Schedulability analysis of embedded
applications modelled using MARTE

Kenneth E. A. Jensen

Kongens Lyngby 2009
IMM-M.Sc.-2009-

Technical University of Denmark

Informatics and Mathematical Modelling

Building 321, DK-2800 Kongens Lyngby, Denmark
Phone +45 45253351, Fax +45 45882673
reception@imm.dtu.dk

www.imm.dtu.dk

IMM-M.Sc.: ISSN 0909-3192

Summary

Embedded systems are increasingly complex and have tight constraints in terms
of cost, performance, energy consumption and reliability. Embedded systems
have to be designed such that they correctly implement the required functional-
ity. In the case of real-time embedded systems, the correctness of an application
depends not only on the results of the computation, but also on the physical
instant when the results are produced.

Modern embedded systems design relies on models for the application behav-
ior and hardware platform. Starting from these models, the embedded systems
system-level design tasks are responsible for finding a model of the implementa-
tion that satisfies all the imposed constraints. The Unified Modeling Language
(UML) is a commonly accepted modeling language for modeling complex sys-
tems. Recently, an extension called Modeling and Analysis of Real-time and
Embedded systems (MARTE) has been proposed as a standard way to model
embedded real-time systems.

MARTE is currently under development, and supports two real-time operat-
ing systems (RTOS): OSEK/VDX, an automotive RTOS, and ARINC, which
is used in avionics. The first objective of the thesis is to evaluate the currently
proposed MARTE extension, for which no documentation is available beyond
the specification document, and determine how it can be used to model real-
time embedded systems. The main objective of the thesis is then to develop a
generic library that is not tied to a specific RTOS, thus allowing designers to
use MARTE in the early stages of the design process. Such a generic library is
also useful for education purposes, and for enabling the rapid development of
other, OS-specific, libraries.

We have implemented the generic library in the open-source Papyrus UML
modeling tool. Once a model is developed in Papyrus, we are interested to deter-
mine if the system is schedulable. We have proposed an automatic translation
technique from Papyrus MARTE models into input for MAST (Modeling and
Analysis Suite for Real-Time Applications), which is a state-of-the-art schedu-
lability analysis tool used in the academia. Through the use of examples, we
have shown that, by using the proposed modeling method, real-time embedded
systems can be successfully designed and analyzed.

Resumé

Indlejrede systemer bliver heler tiden mere og mere komplekse, samtidig har
de specifike begraensninger til pris, ydelse, energi forbrug og palidelighed. Det
er vigtigt at indlejrede systemer bliver designet saledes at de implementerer de
krav der stilles til dem korrekt.

Nar man arbejder med real tids indlejrede systemer, er det ikke nok at kigge
pa resultatet fra en kgrsel for at vurdere om et program overholder sine krav
korrekt, man er ogsa ngd til at vurdere det fysiske gjeblik hvor kgrslen fandt sted.

Moderne indlejrede systemer benytter modeler for at simulere et programs
opforsel og den hardware det skal eksekvere under. Det er baseret pa disse
modeler at designet af indlejrede systemer skal finde en model der kan realis-
eres som hardware og software, og som overholder de krav der er til det. The
Unified Modeling Language (UML) er en udbredt og generelt accepteret mod-
elerings sprog til at modelere komplekse systemer i. Der blev for nylig frigivet
en ny udvidelse til UML. Modeling and Analysis of Real-time and Embedded
systems (MARTE) er blevet designet som verende den nye standard metode
benyttet til at modelere indlejrede real tids systemer.

MARTE er stadig et under udvikling, pa nuveerende tidspunkt understgtter
den to real tids operativ systemer (RTOS): OSEK/VDX systemet som er et
opreativ system brugt i automobiler, og ARINC systemet der benyttes i luft-
fart. Det forste mal i dette speciale er at vurdere den nuveerende version af
MARTE udvidelsen, for hvilket der kun er den tekniske specification tilgsen-
gelig som dokumentation, og undersgge hvordan MARTE kan benyttes til at
modelere indlejrede real tids systemer. Hoved formalet for specialet bliver sa at
designe et generisk bibliotek der ikke knytter sig til et specifikt RTOS, hvilket
vil ggre det muligt for designere at bruge MARTE til at modelere meget tidlig

i en udviklings process. Et generisk bibliotek vil ogsa veere brugbart i et un-
dervisningsmiljg, og vil kunne benyttes som stgtte i udviklingen af andre RTOS
specifice biblioteker end de der er tilgsengelige i dag.

Det generiske bibliotek er blevet implementeret i et open source UML model-
ings veerktgj kalder Papyrus. Nar en model er lavet i Papyrus, har det interesse
at kunne vurdere om det modelerede systemer er skedulerbart. En automatisk
oversaettelse fra en MARTE model lavet i Papyrus til input formattet for MAST
(Modeling and Analysis Suite for Real-Time Applications) er blevet foreslaet.
MAST er et moderne skedulerings veerktgj brugt i akademiske kredse. Gennem
eksempler bliver det vist at man ved at bruge den foreslaede modelerings teknik
kan designe og analysere indlejrede real tids systemer.

Preface

This report documents the work on my Master’s Thesis conducted at DTU Infor-
matics, Department of Informatics and Mathematical Modeling at the Technical
University of Denmark, during the period February 2009 to August 2009.

A number of models is created as a result of the work done in this thesis.
These models has been included on a CD-ROM delivered with the thesis. On
the CD-ROM can also be found the installation file for the Papyrus Modeling
Tool that has been used to create the models.

Audience

The intended audience of this thesis is computer scientists and computer science
students.

The fields being covered in this thesis are all extensive and to give a full descrip-
tion of them all is not feasible, therefore it has to be assumed that the reader
has basic knowledge both about the Unified Modeling Language and the general
concept of real time and embedded systems.

While UML is presented in the thesis, there is only a brief explanation of what
it is, and the reader is expected to know how class diagrams and associations
work. For more information about UML, [2] is recommended.

With regards to real time and embedded systems, the reader is expected to un-
derstand terms like tasks, shared resources and scheduling. The workings and

Vi

differences of the protocols mentioned throughout the thesis aren’t explained
unless it is directly relevant for their use in connection with the thesis. This is
because, while specific knowledge about the protocols might be required to use
them correctly, it isn’t required to enable a modeling environment to contain
them.

Furthermore, concerning the schedulability analysis, focus is on the how to
model the information required, and not on the workings of schedulability anal-
ysis. The reader is expected to understand the most basic schedulability con-
cepts, like slack, earliest deadline scheduling, etc.

Aknowledgements

I’d like to thank my supervisor, Assoc. Prof. Paul Pop, for his help in guiding
the project, especially when it hit dead ends, and for his feedback throughout
the project.

Furthermore I'd like to thank Poul H. Jensen for his guidance and his help
in understanding the many terms and concepts in both the MARTE framework
and the MAST analysis tool.

Finally I'd like to thank Lisa Agerskov Jensen for proof reading the entirety
of the thesis.

viii Contents

Contents

[Resumé|
[Prefacel

|List of Figures|

1__Introduction|
(1.1 Thesisgoall
(1.2 Scope of the thesis|0 0.
(1.3 Chapter overview|

2 UML 2

[3.2 Sottware Resource Modeling package|

[3.3 Hardware Resource Modeling package]
[3.4 Schedulability Analysis in MARTE|
(3.5 Limitations of Extension models for MARTEl

[3.7 Making a genericmodel| oo 0oL
3.8 MARTE model library]
3.9 Summary| e e

iii

xi

X CONTENTS

B MAST] 47
A1 What is MAST]o o 48
42 MAST Elements o000 49
4.3 Basic Examplelo 54
4.4 Advanced featured 57

[5 The Papyrus Modeling tool| 61
.1 Missing inheritance| 61
p.2 Missing Elements| o000 63
............................... 63

|6 Generic Library| 65
6.1 Basic Examplel oo 67
6.2 Advanced Features L. 80

|7 Connecting UML models with MARTE| 87
[r.1 MARTE Tutorial Example|. 88
7.2 Example linking of MARTE and a software modell 89

B_MARTE to MAST] 91
8.1 Basic Example translation|o 92

[9Conclusion| 97
9.1 The MARTE profile] 98
9.2 Using MARTE for educational purposes| 98
0.3 From MARTE to MASTI. 99
9.4 The Papyrus Modeling tool| 100

100 ... 100

|IA" Generic Library Implementation| 105

B Basic Example Implementation| 109

|IC Papyrus Generalization bug| 113

List of Figures

[1.1 The outline of the thesis. A MARTE model is created extending

| a UML model of a software system, information from this model

1s given as input to an analysis tool which gives a analysis result.

| This result can then be used to improve the original model.| . . . 4
[2.1 ~Sequence diagram showing a real time schedule| 8
[2.2 Timing diagram showing a real time schedule| 9
2.3 Relationship between SysML and UMLIIT]| 11
[3.1 The layout and inheritance between the MARTE packages|. . . . 14
[3.2 The Sottware Resource Modeling Package will be examined in |

| this section| 16
[3.3 The MARTYE profile in itself is incomplete, a Real Time Operating |

| System implementation is needed for it to be completel 17
[3.4 The SwScheduableResource as it is seen in OSEK/VDX, POSIX |

[and ARINC-6531 18
[3.5 An Example modeling of a periodic task, using MARTE sup- |

| ported by the OSEK/VDX library[20]] 20

xii

LIST OF FIGURES

3.6 The Hardware Resource Modeling Package will be examined in |

| this sectionl 21

3.7 The parts of MARTE designed for analysis purposes| 22

3.8 The Non-functional Properties package|. 23

8.9 The Generic Quantitative Analysis Modeling package|. 24

13.10 The Schedulability Analysis Modeling package| 25

[3.1T The SAM Workload domain model: EndToEndFlow[21]] 28

[3.12 The SAM Workload domain model: BehaviorScenario21]] 29

[3.13 An example implementation of the SAM layer[21]|. 31

[3.14 An example of how to extend the classes in the SRM, supplied in |

[the MARTE specification2T]| 32

13.15 The component implementation of the ARINC process in its |

| MARTE Tibrary]. 41

13.16 The component implementation of the ARINC Semaphore in its |

| MARTE Tibrary]. 42

13.17 The implementation of the OSEK task class| 43

13.18 The pattern of a periodic task in OSEK| 44

13.19 A state machine defining the behavior of the OSEK BasicTask] 44

[4.1 Before the update to MAST, the schedulingservers (tasks) con- |

| nected directly to the processing resources| 49

[4.2 MASTS scheduling structure [3f. 50
4.3 The elements in the basic example from MAST and the connec-
tions between them, when it is updated to reflect the current

MAST modeling concept]. oo v v it 55

4.4 The event flow ot the basic example, showing the 3 periodic and |

| the sporadic task. E1-4 are External events, O1-4 Internall 57

LIST OF FIGURES xiii
[6.1 The layout of the generic library, the 3 extension packages all im-
port the datatype package to gain access to the common datatypes

[apndenumerations. 66

[6.2 The SchedPolicyKind enumeration, showing the different kind of |

| scheduling policies available in MARTERI]] 69

................................. 70
[6.4 'The generic version of the swschedulableresource| 73
[6.5 The 3 difterent operation types illustrated. Simple consists only

| of its own execution, composite contains one or more other op-

| erations, enclosing contains one or more other operations and it |

[has 1ts own execution alsol oL 75

[6.6 The Arrival Patterns available through the SAM implementation[21]| 79

[6.7 The Concurrent AccessProtcolKind enumeration in MARTE, show-

ing the available concurrent access protocols in the default im-

plementation of MARTERLI|. 80
[6.8 The internal flow of a task, a fork followed by a merge, as it is |
efined in ST . . 83
[6.9 The internal flow of a task, a fork followed by a merge, as it is |
| defined in SAMI 84
[6.10 The different possibilities for defining flow types in SAM|. 85
[6.11 The event handlers available in MASTl 85
[7.1 An Example modeling of a periodic task, using MARTE sup- |
| ported by the OSEK/VDX library[20]] 88
[7.2 An attempt at duplicating the example from the MARTE tuto-
rial, It is not possible to add the entryPoint stereotype to the
dependency| 89
[7.3 An example of how an UML model of a software system can be
[extended with a MARIE layer depicting its real time critical
| operations| L L 90

xiv LIST OF FIGURES

|A.1 The basic structure of the generic library, 3 extension packages
each representing their branch all connected to a common data
type package containing the enumerations, datatypes, and similar
| avallablel 106

IA.2 The datatype package, containing the datatypes, enumerations |
| and similar available needed by elements in the generic library,| . 106

IA.3 The SRM extension package of the generic library, containing the |
| elements that are extensions of the MARTE SRM package| . . . 107

A.4 The HRM extension package of the generic library, this package

[is the smallest, currently only containing the processing resource) 107

IA.5 The SAM extension package of the generic library, here all ex- |
| tensions of the SAM module can be tound, this package includes |
classes that doesn’t stereotype a MARTE stereotype because ot
the stereotypes either not being implemented in the Papyrus

model of MARTE or being implemented in a matter that doesn't |

extend the metaclass concept| 108

IB.1 First halt of the basic example, the real time layer of the model |
| this layer shows all the key elements of the system and its key |

IB.2 The second part of the basic example is split into two for easier
viewing, part one showing the control task and planning parts

L and their associated event flows| 111

IB.3" Second half of the second pat of the basic example, part two shows |
the status task and the emergency task and their associated event |

IC.1 An example project in Papyrus demonstrating the generalization ‘
bug. 3 classes are defined A, B, and C, B inherits from A. 4 |
Instance specifications are then defined, one representing the A

| and B class respectively and 2 instantiations of the C class, the |

| first one having the A class defined as its parameter, the second |

| should have the B class in its parameter, but this fails in Papyrus| 114

CHAPTER 1

Introduction

Real time and embedded software is quickly becoming an integrated part of
modern society, but developing embedded software creates a number of new
issues that should be considered. With embedded software comes a limitation
to available resources, and in many applications there are different kinds of re-
quirements to the response time of the software, since many embedded units
conducts one or more time critical operations.

A classic example being the fuel injector of a modern car, where the amount of
fuel injected is controlled by the cars computer, and should be calculated to the
optimum amount before every injection. In an 8 cylinder car engine going at
3000 rpm this has to be done 400 times per second, which means that the cal-
culation of fuel to be injected has to be done in 1/400 of a second, or every 2,5ms.

In order to determine whether a real time and embedded system can run within
the timing constraints put upon it, a number of different algorithms has been
designed to analyze a system and determine whether it is schedulable, and the
amount of spare resources available. For complex systems this scheduling is too
complex to be done manually, within a realistic time frame, and instead analysis
tools designed specifically for the purpose are used.

Besides from adding new requirements to the implementation and the hard-
ware used, this new dimension also adds complications when trying to model
software. UML is a commonly accepted modeling language for modeling com-

2 Introduction

plex systems, it has the capabilities to model not only hardware and software,
but also situations not directly connected to the implementation of a system.
Use cases, business flow, and similar is modeled through UML. Unfortunately
there hasn’t been any dedicated support for modeling the kind of requirements
that real time and embedded software rises, especially modeling timing con-
straints and scheduling has only been supported through adaptation of models
from other areas.

This thesis will look into an extension to the Unified Modeling Language (UML)[I§]
called Modeling and Analysis of Real-time and Embedded systems (MARTE)[15].
This extension is designed specifically for Real time and embedded systems
modeling. While a number of other modeling standards exists for real time and
embedded systems, the MARTE specification has been named by the Object
Management Group to be the future standard for UML modeling of real time
and embedded systems.

The MARTE profile is still in beta, and currently it is very lightly docu-
mented. The only source of information available is the official specification
for MARTE|21] which describes the objects and elements of MARTE, but from
a technical point of view, not a practical.

1.1 Thesis goal

The goal of this thesis is first of to determine the state of MARTE, how does
it work, what kind of documentation exists and are there guide available. As
MARTE is still in beta, some challenges are expected. A description of MARTE
should be made that takes the information available in the MARTE specifica-
tion and explains it in a way that is understandable for possible users.

To achieve this, it is necessary to first do a study of MARTE, determining how
it is designed and how the different elements are connected. This will be done in
chapter 3] where the MARTE specification is analyzed and MARTE is explained

in a more informal manner.

Once this is done, and the workings of MARTE are understood. The possi-
bility of using MARTE for educational purposes will be examined, here focus
will be on the knowledge required to use MARTE, and both knowledge con-
cerning modeling and real time and embedded systems will be considered. If
MARTE is to be an industry standard, as it is hoped by the Object Manage-
ment Group, then it should be possible for everyone working in the real time
modeling field to use it, and not just those with in depth knowledge about it.

Finally the last interest of this thesis, is the ability to take the model of a

1.2 Scope of the thesis 3

real time system and have its schedulability determined by an analysis tool, this
indicates taking the UML model and using this as input to a real time analysis
tool. While doing that will almost certainly include a transformation of the
data, to fit the input requirements of an analysis tool, it should not require any
additional information to be added to the system, leading to a situation where
optimally the conversion should be of such a caliber that it can be automised.

These goals have some common grounds, they require the modeling concept and
language to be close to, if not identical with the terms commonly used when
describing real time systems. Especially if it is to be used in an educational
environment, the naming convention should match what one would expect to
be used in teaching, meaning that it would be possible to intuitively understand
the objects of the solution. Likewise analysis tools, designed for a general pur-
pose use, will also stick to the common concepts. The exception to this would
of course be specialized analysis tools, designed for a narrower part of the real
time and embedded software field.

In order to determine whether MARTE lives up to these goals, it will be com-
pared to a general analysis tool, and notice will be made, as to how far it deviates
from this. The analysis tool MAST has been chosen both as the receiver of the
MARTE model if possible, and as a frame of reference. MAST is a opensource
real time analysis system.[10]

The idea of the project, is to make it possible for someone without a specific
context, nor an in dept knowledge about real time modeling (basic knowledge
will be required), to create a model of a system using MARTE, and then have it
analyzed in MAST. In order for this to be possible some kind of transformation
has to be done on the MARTE model, so that it fits the specifications of MAST
input. The result of the analysis can then be used to update and improve the
model, leading to a new analysis, etc. This would make it possible to make con-
clusions regarding the time critical parts of a system early in its development
phase and then as the project developed these conclusions could be refined and
improved. The concept is illustrated in figure [I.]]

1.2 Scope of the thesis

The MARTE profile is designed to handle all variations of real time and em-
bedded systems modeling, this makes the profile so big, that it is beyond the
scope of this thesis to examine it in its entirety. Instead limitations are done,
making the thesis focus on the basic of real time and embedded modeling and
schedulability analysis.

4 Introduction

*Tasks
*Scheduler

UML
Specifikation

*Hardware

Configuration Analvsi
MAST nalysis
Report

MARTE

Specifikation

Figure 1.1: The outline of the thesis. A MARTE model is created extending a
UML model of a software system, information from this model is given as input
to an analysis tool which gives a analysis result. This result can then be used
to improve the original model.

Furthermore this thesis focuses on software modeling, while hardware modeling
is an important part of a real time system, it is beyond the scope of this thesis
to do in depth research on this field also. Therefore attention is put on the
software elements.

In the MAST analysis tool, elements concerning network communications are
left out, as a result network elements aren’t considered in MARTE either.

Being able to use a MARTE model as input to MAST is mainly a question
of making sure that the modeling done with MARTE matches the modeling
concepts expected in MAST, while this can be observed, the actual transfor-
mation of data from MARTE to MAST is not part of this thesis, an example
is given proving that the transformation is possible, and the consideration that
should be made when creating an automated software system to transform a
MARTE model to MAST input is described. The actual implementation of an
automated transformer isn’t done though.

1.3 Chapter overview

Chapter [3] contains an analysis of the MARTE profile. This analysis will try
and answer all the issues raised in this introduction, as well as look into how
MARTE is used in its current form. Because the documentation for MARTE

1.3 Chapter overview 5

is scarce, the analysis will also contain detailed explanations of the main lay-
outs and elements, however the scarce information also means that a number of
the explanations and conclusions reached in this chapter will be based on 'best
estimates’ based on general knowledge regarding software development, UML
modeling, and real time and embedded systems.

In chapter [4] an analysis of MAST will be done, where it will also be exam-
ined what information a model should contain for MAST to be able to do an
analysis based on it. The analysis will also look at a basic example supplied by
MAST and what is required to make this example function

This will be followed in chapter [6] by the creation of a generic library, where,
based on the result of the MARTE and MAST chapters, a generic library will be
designed and implemented in Papyrus. This chapter will also contain a realiza-
tion by means of the generic profile, of the basic example introduced in chapter[d]

Finally in chapter [§] the output files of MARTE UML models will be analyzed
and an approach to convert a MARTE model into something that can be used
as input to MAST and thereby analyzed will be suggested, but although the
suggested process works, it is still recommended that it is implemented in an
automatic software solution before put in production.

Introduction

CHAPTER 2

UML 2

The Unified Modeling Language (UML) is a commonly used modeling language
in software engineering. It is a very diverse language allowing for modeling
within most fields of software engineering. The UML specifications are created
and updated by the Object Management Group (OMG), who is also respon-
sible for approving extensions and changes to the UML specification. UML
is currently at version 2, and the change from UML 1 to UML 2 was a big
one, bringing with it a lot of updates and changes, including the integration
of some of the more well known and popular extensions made for UML, such
as the UML profiles for System engineering (SysML), for Modeling QoS and
Fault Tolerance Characteristics and Mechanisms or for Schedulability, Perfor-
mance and Time.[I8] While UML is used for modeling everything from software
to business processes, it was originally designed for software systems, and it is
especially well suited for modeling object oriented software.

The default UML 2 standard does not contain the capability for modeling real
time driven events or tasks on a development level, although significant improve-
ments has been made in UML with the release of the UML 2 specification in the
real time field, it’s still not enough. One of the major improvements that did
come with UML 2 was the possibility to model task scheduling, which can now
be done with the help of Sequence and Timing diagrams, as shown in figure [2.1
and figure Here the task scheduling of a real time system with 3 tasks and
a critical resource is modeled.[23] For more complex systems, it seems highly

UML 2

sd RM scheduling J

=<<SAsituation==
=BAsCheduierss- =cZAMREIUTEs =<ZAschedREE>= =<BAschedREs w=ZAsCNedRes>
sascheduingPoliny| | [{SAaccessConéml -
L rRatestanstonic'l | | FPricryinhentance)]
sy:Secheduler ri:Rescurce Ty Task Ty Task Ty Task
Tasis T PR o
Y P T
t=now i ! mnf) o I TT— i '5.'-1|u-_-||.i1_| : '-
< T A |
asslgn[ﬂL: PRI [LS TR L
—], H !
: e munaton={ e 51p||ul-|=-,|r:'|, :
| preempt]_ | trrvanen || il
L5+ :’ = : i o
H ! St D2l e 12 i}
Busy ' SR riada| 12 o)
releasef) : B
- H
B4 : ;
L A H mn[h: A
< | G e A
e 36EION{T3] v
] : Running
i preempt) :j
2=now J—— =
Task 1l
awarnas ! i
: i
< : l
o i
1 Frammoted
nmiL
13- "’i ..3.“.:““.
T | B, rrar]
LA+ - preempt | [EAEREEEET
: release) . :
: assign(«1] | !
|
{E2_6+E3} .
Busy
relezse)
i . !
5 |
(i3 astay : |

Figure 2.1: Sequence diagram showing a real time schedule

ad RM scheduling J ==SAsHEoN==

|
1=nvow 2=now 13=now t4=now {S=now tE=now

Figure 2.2: Timing diagram showing a real time schedule

unlikely that anyone will do the actual math behind the scheduling by hand,
which means that these models would be used to show the result of work done
by an analysis tool.

