL uses the Generic Modeling Environment (GME) as a toolkit for performing domain specific modeling. GME is a configurable, domain specific, model - integrated tool for creating models in the domain of interest. The first step in order to perform a domain specific modeling is to define a domain’s modeling paradigm. The modeling paradigm captures all the information related to the domain and describes concepts, rules, relationships etc. governing the construction of models. Hence, GME allows building models based on custom paradigm. The EAST ADL paradigm for performing modeling in GME has been developed and can be looked upon for details in [37].  Once the paradigm of EAST ADL has been registered into GME, the user can start creating models. 

The user can interact with GME through two main interfaces, the Model Browser and the Graphical Editor. After a project has been loaded, A Model Browser window (fig B.1) opens up in GME. The Model Browser organizes the various models which forms the basis for building the overall project.
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Fig B.1: Model Browser window in GME

The Graphical Editor (fig B.2) provides the user with the interface for constructing the project’s individual models. An editor window pops up in GME and allows editing the model while selecting one aspect at a time.
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Fig B.2: Graphical Editor window in GME

For details about modeling in GME, the user must refer to [36]. 

Automating the integration of the mapping tool with EAST ADL (+ GME):

The fact that the GME provides support to allow exporting and importing of XML format has been made use of in automating the process. 

· Input Side: Referring to chapter 6, it is clear that the mapping tool requires the input in the following format:

· Processes {id, T, D, C, M}  

· Messages {id, src, dst, size, d}

· ECU {id, speed, memory}

· Bus {id, speed, protocol}

· StrictConstraint

· LooseConstraint

· ClusterConstraint 
It may be important to note that the first two inputs (Processes and Messages) indicate the process graph. The inputs for the mapping tool are obtained as follows:


[image: image83]
· Output Side: The output obtained from the mapping tool gives the result in a textual format and has to be represented back at the Operational Level of EAST ADL. In this case also, the xml file is imported from GME, and then the obtained xml file is manipulated by adding the contents that represent the artifacts of the Operational Level. The method can be illustrated as follows:
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