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@ Ivariate statistical analysis \

Problems:

1)Multiple comparisons, i.e. many voxels
tested.

2)What is the true number of
independent tests, i.e. voxels are highly
correlated

3)Data extremely noisy, i.e. low SNR
rendering tests insignificant.

\

Need for advanced multivariate methods
that can efficiently extract the underlying
sources in the data
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ﬁhis problem is no different than the problems \
encountered in general in Modern Massive Datasets

S

XSpacexTime

XGene seq.x Samples

\

(& [

Unsupervised Learning attempts to find the
Qdden causes and underlying structure in the data.

(Multivariate exploratory analysis — driving hypotheses) /
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@al of unsupervised Learning

(Ghahramani & Roweis, 1999)

B Perform dimensionality reduction
B Build topographic maps

B Find the hidden causes or sources of the data
B Model the data density

B Cluster data

Purpose of unsupervised learning | ? i

(Hinton and Sejnowski, 1999) 1 |

B Extract an efficient internal representation of the
statistical structure implicit in the inputs
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WIRED MAGAZINE: 16.07 2008

The End of Theory: The Data Deluge Makes the
Scientific I\L—'ﬂu :{1* Ybsolete

Ev Chris Anderson [

Hinstration: Marian Banties

"All models are wrong, but some are useful "

Anaiyss ofmasswe amounts ofdata W|II bethe main
driving force of all sciences in the future!!

=
—
—

I



~

Informatics and Mathematical Modelling / Cognitive Systems

ﬁctor Analysis

Subjects Int. Subjects

s

Xtests x subjects o A tests x int.Sint. X subjects

Int.

Tests

U

Tests

Spearman —1900

The Cocktail Party problem (Blind source separation)
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@ustration of Factor Analysis on\
frequency transformed EEG

Xelectrodes x time-frequency expl. - 74.62 %
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/ The EEG/MEG/fMRI Party problem \

- ‘ Voxel X Time ~_ § : Voxely, Time
gﬁ';_",_ et X ~ Ay bd

Assumption: Data instantaneous mixture
of temporal signatures. (PCA/ICA/NMF)

waw: X~AS=(AQ1)(QS)=AS — Representation not uniquy
DTU
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/ From 2-way to multi-way analysis
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Multi-subject analysis

At least four possibilities:

e Pre-average data

e Separate analysis

e Data concatenation

e Tensor/multi-way models
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Pre-averaging \

Simply average data over subjects prior to analysis
e Common spatial profiles

e Common time profiles

e Model must generalise in both space and time over
subjects

Space

Time

L V ’6
\
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>

SEDEIGIGCERENWAR

oE
Run analysis separately for each subject
e Separate spatial maps for each subject

e Separate time series for each subject

e Cluster components after analysis to establish
correspondence ~

e Many parameters

-
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Gmatenation of multi-way data to 2-way \

(identical time series varying spatial maps)

time

(identical spatial map, varying time series)

time
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/" Multilinear modelling

B|||near Model: XVoxeleime ~ Z agowelbg‘ime
/ d

Assumption: Data instantaneous mixture of temporal signatures.
(PCA/ICA/NMF)

XVoxelelmexTrzal ~ § :agoxelbglmecfgmal

» WA gt i
i
Assumption: Data instantaneous mixture of temporal signatures
that are expressed to various degree over the Subjects/trials
(Canoncial Decomposition, Parallel Factor (CP))

(weighted averages over the trials)
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/ History of multi-way decomposition \
B Hitchcock 1927 (not the fiimmaker!)

Generalized 2-way rank to n-way (i.e. proposed the CP-
model,) as well as introduced the notion of n-mode rank

B Cattell 1944

Parallel Proportional Profiles (to resolve rotational
iIndeterminacy in factor analysis)

B Harshman and Carrol & Chang 1970
Independently proposed the PARAFAC and Cattell: Also very famous

for 16 personality factor

CanDecomp models (CP model, see later slides) " Questionnaire.
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7/~ Many ways of writing the CP model N\

Quter product form *Scalar form

.
X =~ E a; ob;ocg
i=1

O

Tensor slice form Matrix form

N

- — 1 - T
X, ~ A diag(c;.)B? X1 =~ A(C©B)
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Bilinear decomposition not unique \
X~AB"T = AQQ 'BT = AB'

Multi-linear decomposition is in general unique!!
X(.p ~ Adiag(Cr)B" = (AT)(T" diag(C1.)Q)(Q 'B")

~ ~ ~T
= Adiag(Cy.)B .
Kruskal (1976, 1977) derived the following uniqueness criterion

generalized to N-ways arrays in (Sidiropoulos and Bro, 2000):
J-way array: ka + kg +kc = 2D+ 2
N-way array: Z kamy > 2D+ N —1

where ka is the k-rank denoting the smallest subset of columns of A that is
guaranteed to be linearly independent. Thus, ka < rank(A).

when the number of factors extracted is greater than every dimension o
three-way array.” - Kruskal 1976

"A surprising fact is that the nonrotatability characteristic can hold even /
f the
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Unfortunately, Violation of multi-linearity causes degeneracy
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Space
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Common Fixes: Impose orthogonality, reguarlization or non-negativey constraints by analyzing
Data transformed to a time-frequency domain representation
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ﬁl’ime—frequency representation of EEG \
through wavelet transformation

bsolute value of wavelet coefficient

e
"’.
——

N\

>
Q
c
()
=
o
(V]
ul
Y

\ 4

time

/

ELI!