The two diagram types briefly require a bit more explanation to fully under-
stand why they aren’t by themselves sufficient. Neither of them were created
specifically for real time modeling, instead they are adopted because their pri-
mary functions fits the parameters needed to illustrate a scheduled system.
The main purpose of the sequence diagram is to show interactions between
objects. This diagram type is very versatile and can be used in both system de-
velopment, communications or, any other situation where there are interactions
taking place in a specific, sequential, order. Sequence diagrams are often used
as the next step after the creation of use cases.[I]

The timing diagram is used to show the behavior of objects within specific
time periods. There are two main ways of doing timing diagrams, a concise
notation, and a robust notation, but because of the level of detail and precision
necessary when doing real time modeling, only the robust notation is really us-

bs

E i

§=

H"
A e<sramon— I
AN, e g Detayen

). § — t 12
SAUEEIREEIUNDE= i L 41248}
{iF0,4.0, M) Domant s —
S AR s Runring
SATEnty=2,
SArsiaasa=il, ms], ﬂx Delayed Bocungoust | ¢
SAMOEICIE-TEL | 23 priartty Inheriance
! 8 Presmpted
i
(L3 13843 {i5.3+5)
ssadREECuTE o5
iir,, 1.1,0°ms ik =
BEEEE
o1 19 o o @

10 UML 2

able when modeling within this field. Timing diagrams are especially effective
in the design of embedded software and in fact real time systems.

What both of these diagram types have in common is that they are meant
to show something that has already been scheduled. While it is true that the
models can be made as a part of the scheduling process, they are mainly effec-
tive at showing a real time system, after it has been scheduled. Neither of them
addresses how to model a real time system that isn’t scheduled.

It is possible to create a model using basic UML features that includes all ele-
ments of a real time system, but it isn’t possible, staying within the parameters
of those objects, to add all the information needed in order to do scheduling of
the system. If one is using sequence and timing diagrams these informations
has to be added directly when doing the actual scheduling.

Furthermore, the models are both fairly complex. At first glance it doesn’t
show obviously what the tasks of the system are, nor the information connected
to each of those tasks. If one imagines having a UML model and then creating
sequence and timing diagrams to show the scheduling of it, the connections be-
tween these diagrams and the rest of the model, especially in a complex system,
can be hard to grasp. What would be interesting is a system where the step
from modeling to scheduling could be done simply, regardless of the complexity
of the system, or automatic.

There has been several attempts during the development of UML at making
models capable of making real time modeling possible, this is done through the
creation of UML profiles.

An UML profile is an extension to the core UML features. Anyone can create
an UML profile, but it does require advanced knowledge about UML and its
syntax. The idea with these profiles is to allow anyone with a modeling idea
the capabilities to make a modeling environment for it. The Systems Model-
ing Language (SysML) [I7] profile is a good example of such a profile, it is also
the profile often used today in the modeling of real-time and embedded software.

This ability to extend UML, making it useful in fields not covered by the core
functionalities, is a very strong property, which helps keep the UML specifica-
tions up to date, regardless of what changes might occur in the field of software
engineering. It is also this ability that this thesis will look further into as the
MARTE profile is analyzed in chapter [3]

2.1 SysML 11

aay

UML 2 SysP!IL

‘\
/ SysML'S
b extensions to
\ \ 7 / UML
,/
S
not requireK 7&”’/

by SysML ~ " UML reused by
T—— SysML

{UMUSysML)

Figure 2.3: Relationship between SysML and UML[I7]

2.1 SysML

The system Modeling Language (SysML) is an existing profile to the UML spec-
ification with the purpose of enabling modeling of complex systems containing
both hardware and software. It takes its foundation in UML, but adds a number
of new features to the language. The extensions added makes SysML satisfy the
requirements of the UML for Systems Engineering Request For Proposal[IT].
As shown in figure 23] SysML has been around for several years, the first draft
for it was released in April 2006, and was last updated in December 2008 where
version 1.1 was released. It is a widely known profile used in a number of dif-
ferent fields for modeling complex systems.[17]

SysML is currently also used for modeling real time and embedded systems,
and there is a number of different modeling tools available designed for model-
ing real time and embedded systems that uses SysML as its modeling concept.
A popular one being MagicDraw[6], which has also recently released a pre-
liminary MARTE extension, enabling MARTE modeling. Another one being
SysML-Companion[T9] which is developed by RealTime-at-Work, and created
specifically for modeling real time and embedded systems.

One has to keep in mind however, that SysML wasn’t originally designed for
modeling this kind of system, it has been adapted to the concept because there
was a lack of alternatives for modeling real time and embedded systems in UML.
This is one of the reasons for the creation of MARTE, in fact there is currently
a MARTE project in the works covering SysML and the link between these two

12 UML 2

profiles[T5].

Because SysML is the current profile to use when one wants to model real time
and embedded software in UML and because of the connection between MARTE
and SysML it seems fair to assume that MARTE is inspired by SysML. Many
of the features that SysML offers is also present in MARTE, for instance the
capability of modeling complex systems and the ability to model both hardware
and software. The main difference between the two is that MARTE is designed
specifically for modeling real time systems and SysML was adopted for it, as
such, MARTE has some modeling features that SysML is missing.

CHAPTER 3

MARTE Analysis

In this chapter the documentation available for MARTE will be analyzed, and
from that the purpose and workings of MARTE will be derived. The chapter
will be divided into sections looking at the packages in MARTE that directly
affects real time modeling and schedulability analysis.

First in section the Software Resource Modeling (SRM) Package will be
examined, this package contains objects for representing all the software ele-
ments of a model.

This will be followed in section by a quick look at the Hardware Resource
Modeling (HRM) package, modeling hardware is beyond the scope of this thesis
however, and it will only be covered briefly and just enough to cover the basic
needs for a real time system.

In section the Schedulability Analysis Modeling (SAM) package will be ana-
lyzed, but in order to understand this package, brief knowledge is required about
a number of packages it inherits from, hence those packages are explained before
the actual analysis of the Schedulability Analysis Modeling package is started.
The Schedulability Analysis Modeling Package contains all the information nec-
essary to do schedulability analysis, which has been classified as Non-functional,
this term covers all information that doesn’t directly affect the functionality of a
model, the time it takes for a method to execute is considered a non-functional

14 MARTE Analysis

Core Elements

Non-Functional
Properties Generic
Ressource

Generic Modeling

Quantitative
Analysis
Modeling Hardware Software
Ressource Ressource

i Modelin
Schedulability Performance Modeling g

Analysis Analysis
Modeling Modeling

Figure 3.1: The layout and inheritance between the MARTE packages

property. It can roughly be described as the information that isn’t directly rel-
evant for the implementation of the model.

These three packages and their parents represents all the objects necessary for
this thesis, and once it has been determined how they work and are connected,
the chapter will change from trying to understand MARTE, and instead look
at how it is used today and could be used in the future. Firstly the limitation
or focus of the existing models will be touched upon, followed by a description
of how MARTE is to be used. This however is still based on the specification
and might therefore contain intuitive leaps at times. Special attention will be
given to schedulability analysis and how this is done, since this isn’t a part of
the core MARTE functions.

Finally the possibilities of making a generic library for MARTE is examined,
and a more practical look is taken on the existing libraries, seeing if inspiration
can be found as to how one would go about making such a generic library, or
what pitfalls might have been avoided during the creation of these libraries.
Again because these libraries are undocumented, the observations and results
reached will be based on analysis of the implementation of the model.

In figure the layout of the different MARTE packages used in this thesis
can be seen.

3.1 About MARTE 15

3.1 About MARTE

The only documentation available for MARTE is the official OMG specification[21],
this specification defines each object in the MARTE profile, but it doesn’t con-
tain a description of how the MARTE objects interact besides from what can
be deducted from the UML diagrams available. This means that in order for
MARTE to be understood, it is necessary to go through the specification and
determine how each object functions, and what objects are necessary in dif-
ferent situations. If one was to do this for the basic UML, one could simply
look through one of the many explaining guides available, which explains every
object and its connection in detail, but because of the lack of documentation
available here this task becomes more tedious.

MARTE is an UML profile designed to add the ability for 'model driven de-
velopment of Real Time and Embedded Systems’ to the UML 2 standard[15].
It is developed by the Object Management Group (OMG), which is also the
group responsible for the general UML standard[T6].

Modeling a computerized system in MARTE is split into two parts, software
and hardware modeling, while these two are obviously connected for any real
time system, they are modeled separately and then connected. The idea is that
one should be able to model the software and the hardware of a system in-
dependent of each other, and if needed, make changes to either part without
directly affecting the other. The following sections will look into how software
and hardware modeling is done in MARTE, with the main focus on software
modeling.

The final step to the MARTE modeling process, after the software and hardware
has been modeled, is to model the interaction between them, and thereby add
the real time information which is needed for further analysis of the system, be
it scheduling, performance, or another kind of analysis. In this thesis the focus
will be on the scheduling analysis, and the parts of MARTE that makes this pos-
sible. Thus this will be looked into after the analysis of software and hardware.
The schedulinganalysis modeling however, is an addition to the framework, and
as such isn’t necessary for modeling a system with MARTE. This is why it is
treated separately.

This means that the first modeling layer done, containing software and hard-
ware, should be complete enough to be viewable on its own.

16 MARTE Analysis

3.2 Software Resource Modeling package

Software
Ressource
Modeling

=) B

Figure 3.2: The Software Resource Modeling Package will be examined in this
section

When designing real-time and embedded software today, there are two com-
monly accepted approaches, sequential and multi task. In the sequential-based
approach, during which the order tasks are run in, is pre-calculated. The multi
task based approach allows tasks to be executed concurrently, this approach
requires an execution support that handles the real-time features. This is nor-
mally done by having it provide the needed resources and services through an
APT (Application Programming Interface).

In the development of MARTE, the conclusion was reached that it is the latter
of these approaches that is the most commonly used approach today, and as
such this is where the attention is focused|[2I]. Furthermore, it was deducted
that a real-time operation system (RTOS) is almost always used as execution
support.

Unfortunately there isn’t one RTOS that can be said to be generally used, in-
stead there are several standardized ones, each with different APIs and different
fields of use, for example the OSEK/VDX RTOS which is used in automobile
computers, or the ARINC which is used in the aviation industry.

Therefore the purpose of the Software Resource Modeling(SRM) Module is to
create a platform that enables design regardless of the RTOS being used. This
means that the modeling principals has to be so general that they have room
for the flexibility needed, to accommodate all the different RTOS in use. In
MARTE this is solved by making the elements of the package very vaguely de-
fined. All the elements are present, but what their purpose is, and how they
fulfill that purpose, isn’t defined exactly, instead lose general terms are used.
The MARTE profile contains all the parts needed to model a real time system,
but they are underspecified. To use the framework in conjunction with a specific
RTOS, it is necessary to create a model library, defining the API of that RTOS

3.2 Software Resource Modeling package 17

Figure 3.3: The MARTE profile in itself is incomplete, a Real Time Operating
System implementation is needed for it to be complete

using MARTE objects, as illustrated in figure

And example of this can be found in the official MARTE tutorial[20] where a
library, defining the OSEK/VDX library, is defined and used.

While this approach allows MARTE to be used in conjunction with any exist-
ing or possible future RTOS (assuming the basics of real time modeling doesn’t
change significantly), it has the drawback of not working without a RTOS. It
is not possible to model a system without having a support library attached,
completing the underspecified nature of the MARTE profile. This seems to be
a knowing sacrifice made during the development of MARTE. It can be seen
reflected in, among other things, the official guide to MARTE where even sim-
ple examples are made with the OSEK/VDX library as support. The choice
of OSEK/VDX is most likely connected to the fact that MARTE was initially
developed in France by VDX.

An example of the underspecification lies in the MARTE object SwSchedu-
lableResource, this component covers all schedulable items that can occur in a
model, which basically means everything that is time dependent. Typical exam-
ples of SwSchedulableResource are the POSIX Thread, the ARINC-653 Process,
and the OSEK/VDX Task.[2I]. So in a POSIX implementation of MARTE an
object named Thread would be created, which extended the SwSchedulableRe-
source, and likewise for other implementations. As illustrated in figure

18 MARTE Analysis

MARTE

SWScheduableRessource

OSEK/VDX POSIX ARINC-653

Task Thread Process

Figure 3.4: The SwScheduableResource as it is seen in OSEK/VDX, POSIX
and ARINC-653

Looking further at the SwSchedulableResource object, the underspecification

can be seen. All objects in MARTE has a number of properties connected to
them, it is in these properties that one defines the parameters for the objects
when instantiating them for a model. The SwSchedulableResource is a task,
which means that an obvious property for it to have, is a ’Priority’ property,
since this is used by the very basic scheduling policy of ’highest priority first’,
which states that of all the tasks ready to execute, the one with the highest
priority should always be allowed access to resources first.
This priority can, in theory, be defined as any kind of value that can be sorted,
but in most situations it would simply be defined as integers, since this is a com-
mon way of sorting elements by rank. In the MARTE implementation however,
instead of having a property called Priority that takes an integer as parameter,
the property is defined as:

priorityElements: TypedElement [0..*]

This means that that the property ’priorityElements’ can contain any num-
ber of TypedElements as parameter. A typed element is, according to eclipses
UML API, defined as: ” A representation of the model object 'Typed Element’.
A typed element is a kind of named element that represents an element with
a type. A typed element has a type ”.[4], this means that anything can be a
TypedElement, which is too wide for any actual implementation. Furthermore
there seems to be no viable situation where being able to have several priorities

3.2 Software Resource Modeling package 19

at once is needed, making the fact that the property can have any number of
TypedElements as its parameter an obsolete feature.

So if its such a obsolete feature, why is it there? The answer to this lies in the
generalization of MARTE, all properties that can be interpreted in more than
one way is defined in such a broad way, regardless of their functionality, so even
though a few of them could perhaps have been better specified without com-
promising the flexibility of MARTE, one way of defining flexible properties has
been selected and is used for them all. This is what gives MARTE its extreme
flexibility and allows it to be used in the diverse manner the developers aimed
for with its creation.

3.2.1 Issues with the SRM package

All of this does rise a number of issues, the first one being, that in order to use
MARTE, one has to get a hold of a RTOS library, which may or may not be
publicly available. Recently a model library for ARINC653 in Papyrus has been
released on the MARTE page [22], but this is only one library for one mod-
eling tool (Papyrus). The OSEK/VDX library, which is the one used for the
examples, was the first model available for Papyrus and can be now be found on
the official Papyrus site[5]. If one wants to model in another tool than Papyrus
there is no official libraries released from OMG, and one would have to either
contact the support team of the tool, or create the needed libraries.

This leads directly to another issue, in order to model with MARTE, in dept
knowledge is required about the RTOS to be used, and it has to be possible
to express the model within the limitations of a specific RTOS. This kind of
knowledge might be hard to find outside the fields that a specific RTOS is cre-
ated for. While the car industry has RTOS/VDX and aviation has ARINC 653,
smaller fields, or simply more general developments, won’t have a specific RTOS
tailored to their needs. Instead they would have to compromise, first finding the
RTOS closest to what they are looking for. Then learning the API and design
concepts of that RTOS, and adapt to that in their modeling.

As previously mentioned, each RTOS has its own naming convention for differ-
ent objects, likewise, MARTE has its own naming convention, which sometimes
seems to fit nicely with a more general text-book naming convention, but at
some points differ widely. Again one can only assume that this was done in or-
der to achieve the flexibility needed to support the different RTOS’s around, by
using a naming convention that doesn’t lean on one specific RTOS, but is unique.
Unfortunately this also means that using and developing for MARTE requires

20 MARTE Analysis

RobotController

(OSEEA DN Librans OEERN DN Platiorm:: Qack/\VOXLibimw)

MotionController HaetiViTx fibe
+ fbut. RubulIDHvel [U[1.]1] 0 sawSchedulableResources
- nb_mission: Integer [1] = RobotDriver OSERAVLX Librans DSERWVD,
- speed_factor: Integer [1]=1 + robot ‘ BasIcTn;.s.k

- speed_factor_tumrate: Integer

0.1 | 1 update()

+ setSpeediv, vy, va, state): Integer

+terminater) + create(l: Integer

«alarms

[OSERADN Librany OSERSA

+trajectoryControl]) + deletel): Integer Alarm
+acguire() + getSonarScan(sonarindex): double n
1L «imingResources
| (DSERADX Librans OSEKV ..
' Counter
‘«entryPaoints — I.’
: « .
. -
| \ SRM stereotype to bind -
wmodels \ - 3 7
TackModel| application and platform |
‘\
"\ alarmAcqu : Alarm
acquisition : BasicTask - ounter = countar
oriority— 2 action = alarmAcyuAction
schedule = FULL autostart = alarmAcgudutostart
activation =10
autostart=false
stacksize - 32708
alarmAcquAction : Action alarmAcquAutostart ;: Autostart counter ;: Counter
kind = ACTIWATETAS K alarrnTime =1 Al e dY dlue = 255
task—acquisition cyclatime—1 ticksPerBasa—1
appmode = [std] minCycle =1
isAutostarted = true

‘ Period of the periodic task acquisition : 1 ms

Figure 3.5: An Example modeling of a periodic task, using MARTE supported
by the OSEK/VDX library[20]

some learning and understanding of how things are named and connected, and
so far very little documentation has been released concerning MARTE, and the
use of it. At the same time there is little to no introduction material, tutorials
or examples available either.

There is also a question of complexity. Modeling for a specific RTOS requires
one to adapt to the modeling conventions of that RTOS, and as a consequence
the modeling will not always be obvious or straightforward. Here, one can look
at the only modeling example to be found in the MARTE tutorial, which can
be seen in figure [3.5] This rather complex model looks like it does, because it
has to fit with the OSEK design pattern for a periodic resource, but it isn’t in-
tuitive, nor easy to read. This means that in order to use this model, one has to
understand the design patterns of the RTOS being used. Not only the designers
need this knowledge, but anyone wanting to view the model is required to have
insight into the workings of OSEK/VDX, for the model to make sense.

All of this gives the impression, that while OMG sees MARTE as a future

3.3 Hardware Resource Modeling package 21

replacement of the current Real-time modeling possibility of UML, it seems to
be a product developed with a very specific user group in mind. The only people
who can use MARTE off the shelf, is people working within one of the major real
time and embedded software fields, and only those with a prior knowledge about
one or more of the dominating RTOS’s. If MARTE is to truly become a standard
for real time modeling in UML, it seems fair to expect a more general usability,
so that it can be used by people designing in non-specific environments, smaller
fields of interest that doesn’t have its own RTOS, or for educational purposes.

The idea of a more general model library, that isn’t directed at a specific RTOS,
is even touched upon in the MARTE specification, where an example shows
how to create extensions to the SRM objects, and expand this into a general
API concept. More information about this concept isn’t available though, and
it is only used in the SRM examples. This gives the impression that while the
MARTE development team seems aware of a possible lack of usability for gen-
eral purposes it was never seen as important enough to allow more than a simple
example, showing that this lack could be addressed.

3.3 Hardware Resource Modeling package

Hardware
Ressource
Modeling

) (B3

Figure 3.6: The Hardware Resource Modeling Package will be examined in this
section

While hardware modeling is almost as big a part of a real time system as the
software modeling, in this thesis it is only examined briefly.

The hardware resource modeling (HRM) profile, used by MARTE to express
physical hardware, is more complete than the software packet, in the way, that
it isn’t underspecified, but complete. This means no support library is needed in
order to use it. The reasoning behind this seems to be, that the differences be-

22 MARTE Analysis

tween hardware, in the different fields where real-time and embedded software is
being used, is small enough to express in an overall way. This means that none
of the RTOS specific model libraries, used to support MARTE, contains any
hardware information, therefore the hardware modeling doesn’t change when
using MARTE, regardless of what RTOS is being used to support the devel-
opment. This means that it isn’t affected by most of the main issues that the
SRM has. There will still be a need for any designer to learn how hardware is
expressed in MARTE though.

3.4 Schedulability Analysis in MARTE

Non-Functional
Properties

Generic
Quantitative
Analysis
Modeling

Schedulability Performance
Analysis Analysis
Modeling Modeling

Figure 3.7: The parts of MARTE designed for analysis purposes

The Schedulability Analysis Modeling components of MARTE (SAM), is the el-
ements that allows the modeler to add information that has no effect on how the
software/hardware should be created, or implemented. Instead it is information
like execution time, access speeds, and others such, soft values. In a software
model one can roughly divide everything into one of two categories, functional
properties or non-functional properties. Hardware and software elements would,
in most cases, be considered functional properties, where as soft values would be
considered non-functional properties. They have no effect on the functionality
of the system, and give information which, while being important for analysis or
similar concepts, is irrelevant for the implementation and behavior of a software
system.

In order to represent this kind of information, MARTE uses a concept called
NFP (Non-Functional Properties), which in turn is used by the Generic Quan-
titative Analysis Modeling domain (GQAM), and from this GQAM concept the
SAM components are finally extracted. This mean that in order to understand
how SAM works, one has to first understand NFP, and then GQAM. However,

3.4 Schedulability Analysis in MARTE 23

even the MARTE description of the these different elements assume you know
the concepts they inherit from, and as such only explain what is added on each
layer, even though inherited elements is also used. Hence a description of each
of these domains is needed.

3.4.1 Non-Functional Properties package

Non-Functional
Properties

&
=]LJLJ

Figure 3.8: The Non-functional Properties package

The NFP concept isn’t unique in UML modeling, and the idea of modeling this
kind of ’soft values’ has been touched upon before in another UML profile, the
QoS&FT profile (Modeling Quality of Service and Fault Tolerance Characteris-
tics and Mechanisms)[14]. However, it was felt that the NFP model would bring
enough new concepts to the field to validate its creation, instead of using the
QoS&FT profile.

The main argument is that the two step annotation process that is required
by the QoS&FT profile when used is complex for the user, and might create
unreadable models. Furthermore QoS&FT leaves out a number of attributes
that is required by the MARTE domain. Examples of this is measurement
sources, precisions and time expressions, all things that are necessary in order
for MARTE to function, and therefore the NFP specification will contains these
information[21].

Another UML profile available, which gives a simple approach to specifying
"a set of predefined stereotypes and tagged values’[21] is the profile for Schedu-
lability, Performante and Time Specification (SPT)[I2]. This profile meets some
of the requirements that MARTE has for the NFP’s per default. This profile
however suffers from not being formal enough to allow it to be extended for
other uses. As already described MARTE is defined in such a way that it is

24 MARTE Analysis

very flexible and easy to extend, but this is not a rule when making UML pro-
files, and the SPT profile is defined in such a way that extending it isn’t feasible.
Both these profiles are worth mentioning however, because MARTEs NFP pro-
file has derived many of its basic components and layout from them, combining
their strengths, reducing their weaknesses, adding flexibility, formality, and sim-
plicity to the area.

