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/
/Univariate statistical analysis in Neurolmaging

contrast(s)

Problems:

1)Multiple comparisons, i.e. many voxels
tested.

2)What is the true number of
iIndependent tests, i.e. voxels are highly
correlated

3)Data extremely noisy, i.e. low SNR
rendering tests insignificant.

v

Need for advanced multivariate methods
that can efficiently extract the underlying

sources in the data /
DTU
o
o

Design matrix
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/This problem is no different than the problems \

encountered in general in Modern Massive Datasets
(MMDS)
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Neurolnformatics

Unsupervised Learning attempts to find the
hidden causes and underlying structure in the data.
(Multivariate exploratory analysis — driving hypotheses)
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/Goal of unsupervised Learning
(Ghahramani & Roweis, 1999)

B Perform dimensionality reduction

B Build topographic maps

B Find the hidden causes or sources of the data
B Model the data density

B Cluster data

Purpose of unsupervised learning
(Hinton and Sejnowski, 1999)

B Extract an efficient internal representatioﬁ of the
statistical structure implicit in the inputs
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The End of Theory: The Data Deluge Makes the
Scientific Method Obsolete

"All models are wrong, but some are useful.”

So proclaimed statistician George Box 30 years ago,
and he was right. But what choice did we have? Only
models, from cosmological equations to theories of
human behavior, seemed to be able to consistently,
if imperfectly, explain the world around us. Until
now. 'I‘oday companies like Google, which have
grown up in an era of massively abundant data, don't

AnaIyS|s of massive amounts of data will be the main
driving force of all sciences in the future!!
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Outline of the talk

B Neurolmaging data modeled as tensors
(CandeComp/PARAFAC(CP), ShiftCP and ConvCP)

B Bayesian methods for estimating the number of
components in tensor decomposition

(Automatic Relevance Determination)

B Tensor decomposition of complex functional networks
(Infinite Relational Modeling)

13th September 2010
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Subjects

S

X

Xtests x subjects Atests x int. Sint X subjects

Spearman ~1900

The Cocktail Party problem (Blind source separatlon)
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Assumption: Data instantaneous mixture
of temporal signatures. (PCA/ICA/NMF)

waw: X~AS=(AQ1)(QS)=AS
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/‘,3 common ways of avoiding tensors

Preaverage
g Concatenation

(identical time series varying spatial maps)
time

Separate Analysis

it e o A (identical spatial map, varying time series)
subj 2D | time
i
: : : I Sub] 1 Sub] 3 Subj N ~

DTU

13th September 2010 10
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Bilinear Model:  XVoxelxTime o\ =g} orelp Jime
d -

d

Assumption: Data instantaneous mixture of temporal signatures.
(PCA/ICA/NMF)

XVOXGIXTIHIGXTT”&(LZ ~ E :ago:ﬂfilbglmecgmal
d

d
Assumption: Data instantaneous mixture of temporal signatures
that are expressed to various degree over the Subjects/trials
(Canonical Decomposition, Parallel Factor (CP))

(weighted averages over the trials)

Mult. Mod. admits non-ambiguous extraction of concistent patterns of activation
(see also k-rank criterion by Kruskal 1976,1977)
o
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Common fixes: Impose orthogonality, regularization or non-negativity
constraints by analyzing data transformed to a time-frequency domain representation
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(Mgrup et al., Neurolmage 2006)
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Features:

Wavelet analysis
Data visualization
Artifact Rejection
2-way decomposition
3-way decomposition
Coherence tracking
Bootstrapping
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Boctsirap
=) Rayleigh distribution L
[ Distribntion of max  Bootstrop size

(Mgrup et al, Journ. of Neurosc. Meth. 2007)
(Algorithms described in Mgrup et al, Neural Computation 2008
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/ Degeneracy often a result of multi- \
linear models being too restrictive

Trilinear model can encompass:
B Variability in strength over repeats

However, other common causes of variation are:
B Delay Variability THial 1 cmemmnmanmd Ay

Trial 2 ..MM‘ ?ﬁs P

B Shape Variability Trial 1 ~ameme A

\ Trial 2 MﬂM’v\- /
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(Mgrup et al., Neurolmage 2008)
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retinotopic mapping paradigm
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Modeling Shape (and delay) Variability

convolutive CP: zik(t) &Y aiaba(t — 7)c.a(T)

d,r

(Mgrup et al., Nips workshop on New Directions in Statistical Learning for Meaningful and Reproducible fMRI Analysis 2008)
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shiftCP convCP
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Component filter  Filtered component Component filter
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ConvCP: Can model arbitrary number of component delays within the
trials and account for shape variation within the convolutional model
representation. Redundancy between what is coded in C and B resolved

by imposing sparsity on C.

(Mgrup et al., Nips workshop on New Directions in Statistical Learning for Meaningful and Reproducible fMRI Analysis 2008)
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Average ERP CP
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Analysis of fMRI data

i ] n
[ 20 0

seconds

Each trial consists of a visual stimulus delivered as an annular full-field checkerboard reversing at 8 Hz.

A’ is L, sparsity regularization imposed on third mode

Mgrup et al., Nips workshop on New Directions in Statistical Learning for Meaningful and Reproducible fMRI Analysis 200
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The explanation of any phenomenon
should make as few assumptions as
possible, eliminating those that make
no difference in the observable
predictions of the explanatory

To getthe pohstaiior probecility dis:ribution,
multiply the prior probability distribution by
the likelihbed function and then normalize

Bayesiali iearriing ernbudies Occain’s razor, i.e.
Complex mozels are penalized.