19 o




Informatics and Mathematical Modelling / Cognitive Systems

Wavelet transformed event related data

Xchan nektimexepoch Xchan nelxtime— frequencyxepoch
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Measures of the event related ERP
in the time-frequency domain

N
ERPS(c, f.t) = lZ_|X{:‘:h_f.t.n}|£

ERSP

- N
' . . 1 N . . WTav
WTav(c, f.t) = EZ_|f-it,_:'::f.r‘..n._j| R -

While the ERSP is a measure of the average power over epochs at given channel-
. , , N N ) e ITPC
frequency-time points the WTav is the average amplitude of the oscillation.

_ 1 X(e, f.t,n) .
TP (e f 1 R e Y ) )
ITPC e, ;1) N ‘%“ | X(c, f,t,n))| ) f

.'I""I.
|
WWT(eft) = + Y X tn) (6) avwT

While the amplitude of the ITPC also named the phase locking index mea- /

sures the phase consistency over epochs, the avWT corresponds to the wavelet
transformed Evoked Potential (EP).

E!!
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Measures of the event related ERP in
the time-frequency domain (cont.)

From the WTav and avWT the induced activity, i.e. everything that is not
phase locked to the event can be estimated as

INDUCED(c, f,t) = WTav(c, f,t) - [awWT(c, f,1) (7)

Finally, the evoked response phase coherence (ERPCOH), i.e. how consistent
the phase of a given oscillatory activity at channel ¢, frequency f' and time t' /«
is to the activity at channel ¢, frequency f and time t, is given by:

i ; '.rl .:,, I. oy | .-I..".r:-:rllr..:j- ‘Irt -'j' | "I =3
ERPCOH, (e, f,t) =~ S e LbmAE, L Tn) g £ £
o \ \

N & |X(c, f;t,n)|[X(c, f',1,n)|

-
-

where X* denotes the complex conjugate.
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www.ERPWAVELAB.org

Features:
Wavelet analysis
Data visualization
Artifact Rejection
2-way decomposition
3-way decomposition
Coherence tracking
Bootstrapping
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(Mgrup et al, Journ. of Neurosc. Meth. 2007)
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G model extracts consistent activation allowing for
subject/trial/condition dependent weights

(i.e. "clever averaging”)

i ] 1.0 4
X d 0.8 :
Condition et b A ¥ 0.6 ;
LR ; y 0.4 )
Nk AR ' : : 0.2 :
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subject condition

(Mgrup et al., NeuroImage 2006)
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ﬁ)egeneracy often a result of multi- \
linear models being to restrictive

Trilinear model can encompass:
B Variability in strength over repeats

However, other common causes of
variation are:

m Delay Variability

Trial 2 MW

{shape Variability :::MW

\
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Modelling Delay Variability “
o S e

Shifted CP:

]
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CP and shiftCP

)

Raw ERP Shifted ERP

zip(t) ~ Zﬁli,dbd(t — Thd)Ch.d
d

(Mgrup et al.,
Neurolmage 2008)
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ICA on matriziced array (Channel x Time-Epoch) ICA on Averaged data

28th May 2010 28
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Delay modelling of fMRI data from
retinotopic mapping paradigm

z; k(1) = E ai gba(t — Tid)ck.d
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Modeling Shape (and delay) Variability MM

convolutive CP:

zik(t) = ) aiaba(t — 7)cka(T)

d,T

(Mgrup et al., Nips workshop on New Directions in Statistical Learning for Meaningful and Reproducible fMRI Analysis 2008) DTU
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CP, ShiftCP and ConvCP

Xi j k=24 0 dCk d Xijk=2ddi 027 DjrdChar  Xij k=2 ¢ Dj-r,dCidc

Component filter Filtered component Compoqept filter
coefficients time series coefficients

k=1 K=l o d A
Y I SOV P NS W
=3 k=3 g\
k=t mommed e k=d M K24 | AMAN
(SN | WS P EE Y | VU
K= oo prmme k=6 Ll_rj_._| k=6 ot e
S bicdChar kAT oD dChge

ConvCP: Can model arbitrary number of component delays within the
trials and account for shape variation within the convolutional model
representation. Redundancy between what is coded in C and B resolved
by imposing sparsity on C.