So what exactly is it that the NFP adds to MARTE, which is so essential?
Basically the NFP adds the ability to define non-functional elements, and give
them a non-functional type. This means creating elements that are completely
independent of the other parts of the model. Additionally the ability to define
NFP constrains is added, and finally the concept of a unit is added as an ele-
ment. A unit is the value type defined to NFPs, since a non-functional property
doesn’t have units like functional properties which are defined as strings, inte-
gers, etc. Non-functional properties are instead defined with units like seconds,
and can also be used to express less precise or stable values, like a severity rating
defined from a numerical scale.

3.4.2 Generic Quantitative Analysis Modeling package

Generic
Quantitative
Analysis
Modeling

Figure 3.9: The Generic Quantitative Analysis Modeling package

In the same way that the SRM was designed to be a platform for the different
RTOSs, to implement their specific features, allowing the flexibility and diversity
that MARTE was designed to have, the GQAM is designed to be the platform
for different kinds of software analysis. In order to ensure this, it uses many of
the same approaches as the SRM did, it defines the core properties that is com-
mon for the different analysis, and then expects an extension to be made, and
extending these core properties to the exact needs of specific analysis techniques.

The differences between the analysis techniques lies not only in terminology, but

3.4 Schedulability Analysis in MARTE 25

also in the way they use the different NFPs. Situations where an NFP would
be considered input in one analysis but output in another is not uncommon.
This initially leads to a situation similar to the one experienced in the SRM, of
having a modeling environment, which isn’t usable in its basic form. To avoid
this, MARTE is delivered with extensions to the GQAM that makes modeling
possible in two different popular fields, schedulability analysis and performance
analysis, supplied by respectively the SAM (schedulability analysis model) and
PAM (performance analysis model) modules. This means that unlike software
modeling, where MARTE requires an extension library to elaborate its defini-
tions into fitting the API of some RTOS, it should be possible to model some
Schedulability analysis parameters of a system, without adding anything to the
system. The next chapter, which will look into the SAM module, will further
investigate this concept.

3.4.3 Schedulability Analysis Modeling package

Schedulability
Analysis
Modeling

Figure 3.10: The Schedulability Analysis Modeling package

While MARTE provides modules for modeling both schedulability and perfor-
mance analysis elements, this thesis focuses solely on the schedulability part.
This means that while there is a performance analysis module in MARTE, it
will not be looked into. Instead focus will be on SAM, the module which extends
the GQAM which, as describer earlier, by it self isn’t well enough defined to be
used.

SAM is designed in such a way that it should allow schedulability informa-
tion to be entered on the level of detail that best fit the designers wish. This
generality should make it possible for users to use SAM in both early stages and
on complete systems. In early stages of the design phase SAM can be used to do
a high level description of the timing constraints on a system, fitting the knowl-
edge available at that time of development. On finished systems the ability to

26 MARTE Analysis

do non-invasive schedulability modeling makes it possible to see the results of
changes to the system. Both approaches give the ability for developers to detect
pitfalls in a system, or ’play’ with the different parameters of the system, seeing
the cost changes will have, for better or worse.

The MARTE developers have tried with SAM, to create an extension to GQAM
that allows for schedulability analysis in a general way, allowing it to be used in
as wide a range of situation as possible, both in terms of different system types,
and different phases of a systems development. They are however aware, that
the price of such generality is that the model becomes complex to use. In gen-
eral, the more situations they try to accommodate, the higher the complexity
of the model. Therefore they also encourage the development of further exten-
sions to SAM to narrower fields, allowing for the creation of models that, while
keeping within the parameters of the MARTE specification, is easier to use, or
is more extensive in a particular area, but might not be as generally usable as
SAM.[2]]

The fact that they already in the introduction of SAM decide to point out that
extensions might be necessary for it to be optimally suited for some situations,
combined with the information found earlier in this thesis regarding MARTE
and its intended users, gives an early indicator that schedulability analysis mod-
eling with MARTE might be very complex, and require deep knowledge into the
world of real time modeling. This would directly conflict with the goal of hav-
ing a modeling language that is easy to use. In an attempt to determine the
exact level of complexity and the knowledge required in order to model with the
Schedulability analysis model, a close description of the main elements of such
a model will be given.

It is also worth noticing that among the properties of the SAM elements there
are several that refers to information that should be supplied by an analysis
tool, so the SAM isn’t directly meant to be a model with information that can
be entered into a scheduler, but more a model containing information acquired
from an analysis tool, and then entered into it. An example of this is the isS-
chedulable property assigned to an end-to-end flow object, which is a boolean
variable, declaring whether the flow is schedulable with its current parameters.
This is what would normally be the result of a scheduling analysis, likewise
the schedulabilitySlack property, that defines the amount of slack the flow will
have with its current parameters, is also an information normally supplied by
an analyzer, not one given to it. So some modification might be necessary for
the SAM module to be suited as an input to an analysis tool instead of being
based on the output of one.

SAM domain modeling relies on two basic modeling concerns:

3.4 Schedulability Analysis in MARTE 27

e WorkloadBehavior: represents a given load of processing flows triggered
by external (e.g., environmental events) or internal (e.g., a timer) stimuli.
The processing flows are modeled as a set of related steps that contend
for use of processing resources and other shared resources.

e ResourcesPlatform: represents a concrete architecture and capacity of
hardware and software processing resources, used in the context under
consideration.[21]

To keep with the approach set forward, so far, by the MARTE concept of making
everything as independent as possible, the goal of the profile is, that it should
be possible to model the workload behavior and the resources platform inde-
pendent of each other, in such a way that should it become necessary to change
the architecture on which the system is running, this should be doable without
any changes being done to the workload behavior, and vice versa.

Modeling the resource platform of the system, consists mainly of adding NFP
values to the hardware and software, defined by the SRM and HRM modules.
These modules already express the software and hardware that are relevant
from a real time perspective, and thus they represent resources available for the
scheduling.

Modeling the workload behavior is, or should be, the biggest part of the SAM
model, this is where the flow of the system should be modeled, and it is here
most of the parameters that is needed, for a schedule to be calculated, comes
from. The WorkloadBehavior is the entirety of the system, in its current form.
So the elements found in the WorkloadBehavior should represent all the neces-
sary timing information for an analysis. If one wishes, one could then create
several different WorkloadBehaviors, each representing a way to setup the sys-
tem, and compare these. This would, for instance, be a good way to examine
the consequences of changing the deadline of certain flows and similar. The
workload model is divided into two parts, end-to-end flows and steps.

The first object in the SAM module to be examined closer is the end-to-
end flow. The UML implementation of the end-to-end flow can be seen in figure
[B:11] A WorkloadBehavior can contain one or more end-to-end flows, each end-
to-end flow representing ”‘a unit of processing work in the analyzed system,
which contend for use of the processing resources” |21]. This description makes
it fit with the concept of a task, a process that needs processing resources. It fits
even better when one looks at the properties and objects linked to it, as can be
see on figure 311} An end-to-end flow is started by one or more stimuli in the
form of Workloadevents, these have an arrivalPattern that matches the different
types of triggers one would expect tasks to have. An end-to-end flow also has a
worst case runtime and a deadline, again things one associates with a task. It

28

MARTE Analysis

SAM Workload

« dataType»
« choiceType»
ArrivalPattern

peniodic: PenodicPattern
aperiodic : Aperiodic Pattem
sporadic: SporadicPattern
burs t: BurstPattern
imegular: IrregularPattemn
closed: ClosedPattem
open: OpenPattern

GQAM_Workload::
WorkloadB ehavior

workload |/ 1.7

EndToEndFlow

1..* \|/ endToEndStimuli

GQAM_Workload::
WorkloadEvent

1.

isSchedulable: NFP_Boolean
schedulabilitySlack: NFP_Real
end ToEnd Time: NFP_Duration
end ToEndDeadline : NFP_Duration

SAM_Observers::
TimingObserver

Timing »

*

end ToEnd Response 1

pattemn: Arrival Pattemn

inputStream

effect

GQAM_Workload::
BehaviorScenario

Figure 3.11: The SAM Workload domain model: EndToEndFlow[21]

3.4 Schedulability Analysis in MARTE 29
SAM_Workload |
GOAM_Workload:: ‘GRM::Resourcellsages::
BehaviorScenario Resourcallsage
-
1 hostDemand: NFP_Duration
s Time: NFP_duration [*]
ulifizalion; NFP_Real [*]
0.1 Pbehavior
CONNECIONS * |steps
oulpuiRel gicces GQAM Workload:: concliiRn GRM::Scheduling::
1 Stey >
GQAM_Workload:: | | P : 5.7 | SchedulableResource
PrecedenceRelation | mputRsl IsAtmmiz: NFP_Boolean
blocking Time: NFP_Duration
1 predas | priosity: NFP_Integer
% SAM Resources::
Sh urce
. Isubsats usedResource]
GOAM_Warkload: : GOAN_Workload:: GQAM_Workload:: sharad Resource
ReleaseStep AcquireStep CaommunicationStep
mEgSize; NFF_ DataSize .
SaStep
fradefines concurRes} 0.1
concurfles 3 deadline: NFP_Duralion
T spareCapacity: HFP_Duration
GOAM_Resaurces: SaCommunicationStep schaduiabilitySiack: NFP_Feal
i ted Tima: WFP_Duutatior
CommunicationChannel deadiing: NFF_Duration z::;!-l[e.m. ,'Fp Dura.uul:a f
EparaCapacity: NFP_Duraton nonpreempiionBlacking: NFP_Duration
schedulanilityStack: NFP_Real seltSuspanslonBincking: NFF_Duration
numberSefSuspensions. MFP_Integer

Figure 3.12: The SAM Workload domain model: BehaviorScenario[21]

is also on an end-to-end flow that it is noted if the situation is schedulable and
if this is the case, how much slack there would be in the schedule for the flow.
So the end-to-end flow contains most of the timing information that is connected
to a task. It doesn’t contain all the logic a task would contain, it only contains
the top level of information, how long does the entire execution take, how often
is it started and such. This however, is not enough information. For a schedul-
ing to take place further information is required, like how long will the task
require the different resources it uses to be locked, and when in its execution
does it require this.

All this is instead defined in a BehaviorScenario. A BehaviorScenario is what
the end-to-end flow starts when triggered. It contains the detailed information
about what happens during the flow.

In figure the BehaviorScenario can be seen. While an end-to-end flow
can only trigger one scenario, the scenario can contain any number of steps.
Steps are the detailed version of an execution.

Depending on the level of detail being modeled, a BehaviorScenario could sim-
ply contain just one step, which would then have execution time and deadline

30 MARTE Analysis

matching the end-to-end flow that triggered it, or it could contain a number of
connected steps, each representing their own little part of the overall code to be
executed in the flow. Especially for flows that has to use one or more shared
resources as part of its execution time, working on a level of detail that makes it
possible to model steps consisting of just the time it needs to have the resource
locked, will give a more realistic result of the scheduling analysis. Exactly what
is done during the step is of little interest, since in this modeling aspect the only
interest is the scheduling analysis. Instead the step needs to contain information
like execution time and shared resources to use. To keep the flow of the steps in
order a predecessor-successor relationship is used, but this doesn’t restrict the
execution to being linear, in fact a series of different flow method is available:

e branch (one predecessor Step, multiple successor Steps, each with a prob-
ability of selecting that branch)

e merge (multiple predecessor Steps, one successor triggered by any prede-
cessor)

e fork (one predecessor Step, multiple successor Steps, indicating that all
successors are executed logically in parallel)

e join (multiple predecessor Steps, one successor triggered by all predeces-
sors completing) [21]

by combining these it should be possible to model all possible flow situation to
be found inside an end-to-end flow.

As it could be seen from figure the step is implemented as SaStep in the
SAM package, but the SaStep inherits from the GQAM step object. One has
to look at the GQAM Step object to get a complete overview of the objects
available to SaStep. The most important parts have been included in figure
Elements in green come from the GQAM, and elements in white are cre-
ated for SAM. Some confusion might arise from there being a reference from
Step to SchedulableResource, since a SchedulableResource would normally be
associated on the same abstraction level as end-to-end flows, but there has to
be a connection between SchedulableResource and Step, in order for the step to
have knowledge about processing resources, shared resources and other elements
the SchedulableResource contains.

One can see the entire system, starting with an end-to-end flow ending with
the steps as the scheduling analysis implementation of a task. The end-to-end
flow contains the outer parameters of the task, the arrival pattern, the overall
deadline and execution time, information concerning whether the task is schedu-
lable and if so how much slack there is (the last two parameters are information

3.4 Schedulability Analysis in MARTE 31

« gaResourcesPlatform»
TeleoperatedRobot Platform

«schedulableResource »
¢ Q.E;Zizzﬁ ? allocate : DisplayR efresherT ask
: U (miaiy=2)}
« schedulableRes ource »
e - MsjStatus
« saCommHost » . «allocate» i e 24
“CAN Bus = (fp (priority- 24))
{ ransMode = HalfDiplex = « schedu_hbleﬂ&smrce »
speedFactor = ($prCAN) «allocate ni-ad : MsjC ommand
blockT = (111, us, max, meas) {fp (priority= 24)}
pakdT= 64, s, cale)}

« schedulableRes ource »
: ServosControllerTask

locat {fp (riarity=30) }
«allocate»
« saExecHost » « schedulableRes ource »
: Controller L : Reporter
{ speedFacor= (1.0) | «allocate» {fp(miaily=24) }
clodkOvh= (7, us, meas) 6% « schedulableRes ource »
TONT (% wemess) : CommandManager
ISRswitehT= (25, us. meas) | ajncatey™] 9
schedPricRarge = ([0..30] determ) s {fp(miaiy=16)}
iSRPrioRmge =([31 31], determ)} | PP —
«alocater .}~ ControlerComm
{ip(miaiy=31)}
WE B
scheduler
« saBxecHost » {RTOS, Scheduler
: RobotArm { schadPolicy = FixedPriaity }

Figure 3.13: An example implementation of the SAM layer[21]

gained after a scheduling analysis has been done). The steps contain the de-
tailed information about the task, what resources it uses and when, how much
of its code can be executed in parallel if possible, saving overall run time, but
requiring more processing power, etc.

It is also worth looking at an implementation example in the MARTE spec-
ification for SAM. In this example, which can be seen in figure the pro-
cessing resources are defined in the SAM layer, as ’saExecHost’ objects, and
has the tasks connected directly to them, with the scheduler being an input to
the ’saFExecHost’ instead of following the layout in the SRM layer, where the
scheduler lies between processing resources and tasks.

This underlines the fact that the modeling layers are independent and model-
ing can as such be done differently in the different layers.

The reason why its interesting to redefine the processing resources, as it is done
in the example, lies again with the independence of the different elements. The
information one would be interested in knowing, about a processing resource,
will vary depending on what kind of analysis is being done on the system, as
such the ’saExecHost’ contains the specific information about processing re-
sources that are of interest when doing schedulability analysis.

32 MARTE Analysis

0
« swSchedulableResource »
- Task

deadineElements =Task :Deadlin
yieldService = Task:yield()

« SwSchedulable Resource » ﬁ
e

sy, Deadline : Integer

+yield()

Figure 3.14: An example of how to extend the classes in the SRM, supplied in
the MARTE specification 2]

3.4.4 Possible impact of the SAM package on the overall
system

The addition of the SAM, NFP, and GQAM modules, has a big impact on the
MARTE module. Many of the underspecified parameters in the SRM module,
which is extended by the different libraries available, are also defined through
SAM. An example of such a parameter could be the task priority property, which
in the OSEK/VDX implementation is defined for the periodic task by further
defining an underspecified property in the SWSchedulableResource called pri-
orityElement.

Another example can be found in the examples that the MARTE specification
supplies with the SRM description, which is shown in figure Here it is
shown how the classes of the SRM can be extended to fit specific needs. As
can be seen in the example, the deadlineElements property of the SWSchedula-
bleResource is further defined as the deadline property that takes an integer as
its parameter, but the deadline of a task is a NFP value, and as such is defined
on the End-to-end flow. This means that some properties are suddenly available
twice. This however, means that the MARTE modeling profile might be usable
without a big support library. How many of the underspecified properties that
becomes redundant, when SAM is also used, is hard to say without doing a
thorough analysis of exactly what parameters is used when doing simple mod-
eling, and as such will be addressed later in this thesis.

This means that when modeling in conjunction with SAM the fact that MARTE
is underspecified could be a significantly smaller issue than it is when just doing
SRM modeling.

Because of the lack of documentation it is impossible to know exactly why this
redundancy in information exists, but two plausible scenarios does seem realistic.

The first one being that the SRM module and these underspecified proper-
ties was defined before the SAM profile, and perhaps even the entire concept
of NFP was designed. The SRM module seems to contain a number of NFP

3.5 Limitations of Extension models for MARTE 33

values, defined as functional values instead of as NFPs. If the SRM and these
properties was defined before the concept of using NFPs and an explicit model
for defining schedulability analysis information was devised, it could explain
the presence of information that now becomes redundant. This is contradicted
however, by the SRM not having the properties defining other NFP values, like
arrival type and similar.

The other possibility is that the NFP values are doubly defined because those
properties have been determined too important to be left out. It isn’t a require-
ment that a SAM layer is created for a MARTE model, this is just an addition
if someone is interested in schedulability analysis. If one then determines that
information like the deadline of a task is important in other circumstances than
schedulability analysis, having it defined directly on the SRM becomes under-
standable. Regardless of the reasoning, it is still a non-functional value. Other
circumstances where it could be of importance, other analysis situations for in-
stance, should have it defined in the framework if it is of importance to them.
It would lower both readability and flexibility of any analysis model, to have
the execution time only defined in another model.

However, because of the scarce information available regarding the thoughts
behind MARTEs development, this is just something that has to be accepted
as is. Because the focus of this thesis is on schedulability analysis, it might be
possible to use the redundancy to simplify some areas or at the very least save
some modeling work by only using one of the two options. This is only valid if
it is guaranteed that the SAM module is also applied to the situation. Because
of a design wish for each layer of modeling to be as independent from each other
as possible and for the SRM/HRM model layers to be viewable on their own, a
certain amount of overlapping information will be necessary.

3.5 Limitations of Extension models for MARTE

The existing libraries live up to the requirements that one would have when
wanting to model something to fit any of the current main RTOS’s available.
However, when looking upon the desired effect of a model, these systems seems
to all have in common that they have no focus on modeling all the information
that would be needed if one wanted to go directly from a model to an analysis.
More precisely, the RTOS’s analyzed in this thesis all ignore the time it takes
for tasks to execute, be it the time accessing a shared resource takes, or simply
the computation time needed by the task to do whatever it was designed for.
While the RTOS libraries extend the SRM of MARTE, adding the features of
its API, they have no requirements or specifications with regards to how you

34 MARTE Analysis

define the SAM. In a RTOS, there are no programming parameters for defining
these parameters, since they are of little interest to a programmer. Therefore
these soft values are obviously not part of any RTOS’s API.

Part of the purpose of this thesis was to examine MARTEs usefulness in an edu-
cational environment. In such an environment, and similar high level situations,
the ability to analyze a system without having to do the actual implementation
is very useful. But as discussed in the section about SAM, even though the
SAM specification is complete, the method of how to use it, isn’t intuitive and
requires the designer to have knowledge concerning MARTE and the thoughts
behind its design, something that it is currently only possible to learn by going
through the specifications for MARTE[2I]. Therefore, even though the SAM
is complete, it might still be worth considering extending the SAM in such a
way that it becomes more user friendly for people without a deep background
in neither MARTE nor any of the main RTOS’s currently in use.

In general, it should be kept in mind that the different existing libraries, doesn’t
add new features to the MARTE system, instead they show the features avail-
able in MARTE in such a way that it fits the specification they represent.

3.6 How to use MARTE

As already described, MARTE was created to enable the modeling of real time
and embedded systems. While the previous sections explain the different ele-
ments of MARTE, it is also necessary to explain how these elements are used
when modeling.

While it is possible to have a system consisting of a number of tasks and a sched-
uler, which one wishes to model, this would rarely be the case in actual modeling
situations. Instead the real time modeling is part of a larger model, containing
both real time critical elements and non-critical elements. More specifically, one
can imagine a class consisting of several methods, some of these methods would
be time critical, with a deadline, a period or similar, while other methods would
be non-critical, simply having to finish when they are done, or having a soft
deadline so big that compared to the scale of the system it was of no relevance.

Regardless of the reasoning, such a mix of critical and non-critical methods
seems possible. Furthermore when modeling a software system, while the real
time parts of this is important in ensuring that the overall systems can run
within the restrictions put on it, it has little consequence on how the different
parts of the system interact from a developers point of view. MARTE addresses
this issue by seeing itself as an extension to a normal UML model of a system,

3.6 How to use MARTE 35

instead of an entire model in itself. If one was to again look at figure [3.5 one
can see that in the top left corner there is a normal UML class diagram de-
picting the class '"MotionController’. This class has 3 methods, but only one of
these are real time critical, the ’acquire’ method. By using MARTE it is then
possible to extend just this one method through the ’entryPoint’ connection,
and make a real time definition of it, explaining its period, deadline, execution
time, required shared resources, etc. In real time terms, the method Acquire
is a task, and should be modeled as a task, which can be done with MARTE,
but from a software developers point of view it is a method. A more thorough
look at the entryPoint stereotype and how UML models of software systems is
linked with a MARTE layer is done in chapter [7] where the results of this thesis
is used in a practical example, giving a MARTE layer to an UML model of a
primitive system.

The ability to have a normal UML model of a system, and then add MARTE
to the locations that are relevant from a real time perspective, is exactly what
MARTE was aiming for. In a system consisting of several class diagrams, this
would lead to a situation were tasks would be modeled near the relevant classes,
spread out over the system. But as long as the entirety is only one system,
having one hardware set to its disposal, though this hardware set could consist
of several processors, all the different tasks will need to be connected to the
same scheduler. This either through a number of secondary schedulers, which
is then connected to the primary scheduler, or directly to the primary scheduler.

Normally UML makes connection between elements with associations, but be-
cause of the distributed nature of the MARTE elements, this wont always be
feasible. Therefore, MARTE has adopted the approach of having the elements
that are known to be distributed far from each other, defined as parameters in-
stead. For instance, the SwSchedulableResource has a parameter called ’sched-
uler’, the input for this parameter should then be the scheduler that the task
is bound to. Likewise the MARTE scheduler has a parameter called Schedu-
lableresources which should contain a list of all the tasks that it is responsible
for. A similar property exists for shared resources which one could expect to
be defined at some central location and not near the tasks that needs to access
them. Initially this might seem like a complex solution, especially because it
requires the modeler to manually update these parameters if changes are made
to the system, and it has to be done both ways, but that complexity has to
be compared to the gain of being able to spread the task definitions out in the
model to the places were they are actually defined as methods. The schedulers
and the shared resources can be modeled by them self as a whole since they
have little to no effect on the underlying model. For when one works with sim-
ple models where distribution isn’t an issue, associations is also defined between
the objects, meaning one can use these instead of the properties to define the
connections.