EUSIPCO’'09 27 August 2009
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/I\/Iany Inference paradigms in Bayesian
Learning

B Maximum a posteriori estimation (MAP)
seeks optimal solution (admit standard optimization) however, the
approach does not take parameter uncertainty into account

B Sampling methods
Marcov Chain Monte Carlo (MCMC)

B Variational methods (VB) and Belief Propagation (BP)
Approximate likelihood P(0) by factorized form Q(0) that is tractable
VB: minimize the Kulback Leibler divergence KL(P(0)]|Q(6))

BP: minimize the Kulback Leibler divergence KL(Q(6)|P(6))

(Notice: MAP estimation admits direct use of standard

Qtimization tools)
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Automatic Relevance Determination (ARD) \

B Automatic Relevance Determination (ARD) is a
hierarchical Bayesian approach widely used for
model selection

B In ARD hyper-parameters explicitly represents the

relevance of different features by defining their
range of variation.

(i.e., Range of variation—-0 = Feature removed)

- -
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the Lasso /Basis Pursuit Denmsmg (BPD) problem

LASSO/BPD: argmm—”x — AP 1% 4+ AJs|s
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/ARD In reality a {,-norm optimization scheme. As \
such ARD based on Laplace prior corresponds to
{,-norm optimization by re-weighted ¢,-norm

In particular if we define A for each entry in s, i.e.

1
g”x — ATSTI5 ) A lsg)
J

Corresponding to the Laplace prior P(s|\)

. ) |
gives \j =

_ Aj —Xils; R

- Hj She i1%i| optimizing for Aj
> such that
v

HX —A"s JHF Z

{, norm by re-weighted ¢, follows by imposing Gaussnan prior instead of Laplace
Notice that we are all the time monotonically decreasing
—log P(s|A,x,0%,\)
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B To use regularization to simplify the Tucker core forming a unique
representation as well as enable interpolation between the Tucker
(full core) and CP (diagonal core) model.

B To use regularization to turn off excess components in the CP and
Tucker model and thereby select the model order.

B To tune the regularization strength from data by Automatic
Relevance Determination (ARD) based on Bayesian learning.

Tucker Sparse Tucker

| - _@ﬂ

(Mgrup and Hansen, Journal of Chemometrics 2009)
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/ Sparse Tucker decomposition by ARD \
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Maximum a posteriori (MAP) estimation

Brakes into standard Lasso/BPD sub-problems of the form  Update of regularization parameters by ARD
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CP models

Amino Acid Fluorescence
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Bayesian approach to estimate parameter uncertainty
and model order.

Non-negative Matrix Factorization, 2010)

13th September 2010 31

\ (For details see: Schmidt and Mgrup, Infinite /
DTU
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The Infinite Relational Model
(A Bayesian generative model for graphs)

Learning Systems of Concepts with an Infinite Relational Model (AAAI12006)

~1

P
Thomas Griffith Takeshi Yamada Naonori Ueda

Infinite Hidden Relational Model (UAI 2006)

D1U

13th September 2010 >
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UnDirected Directed

Adjacency matrix A

The IRM statistical generative model for graphs:
Z ~ CRP(a)
~  Beta(v,7)

Bernouilli(m;;)

Bipartite

Tucker

Tk —

Tucker2

)

Multi-graph

> ) =240

Immn

ey (k:)Z;Q)

n

Potential symmetry constraints, i.e. z(1) = z(?

13th September 2010
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Modeling the consistent functional connectivity of the brain

Infinite Relational Model
(IRM)

(i, )| Z,p™ ~ Bernoulli(z]

4

Pairwise Mutual Information (Ml)
between 2x2x2 voxel groups

,,Eu )

(2.7) = Zf'”[n v l:}'v—v‘p{””]{”]

,.-".

5039 Voxel groups

Top 100°000
MI links

Components

Functional units defined by Communication between
coherent Groups of Voxels (Z) the functional units (p™)

5039 Voxel groups

5039 Voxel groups

72 subjects: 42 multiple schlerosis and 30 normal subjects
(Mgrup et al., to appear NIPS 2010)

28th May 2010
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| Raw data ICA Degree IRM
SVM 51.39 3. 63.89 (p < 0.04) 59.72 72.22(p < 0.002)
LDA 59.72 39 63.89 (p < 0.05) 51.39  75.00(p < 0.001)
KNN 38.89 3.3 56.94 51.39 66.67(p < 0.01)

(Mgrup et al., to appear NIPS 2010)

28th May 2010
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/Summary

Multi-linear modeling offers the ability to explicitly extract the most consistent
activity of neuroimaging data across repeats/subjects/conditions.

cpr

Common causes of variability in e
neuroimaging data are latency and shape f{l! g
changes-> shiftCP and convCP

Important problem in tensor decomposition || ) Evidence
Is to adequately selected the number of i >
components. Bayesian learning admits a
general framework for model order selection
and regularization tuning.

P{DH,)

From neuroimaging data complex networks
of functional connectivity can be derived.
The Infinite Relational Model forms an
efficient modeling framework for exploring
consistent structures in these networks.

AIM of all the described analyses

BExtract an efficient internal representation of the statistical structure implicit in the data

BDrive novel hypothesis for formal statistical testing

36
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