36 MARTE Analysis

The important thing to understand about the MARTE profile and its use, is
that it allows any system to have real time parameters added to it, and not only
during the development. In theory, one could take an existing, complete UML
systems model and add the MARTE profile to the parts of it that are real time
relevant. Other tools that try to implement the ability to make UML profiles of
real time situations often suffer from being invasive in the system being mod-
eled. For instance the MAST Analysis tool has a UML feature[9] which allows
users to design and model real time analysis using an adaptation of UML, but
this requires the real time parts to be incorporated into the system which first
of gives a need for extra knowledge to be present by all designers involved in the
progress, and second it creates a model bound to be a real time analysis model.

If one uses the MARTE approach of having the extra elements added, in this
case real time capabilities, with as little disruption to the original model as pos-
sible, one gets the advantage of being able to design the main system without
any insight into MARTE or the capabilities of real time concepts, hence these
can be added by someone with knowledge about it. Likewise, it becomes pos-
sible to show the system without this extra information when the focus is just
the system, and it becomes possible to use the model for other kind of specifi-
cations, like the performance analysis extension also available in MARTE. If a
UML designed system is to be implemented as software for instance, a software
programmer would have little to gain from the real time parts of the model,
instead the programmers focus would be entirely on the class, methods and
variables of the system.

This approach requires more work when being implemented, because it requires
everything to be modeled as their own elements instead of being added onto
existing elements, the advantages of such a non-invasive modeling approach is
big. A prime example being a situation where an existing real time system is to
be changed or adapted to fit a different operating platform. While it might not
have been possible when the system was modeled originally to add real time pa-
rameters and analysis elements, with the MARTE non-invasive approach, these
elements can be added without any changes to the existing model, and the price
of any changes can be determined.

Another thing to keep in mind when making this model layer, is what infor-
mation it is meant to express. It has earlier been mentioned that each modeling
layer should be viewable independently, meaning that this MARTE layer can’t
rely on information supplied by the SAM layer in order for it to be complete.
Since it has already been determined that it doesn’t contain schedulability anal-
ysis information this could be seen as a hard result to reach. Seen in the right
light however, this isn’t necesarily and issue. This is a modeling layer that iden-
tifies and specifies the key elements in a system, seen from a real time point of
view, whether it is the SRM elements identifying the important software parts

3.7 Making a generic model 37

of the system, or the HRM determining the key resources to be taken into con-
sideration.

It was never the purpose of this layer to allow the viewer to learn everything
there is to know about the system, but to identify the key elements, thus al-
lowing for the usage of the SAM or PAM layers to be applied, based on the
information supplied.

3.6.1 How to do Schedulability Analysis Modeling

Just like the previous section gave insight into the modeling approach one should
use to incorporate the software and hardware elements of the MARTE specifica-
tion, this section will briefly explain how the Schedulability Analysis Modeling
module works. After the SRM and HRM aspects has been applied to a model,
one can chose to further expand the overall model by adding schedulability anal-
ysis information to the system. This is done by extending the MARTE model
the same way the MARTE model extends the original UML model. Modeling
with SAM is also non-invasive, and the elements needing to be modeled has
already been mentioned in the SAM analysis (chapter [3.4). Because of the way
MARTE has been designed, wanting it to be possible to do several different
analysis models on the same system without interfering, the SAM model can
not be included with the normal MARTE model, but has to be done in its own
iteration. This might seem confusing or overly formal, but it will first of all allow
for exactly what its creators intended, complete separation between the system
model and the analysis model, and second having the analysis elements in their
own model gives increased freedom for tweaking features, or trying different
changes, without worrying about messing up the original model. The drawback
is of course that one has to keep in mind when making permanent changes to
one layer of the model, the other two layers has to be updated manually to
reflect this.

When creating the SAM layer, it has to be determined how much informa-
tion needs to be redefined, since the SAM module contains elements defining,
for instance, processing resources, which could be defined again here, even if
they are also available through the HRM module.

3.7 Making a generic model

While many issues were brought up during the analysis of the MARTE profile,
the one this thesis has its main focus on, is the fact that MARTE is created and

38 MARTE Analysis

focused on a very specific user group, and not usable generally.

Since, as previously mentioned, MARTE is designed to be supplemented by
a library, any solution will have to somehow be able to do this. This means
either the creation of a new library, or adapting one of the RTOS libraries. The
concept of adapting to another RTOS has been discussed already, and the con-
clusion reached is that it requires learning the RTOS, since one cant be sure it
will be well suited for modeling ones system. This has a big chance of becoming
overly complicated, like it is seen with the OSEK/VDX example, were a complex
design pattern has to be used to live up to the OSEK/VDX system requirements.

So perhaps the creation of a new library is the best way to go? While cre-
ating libraries isn’t overly complex, it requires knowledge about both UML and
MARTE to do. This knowledge however, is only needed by the team creating
it, the knowledge required to use the library is only dependent on the design
and complexity of the library.

The advantage of creating a new library, would be that the library could be
designed to address the issues found in MARTE, by filling in the gap currently

there for general users.

A list of the main issues from the MARTE Analysis can be found below:

e Needing a RTOS implementation

Needing knowledge about the selected RTOS

e Compromising to adapt to the parameters of the RTOS

Knowledge about MARTE naming convention

Many RTOS has overly complex modeling patterns to express simple sit-
uations

Seen from the perspective that the goal is to have MARTE used by as many peo-
ple as possible, in as great a variety of design situation as possible, the biggest
issues are those that requires the user to have specific knowledge about fields
that isn’t directly relevant for their work. Unless there is some other big gain,
the preferred choice when modeling will be to pick a modeling method that one
is familiar and experienced with. The knowledge needed to use MARTE today
could therefore potentially ’scare’ off possible users.

A possible solution would be to make a ’generic library’, binding the many differ-
ent MARTE expressions, classes and concepts to some non-ambiguous simplified

3.7 Making a generic model 39

objects.

If it is possible to create a library with objects and parameters that resem-
bles those used in general terms for real time and embedded systems, not only
will general modeling become a possibility, but it will also make the benefits of
MARTE modeling available for people without insight into a RTOS. Further-
more, with a general library that stays within the main concepts of real time
modeling, it would be possible to use models as input to analysis tools for real
time systems available today, and thus have models verified through these.

In this thesis, the analysis tool MAST will be used, as described in Chapter
while it might not seem like the optimal solution to lock onto a specific tool,
since that implies a need for knowledge about it. MAST is chosen because it
covers most, if not all, of the most common analysis methods, and does this
while keeping with a general real time naming convention, thus making it a tool
that doesn’t require extra knowledge about real-time and embedded systems.

Any support library for MARTE can be seen as an attempt to bridge two fields.
In the case of the OSEK/VDX library, a bridge is created between the MARTE
language and the OSEK/VDX API, enabling something defined in OSEK/VDX
to be expressed by MARTE. Making a generic library would be the same, one
would have to make a library, in such a way that it is possible to express general
models in MARTE. In order to do this, it is first necessary to know what can be
defined in general modeling, to ensure that most of the objects used in general
modeling is included. Inspiration to what these objects are, will be taken from
MAST, since it is possible to analyse most general models with MAST, it seems
logical that it must contain all the objects needed for it. The analysis of these
objects will therefore be done in Chapter

Once all the elements used in general modeling has been found through the
analysis of the MAST tool, the next step in making the generic library is to
map these elements onto the MARTE specification. To do so, one has to find
the closest corresponding MARTE element for everything one wants mapped.
This will be looked into in chapter [g]

While this gives a theoretical solution to the generic library, an actual imple-
mentation is needed in order to use it. A common tool for UML modeling that
is supported by MARTE is the Papyrus tool [5], which has not only the MARTE
library implemented, but also the OSEK/VDX and the ARINC 653 libraries.
When the analysis of both MARTE and MAST is completed, it is with this tool
that the actual implementation will be done.

40 MARTE Analysis

3.8 MARTE model library

It was determined in the last section, that the best way to realize the goals of
this thesis, would be through the creation of a new UML library, this rises the
question of ’how does one make UML libraries for MARTE’?

There is no documentation available from the official MARTE page, nor from
the OMG group, with regards to how one would go about creating a library, nor
what it should contain.

Because of the lack of documentation, an alternative approach has to be con-
sidered. Such an alternative approach could be to look at the existing libraries
available today and see how they have gone about doing the implementation.
No documentation comes with these libraries however and it becomes necessary
to instead look directly at the implementations and reverse engineer from that
how they are supposed to function. However since they are forced to stay within
the UML modeling parameters, and has to use MARTE objects as their source,
it should be possible with UML and MARTE knowledge to determine how they
work.

Currently there are two known libraries extending MARTE, the ARINC library,
which is publicly available on the MARTE webpage[15], and the OSEK/VDX
library which isn’t publicly available on the MARTE page, but can now be found
on the official Papyrus webpage[5]. Both these libraries are created based on
the concept that one models the API of the RTOS in question with whatever
formalism one wants. The OSEK/VDX library is Object oriented, while the
ARINC library is component based, through interfaces. When one has mod-
eled the API completely, the SRM profile from MARTE is used to annotate
the resulting model elements, and the semantics from the OS is attached to the
elements denoted in the model. Finally the implementations available of both
libraries are made in the Papyrus tool.

3.8.1 The ARINC Library

The approach used in the ARINC library is, as mentioned, a component based
approach, where all elements of the ARINC API is modeled as interfaces. For
example, the Process implementation is shown in figure a process is AR-
INCs version of a task, here one can see that the the component matches the
API-interface called Process_management_Service, and has a number of opera-
tions at its disposal that matches the operations in the API. At the same time
as being an interface however, it is also a swScheduableResource, which means
that it also inherits all the parameters and features of the MARTE version of

3.8 MARTE model library 41

[ARINGES3 Modey
Process Management

ginterface, swSchedulableResources
PROCESS_MANAGEMENT_SERVICE

@ CREATE_FROCESS(in PROCESS ATTRIBUTE_TYPE, out PROCESS_ID_TYPE, aut RETURN_CODE_TYFE)
 SET_PRIORITY(in PROCESS_ID_TYPE, in PRIORITY_TYPE, out RETURN_CODE_TYPE)

SUSPEND_SELF(in SYSTEM_TIME_TYPE, out RETURN_CODE_TYPE)

& SUSPEND(in PROCESS_ID_TYPE, aut RETURN_CODE_TYFE)

& RESUME(in PROCESS ID_TYPE, out RETURN_CODE_TYPE)

STOP_SELF(

@ STOR(in PROCESS_ID_TYPE, out RETURN_CODE_TYFE)

& START(n PROCESS ID_TYPE, out RETURN_CODE_TYRE)

DELAYED_START(in PROCESS_ID_TYPE, in SYSTEM_TIME_TYPE, out RETURN_CODE_T¥PE)

@ LOCK_PREEMPTION{out LOCK _LEVEL_TYPE, aut RETURN_CODE_TYFPE)

& UNLOCK_PREEMPTION(out LOCK_LEVEL TYPE, out RETURN_CODE_TYPE)

GET_MY_ID{out PROGESS_ID_TYPE, out RETURN_CODE_TYFE)

@ GET_PROCESS_STATUS(n PROCESS_ID_TYPE, out PROCESS_STATUS_TYPE, out RETURN_CODE_TYPE)
& GET_PROCESS_ID(in PROCESS_NAME TYPE, out PROCESS_ID_TYPE, aut RETURN_CODE_TYPE)

Figure 3.15: The component implementation of the ARINC process in its
MARTE library

a task, but the parameters will be of little use to it, since it is an interface and
cant have parameters defined as so, instead it will rely purely on the operations
that is implemented.

The input for the operations are in many events undefined elements, for instance
the implementation gives no indication of what a ’'PROCESS_ATTRIBUTE_TYPFE’
is, and it must be assumed that this is an element that is so simple that it re-
quires no further definition to someone familiar with the ARINC API.

If one instead looks at the ARINC implementation of mutually exclusive re-
sources, which is called semaphores, one gets what can be seen in figure |3.16
just like with the process, the main component is both an interface and a swMu-
tualExclusionResource, meaning that it inherits from both of these classes. Be-
sides these it has a number of operations that matches those of the API for the
Semaphore. What makes this example interesting, compared to the process,
is the addition of dataTypes, several non-default datatypes are defined which
matches some of the input to the Semaphores operations. Such datatypes in-
dicates that the input or datavalues of those parameters isn’t available in the
default MARTE implementation. MARTE and UML, accepts a wide variety
of default input values, covering most common elements like integers, strings,
booleans, etc, but if the datatype differs from these it is necessary to define it,
which is what can be seen done here.

Unfortunately, there is no documentation available to support the ARINC
profile for MARTE, not even a how to use, or explanation, which makes it hard
to give practical examples, and at the time of writing, no public description of
the ARINC API has been found either, making it hard to verify the assump-

42 MARTE Analysis

(ARINCES3_ Made)
SEMAPHORES

‘ atfataTypes adataTypes «datalType»
SEMAPHORE NAME TYPE SEMAPHORE VALUE TYPE SEMAPHORE_STATUS_TYPE

wdataTypes £ CURRENT_VALUE: SEMAPHORE_VALUE_TYPE (1]
SEMAPHORE_ID_TYPE S WAITING_PROCESSES: WAITING_RANGE_TYPE [1]
== S MAXIMUN_VALUE: SEMAPHORE VALUE_TPE (1]

«interface, swhMutualExclusionResources
SEMAPHORE

@ CREATE_SEMAPHORE(n SEMAPHORE_NAME_TYPE, in SEMAPHORE_VALUE_TYPE, in SEMAPHORE_VALUE_TYPE, in QUEUING_DISCIPLINE_TYPE, out SEMAPHORE_ID_TYPE, out RETURN_CODE_TYPE)
@ WAIT_SEMAPHORE(SEMAPHORE _ID_TYPE, n SYSTEM _TIME_TYPE, out RETURN_CODE_TYPE)

@ SIGNAL_SEMAPHORE(n SEMAPHORE ID_TYPE, out RETURN_CODE_TYPE)

@ GET_SEMAPHORE_STATUS(n SEMAPHORE_ID_TYPE, out SEMAPHORE_STATUS_TYPE, out RETURN_CODE_TYPE)

@ GET_SEMAPHORE_ID(in SEMAPHORE_NAME _TYPE, out SEMAPHORE ID_TYPE. out RETURN_CODE_TYPE)

Figure 3.16: The component implementation of the ARINC Semaphore in its
MARTE library

tions made. Instead the analysis of the ARINC model is based completely on the
assumption that the model library created for MARTE is correct and confines
itself to the restrictions placed upon it by MARTE. The ARINC implementation
also seems to be without any semantic definitions, but without further insight
into ARINC as a system, no conclusions can be reached concerning this.

3.8.2 The OSEK/VDX profile

The other profile that has been available during this thesis work is the OSEK/VDX
library, this library doesn’t seem to currently be publicly available and as it was
the case with the ARINC library, no documentation is available to support the
library.

The OSEK library is implemented as an object oriented model, which makes it
differ from the ARINC library, but the choice of making it object oriented makes
it fit better with UML, which is very well suited for object oriented modeling. As
it became evident in the analysis of MARTE, the OSEK library has a number of
areas where it is rather complex, these complexities is also evident in the profile.

The first thing to be examined in the OSEK/VDX library is the implementa-
tion of a task, in OSEK this element is called a task, and its implementation
can be seen in figure [3.17] Here one can see that a task is defined as a class,
with a number of parameters, this class then has two children, BasicTask and
ExtendedTask, which both inherits not only the Task, but also stereotypes the
swScheduableResource stereotype from the MARTE profile. The difference be-
tween the BasicTask and the ExtendedTask is merely that the ExtendedTask
can spawn one or more events were as a BasicTask can simply execute. In or-
der to match with the OSEK API there is also an interface containing the API

3.8 MARTE model library 43

[OSERVDX L
Scheduler f

e dnterfaces
+ fask «SwAECess TaskService
v Dl £ + actiation: Integer [1] {readOnly unique} Modifier
g — 5 + schedule: SCHEDULE [1] {readOnly un.
Ressource | 1 £} + autostart: Boolean [1] {readOnly unique} N | @ +terminateTask(): statusType
(5] + stacksize: Integer [1] = 32762 '\ ; cswhccessSenices + getTaskID(taskRefType): statusType
51 -/ state: taskStateRefype [1] F-- ~~ G + declareTask(taskType)
1 -/ id: taskRefType [1] & +getT Type, taskStateReMype)
@ + chainTask{taskType): statusType
+apphiode @ + activateTaskitaskType): statusType
ek L E— |
AppMode
T e—
[<swSchedulab, «swSchedulab (CSERVOX_LE

BasicTask ExtendedTask +events Event

Figure 3.17: The implementation of the OSEK task class

from OSEK concerning tasks, called TaskService, this contains the operations
available through the API.

The advantage of this implementation over the pure interface implementation
is that while this is more complex to create, it is easier to use. If one wishes to
use this model, one could create a BasicTask and it would have all the necessary
features available to it.

During the MARTE analysis it was shown that defining a periodic task in
OSEK/VDX requires a number of objects to be defined, a task, an action,
an alarm and a counter. This setup also has to be defined in the library, in
order to enforce that consistency, how this is done can be seen in figure [3.18
where that setup is defined. Here it is defined that any swSchedulableresource
of the type 'periodic’ has to live up to the PeriodicOSEKTask layout.

While there is no point of going over the entire OSEK library, since most
of it is defined just like the task, it does have one last feature worth mentioning.
Even though it is relatively simple, the model uses a state machine to define the
behavior of a BasicTask, this state machine, which can be seen in figure |3.19
shows a simple way to define behavior, and limit the possibilities of a task. The
fact that a task can be suspended allows the task to be interrupted by higher
priority tasks that needs the processing resources or similar.

44 MARTE Analysis

«3wichedulableResources
type = periodic
periodElements = [autoStart]
priotityElements = [priority]

ctarkRizaFlarmante = letarlkcizal

_ wswichedulableResourdes- _ i
' PeriodicOSEKTask

R task: ExtendedTas...

action: Actio... alarm: Alar... |

50usTimer: Counter [1]

#
&

Figure 3.18: The pattern of a periodic task in OSEK

BasicTaskStateMachine

Running

Suspended

Ready

Figure 3.19: A state machine defining the behavior of the OSEK BasicTask

3.9 Summary 45

3.8.3 Generic Library

The conclusion reached in chapter[3.7] is that the creation of a new library would
be the best way to proceed. Now with the information gathered from looking
into the two available MARTE libraries some decisions can be made concerning
this generic library.

First off, because there wont actually be an API to model from, the focus of the
generic library should be less on interfaces. Already here it becomes clear that
the ARINC approach won’t be optimal, since it is completely interface based.
Furthermore, the ARINC approach is also the least user friendly when it comes
to actually using the library for modeling, and since one of the major points of
the generic library was that it should require as little new knowledge as possi-
ble, the solution that is easiest usable for modeling should be chosen. Therefore
the object oriented approach used by the OSEK/VDX library seems to be the
best choice, and will make the library more complex to develop but easier to use.

Another thing apparent from both libraries is, that while they inherit the
MARTE classes for the different objects, they seem to use very few, if any,
of the parameters and settings defined for those classes, making it appear as if
the inheritance is mainly done in order to get the objects to be of the right type,
and not because there is anything useful in the classes they inherit. In the case
of the OSEK/VDX library however, this might just be appearance because it’s
impossible to say for certain whether it uses the MARTE features for schedulers
and similar, since the complete lack of examples and documentation prevents
this. Since the generic profile doesn’t have a strict syntax it needs to follow, and
the MARTE objects already contain a high number of useful parameters, simply
adapting and using their parameters wherever possible gives not only the least
amount of work, it also insures the best compatibility with MARTE. It also
seems redundant to spent time on inventing something if it has already been
done, still it might be necessary to rename parameters and object so that they
fit with the general naming conventions for real time and embedded systems.

3.9 Summary

In this chapter the MARTE specification has been examined and the information
provided by it has been gathered in a reader friendly way. The main packages
relevant for both basic real time modeling and schedulability analysis has been
identified and the connections between these packages have been defined.

46 MARTE Analysis

MARTE has been determined to be a modeling profile designed by and for
users doing real time modeling within one of the real time fields that uses a spe-
cific RTOS for execution. This coupled with the lack of documentation makes it
difficult for users that doesn’t work within one of these fields or are experienced
with real time and embedded modeling to use it.

As a solution to this the creation of a generic library is suggested that sim-
plifies the MARTE specification, this generic library should only contain the
elements necessary for doing basic real time modeling, and should be easy to
understand and use.

The generic library should be based on the MAST analysis tool to determine
what information should be provided by a basic real time system for it to be
schedulable. The requirements of MAST will be examined in the next chapter.

CHAPTER 4

MAST

This chapter will take a closer look at the MAST analysis tool.
First a description is given of MAST in section In this section the major
issues in MAST will also be addressed.

Next, the different elements of MAST are listed and their purpose is described.
This will be the elements later used in creating the generic library. This is
done by going over the official list of MAST elements supplied by the MAST
documentation[3], adding brief explanations to each part.

Once all the elements of MAST has been described, an example supplied by
MASTI[8], to demonstrate the basic concept of modeling, is used to determine
which MAST elements is necessary to do a basic example, and how they are
connected. This will later be used to create the core functionality in the generic
library.

The elements not used in the basic example and as such not covered in that
section is then described, and their viability for the generic library is deter-
mined, keeping the focus of the thesis in mind.

48 MAST

4.1 What is MAST

MAST (Modeling and Analysis Suite for Real-Time Applications) is described
by its authors as ”‘an open source set of tools that enables modeling real-time
applications and performing timing analysis of those applications”’[10].

While the advantages of MAST, and why it was chosen in combination with
this thesis, has been touched upon in previous chapters, mainly the fact that
it accepts the most common real time models, and has the most used analysis
methods at its disposal is an important factor here. While it isn’t necessary to
bind one self to a specific analysis tool, by using MAST as the foundation for
the generic profile, it can be guaranteed that at the very least, the most common
models will be available in the library. The idea is that in the final product, the
user will freely be able to use another analysis tool and the profile should still
cover it, MAST is just to be used as inspiration and verification for the model.

While MAST is chosen for inspiration, and one of the arguments was its text-
book naming style, there is one rather big exception that should be addressed,
namely the concept of tasks. In MAST a task is called a scheduling server,
which initially seems far from the logical choice for it. In order to understand
this name, a deeper insight into MAST is required, especially into the modeling
principles of earlier versions. In version 1.2 and before, MAST models didn’t
contain a scheduler as an element on its own, instead the scheduling policy was
defined partly on each task and partly on the processing units, and tasks were
then connected to the processing units that was to execute them. This model
can be seen in figure [£.1]

In later versions, this method was found to not be satisfactory, and instead
a new model was derived, which has one or more schedulers handling all the
scheduling and communication with the processing resources, and the tasks
connected to this scheduler. This was done, among other things to allow for hi-
erarchical schedulers in the model[7]. This new model can be seen in [4.2] where
the hierarchical structure can be seen, and the scheduling servers has changed to
‘simply’ just being tasks. As will be looked into later, even the MAST descrip-
tion of the scheduling server sees them as ”tasks, processes, threads”. However
the MAST development team decided to keep the name Scheduling server on
these elements. This could have been done so as to not confuse existing users, or
perhaps the tool still allows for models made using the old setup to be analyzed.
This isn’t entirely clear from the documentation and any further look into the
reasons for keeping the name would be plain speculation, and since the reason
isn’t important for this thesis it is simply accepted.

4.2 MAST Elements 49

Scheduling

Server

Processing

Resource

Figure 4.1: Before the update to MAST, the schedulingservers (tasks) connected
directly to the processing resources

4.2 MAST Elements

In this section, the elements of MAST will be analyzed, and their significance
looked into, with regards to the generic profile. The MAST documentation pro-
vides a very complete list of all elements and their attributes, these can be found
in [3]. Below the categories can be seen accompanied by a short description of
the elements they contain, and an attempt to relate the importance of these
elements to MARTE.

4.2.1 Processing Resources

While this list contains every element in all aspects of MAST modeling, there
are some parts of it that isn’t relevant here. The first category, Processing
Resources, is focused on hardware, this is needed to model a real time system,
but as explained in the description of MARTE, hardware modeling is unaffected
by the support profile in use. Therefore, it isn’t necessary to model hardware in
the generic profile, and that entire category can be ignored, seen from a MARTE
perspective.

50 MAST

Scheduling ¥ |7 | Scheduling
Parameters Server
P
oA
AN

444

Scheduling - - Secondary
Policy Scheduler

Scheduling || 7 | Scheduling
Parameters Server Scheduli . Sc —
Server Parameters
S
o
NN .
R
[4
Scheduling - - Primary
Policy Scheduler

|t

Figure 4.2: MASTS scheduling structure [3]

4.2 MAST Elements 51

4.2.2 System Timers

The MAST description for system timers are ” They represent the different over-
head models associated with the way the system handles timed events” [3], this
means that system timers are elements made to define the overhead/delay be-
tween an event is supposed to start, and when it actually starts. This is espe-
cially interesting if one is dealing with a system using a ’ticker’ clock. A ticker
is a clock type that works with some predefined period, and every time that
period is up all events that has reached their activation time since the last tick
is activated. This can obviously cause a delay, especially for big tick periods,
and it can also force several events to be executed together, which can cause
further delay if they later need to wait for each other to finish, etc.

4.2.3 Network Drivers

Network drivers are defined as ” They represent operations executed in a proces-
sor as a consequence of the transmission or reception of a message or a message
packet through a network.” [3]. Basically, they define tasks received through a
network, which means tasks received from another system, or at least another
physical location. One of the reasons for having these elements is that when
something comes through a network, instead of being in the system, additional
overhead situations arise, depending on how network transmissions are handled.
For this thesis however, the network drivers are not going to be a focus, because
they are roughly speaking just an extension to tasks, if at a later point they are
found to be needed, they can be implemented as such.

4.2.4 Schedulers (primary scheduler, secondary schedulers,....)

This category contains the description of both the primary and the secondary
schedulers, the only real difference between these two elements is that the pri-
mary scheduler is connected to a processing unit, and the secondary scheduler
is connected to a scheduling server as its executer.

4.2.5 Scheduling Policies (fixed priorities, EDF,...)

This is the different Scheduling policies available, scheduling policy objects are
a required input to a scheduler. MAST supports a number of different policies
each with their own parameters.

52 MAST

4.2.6 Scheduling parameters (priorities, deadlines,...)

The scheduling parameters are input to a scheduling server, but as described
earlier they are used by the scheduler. They are placed on the scheduling server
because some scheduling policies allows for several different scheduling behavior
to coexist, and the only way to represent this in a system is to have every
scheduling server define these parameters on their own. If no parameters is
available, the scheduler uses the default settings for whatever scheduling policy
it is using.

4.2.7 Synchronization parameters (preemption levels,...)

The synchronization parameters are also a class that is given to the Scheduling
server as input, this class defines how access to shared resources should be
performed. It is only necessary to define these parameters whenever there is a
situation were the Scheduling policy and parameters isn’t by themselves enough
to do this.

4.2.8 Scheduling Servers (tasks, processes, threads,...)

Scheduling servers, the class’s miss leading name was covered earlier. Currently
one can only make Scheduling server classes of the type ‘regular’ as this is the
only type viable in new models, but to preserve backwards compatibility older
types can still be used, they just wont work with a model conforming to the
current MAST model concept. Basically scheduling servers are tasks in whatever
forms they might appear, all schedulable entities in a system should be defined
as a scheduling server.

4.2.9 Shared resources (for mutually exclusive access)

As the name indicates, Shared resources are elements of the model that needs
to be accessed, but are bound by mutually exclusive access. In MAST there
are three different protocols for handling this, the Immediate Ceiling Resource
protocol, the Priority Inheritance Resource and the Stack based resource proto-
col (SRP). This is pretty much the only information a shared resource contains,
since the actual operations done on it and their runtime is defined in operations.

4.2 MAST Elements 53

4.2.10 Operations (procedures, functions, messages,...)

Operations define the concept of doing something, reading from a data storage
would be an operation, and the execution times one would associate with that
operation would then be the execution time of the data storage. One has to
keep in mind that data storage doesn’t necessarily mean a hardware module, it
could also just be a data server that one contacts and requests some data from.
Seen from the operations point of view one is still doing a reading of data, even
if what really happens is that one simply requests data from a server, which
then proceeds to access the physical data storage, pull the data, and send it.
These different levels of abstractions are allowed, and should be used so that
one keeps focus on the level of detail currently being worked on.

There are several types of operations available, the example given above was a
simple operation, furthermore one can make operations that consists of several
other operations added together either as simply a sequence of operations, or
merely as part of an operations execution. Finally one can also make message
operations which handle the concept of sending messages over a network.

4.2.11 Events

Events are elements used in transactions, there are internal and external events,
while there is only one type of internal event (regular) there is several types
of external events. The external events represent the way tasks can arrive, for
instance as periodic, singular or sporadic, combined with the timing for which
this happens. While the internal events represents the limitations of a task
after it has been started, for instance a deadline that needs to be kept, these
requirements are given to it in form of a timing requirement.

4.2.12 Timing Requirements

Timing requirements are given as input to internal events, they are used to
define the different requirements that an internal event is bound by, the different
kind of deadlines that an internal event must keep is an example of a timing
requirement. Other timing requirements are the definition of the 'max output
jitter’ or the 'max miss ratio’.

54 MAST

4.2.13 Event Handlers

Event handlers are the actions taken when an event is triggered, and most of
the time they result in the generation of one or more new events. There are a
number of different event handler types, the most common one being an activity
which executes some operation.

4.2.14 Transactions

Finally, MAST uses 'Transactions’ to describe the event flow in the system.
A transaction is a graph, it shows the external events in the systems and the
event handlers that these trigger, this leads to the events created by the event
handlers, etc. The transaction doesn’t in itself contain any information, its
purpose is instead to bind together the events and event handlers so the overall
system can be seen, hence the concept of flow is introduced.

4.3 Basic Example

As can be seen from the description of the MAST elements, there are several
elements to consider and not all of them are core functionalities, so instead of
trying from the first iteration to include all elements in the model, it seems
viable to use a different start approach. MAST has a ’basic example’ [§] which
it uses, among other things, to describe the basis input system of MAST. An
approach where an early iteration of the generic profile is created that simply
fulfills the requirements of this simple example, and can then later be expanded,
seems viable. This example, which demonstrates a basic system, consists of:

8 operations

4 tasks

2 shared resources

e 1 cpu

This is a simple setup of a basic real time situation, but it lacks a scheduler.
This lack of a scheduler is a result of the example being created for an older
version of MAST, and not being updated when the changes where made to the
MAST structure. Unfortunately none of the examples available from MAST is

4.3 Basic Example 55

Planning
Task

Planning Data

Server
Control

Task Control

Comm

: Server
Receive

Emergency

Emergenc
Task = i

Scheduler

Figure 4.3: The elements in the basic example from MAST and the connections
between them, when it is updated to reflect the current MAST modeling concept

updated to reflect its current modeling concept of having a scheduler defined as
an element and not as parameters on the scheduling servers.

In order to compensate for this, the example is updated so it reflects the current
MAST version. A scheduler is added to the system and the scheduling servers
are connected to the scheduler which is then connected with the processing
resource, instead of there being a direct connection between the processing re-
source and the scheduling servers. Likewise the scheduling policy is defined on
the scheduler, and the scheduling servers only contain information unique for
each task that is required to properly enforce the chosen scheduling policy. In
figure the updated system can be seen as the current version of MAST sees
it, here one can see the tasks being bound by a scheduling server instead of
standing on their own. Furthermore one can see that the operations are stand
alone objects and not, as one might have expected, parameters of the shared
resource that uses them. The example shows the elements needed in order to
model simple systems, therefore a list can be derived from it, with the elements
and information needed in the generic profile for the system to work.

As said previously, in general the CPU isn’t interesting from the perspec-
tive of the generic profile, it would be needed in a MARTE model for it to be
complete, but by being a hardware element it’s covered by the HRM function-
ality, and as such the generic profile can ignore it.

While one can argue that a shared resource can also be a hardware module,

56 MAST

in case of storage devices of different kinds, in this case they are to be seen as
software elements, such as variables, databases or even other systems. In the
example given by MAST, the 2 shared resources are a data server and a com-
munications server, while this is rather simplified it serves the purpose of the
example nicely. The data server contains data that the tasks can either read or
write, the communications server represents an element the tasks can either re-
ceive information from or send information to. While these operations are from
the tasks point of view basically the same (read and receive is both receiving
data and likewise write and send is sending data) they are here to illustrate the
different kind of elements that can be covered by a shared resource.

There are two sets of operations in this example, the first set defines the concept
of doing something to the shared resources and consists of read, write, send and
receive, while these operations are rather simple, and only affects one resource
each, MAST does support more complex operations that might use more than
one shared resource or similar. The main purpose of these operations is to define
the worst case run time for operating on the resource in question, and to define
the protected operations, which is operations that works on a shared resource.
The second set of operations defines what each task needs to execute, these
operations first of all binds together the protected resources that are used by
each task, and also defines any runtime that might be needed by the task but
isn’t connected to the usage of a shared resource, since the first set of operations
only defined the worst case execution time it would take to perform an operation
on one of the shared resources. In figure the operations and how they are
connected can be seen. It can also be seen that since this example is primitive
there is very little overlap on the shared resources.

Each task is, as explained earlier, called a Scheduling server. Besides from
having a name, they contain the parameters needed for the scheduler, if any
extra parameters are needed, and the parameters needed to perform synchro-
nization correct, the synchronization parameters are only present when more
information is needed for the scheduler than what can be derived from its own
information and the scheduling parameters. In this case, a fixed priority is used,
which means that each task must define their priority in their scheduling pa-
rameters.

After updating the example so that it fits the current version of MAST a sched-
uler has been added to the system. It contains a scheduling policy and providing
a link between tasks and processing resources. Since the example uses a fixed
priority policy there is no need to give extra information to the scheduler.

In this example there are 3 periodic tasks and one sporadic, each only exe-
cuting one activity, this means that 4 transactions are needed, these can be
seen in figure 4.4, Because of the simplicity of the example the information

4.4 Advanced features 57

E1 (o)} E2 . Qz
- Coritral - »| Plawing -
Periodic Task Hard Deadline Periodic Task Hard Deadine
T=100 ms D=100 ms T=150 ms D=150ms
E3 c8 E4 o1
- Status L= »| Emergency -
Periodic Task Hard Deadline Sporadic Task Hard Deadiine
T=350 ms D=350 ms Minknt=50 ms D=6 ms

Figure 4.4: The event flow of the basic example, showing the 3 periodic and the
sporadic task. E1-4 are External events, O1-4 Internal

supplied by the transactions are:

e The period or minimum arrival time of the tasks
e The deadline type and time

e The operation to be executed

4.4 Advanced features

The previous section went over all the information needed for the MAST ana-
lyzer to analyze a simple system. This chapter will look into which other features
MAST offers, that should be implemented in the MARTE profile. Initially it is
assumed, that every element in MAST to be implemented, so this section will
focus on why it might not be feasible or interesting to implement some features,
features that isn’t mentioned in this chapter, but are present in MAST, should
be made available in the model. The reason for not going through every element
is that most of them have already been touched upon in the description of the
different elements available in MAST. This section reaches the conclusion that a
feature should be implemented or left out regardless of what is already available
in MARTE. The choices are made based on their relevance for the goal of the
thesis, this means that when it becomes time to implement the features, some
of them might be implemented as easily as using an existing MARTE object
directly.

When adding features to the model, it is important to keep in mind that the
purpose of this model was to make an easy to use, easy to understand modeling

58 MAST

concept that can be used by people with little knowledge about real time and
embedded modeling and UML. One of the drawbacks of the MARTE profile is
that it was created to encompass too many features, the creators of MARTE
wanted to satisfy all the different fields of Real time modeling which leads to the
very complicated nature of MARTE and the need for these extension library in
order for it to be used for anything.

The processing units are still ignored, since they are hardware features, MAST
only supports some very basic features on its processing unit, which is well
within the capabilities of the MARTE HRM. The more advanced features avail-
able in MAST aren’t through physical hardware, but network resources, this
thesis has already determined that the concept of modeling network situations
is beyond its scope, as thus these are not included. For the same reason, net-
work drivers are also excluded from further analysis and won’t be supported in
the solution. The network drivers in MAST, while adding the ability to model
more advanced features, technically only adds a different kind of tasks to the
system that can take up resources, but because of the many different ways that
network drivers can arrive, they would add unneeded complexity to the system.

The MAST specification contains two different timer types, the alarm clock
and the ticker. The alarm clock is a timer that simply activates as close as
possible to the earliest event in the system. Basically this means that every
event will be started as close to its start time as the operating system in use
can measure, this clock type gives the lowest delay.

The ticker has a period, every time that period is up, all events with a starting
time that has passed since the last tick will be started. This clock type gives an
obvious delay.

While having more than one clock type adds diversity to the system, the ticker
clocks seems to have limited use, and while if possible adding it to the system
wouldn’t hurt, it is hardly worth adding too much to the model for. In worst
case situations, having the ticker clock available could confuse more than it helps.

In matter of schedulers, the ability to make hierarchical schedulers is a big
part of both MAST and MARTE, and having a secondary scheduler has very
little difference from having a primary scheduler. In fact, the only real difference
there, lies in the fact that the secondary scheduler gets its processing capacity
from a task instead of directly from a processing resource.

Hierarchical scheduling is used especially in systems with different levels of im-
portance on different sets of tasks, so that if some tasks fail or in some way fail
to meet their requirements, they will only affect the tasks they share scheduler
with. By then having critical tasks grouped on their own scheduler, even if other
tasks fail, the critical tasks will get the processing and data resources they need
in order to continue to function.

This kind of advanced modeling allows for the design of more complex systems,

4.4 Advanced features 59

while adding very little complexity to the model. Therefore, it is worth includ-
ing in the profile.

When it comes to scheduling policies however, MAST only supports variations
of Fixed Priority Scheduling and Earliest Deadline First scheduling. These are
two very basic scheduling policies, MARTE contains a number of other policies
that will automatically become available with the implementation of one them.
However, depending on how much extra information has to be entered in order
to use the other policies available through MARTE, these might not be fully
supported.

MAST has three protocols for protecting shared resources, together they cover
the most common approaches to resource protection, and should be included
for diversity.

The basic example that was examined in the previous section, uses almost all
the different operation types available in MAST, the only one not used is the
Message_transmission operation which handles messages transmitted through a
network, as with all other network elements this will not be implemented in this
iteration of the model.

Of more interest are the events available in MAST since these define the differ-
ent possible arrival patterns. In the basic example events representing sporadic
and periodic arrivals are defined. In addition to those MAST supports singular,
unbound and bursty events. Arrival pattern gives flexibility and complexity to
a system, since they allow different kind of events to take place, while singular
events are primitive elements that brings little complexity to anything. The
ability to make bursty tasks, or their extended version unbounded tasks, dras-
tically improve the modeling possibilities.

The last thing to look into in MAST is the different ways to design the exe-
cution flow, in the basic example a primitive flow was used, one external event
triggering one event handler, which in turn generated one internal event. This is
fine for making basic flows, but MAST supports much more advanced flow pos-
sibilities, the main ones being the Barrier and Multicast event handlers which
gives the ability to make join and forks respectively.

There are many other event handlers which aren’t as important but still worth
mentioning, the Delivery server and Query server handlers both generate one
event even though they have several outputs, the difference lies in the method
they use to decide which output to use.

The Delay and Offset event handlers generate an output event a certain time
after receiving an input event, again the difference lies in how the delay is de-
termined.

The Concentrator and the Rate Divisor generate output events after receiving

60 MAST

a certain amount of input events, one in case of the concentrator and for the
rate divisor it is defined for each instantiation.

The last event handler available is the System Timed Activity, which shares
many of the parameters of the activity, but instead of being triggered by an
external event, it is triggered by a system timer.

What all the advanced event handlers have in common is that they cant contain
operations, only the activity and the system timed activity can be connected to
operations, the advanced event handlers are designed only to create an elaborate
flow, making the branches needed for the systems run time behavior.

All features of the MAST analysis tool has now been examined and the ne-
cessity for them to be implemented in the generic library and thereby available
when doing MARTE modeling with the generic library has been determined
all information required to do the implementation has been gathered. Meaning
that the generic library can be created.

This implementation can be found in chapter [6] but before it is done it is nec-
essary to take a quick look at the Modeling tool in which the library will be
implemented, this is done in the next chapter.

CHAPTER 5

The Papyrus Modeling tool

It was decided early on in the project that the generic library should be imple-
mented using the Papyrus modeling tool. This decision was based mainly on
the fact that while a number of tools is referenced by MARTE as usable[15],
the Papyrus tool is the one having the strongest backing. Two official support
libraries are released for it, and the developers of Papyrus are also involved in
the MARTE profile creation. There is a number of issues one should be aware
of when using the Papyrus tool, and this chapter will look into those issues.
The biggest issue encountered will be explained in section along with the
explanation of the problem, the impact it will have on library creation will be
covered and a method to overcome it will be devised.

5.1 Missing inheritance

MARTE relies heavily on inheritance between the different objects. A good
example of this can be found by looking at the scheduler object. The sched-
uler is defined in the GRM package, but it is connected to elements throughout
the MARTE specification, swSchedulableResource, saExecHost, swMutualEx-
clusiveResource, and the saSharedResource all has a connection to the scheduler
just to mention a few key examples.

62 The Papyrus Modeling tool

This is possible because these stereotypes are all children of elements in the
GRM package, and the Scheduler is defined to function with their respective
parents. It is done this way because the following definition applies in UML
with regards to generalization (inheritance):

7‘Generalization means that objects of the child may be used anywhere the
parent may appear, but not the reverse. In other words, generalization means
that the child is substitutable for the parent.”’[2]

In this case this means that in a situation where a schedulableResource could be
used, swSchedulableResource can be used instead, since it is a child of schedu-
lableResource, thus making it possible to define the tasks associated with a
scheduler to be of the stereotype swSchedulableResources. It seems however
that Papyrus doesn’t accommodate this concept, while Papyrus will accept a
schedulableResource as parameter to the scheduler, the swSchedulableResource
can’t be used.

An implementation example of this can be found when looking at the OSEK/VDX
library, and trying to model with this. In this library a new scheduler is defined
to fit the needs of OSEK/VDX, this scheduler accepts objects of the type "task’
as parameters, the same way the default MARTE scheduler accepts schedula-
bleResources.

In OSEK/VDX, Task has two children, BasicTask and ExtendedTask which are
the objects to be used for creating tasks, the 'Task’ class is defined to contain
the common parameters for these two classes. If one creates an instance of
BasicTask, this instance will not be considered valid input for the scheduler,
where a Task instance will be. Since BasicTask is a direct child of Task this
contradicts the UML specification for generalization, and the fact that it has
been implemented like this in the OSEK library, even though it doesn’t work,
indicates that the authors of the library also assumed it would work like that.

To ensure that this isn’t an error in the MARTE profile for Papyrus, a simple
test example was created to verify this fault. In Appendix [C] a simple Papyrus
project can be seen consisting of 3 classes, A, B, and C. B inherits from A, and
C takes an object of A as parameter to its only property.

Then creating instantiations of all the classes, it can be seen that while the
instance of C will accept the instance of A as its parameter, it wont accept
the instance of B which it should according to the inheritance rules of UML. A
question has been raised to the Papyrus developers as to whether this is indeed
a fault in the tool or not.

Regardless of whether this is a fault in Papyrus, or purposely done like this,
it means that for every class created in the generic library, all other classes us-
ing the parent of the class has to be redefined and use this new class instead.

5.2 Missing Elements 63

Objects like the scheduler, which is already in MARTE well defined and contains
the properties necessary to comply with the requirements of the generic library
has to be defined in the generic library in order for it to accept the elements
being defined in the generic library.

This means a limitation to the amount of 'free’ features available with the li-
brary, because everything has to be redefined before it can be used.

An advantage of this need for redefining is, that when redefining it is possible
to only include the properties that are needed for the modeling requirements of
this specific library. This way an element like the swMutualExclusiveResource,
which contains 18 different properties of varying degrees of complexity, can be
reduced to only contain the ones necessary for the level of modeling being done.
It is always, and easily possible to extend the library later to contain more com-
plex properties should the usage of it become more complex and as such require
it. This way the solution can be tailored to match the complication needs of
any given situation.

5.2 Missing Elements

There are also a few objects from the MARTE profile that seems to be missing or
is implemented in a way that doesn’t make it possible to use them as stereotypes
for classes. While there is no explanation for why a few of these elements are im-
plemented differently, it will be pointed out when the need for using them arises.

For this thesis the only part of the papyrus implementation of MARTE that
has been looked at, is the parts necessary for the generic library, whether or not
the remaining parts of the implementation is complete is therefore not guaran-
teed.

5.3 Summary

While there are a number of issues with the Papyrus tool, they are all mainly
annoyances. Adapting to overcome them will cause extra work and add compli-
cations to the library, but it can at the same time be used to make the library
simpler for the end user who models with it.

64

The Papyrus Modeling tool

CHAPTER 6

Generic Library

The purpose of this chapter is first to use the knowledge gained from the MAST
analysis, and turn this into requirements for a MARTE library, more precisely
the MAST analysis found the information necessary in a model in order for it
to be complete enough for a schedulability analysis. This conversion will follow
the layout of the MAST chapter in the sense that it will first look at the basic
example from section and the conversion of this, once this conversion is done
successfully it will move on and expand the model with the advanced features
found in section [£:4] converting these to MARTE. Once an appropriate conver-
sion method has been chosen for each element, it will be implemented as part
of a UML package in Papyrus.

As seen from the MARTE analysis, in MARTE there is a difference between
modeling a real time system, and modeling schedulability analysis information.
This is divided into two different models, one consisting of the SRM and HRM
modules, the other one consisting of the SAM module. The model being cre-
ated here should respect this division. This means that when the adaptation
of MARTE is done in to make the generic library support the requirements of
MAST, the process has to consider not only which MARTE elements it would
be best to extend for specific elements, but also in which model layer the infor-
mation belongs. To do the adaptation with least confusion, it is done in two
iterations. The first one will identify and convert all the elements relevant for
real time modeling in such a way that the resulting model has enough informa-

66 Generic Library

GenericDataTypes

A4
.
.
.
T
) N
i N
i
p :
admparts ‘
r’ !
.
i | «imports dimport,
, ' .
ﬁ. HRM Extensions .
SRM Extensions SAM Extensions

Figure 6.1: The layout of the generic library, the 3 extension packages all import
the datatype package to gain access to the common datatypes and enumerations

tion to be viewed on its own and make sense. The second will focus on the NFP
values necessary for schedulability analysis and convert these to the appropriate
SAM elements.

The generic library, entitled *GenericAPI’, will, to respect the earlier mentioned
division, be split up into a number of sub packages.

The SRM extension’ package will contain the elements that either stereotypes
elements from the MARTE SRM profile package or elements determined to fit
best into this sub package of all the available packages.

The "HRM extension’ package will contain the elements that stereotype elements
from the MARTE HRM profile package. It is meant to be used in conjunction
with the SRM extension package to create the real time layer, representing and
defining the key elements in a real time and embedded system.

The 'SAM extension’ package, like the other packages, contains the elements
that stereotype elements from the MARTE SAM package, the classes made in
this package is meant to be used as their own model, creating the Schedulability
Analysis layer, enabling schedulability analysis of the system.

Finally the library will contain the 'Generic Datatypes’ package, this package
will contain the enumerations, datatypes, and possible shared types necessary
across the packages. The library layout is so that the the three extension pack-
ages all import the Datatype package, making the objects defined there available
to all three. This concept can be seen in figure [6.1]

The library model is an extension of MARTE, therefore it should strive to
keep the layout of MARTE. This is ensured by dividing the library into three

6.1 Basic Example 67

packages, each extending a MARTE package, the SRM Extension handles the el-
ements of the MARTE SRM module, the HRM Extension handles the MARTE
HRM module and finally the SAM Extension will handle the SAM module.
While this has little effect when using the library, it makes it possible to easily
see where the different objects of the library comes from, which will make it
easier for someone to make changes to the library should such a need arise.

When using the completed Library implementation to create models, the nature
of importing means that not only will the generic library classes be available to
the user, the many stereotypes of MARTE will also be available. This means
that the list of available objects one has to chose from when using Papyrus to
generate instantiations of objects becomes overwhelming. To make it as simple
as possible for the user to find the relevant classes, those of the generic library,
they will all be given a ’Ge’ (Generic) prefix.

6.1 Basic Example

The basic example as it is defined in section is the first thing to be imple-
mented with MARTE, in order to do so, it is necessary to find all the information
the example provides, determine which MARTE objects these information re-
lates to the most and finally decide whether this information can be supplied
by existing parameters of that object, or a new parameter needs to be added to
the object. In some cases it might even be necessary to create a new object all
together.

6.1.1 Real Time model layer

Converting elements to fit the real time model layer is the first iteration of
the conversion process, the main focus of it is all the functional values: Tasks,
schedulers, hardware and the likes. It will contain all the elements that fits
with the MARTE SRM and HRM modules. It will contain the possibility to
add information that will also be available in the Schedulability layer, this is a
result of it having to be viewable on its own and some information is interesting
to have available even when the overall viewpoint isn’t schedulability analysis.
Which NFP information that it would be prudent to have available in the Real
Time layer is chosen based on a number of factors which includes the way it is
defined in MARTE and MAST respectively. Since the concept of MARTE is
so that every modeling layer is viewable on its own, the information that was
found relevant for a layer during the development of MARTE, should be given

68 Generic Library

consideration.

6.1.1.1 Processing resource

The first element one encounters when looking into the example is the processing
unit, while little focus has been put on hardware elements in this thesis, it is
still necessary to consider the processing units of the example because of the
inheritance problems in MAST, if elements defined in the generic library is
to connect to a processing resource, it needs to be defined as an element in
the generic library. Hence a class should be created that is stereotyped by the
MARTE processingResource, this object would belong to the HRM Extension of
the generic profile, since it represent a hardware resource. In the basic example
the only parameter defined for the processing resource in use is the worst context
switch time, but this is a NFP value, and as such doesn’t belong on this layer
of the model, but instead in the SAM extension. So in order to accommodate
the basic example, no information needs to be added to the processingResource.
This makes it a very trivial class at this point in the development.

6.1.1.2 Scheduler

Both MAST and MARTE supports a hierarchical structure of schedulers, this
gives a common ground to begin from. Just as MAST requires a secondary
scheduler to get its processing unit capacity from a scheduling server, MARTE
requires their secondary schedulers to get processing time from a schedulable
resource.

Knowing that both systems use the same structure for modeling scheduling sys-
tems, means that little has to be done. The basic example only uses a primary
scheduler, and as such the secondary scheduler concept doesn’t have to be imple-
mented at this level, but ensuring that the approach chosen is compatible with
possible extension is important. Since the hierarchical structuring was already
supplied, attention is turned to the other information the scheduler provides the
system within MAST. A class is to be made stereotyping the MARTE sched-
uler, since the scheduler in MARTE is defined in the GRM package, it doesn’t
actually belong in neither the SRM nor the HRM extension, but a layer above.
However its ties are strongest with the SRM package since it connects with most
elements in that package, therefore this is where it is placed.

In the basic example the scheduler is responsible for the following information:

e The scheduling policy

6.1 Basic Example 69

« enumeration »
SchedPolicyKind

EarliestDeadlineFirst
FIFO

FixedPriority
LeastLaxityFirst
RoundRobin
TimeTableDriven
Undef

Other

Figure 6.2: The SchedPolicyKind enumeration, showing the different kind of
scheduling policies available in MARTE[21]

e A connection to the processing resource
e A connection to the shared resources

e A connection to the tasks using the scheduler

In MARTE the scheduling policies is a property of the scheduler, they are de-
fined in the SchedPolicyKind Enumeration which can be seen in figure [6.2
From the figure it can be seen that the default scheduling policies in MARTE in-
cludes the fixed priority policy that is used in the example, therefore no changes
is needed in order for this information to be provided. A property is added to
the scheduler class matching the ’schedPolicy’ property of the GRM scheduler,
since there is no upper limit to the length of property names, the new property
is called SchedulingPolicy for completeness and will require one parameter of
the type schedpolicykind.

In MARTE the connection to the processing resource is also created by the
scheduler, through the ’processingUnit’ property in which one define the pro-
cessing resource the scheduler works with. Here again no changes is needed for
the MARTE scheduler to live up to the MAST schedulers requirements, which
means the property can be directly reused, with its parameter altered to fit with
the generic profiles processingResource instead of the original MARTE one.

The shared resources are handled in MARTE by the "protectedSharedResources’
property which takes a list of ’MutualExclusionResource’-elements as parame-
ter, as with the processingUnit property these parameters has to be altered to
fit the generic profiles version of MutualExclusionResources instead of the orig-
inal MARTE ones, and since the scheduler only considers shared resources that
are protected, the property can be simplified to 'SharedResources’ without any
information loss.

70 Generic Library

zachedulers
GeScheduler

«3chedulers
processingUnit = [GeProcessingUnit]

: Ao . . schedulableResources = [GeTask]
tp;zEE_sgr;grggg.[gepmcessmgum [B-1] protectedsharedRsources = [GeSharedResource]

sharedResources: GeSharedResource [1] | ——————=
schedulingPolicy: SchedFolicykind [0..1] T

nnoo

Figure 6.3: The Generic Scheduler as it looks to accommodate the basic example

The last information handled by the scheduler is the tasks, this has already
been touched upon earlier, because of the distributed nature of the MARTE
implementation tasks and scheduler has to be connected to each other from
both sides. On the scheduler side this is handled by the ’schedulableResources’
parameter, which takes a list of 'SchedulableResource’-elements as parameters.
The generic version of this property is called Tasks and takes a list of 'GeTask’
elements as input, GeTask being the class that should be implemented in the
generic profile to represent tasks.

The resulting scheduler object can be seen in figure [6.3] with its parameters.

6.1.1.3 Shared Resources

In the MAST example there are 2 shared resources, 'Dataserver’ and ’Comm-
server’ respectively, the information attached to each of these are the protocol
to use for for the sharing, in case of multiple sources trying to access the re-
source at once. In the example, the protocol in use is the Immediate priority
ceiling resource protocol. Beyond that though there is no information attached
to these objects, information like read time or other timed events are defined
as operations and thus not actually part of the resource. In MARTE shared
resources are presented as a MutualExclusionResource, these objects define the
access protocol in the concurrentAccessProtocol property, which takes a pro-
tocol from the ConcurrentAccessPolicyKind. The Immediate Priority ceiling
resource protocol is defined in the concurrentAcessPolicyKind as "PCP’ (Prior-
ity Ceiling protocol).

6.1 Basic Example 71

While nothing else is defined in MAST about these resources, it is implicitly
defined that only one element can have access to the shared resource at a time,
even though a shared resource doesn’t necessarily have a limit of concurrent ac-
cess of one. A shared resource could be one that can handle any limited amount
of concurrent connections, in MARTE this is defined through the 'mechanism’
property, in which the method for gaining access to the resource is defined.
The one matching the situation here is in MARTE called 'BooleanSemaphore’
sharing mechanism, this is also the default value given to the MutualExclu-
sionResource objects in MARTE, it is a very basic mechanism with a boolean
flag that tells whether the resource is available or not. Since this is a given in
MAST, and the only available method for working with them, a lot of the more
advanced capabilities of MARTEs MutualExclusionResources aren’t needed.
Besides from the ability to define different mechanisms for access sharing, MARTE
also has a number of different Queuing policies implemented if a concurrent ac-
cess policy is used that requires a queuing concept to be defined. For the policies
available in MAST however this is not an issue.

The Generic version of the MutualExclusionResource is called GeSharedResource
and stereotypes the swMutualExclusionResource. The property handling the
concurrentAccessPolicy is called accessPolicy, and still takes an element from
the concurrentAccessPolicyKind Enumeration as its parameter.

6.1.1.4 Tasks

There is 4 scheduling servers in the MAST example, each representing a task.
Because of the simplicity of the scheduling policy in use, the only information
needed for the scheduler is the priority of each task, which are all well-defined.
Had other scheduling policies been in use, like earliest deadline first, the actual
deadline wouldn’t be defined on the scheduling server but would instead be de-
fined on an event which in turn would be part of a transaction. As it was with
the shared resource, no timing information is connected to the scheduling server.

In MARTE tasks are defined as SchedulableResources, and come with a va-
riety of parameter possibilities.

The SWSchedulableResource has a property that defines a priority, but because
it is defined to accommodate as many different systems as possible, instead of
having the priority defined as anything definite, its defined as a priorityEle-
ments, of the type "TypedElement’; basically meaning it can be specified to be
anything, based on what the implementing system needs. This means that in
order to use it in a case like this with fixed priorities, a definition needs to be
made allowing the priorityElements to be defined as simple integers.

An example solution that uses this approach, can be found in the implemen-

72 Generic Library

tation of the OSEK/VDX model where the priorityElements is refactored by
further defining it, the result is a property named ’priority’ which takes an in-
teger as its parameter. While it might have been just as simple to add a new
priority, name it priority and define its input parameter to be an integer, as so
totally ignore the priorityElements property, having these guidelines properties
that is then tailored to meet the exact needs of the implementation is a good
guideline for what properties an object should have.

The generic version of the schedulableResource is called GeTask, and it stereo-
types both the swSchedulableResource and the schedulableResource, this is nec-
essary because some of the properties of schedulableResource isn’t available in
swSchedulableResource, even though it is a generalization of it.

The properties that needs to be on the task is:

Its connection to a scheduler, which is achieved through the ’scheduler’ property
that takes an instance of the generic GeScheduler as parameter.

A list of the shared resources it needs to access during its execution, which is
defined in the ’sharedResources’ property that takes a list of generic GeShare-
dResources as parameter

The earlier defined priority, that takes an integer as parameter.

Beyond that it has to be decided what other information should be made avail-
able, the above lists the information crucial for the task to be able to fulfill its
job, but it has to be decided what other properties should be defined on the
task in order for the model to be viewable on its own.

That the task is the point with the biggest overlap in terms of NFP values that
could fit in both this layer and the Schedulability Analysis Layer is also reflected
in the MARTE implementation, by the swSchedulableResource having several
properties that can be extended. Information like arrival Pattern and deadline
are both NFP values, but at the same time important information for any real
time system. An important factor to consider is the availability of the infor-
mation at the time of modeling, for instance the complete execution time of a
task is doubtfully known before the task has been divided into steps defining
the actions it has to take, but the arrival pattern of a task is often known when
defining the pattern, will it happen periodic? or is it a sporadic event?
Likewise the deadline of a task will in most situation be known very early in the
development, a classic example, which is also mentioned in the introduction, is
the fuel injection of a car, where the deadline for the fuel calculation can be de-
rived based on information that is independent of the software, meaning that it
can be found before any implementation or even considerations with regards to
implementation is done. So at least having this information available seems rea-
sonable in order for it to provide a more complete model. This is done through
two properties, deadline and arrivalPattern, deadline taking an NFP_duration
as parameter and arrivalPattern taking an instance of the ArrivalPattern object
from the MARTE ’basic types’ package.

6.1 Basic Example 73

«SchedulableResources
dependentScheduler = GeSecondaryScheduler
«SwSchedulableResources
pritityElernents = [priority]
mutualExclugionResources = [sharedResources]
schedulers = scheduler
deadlineElernents = [deadling]

eswichedulableResource, schedulableResources
GeTask

prigtity: Integer [0..1]

deadling: NFP_Duration [0..1]

scheduler: GeScheduler [0..1]

sharedResources: GeSharedResource [¥]
arrivalPattern: ArrivalPattern [0..1]
dependentScheduler: GeSecondaryScheduler [0..7]

ELEEL

Figure 6.4: The generic version of the swschedulableresource

The resulting class can be seen in figure

The four classes now defined in the generic profile is enough to create the first
layer of the model for the basic example. The generic library as it looks in
completeness and a model of the basic example can be found in Appendix [A]
and Appendix [B| respectively. The Real time layer consists of all the elements
of the basic example, but without the NFP information necessary to do the
full schedulability analysis. These information will be gained through the SAM
layer which will be looked upon in the next section.

6.1.2 Schedulability Analysis Layer

This section looks upon the expansion of the generic library, which will enable
users to create a schedulability analysis model of a system, containing all the
information required to do a schedulability analysis of the system, and once
that is done represent the results of the analysis in the model. Like the previous
section it will go through the relevant elements of the basic example and convert
these to fitting classes derived from the MARTE SAM module.

74 Generic Library

6.1.2.1 Processing Resource

While the processing resource was defined as a hardware element in the real time
model layer, it also needs to be defined as a schedulability analysis element, be-
cause there is a number of NFP values connected to processing resources. In
the basic example the processing unit has a worst context switching of 0.25,
which might not be vital to the scheduling of the tasks in the example, but will
be for systems with less slack. This NFP value should be defined as part of
the schedulability analysis model, in the SAM module this kind of information
is meant to be represented by a SaExecutionHost. The SaExecutionHost was
created to represent any kind of processing resource, furthermore it contains a
property 'ISRswitchTime’ (context switch time of ISR (Interrupt Service Rou-
tines) interruptions) which can be used to represent the worst context switching
time from the basic example.

A new class is created in the SAM extension, called ExecutionHost stereotyping
the SaExecHost stereotype. A property is added to it called contextSwitchTime
representing the worst context switching time. It’s parameter is a NFP_duration
like the ISRswitchTimes, which it is based on.

6.1.2.2 Operations

The operations of the example, of which there are 8, contains all information
about execution time for the different parts of the system, the time it takes
to access shared resources for different purposes and the processing time that
tasks needs which isn’t connected to a shared resources but is simply compu-
tation time. As discussed earlier in the analysis of MARTE, these information
doesn’t belong in the SRM modeling structure of MARTE, but is part of the
SAM module. Therefore it seems fair to assume that all the information gained
from operations should be represented in the SAM Extension.

MAST defines 3 types of operations in order to achieve all the different combi-
nations, simple, composite and enclosing. the simple operation is the concept
of doing one thing, is has an execution time, and can have a shared resource
attached to it. this is the kind of operations one would use to define a read oper-
ation from a data storage for instance. Composite and enclosing both define the
concept of doing several things, they are both meant to be made up of one or
more other operations, a composite operation consists solely of other operations
where an enclosing operation consists of other operations but can also have its
own execution time that should be added with the other operations to define
the final operation, this concept is illustrated in figure [6.5

6.1 Basic Example 75

Enclosing

Operation

Composite Simple

Operation Operation

Simple Simple

Operation Operation

Figure 6.5: The 3 different operation types illustrated. Simple consists only of
its own execution, composite contains one or more other operations, enclosing
contains one or more other operations and it has its own execution also

The operations can roughly be compared to the steps in SAM. They have
quite many things in common, they are both the smallest pieces of the puzzle.
The simple operation matches the basic definition of a step, defining the execu-
tion of a small amount of code, which could for instance be a read operation.
A step however does require more information than an operation, where opera-
tions needs a list of shared resources they access and their execution time, steps
also needs to contain information about the task it is connected to, this is a
result of it being part of the SAM module which is its own model and not a
part of the model that initially defines the tasks and the processing resources.
Therefore it is necessary to tell the system what schedulable resource the step
is connected to. In general because the MARTE modeling is divided into two
models, it will be necessary to define some information in MARTE that isn’t
necessary in MAST, in order to link the two MARTE models together.

Like the composite operations in MAST it is possible to define a step as a
WorkloadBehavior in itself, and have it contain a number of steps, creating the
same concept as the composite operation. It is however not possible to create
an exact replica of an enclosing operation, if one wants to create an enclosing
operation with the currently available methods in SAM, one would have to com-
bine the implementation of a composite and a simple operation.

However to understand the implication of this, or lack of same, one has to look
at a key difference between modeling in MARTE and in MAST. The reason why
creating composite and enclosing operations in MAST is possible, and worth do-
ing is first of that it makes transactions easier to define, but second it allows for
reuse of operations. The basic example unfortunately doesn’t show this feature,
but if a task was added which, as part of its execution, performed any of the
things also being performed by existing tasks, like reading from the data server,

76 Generic Library

an operation could be defined that contained the Read operation, instead of
redefining the parameter.

In SAM however, because of the need to connect a step to a specific Workload-
Behavior and Schedulable resource, it isn’t possible to reuse the steps. If several
different tasks has to do the same thing, it will be necessary to define a step
for each of them doing it, even if that means the steps will look almost alike.
Likewise the need to simplify in order to make transactions easier to define isn’t
necessary since the steps are already ordered under a WorkloadBehavior, which
could be seen as a composite operation on its own, so regardless of the amount
of steps a task is divided into, there will always be a WorkloadBehavior above
it connecting them all.

All of this means that the enclosing operation isn’t as relevant in MARTE as it
is in MAST, and the fact that it isn’t easily modeled in SAM isn’t a loss worth
giving more attention.

Two classes are needed to model the different operations if one is to keep with
the MARTE modeling layout. A GeStep class representing the basic steps, and
a GeBehaviorScenario class representing the GaScenario.

For the Step most of the information that needs to be supplied through the
GeStep class is available already in the SaStep and as such only needs to be
extended. The class GeStep is created in the SAM Extension, stereotyping
SaStep, the information that it is necessary to supply the GeStep with is:

Execution Time

Shared Resource

e Task
e predecessor Steps

e successor Steps

These information are provided partly through the Steps properties, and partly
through associations with other objects.

The Execution time is defined in SaStep on the property ’hostDemand’ for clari-
fication it will be called ’executionTime’ on the generic GeStep however, it takes
an NFP_Duration as its parameter.

The connection to the shared resources that a Step locks in its execution is
defined through the ’sharedResources’ property, which matches the ’sharedRes’
property of the SaStep.

as it was described in the SAM analysis, a Step needs to have a connection to
the schedulable resource it belongs to, this connection is created by the 'task’

6.1 Basic Example 77

property, which matches the ’concurRes’ of the SaStep.

In SAM the predecessor and successor Steps of a Step, is defined through a
PrecedenceRelation object which works as a connector between the different
Steps. This is implemented as its own class, having a connectorType property
defining what kind of connection each instantiation represents. The possibili-
ties are defined in a connectorKind Enumeration. While the basic example only
contains operations connected in sequence, and advanced connectorKinds aren’t
necessary for it to function, they are defined explicitly still to allow for adding
more complex types should the need arise.

Unfortunatly the connectorKind and PrecedenceRelation isn’t part of the Pa-
pyrus implementation of MARTE, whether this is because they seem to be very
vaguely defined in the MARTE specification, and as such might not be complete,
or simply has been forgotten from the Papyrus implementation, is impossible
to say. Regardless of the reasons, these classes has to be added to the generic
library without stereotyping the elements they extend, in order for the SAM
layer to be complete.

The GeBehaviorScenario is triggered by an end-to-end flow, and contains one
or more Steps, in comparison with MAST it is a composite operation. It should
contain an execution time, which should represent the sum of the execution time
of all its Steps, and it should contain a property defining the first of its Steps
to be executed upon triggered. the Steps connected to it is realized through
associations. The advantage of the SAM layer over the real time layer is that
associations can be used freely, since all elements are defined at a central location
and are easily connectable.

6.1.2.3 Transactions

The final component of the example is the transactions, they represent the bind-
ings between the tasks and the elements they need to interact with in order to
live up to their functionality.

Just like the operations were comparable to steps, the transactions are roughly
comparable to end-to-end flows. Transactions contains external events that trig-
gers the execution of the operation connected to it, the operation when finished
then trigger an internal event.

The external event contains all information regarding arrival times for the trans-
action, and the internal event contains information about when the transaction
should finish, these are all information that the end-to-end flow was designed to
handle.

78 Generic Library

Beginning with the internal events, these define both the deadline and the dead-
line type of the transaction. As earlier mentioned deadlines values are defined
on the task as an informational feature, but in the context of a schedulabil-
ity analysis it is necessary to connect more information to it. Just knowing
what the deadline is, isn’t enough, it is also necessary to know the type of the
deadline, and because the SAM layer should be viewable as an independent
model, the deadline should also be present on the end-to-end flow, by means
of a NFP_duration type. In the SaEndtoEndflow, this deadline is represented
through the property ’end2EndD’.

In SAM, the observer package contains an object called a SchedulingObserver,
which inherits the ’laxity’ property from the TimingObserver object. The possi-
ble input for this property is defined in the LaxityKind Enumeration, and defines
the different deadline types available, in the default SAM implementation this
is:

e Hard
e Soft
Undefined

e Other

In the basic example all the transactions use the global hard deadline, which
matches the normal hard deadline available in SAM, so using this enumeration
would be sufficient.

This means that it should be possible to connect a SchedulingObserver to the
generic version of the end-to-end flow containing this laxity information. Unfor-
tunately the implementation of the schedulingObservation in the MARTE profile
is done in such a way that it can’t be stereotyped, instead a class GeSchedObs is
created which doesn’t stereotype anything, but is still inspired by the schedulin-
gObservation object from MARTE.

Another event type that the transaction contains, defines the arrival times and
type for the tasks. In the basic example this resulted in having periods for the
three periodic tasks and the minimum inter arrival time for the sporadic task.
In SAM this kind of information is bound to the end-to-end flow and defined
in the WorkloadEvent which contains a Pattern property taking input from the
ArrivalPattern datatype, which can be seen in figure [6.6]

The possible arrival patterns available through SAM are more than adequate
to accommodate the requirements of the basic example. So they are imple-
mented by adding the ’GeArrival’ class to the framework which is associated
with the GeEnd-to-end flow and has a property ’arrival’ that takes an arrival

6.1 Basic Example 79

« dataType»
« choiceType»
ArrivalPattern

periodic : PeriodicPattern
aperiodic : Ap eriodic Pattern
sporadic: SporadicPattern
burs t: Burs tPattern
irregular: IrregularPattern
closed: Clos edPattern
open: OpenPattern

Figure 6.6: The Arrival Patterns available through the SAM implementation[21]

pattern as input. The GeArrival class, like the GeSchedObs class doesn’t have
any stereotype connected to it, just like the SchedulingObservation stereotype,
the WordloadEvent stereotype isn’t usable as a stereotype.

Both the Real time layer and the SAM layer of the basic example can be found
in appendix Bl At first glance it can seem rather complex, which wouldn’t fit
with the concept of wanting to make a simple modeling method, unfortunately
the lack of functional inheritance in Papyrus and the need to stay with the
MARTE layout means that the result can’t be any simpler than what is seen.
However because of the way the generic library, and MARTE, is designed, as
the complexity of the system modeled increases, the complexity of the model
doesn’t increase by nearly as much, many of the elements defined in the basic
example are ’overhead’ elements, that are necessary regardless of whether one
is modeling simple or complex systems. This is especially evident in the SAM
layer, where the flow and behavior is only defined once pr flow, regardless of its
complexity. A more complex flow would require more steps and relations but
nothing else.

Another matter worth noting is that some of the elements can seem a bit redun-
dant, the Arrival class contains little more than the arrival pattern, which one
could be tempted to define as a property directly on the end-to-end flow and
that way cut away a class. However the layout follows the MARTE layout which
allows for several arrival patterns to be connected to one end-to-end flow, which
is something that cant be modeled by a property, but requires an independent
element to be understandable.

Finally when one looks at the SAM layer one has to keep in mind that this
layer is only necessary when wanting to do schedulability analysis, in fact if
one was to model a system purely for viewing from a design perspective it isn’t
recommendable to do use the SAM layer, instead one should stick to the Real
time layer which contains all the high level information.

80 Generic Library

«enueration »
GonaurrentAccessPratoad Kind

PP

PCP
NoPreenption
Undef

Cther

Figure 6.7: The ConcurrentAccessProtcolKind enumeration in MARTE, show-
ing the available concurrent access protocols in the default implementation of
MARTE[2T]

6.2 Advanced Features

When converting the basic example from MAST to MARTE many of the MARTE
objects used, contained the possibility for much more than the features used in
the example, deadline types, arrival patterns, scheduling policies and the likes.
This means that most of the advanced features are already available once the
basic features have been implemented.

First the shared resource protection protocols available in MAST are looked
into, as described in chapter [4] there are 3 such protocols available.

e Priority ceiling resource protocol
e Priority inheritance protocol

e Stack Resource Protocol

In MARTE the available protocols can be seen in the ConcurrentAccessProto-
colKind enumeration shown in figure and when comparing these it can be
seen that MARTE contains the Priority ceiling resource protocol (PCP) and
the Priority inheritance protocol (PIP). It doesn’t however contain the Stack
Resource protocol, and if this is to be available it needs to be added.

It isn’t directly possible to add new elements to an enumeration defined in the
MARTE profile, this leaves two possible ways to solve the situation, the first one
would be defining a new enumeration in the generic library, containing all the
elements from the concurrentAccessProtocolKind plus the Stack resource pro-
tocol. If the classes using the concurrentAccessProtcolKind was then changed
to instead use this new enumeration, this would be a quick way to solve the
problem, however this approach suffers from breaking with the MARTE profile,
the classes defined in the Generic library are all stereotyping MARTE, and as

6.2 Advanced Features 81

such is to be seen as extensions to the MARTE profile, and had it not been for
the inheritance issues in Papyrus, a number of the classes wouldn’t even have
been necessary. Creating a new enumeration however would mean completely
ignoring the MARTE enumeration, which also means that the generic library
wouldn’t be compatible should an updated version of MARTE be released which
for instance included new protocols in the enumeration.

The alternative approach is to use the build in flexibility of MARTE, that results
in all enumerations having an ’other’ option that can be chosen, the MutualEx-
clusionResource in MARTE has the property ’otherProtectionProtocol’ in which
a string can be entered containing the name of the protection protocol to be used
which isn’t available in the enumeration that MARTE supplies. This approach
is a bit more complicated to use, because it requires the user to know that the
protocol has to be defined this way, but at the same time it is the approach that
stays closest to the MARTE profile. The work needed to implement the two
approaches is very similar.

Since MARTE is still a young profile, chances are that there will be many up-
dates and corrections to it still, therefore it seems prudent to stay compatible
with any future releases, with a minimum of changes. This leads to the sec-
ond approach being chosen and a new property is added to the SharedResource
named 'otherProtectionProtocol’ where users will be able to define any protocol
they want to use, even beyond just the stack resource protocol.

The next feature to look into is the arrival patterns, in the basic example only
periodic and sporadic arrival patterns were used, but it was found that MAST
supports a number of other arrival patterns, as listed below.

Singular

Sporadic
Unbounded

Bursty

Again this is to be compared to the patterns available in MARTE, these have
earlier been illustrated in figure [6.6f The Bursty pattern is directly available in
MARTE in form of the ’burst’ arrival pattern, the difference between unbounded
and sporadic arrival patterns is that sporadic has an average and a minimum
interarrival time where the unbounded only has an average interarrival time,
meaning that no lower bound is defined for the unbounded arrival pattern. The
sporadic arrival pattern can be modeled by the sporadic pattern in MARTE,
and the unbounded pattern matches the aperiodic pattern. Both bursty and
sporadic arrival patterns are extensions of the aperiodic pattern.

This leaves the singular, the MAST singular ’pattern’ isn’t actually a pattern,

82 Generic Library

it is an event that only happens once. While the developers of SAM describes
the ArrivalPattern as ”‘This is a ChoiceType that contains the different kinds
of parameters that are necessary to specify the most common arrival patterns of
events.”’[2]] it seems they didn’t find a singular event type to not fit within these
limitations. Alternatively they singular arrival type might have been found too
simple for requiring its one field among the arrival pattern, but there seems to
be no way to input the information connected with a singular event type else-
where (it is necessary to input when it is triggered).

It could be advantageous to have the Singular arrival type added to the list
of possible arrival patterns. Unfortunately the arrivalpattern datatype doesn’t
contain an ’other’ option, meaning that the solution used to add protection pro-
tocols to the system can’t be used here. The only way to add a new element
to the arrivalpattern datatype would be to duplicate the arrivalpattern from
MARTE in a new datatype defined in the generic library. The consequences
of such an approach, would be that the generic library would become detached
from the MARTE profile. Should MARTE be updated with new arrival patterns
the generic library wouldn’t recognize this because it would have its own version.
Creating duplicate versions of elements present in MARTE should only be done
when it is necessary as a result of the original version not being implemented
correctly in the papyrus implementation of the MARTE profile. Unfortunately
there is no alternative way of adding the new arrival pattern to the frame-
work that would make sense to the users. Instead if is unfortunately concluded
that including the singular arrival pattern in the framework is too complex and
should be left out. The best way to get it included would be to request it to be
added to the official list of arrival patterns in the MARTE profile with its next
update.

In the basic example section, it was determined that steps are somewhat com-
parable to operations, and while this is true for the information they supply, it
is not so for the definition of flows, but because of the simplicity of the flows in
the basic example the difference between the approaches to flow handling didn’t
become obvious. In MAST more complicated flows are defined through event
handlers, but advanced flows can only be modeled for the interior runnings of a
task, the flow of the tasks themselves is the responsibility of the scheduler and
not the modeler. So while the transactions in MAST and the End-to-end flows
in SAM are the elements responsible for defining the arrival patterns and the
execution of the tasks, the internal flow of these elements are defined in MAST
by the event handlers and in SAM by the steps. This means that the steps
handle both the information of the operations, and the flow specifications of the
event handlers. In figure the modeling of a task and its internal flow can
be seen as it is done in MAST, and in figure it can be seen as it would be
modeled in SAM.

While this might seem like a minor difference, it is still worth looking into. In
SAM steps are connected directly to each other through the PrecedenceRela-

6.2 Advanced Features

83

Arrival Pattern
&

Deadline

Transaction

Event
handler:

Activity

Event Operation
handler:

Multicast Event
handler:

Activity

Operation

Internal flow
of task

Event
handler:

Barrier

Figure 6.8: The internal flow of a task, a fork followed by a merge, as it is

defined in MAST

84 Generic Library

Arrival Pattern
&

Deadline

End-to-end flow

Internal flow
of task

Figure 6.9: The internal flow of a task, a fork followed by a merge, as it is
defined in SAM

tion, which directly determines the steps a given step is dependent on. This way
for every step one can see which other steps has to finish before it can execute.
While this is divided into two parts in MAST. This ties directly into the earlier
mentioned fact that operations can be reused for many different tasks, because
their location in the execution flow is determined through event handlers. An
operation doesn’t contain any specific information about when or where it ex-
ecutes or in combination with what, since it has already been determined that
steps can’t be reused for many reasons, having the information from the event
handlers connected directly to the step seems like a fully acceptable approach,
nothing would be gained from separating these elements in SAM.

All of this is directly relevant to the conversion of the advanced MAST features,
as the event handlers define a number of advanced flow combinations, which
should be compared to the SAM capabilities. The possibilities in SAM can be
seen in figure these different methods allows for the creation of more com-
plex flows than what was seen in the basic example.

The sequence type is the flow pattern seen in the basic example, forks are when
one step leads to several others, merges are the opposite, several step becoming
one. Finally the branch connector is a connector type where, like the fork, one
step leads to several others, but instead of activating all the successor steps, in
a branch each successor step has a probability of being selected.

6.2 Advanced Features 85

«enumeration»

GQAM_Workload::
ConnectorKind

Sequence
Branch
Merge
Fork

Join

Figure 6.10: The different possibilities for defining flow types in SAM

Activity / Rate Divisor / Delay / Offset

— -
Concentrator N Barrier
e N T
Delivery / Query Server Multicast
—- — - '
oo Ry
T, T,

Figure 6.11: The event handlers available in MAST

In MAST the possible event handlers can be seen in figure Some of these
event handlers can be directly converted to one of the SAM connectors, the bar-
rier matches the merge and the multicast matches the fork. While pattern wise
the Activity /Rate divisor/Delay/Offset all matches the sequence connector, only
the activity is a direct translation of it, the others all have advanced features
connected to them, because the step contains both the information from the
operations and the event handlers however, these advanced features shouldn’t
be handled through the connector types, but instead by the parameters defined
in the steps.

The rate divisor doesn’t generate an output event before a set number of input
events has arrived.

The Delay waits after receiving an input with generation the output. This can
be achieved through the selfDelay property defined in SaStep, which is extended

86 Generic Library

to be available in the generic library

The Offset like the Delay waits with generating its output, the difference is
that the delay is started from some previously arrived input event, and not the
newest one.

A concentrator generates its output event when it receives input on any of its
input events, this matches a merge connector.

Both the delivery server and the query server are special cases of the branch
connector, they only generate output on one of their output events whenever
triggered, and then use different algorithms and parameters to determine which
output event to trigger. Currently MARTE doesn’t contain the possibility for
defining how the probability of a branch connector looks, all that is known is
that it is controlled by some probability. In order to use the Query and Delivery
server which has more specific probability paths it must be possible to define
the pattern being used.

The delivery server can use either a scan parameter in which the output event
is chosen in a cyclic fashion, or it can be random, in which the delivery method
is chosen completely randomly.

In the Query server the possibilities are a scan approach like the delivery server,
highest priority, FIFO or LIFO.

Since the connectorKind enumeration isn’t defined in the Papyrus implementa-
tion, and had to be defined in the Generic library, there isn’t the same concern
with expanding an enumeration as there was with the protection protocols on
the shared resources, therefore the smartest approach to the many new even-
thandlers is to add them to the connectorKind enumeration, and then add the
necessary properties to the precedenceRelation for it to be possible to define the
extra information some of those event handlers requires.

Finally as part of the advanced feature section, an element should be men-
tioned which isn’t necessary for the MAST implementation, but is used to make
the connection between MARTE models and ordinary system models in UML,
this is the entry point association which is used to mark the entry point of a
schedulable resource. The entry point association could be seen used in the
OSEK/VDX example given in chapter [3[and can further be seen used in a num-
ber of small examples in the MARTE specification[21].

No changes are made to this association, but it still deserves mentioning since
it is a vital part if one wants to use MARTE to model the real time layer of
an existing standard UML system model, for models that illustrate pure real
time systems, like the basic example looked upon in this thesis, the entrypoint
association has no use, and neither does it from a schedulability analysis point
of view, its sole purpose is to bind schedulable resources with their associated
methods in an UML model.

CHAPTER 7

Connecting UML models with
MARTE

In the MARTE analysis in chapter [3] a description was given explaining how
MARTE is intended to be linked with an UML model of a software system by
means of the entryPoint Stereotype.

This chapter is intended to further show how UML models can be linked with
MARTE, by means of a practical example.

This wasn’t done during the MARTE analysis because the elements needed for
creating such an example hadn’t yet been created.

Now that the generic library is created and tested however, all the material
needed for linking an UML system model is available.

In the MARTE specification it is explained that the connection is done by mak-
ing a dependency between the task and the method which has to be executed
in the context of that schedulable resource.[2]]

88 Connecting UML models with MARTE

RobotController

(OSERAVDK Librany - OSERNDX_Plattorm:: Osck/ VDX Libran)

MotionController 0sekANX] ihrary
+ robat; RobotDriver [0..1]
- nb_miszion: Integer [1]=10 RobotDriver CSERAFDX Librans OSEKN D
- speed_factor: Integer [1]=1 + robot i Bas..:Tﬂ;sk
- speed_factor_tumrate: Integer 0.0 [1 opdate] ;

- cwy,va, state): Integer | ||| «&Eme
+temminate() + createl Integer (OSERIVDX Librany::-OSEK/Y.
+trajectoryControl() + delete() Intoger Alarm
+ acquire) +getSo J: double

iy <timinaResources

(OSERNDX Librany OSER/.
Counter

\<entyPoints

‘umunm}/"
\ SRM stereotype to bind e
e application and platform | -

alarmAcqu : Alarm

acquisition : BasicTasK counter = counte

"
briority = 2 action = alarmAcquAction
schedule = FULL. autostart = alarmAcquautostart
activation = 10
autostart=ralse
stacksize - 32708

alarmAcquAction : Action alarmAcquAutostart : Autostart counter : Counter

Kind = ACTIVATETASK
task-acquisition

AlarnTirne =1 Al vwedy alue = 255
cycletime = 1 ticksParBase -1
annmode = [std] minCycle =1

i

’ Period of the periodic task acquisition : 1 ms
|

Figure 7.1: An Example modeling of a periodic task, using MARTE supported
by the OSEK/VDX library[20]

7.1 MARTE Tutorial Example

In the MARTE tutorial there is an example model made in UML that shows
how the connection between MARTE and a software system is created, figure
[3.5] illustrated this, this figure is reposted in figure [7.] to ease the reading.

Since the OSEK/VDX Library that is used in the example is available, and the
example is created in Papyrus, duplicating it is possible. However when doing
this one encounters a problem.

In figure the example is tried implemented. Only the elements of direct
relevance to the entryPoint concept is added. On this figure an instance of a
BasicTask is created, and a class containing the operation ’acquire’ is added.

Creating a dependency from the instance to the operation is no problem. How-
ever, when attempting to apply a stereotype to the dependency, Papyrus shows
that no stereotypes can be applied. One must assume that if additional imports
where done to the TaskModel to allow the entryPoint stereotype to be bound
to the dependency it would be illustrated in the example.

If one adds the entire MARTE profile to both the RobotController package and
the TaskModel model, a number of stereotypes becomes available that one can
add to the dependency, not the entryPoint though. The same result is received
if the MARTE profile is applied to the entire project.

So even when creating a copy of an official example, using the official OSEK/VDX

7.2 Example linking of MARTE and a software model 89

RobotController
5]
Applicable Stereotypes: Appiied Stereotypes:
MotionController
acquire() = it
B
K @ &
oK Cancel

model N
TaskModel , TOSERVIR, Librany GRERVOX_Platiorm)

Osek/VDXLibrary

acquisition : BasicTask

L« dimports

Figure 7.2: An attempt at duplicating the example from the MARTE tutorial,
It is not possible to add the entryPoint stereotype to the dependency

library and MARTE profile, the results received in the example can’t be reached.
It is obviously possible, since it has been done by the creators of the MARTE
tutorial[20]. How it was done, is however unknown, and attempts at contacting
the people behind both the tutorial and the Papyrus project has been fruitless
throughout this project.

7.2 Example linking of MARTE and a software
model

The fact that the entryPoint stereotype isn’t working, can be seen as a minor
issue. It is obviously possible to use it, and even if not, it is an issue with
Papyrus and not MARTE or the generic library. Therefore an example can be
created. Inspired by the Basic Example which was implemented in chapter []
an UML model is created of a fictive software system. This system contains two
classes "EmergencyHandler’ and ’'StatusUpdate’ and can be seen in figure [7.3]

The EmergencyHandler class is a class which is triggered when an outside
trigger sets the system in an emergency mode, when this happens the initi-
ateEmergency method is called which shuts down all operations and forces a
System reset.

The StatusUpdate class has a periodic trigger, when the trigger calls, the up-
dateStatus method is started. UpdateStatus then connects to a communication

90 Connecting UML models with MARTE

RemoteControl

EmergencyHandler StatusUpdate

= emergencyMode: Bolean = curentStatus: Intsger [1]

& initiateEmergency() @ upda\e§t51u50
\ 3
0 R

+ <<entryPaint-» "\ <<entrPoints»

«modsly
realTimeL ayer

emergency : GeTask status : GeTask «models

= sp st priority =1
priority= 4 deadline = {350, ms} -
deadline = {5,ms} arivalPattem = PeriodicP attern{period=(350,ms}}

impo

Figure 7.3: An example of how an UML model of a software system can be
extended with a MARTE layer depicting its real time critical operations

server and receives the newest update to the status, and displays this. The sta-
tus is defined as an integer and is seen as a flag, numbers representing different
status states. Certain flag values can even trigger the systems emergency mode.

Now both of these methods are real time critical in our example. To handle
this, the tasks emergency and status are created. Each of them is then bound
to the operation they represent by means of a dependency, which would stereo-
type the entryPoint stereotype from the MARTE profile if this was possible,
since it isn’t currently, the dependencies are instead named ’jjentryPoint;; and
their names are displayed, this gives a model that gives the correct picture of
the situation.

With regards to the transformation from MARTE to MAST, the fact that the
dependencies don’t correctly stereotype the entryPoint is of no consequence,
MAST only observes the MARTE layer of the model and as such ignores the
UML system.

CHAPTER 8

MARTE to MAST

This chapter will look into the possibility of converting a MARTE model to
a MAST input file, enabling the possibility of a schedulability analysis of a
MARTE model directly.

While this transformation will be done manually in this chapter, the idea is
for it to be an automated process achieved through software capable of doing
the conversion. However creating such software has proved itself to be beyond
the scope of this thesis and will have to be looked upon at a later stage.

While there has been found several similarities between MARTE and MAST
and a number of the generic libraries elements are heavily inspired by MAST,
the transformation isn’t a straight over process, and a number of things has to
be kept in mind when doing it.

In a papyrus project, any model is represented by two files, a .uml and a .di2
file.

The .uml file contains all the UML information, it defines what an object is
called, what it inherits, what it stereotypes, its properties, parameters, etc.
The .di2 is a Diagram Interchange 2 standard file[13], containing the informa-
tion necessary for creating the graphical representation of the .uml file. Both
files are written in XML.

92 MARTE to MAST

For the type of transformation that is to be done here, the graphics are of
little interest, since the file format being aimed for isn’t graphical. The MAST
input format is defined in the mast description[3] though looking at the exam-
ples also available for MAST might be necessary for complete understanding.

Regardless of the graphical view, because models created by means of the generic
library allows for the usage of associations to define connections between classes,
it is necessary to include the di2 file in the transformation. The uml file only
contains name and type of the associations, not the objects it links together,
these link information are necessary to determine the instances bound by the
associations however, and therefore needs to be known.

Since there isn’t a requirement for names to be unique in UML, the files can’t
rely on names to uniquely identify objects, instead every element is assigned
a xmi:id which can be used to identify it. This is also how the objects of the
generic library are identified. This means that in order to recognize what object
type an instance is, the xmi:id of its type has to be translated into an generic
library element, this information can only be found in the .uml file connected
to the implementation of the generic library.

Because the generic library uses a number of enumerations from the MARTE
profile, in order to translate instance specifications that has a slot referencing
an MARTE enumeration the MARTE library file is also necessary, though in a
lesser capacity.

This all leads to four files being necessary to translate any given project from
MARTE to MAST, the di2 and uml file of the model to translate, the uml file of
the generic library and the MARTE library file. While one could be tempted to
store the translation of the generic library locally and thereby spare the need for
having it available every time a transformation is to be done, this solution isn’t
recommended since even a small change to the generic library would render the
stored information obsolete. The MARTE library file is available in Papyrus,
though one could make a copy of it for use if one remembers to update it when
the MARTE profile is updated. Unlike the generic library, one would imagine
that updates to the official MARTE profile happens less frequent, making it
more acceptable to use a cached version.

8.1 Basic Example translation

While converting the entire basic example manually would serve little practical
purpose this section will demonstrate how it is possible to translate a couple
of elements, and highlight some of the pitfalls there is between MARTE and

8.1 Basic Example translation 93

MAST.

The Basic example can be seen modeled in Appendix [B] while in an automated
solution an initial approach of going through the uml file of the specific project
and identifying all objects and determining their type before continuing with
the transformation, since this is only a demonstration a jump is made directly
to the GeScheduler object. Furthermore for the sake of readability instead of
showing pure XML code, print outs from the XML files while have been through
a XML-reader first, stripping away tags and leaving readable text, all informa-
tion given can be found as XML code if one wishes.

In the GenericAPL.uml file, which contains the information about the generic
library, an entry can be found concerning the GeScheduler:

xmi:type="uml:Class”
xmi:id="_Feh90HYhEd6zKowG9H-O7A”
name="GeScheduler”

This shows that the generic profile contains an element, which is an UML Class,
its called GeScheduler and it has the ID _Feh90HYhEd6zKowG9H-O7A. It is
this ID that should be used to identify GeScheduler elements in models.

In the BasicExample.uml file, which is the uml file connected to the basic ex-
ample model it is now possible to find all the instances that are of the type
GeScheduler. A search for the GeScheduler ID through the files yields the fol-
lowing information:

xmi:type="uml:InstanceSpecification”
xmi:id="_ar8_YHtnEd6X{JPJIMTYLQQ”
name="Main Scheduler”

iclassifier

xmi:type="uml:Class”

href="../GenericAPI/GenericAPL.uml# Feh90HYhEd6zKowG9H-O7A”
xmlns:xmi="http://schema.omg.org/spec/XMI/2.1”

/i

An object with the name Main Scheduler was found, it has the ID _ar8 YHtnEd6X{JPJMTYLQQ
and is an instanceSpecification, and this object has is classified as being an el-

ement of the type 7‘/GenericAPI/GenericAPLuml# Feh90HYhEd6zKowG9H-

O7A”* which is the ID determined for the GeScheduler.

Now the instantiation of the scheduler has been found, the information attached

to it can then be determined, in this case there are 2 slots attached to the Main

scheduler, which defines the properties and parameters defined on the instance:

slot

94 MARTE to MAST

xmizid="_w5n0EHtqEd6XIPIMTYLQQ”
xmlns:xmi="http://schema.omg.org/spec/XMI/2.1”

definingFeature
xmi:type="uml:Property”
href="../GenericAPI/GenericAPL.uml# WoJKIHYhEd6zKowG9H-O7A”

value

xmi:type="uml:InstanceValue”
xmi:id="_zsvpsHtvEd6eEq_gtEeQQA”
instance="_gVdlkHtnEd6X{JPJIMTYLQQ”

slot
xmi:id=" zEfwMHtqEd6X{JPJIMTYLQQ”

definingFeature
xmi:type="uml:Property”
href="../GenericAPI/GenericAPL.uml#_W4_CgHYhEd6zKowG9H-OTA”

value
xmi:type="uml:InstanceValue”
xmi:id="_1PYTYHtqEd6X{JPJMTYLQQ”

instance

xmi:type="uml:EnumerationLiteral”

href="pathmap://Papyrus_ PROFILES/MARTE_Library.library.uml#_6VPi8BFaEdyUJeMeN__D-
A”

Each slot has a definingFeature and a value attached to it, the definingFea-
ture tells the name of the of property being defined, and value tells about the
parameter entered into the system.

It can be seen that the names of the properties are also to be found in the
GenericAPI.uml file, the value of the first slot is another instance specification,
and as such can be found in the BasicExample.uml file, finally the second slot
has an instance attached to it, this is because it contains an instanceValue as
its value, in this case this is an EnumerationLiteral which is to be found in the
MARTE profile. The same way the ID of the GeScheduler was found, the name
of the instance value and the name of the different properties can be found,
through simple lookups in the appropriate files.

Now the scheduler has been identified and the defined properties and values
has been determined, the remaining information about the scheduler is the as-
sociations it has determining the tasks and shared resources connected to it.
MAST, unlike MARTE, doesn’t attach this information to the scheduler, and

8.1 Basic Example translation 95

for the point of translating those informations aren’t necessary. A last bit of
information that it is possible to define in MAST, without knowing whether it is
necessary or not since the information is also defined on the processing resource,
is the context switch time. In the generic library this information is attached to
the GeExecHost, and through lookups an instance of this can be found and the
context switch time can be determined to be 0.25 ms. Now enough information
has been gathered to write the scheduler in a way that lives up to the MAST
input file specifications:

Scheduler (Type ={ Primary_Scheduler, Name =; Main Scheduler, Policy =,
(Type =, Fixed_Priority, Worst_Context_Switch = 0.25);, Host =; CPU);

This is a rather complex translation and the result of it was that one element
has been written in MAST, a simple method even. But it proves that all the
information necessary is available, and the example shows how to interact with
the different files supplied by MARTE. The entire process could be made trivial
through the development of a software translator however. While the process
might seem complicated, there is a pattern to it which is identifiable and au-
tomatable.

When doing the transformation from MARTE to MAST, because of the lack of
re-use of steps in MARTE, it will often be found that the resulting file could have
been written simpler in pure MAST, but the resulting system being represented
will always be the same. Should this lack of simplicity result in a noticeable
decrease in performance, optimization can be done on the operations when these
are created from the steps to enable re-use and the re-introduction of enclosing
operation types.

96

MARTE to MAST

CHAPTER 9

Conclusion

In this thesis, several different areas has been examined, and a number of con-
clusion has been reached. This is reflected in this chapter through a number of
sections each concluding on a specific area of the thesis. The first areas to be
covered in this chapter are the goals of the thesis.

The primary goal of this thesis was to determine how MARTE functions, and
whether it is possible to use MARTE in an educational environment to introduce
users to the field of real time and embedded modeling through UML. MARTE
as a system will be the first subject discussed in this chapter.

This will be followed by a section focused on the usability of MARTE, consid-
ering both intended users and possible users.

The next goal was to enable a transition from MARTE model to schedulability
analysis in MAST.

The conclusions concerning the thesis goals will be followed by a section which
looks at the pros and cons of using Papyrus.

Finally an overall evaluation of the thesis as a whole is done.

98 Conclusion

9.1 The MARTE profile

The MARTE profile has been thoroughly examined in this thesis. The idea be-
hind the MARTE profile was to create an UML extension that would encompass
all real time and embedded modeling needs, and the MARTE profile seems to
cover all fields and areas relevant for real time and embedded modeling, this
is however an assumption based on the experience gathered during the thesis
work, to guarantee that the MARTE profile covers all fields sufficiently, would
require consultation with experts from all of these fields. Regardless the target
audience of MARTE leaves much to be desired. MARTE was designed by profes-
sional real time modelers and in its current form it is usable only by professional.

The steps taken in this thesis might help address this, but until an official
support library is released to address the potential users not working within a
specific industry field of real time modeling the issue will remain.

Even though the MARTE profile is still in beta, the lack of documentation
is an issue that should be addressed as soon as possible. Expecting anyone to
work with a profile that requires weeks, if not months of studying to understand
and use is unrealistic. The tutorial available for MARTE is a slideshow presen-
tation which lacks the words intended to go with it. Getting support from the
developers is also a difficult task, several attempts at contacting where ignored,
and it wasn’t until a request was made by an official DTU professor that any
response was received.

While the current form of the MARTE profile and its documentation might
be sufficient for people working within the specific real time fields, it isn’t ready
for general availability yet.

Despite the lack of documentation and available support, the MARTE profile is
a thorough profile which, should the issues found be corrected, could become a
very useful tool for real time and embedded modeling.

9.2 Using MARTE for educational purposes

As it was discussed, MARTE suffers from a lack of user friendliness. This isn’t
the only concern that was considered when evaluating MARTE as a tool to be
used for introducing new users to real time and embedded modeling. The initial
impression of MARTE, when going over the documentation available, is that it
is a very complex framework that introduces a number of new terms to ensure

9.3 From MARTE to MAST 99

that they are unique. From an educational point of view the interest is to use as
general terms as possible so they are valid in as many fields as possible. However
when going deeper into the structure of the MARTE profile it is found that it is
mainly a number of key elements that has been named in unconventional ways,
but because they are the main elements of any real time model they still become
the focus, the SwSchedulableResource is the prime example of this.

The concept of support libraries that the MARTE profiles relies on allows these
deviations from the general terms to be overcome, and as can be seen from the
generic library defined in this thesis, it is possible to create a MARTE driven
framework that is easy to understand and use.

9.3 From MARTE to MAST

The idea of having a real time model, created in UML, and be able to get it an-
alyzed for schedulability was another concept that this thesis considered. The
MAST analyzing tool that was chosen uses the same overall structure as the
MARTE, hierarchical schedulers with attached tasks, task execution flow, etc.
When MARTE is used through the generic library, the modeling allowed by
the framework available is of such a kind that it can be fully translated, from
MARTE model to MAST input. Because of the way the Papyrus tool repre-
sents elements and especially associations, doing the translation by hand isn’t
recommended. However creating software that can do the translation effectively
is doable, this was however, beyond the time scope of this thesis.

The generic library, supported by a software translator would make it possi-
ble to do schedulability analysis directly from a MARTE UML model of a real
time system, but would this be better, smarter or more efficient than entering
the model directly into MAST?

The disadvantages would be that the generic library requires more elements to
be defined than is needed by the MAST, and it uses two layers instead of only
a schedulability analysis layer. Because a model created in the MARTE frame-
work represents more than just the schedulability analysis, creating will require
more work than modeling directly in the MAST framework.

The advantages of modeling a system in the MARTE framework would be that
one has a system that is within the boundaries of a recognized real time model-
ing framework, and the model can extend UML models of software systems in
a non invasive way. Furthermore it is not a requirement of the generic library
that the schedulability analysis tool used is MAST. While MAST has been the
tool used in this thesis, any tool can in theory be used, and with a minimum of
changes to the generic library. A software translator would have to be written

100 Conclusion

for each analysis tool to be used, but this is something that only has to be done
the first time a tool is used.

There are scenarios where modeling directly into MAST is the most efficient
way to go. If it is a one time event that schedulability analysis is required, it
would be simpler to just use MAST, but in situations where the model was to
be manipulated with in iterations, or where a link has to be created between
the system represented by the real time model, using the generic library and
MARTE would be very effective.

9.4 The Papyrus Modeling tool

Once the study of the MARTE profile was completed, and the functionality and
concepts understood, most of the problems with developing a suitable solution
can be attributed to the Papyrus Modeling tool.

The Papyrus tool was chosen for this thesis, as a result of it being the be most
commonly used in combination with the MARTE profile, it is the only tool to
which support libraries has been developed and made available. Furthermore
since it builds on the eclipse platform, it was assumed that using it would be
familiar to anyone with experience using eclipse. Unfortunately a number of
issues was encountered while modeling with the tool.

The implementation of the MARTE profile is missing objects and contains mis-
leading typos, it bears the marks of an untested environment. The Papyrus tool
itself is documented, but the documentation is based on ’first use’ situations
of Papyrus, and little support is available for more advanced troubleshooting.
Attempts at contacting the Papyrus developing team, both with regards to pos-
sible bugs in the tool, and for general support has gone unanswered.

This caused the generic library to contain a number of ’fixes’ that doesn’t fit
exactly with the optimal solution, but was necessary to create a working frame-
work. Many of these could be avoided if the Papyrus tool is updated to fix the
bugs it contains.

9.5 Thesis Conclusion

Overall this thesis paper defines a number of goals, and reaches them. The
generic library created became more complicated than what was initially hoped

9.5 Thesis Conclusion 101

for, this was partly a result of having to redefine a number of elements from the
MARTE framework as a result of the inheritance issues encountered, but it is
functional.

The complexity of the generic library is on a level, that should be understand-
able for anyone with basic knowledge within the fields of UML modeling and
real time and embedded systems. A bit of studying might be necessary to fully
understand the possibilities of modeling with the generic library, but this should
be a minor amount, comparable to the time it would take a user to adapt to
any new tool.

The models created with the generic library can contain all the information
required for doing a schedulability analysis, and translating a model into the
input format of any analysis tool is doable.

102 Conclusion

Bibliography

=

Donald Bell. Uml’s sequence diagram.
http://www.ibm.com/developerworks/rational/library/3101.html, 2004.

Grady Booch, James Rumbaugh, and Ivar Jacobson. The UML User Guide.
Addison Wesley, 1998.

José Drake and et al. Description of the MAST Model, 2008.
Eclipse. Eclipse Documentation, 2007.

Sébastien Gérard. Open source tool for graphical uml 2 modelling.
http://www.papyrusuml.org, 2009.

Inc No Magic. Magicdraw - architecture made simple.
http://www.magicdraw.com, 2009.

University of Cantabria. MAST Status File, 2008.

University of Cantabria. Modeling and analysis suite for real-time applica-
tions. http://mast.unican.es/mast-getting-started.html, 2008.

University of Cantabria. Visual modeling and analysis suite for real-time
applications with uml. http://mast.unican.es/umlmast/, 2008.

University of Cantabria. Mast. http://mast.unican.es/, 2009.

OMG. Uml for systems engineering rip.
http://syseng.omg.org/UML_for SE_RFP.htm, 2003.

OMG. UML Profile for Schedulability, Performance, and Time Specifica-
tion, 2005.

104 BIBLIOGRAPHY

[13] OMG. Diagram Interchange, 2006.

[14] OMG. UML Profile for Modeling Quality of Service and Fault Tolerance
Characteristics and Mechanisms Specification, 2008.

[15] OMG. Marte. http://omgmarte.org/, 2009.

[16] OMG. The object management group (omg). http://omg.org/, 2009.

[17] OMG. Omg systems modeling language. http://www.omgsysml.org/, 2009.
[18] OMG. Unified modeling language. http://uml.org, 2009.

[19] RTaW. Realtime-at-work - better technical solutions for real-time and
embedded systems. http://www.realtimeatwork.com, 2009.

[20] Thales. MARTE Tutorial, 2007.

[21] THALES. A UML Profile for MARTE: Modeling and Analysis of Real-
Time Embedded systems, Beta 2, 2008.

[22] unkown. ARINC653 library, 2009.

[23] Maria C. Valiente, Gonzalo Genova, and Jesus Carrtero. Uml 2.0 nota-
tion for modeling real time task scheduling. Journal of Object Technology,
5(4):91-105, 2005.

APPENDIX A

Generic Library
Implementation

106 Generic Library Implementation

GenericDataTypes

: HRM Extensions :
SRM Extensions SAM Extensions

Figure A.1: The basic structure of the generic library, 3 extension packages
each representing their branch all connected to a common data type package
containing the enumerations, datatypes, and similar available.

(GenencA Pl GenencAPl)
GenericDataTypes

senumeration: senumeration:
GeconnectorKind GeflowPolicyKind

[E] Scan E] Seguence

=] Random [Branch

[E] Priority E] Merge

=l FIFO = Fork

El LIFO £l Join
El QuerySerer
E] DeliveryServer
£l RateDivisor
£l Delay
£l Offset

Figure A.2: The datatype package, containing the datatypes, enumerations, and
similar available needed by elements in the generic library.

107

(GenericAPl: GeneicAP])
SRM Extensions
aschedulers «Schedulers
GeScheduler it = [GeP Init
<SchedulableResurce = procsssingUnit GeProcsssingUnit [3.1] schedulableResources = [GeTask]
= i tasks: GeTask [7] =l
«SwSchedulableResources = sharedR harsdR S PR
EERIC S ! = schedulingPalicy: SchedPolicyKind [0..1] -
=1 |
schedulers = scheduler
deadlineElements = [deadline]
i
i GeTask
Ve priority: Integer [0.1] \l/
= deadiine: NFP_Duration [0..1]
1= scheduler: GeScheduler [0..1] GeSharedR
2 sharedResources: GeSharedResaurce [7] 2 1aI26hesIHICE
5 arivalPattern: ArivalPattem [0..1] =] Protacal; C Kind [
= 0.1 = otherP P |: String [0..1]
CEEEE T virtualProcessingUnits = [GeTask]
GeSecondaryScheduler = [GeSh
) virualProcessingUnit: GeTask [0..1] Sh0 R e R
© tasks: GeTask [*] =
© sharedResources: GeSharedResource [7] -
& schedulingPolicy: SchedPolicykKind [0..1]

Figure A.3: The SRM extension package of the generic library, containing the
elements that are extensions of the MARTE SRM package.

(GenericAF!:: GenericAP)
HRM Extensions

sprocessingResources
GeProcessingUnit

Figure A.4: The HRM extension package of the generic library, this package is
the smallest, currently only containing the processing resource.

108

Generic Library Implementation

(GeneticAPL GeneticAPl)
SAM Extensions

GeSchedObs
£ laxity: LaxityKind [1]
r
sueSCEnao GeEnd-To-End flow
GeBehaviorScenario +geSchedObs
= timingRequirerment: <Undefined> 1]
i ¢ executionTime: NFP_Duration [0..1] 5 deadline: NFP_Duration [0..1] sk oadteemy
(= raotStep: GeStep [0.1] *behaviorScenario | = isSchedulable Boolean [0..1) GeArrival
N 5 executionTime: NFP_Duration [0..1] y} — - o]
+ arival
0.1
+ sten
wsaieps «succes [+outp i1l Bt
GeStep £ connectorType: Geconnectorkind [1]
= & policy: GeflowPolicykKind [0..1 £ contextSwitchTime: NFP_Duration [0..1]
Ei; exceltionfime NFR.Duraion [1] 1 e +inputRelation [1] | = e Integer E/EI 1][] =
= & delayMininterval: NFP_Duration [0..1]
£ task: GeTask [0..1 E elsyl -
o selfbelay NFp[Du]mim o offset & delayMaxinterval: NFP_Duration [0..1]

Figure A.5: The SAM extension package of the generic library, here all ex-
tensions of the SAM module can be found, this package includes classes that
doesn’t stereotype a MARTE stereotype because of the stereotypes either not
being implemented in the Papyrus model of MARTE or being implemented in
a matter that doesn’t extend the metaclass concept

APPENDIX B

Basic Example
Implementation

110 Basic Example Implementation

«models
Basic Model Real Time Layer

Pla 9 Task : GeTask

priority = 2
deadiine = {150,ms}
amivalPatiern = PeriodicPatiern (neriod = {150,ms})}

Data Server : GeSharedResource

accessPratacol = PCP

Main Scheduler : GeScheduler

processingUnit= CPU
schedulingPolicy= FixedPriority

" L amodels
Control Task : GeTask Tl GenericAPI
priority = 3

]
deadiine = {100, ms} | <IMport:
amivalPattern = PerindicPalterniperiod = {100,ms}

Comm Server : GeSharedResource

accessPratocol = PCP

Emergency : GeTask

priority = 4
deadline = {6,ms}
Status Task : GeTask =8p =1{50,ms}}

priority =1
deadline = (350,ms}
anivalPattern = PeriadicPattern{period = {350,ms})

Figure B.1: First half of the basic example, the real time layer of the model,
this layer shows all the key elements of the system and its key values

111

armodels
Basic Model SAM Layer

ControlPattern : GeArrival

PlanningPattern : GeArrival H PlanningObservation : GeScIle(IOI)sl

| ControlObservation : GeSchedObs ‘

‘ patiern = PeriodicPatiem{period = (150,ms}) H laxlty = hard |

Jaty = hard

pattern = PeriodicPattem{period = (100,1s})

gTaskFlow : GeEnd-To-End flow|

Plan

deadline = {150,ms}

ControlTaskFlow : GeEnd-To-End flow

deadline = {100,ms}
PlanningBehavior : GeBehaviorScenario

ControlBehavior : GeBehaviorScenario rootStep = Planning
executionTime = {60,ms}

rontStep = Control
executionTime = {32ms} i

Planning : GeStep Write : GeStep
Contiol ; GeStep RendkiGastap) Send : GeStep executionTime = (40,ms} executionTime = {20,ms}

— — task=Planning Task task= Planning Task
executionTime = (20.ms} executionTime = {2 ms} executionTime = (7 ms} ZData Server
task = Control Task sharedResource = [Data Server] sharedResource = [Comm Server]

task= Contral Task task = Control Task

Planning2Write : GePrecedenceRelation

connectorType = Sequence

‘ Control2Read : GePrecedenceRelation

| ‘ Read2Step : GePrecedenceRelation ‘

connectorType = Sequence ‘ connectarType = Sequence

contextSwitchTime = {0.25,ms}

Figure B.2: The second part of the basic example is split into two for easier view-
ing, part one showing the control task and planning parts and their associated

event flows

112

Basic Example Implementation

StatusPattemn : GeAmrival

EmergencyPattern : GeArrival

EmergencyObservatio

: GeSchedObs

pattern = PeriodicPattem{period={350, ms}}

‘ StatusObservatio

: GeSchedObs ‘

lasity = hard

StatusTaskFlow : GeEnd-To-End flow

deadline = {350,ms}

StatusBehavior : GeBehaviorScenario

roatStep = Status

executionTime = {110,ms}

Status : GeStep

Receive : GeStep

executionTime = {100,ms}
task= Status Task

executionTime = {10,ms}
task= Status Task
sharedResource = [Comm Server]

: GeP

connectarType = Sequence

pattern = SporadicPaternmininterartival = (50,ms}

laity = hard

En

gencyFlow : GeEnd-To-End flow

deadline = {ms}

EmergencyBehavior : GeBehaviorScenario

roatstep = Emergency
executionTime = {5,ms}

Emergency : GeStep

executionTime = {5,ms}
task= Emergency

Figure B.3: Second half of the second pat of the basic example, part two shows
the status task and the emergency task and their associated event flow

APPENDIX C

Papyrus Generalization bug

114

Papyrus Generalization bug

A

c

Instance of A: A

Instance of C-1:C

& PropertyOfA: Integer

E requiresA: A7)

FropertyOfA=123

requiresA = [Instance of 4]

Instance of B : B

Instance of C-2:C

PropertyOfa =234

requiresa.=

Figure C.1: An example project in Papyrus demonstrating the generalization
bug. 3 classes are defined A, B, and C, B inherits from A. 4 Instance specifi-
cations are then defined, one representing the A and B class respectively and
2 instantiations of the C class, the first one having the A class defined as its
parameter, the second should have the B class in its parameter, but this fails in

Papyrus

	Summary
	Resumé
	Preface
	List of Figures
	1 Introduction
	1.1 Thesis goal
	1.2 Scope of the thesis
	1.3 Chapter overview

	2 UML 2
	2.1 SysML

	3 MARTE Analysis
	3.1 About MARTE
	3.2 Software Resource Modeling package
	3.3 Hardware Resource Modeling package
	3.4 Schedulability Analysis in MARTE
	3.5 Limitations of Extension models for MARTE
	3.6 How to use MARTE
	3.7 Making a generic model
	3.8 MARTE model library
	3.9 Summary

	4 MAST
	4.1 What is MAST
	4.2 MAST Elements
	4.3 Basic Example
	4.4 Advanced features

	5 The Papyrus Modeling tool
	5.1 Missing inheritance
	5.2 Missing Elements
	5.3 Summary

	6 Generic Library
	6.1 Basic Example
	6.2 Advanced Features

	7 Connecting UML models with MARTE
	7.1 MARTE Tutorial Example
	7.2 Example linking of MARTE and a software model

	8 MARTE to MAST
	8.1 Basic Example translation

	9 Conclusion
	9.1 The MARTE profile
	9.2 Using MARTE for educational purposes
	9.3 From MARTE to MAST
	9.4 The Papyrus Modeling tool
	9.5 Thesis Conclusion

	A Generic Library Implementation
	B Basic Example Implementation
	C Papyrus Generalization bug