(Mgrup et al., Nips workshop on New Directions in Statistical Learning for Meaningful and Reproducible fMRI Analysis 2008) DTU
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Convolutive Multi-linear decomposition

Average ERP CP
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Analysis of fMRI data

Each trial consists of a visual stimulus delivered as an annular full-field checkerboard reversing at 8 Hz.

A" is L, sparsity regularization imposed on third mode

(Mgrup et al., Nips workshop on New Directions in Statistical Learning for Meaningful and Reproducible fMRI Analysis 2008) DTU
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Convolutive bi-linear model form a Latenm

Causal Modeling framework |-
Input Functions

: T; = T__Ol f’_l hii(T)e;(t—T1
DTF (t) D0 2uj1 Pii(T)ej(t —7) km

SLCM: «z;(t) = Z%aigd(ﬂsd(t —7) + ().

Transfer Functions Latent Sources

X(t) = 5, A(r)s(t—1) = 5%, A()QQ 's(t—7) — A(r)s(t—7) ~ We impose sparsity on /A(7)

=
—
—

(Mgrup et al., Nips workshop on Connectivity Inference in Neuroimaging 2009)
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SR,

Benefits of SLCM over DTF:
‘V 1 - y e -
7 o ‘ R 2 SLCM can potentially perform
i - ey dimensionality reduction resulting in fewer

T
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YDAt
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ctly imposed on A(r) such as sparsity and

i
VA

b i e Spatial regions that are caused by the dth
St i source s,(t) are automatically grouped in
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AT !
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i

“SLCM can handle instantaneous mixing
nereas DTF is hard to interpret in case of
instantaneous propagation between
voxels/channels.

2 SLCM can naturally handle overcomplete
representations, i.e. I>>T.
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Bayesian Learning and the Principle of Parsimony

The explanation of any phenomenon
should make as few assumptions as
possible, eliminating those that make
no difference in the observable
predictions of the explanatory
Ty ctiesis on ke y

Toge t'eprsi21orpabeiil trdrcinikuson,
multiply the prior probability distribution by
the likelit )24 fun-tion o2nd the 1 pormalize -

/ Bdyesian iearning eminudies Occam's razor, i.e.
Complex mo=els are penalized.

David J.C. MacKay

I

EUSIPCO’'09 27 August 2009
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ayesian inference admit estimation of model order and degre&\
sparsity through Automatic Relevance Determination
SLCM: z;(t) = SIS0 asa(r)sa(t —7) +ei(t).

ei(t) Normal(0,0?)
o2 Gamma(l, 5| X ||%)

l

aqs(t) ~ Laplace(0, By)
Ba ~ Gamma(l, )
sa(t) ~ o(1 =22, sa(t)?)

( —;’% S lle(t) — 3, A(r)s(t — 7)|I%
—§IT10g(a_2) — k|| X||F0™?

+ 3, 1T 1og B — Bala+ SF ST as.a(1)])

+const.
L st Y osat)?=1

Y
{egularization strength learned from data, i.e. Ba™ =

log P(X,A,S,07% 8|k a) =

L

d = T ~~7T
a4 2 laid(r)|
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SLCM analysis of synthetic and real EEG

Synthetic EEG data

Estimated A(t)

Estimated s(t)

A
by A i A | [
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Summary of the "tour de models”

Bi-linear modelling Multi-linear modelling
(ICA/SVD/PCA/NMF) (CandeComp/PARAFAC (CP))

Extensions to model delay and shape changes

Convolutive multi-linear modelling
(shiftCP/convCP)

shiftCP ~_convCP

Filtered ponent Cor Filtered component
i me serie

Convolutive Bi-linear modelling
(related to Latent Causal Modeling)

serics time series

k=1 "__'Jvf\:wv.,:’__‘ k=1l k=t SN

(T R R O [y

e TV = Y Y PN, PO

Kot ndprmm kot M k=t A

ks5_1 k=5 s K5 1 ks ST

k=6 K6 k=6
Cra(t) Z:by(t-T)ey u(T)

k=6
Cra(T) ZT bd( t-T)crd(T)

AIM of analysis
BEXxtract an efficient internal representation of the statistical structure implicit
in the data

EDrive novel hypothesis for formal testing on validation data sets
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Gonclusion \

B Multi-linear modeling offers the ability to extract the ¥ B i i
consistent activity of neuroimaging data over ¢ e
repeats/subjects/conditions etc.

B However, violation of multi-linearity due to variability
causes degeneracy

B Common causes of variability in neuroimaging data
are delay and shape variation

B Advancing the CP model to ShiftCP and ConvCP
enables to address these types of variability.

B Modelling delay and shape changes is also relevant
for bi-linear modelling and open doorways to address

Qtent causal relations.

8th October 2009 40
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>

Current research

B Non-parametric efficient
sampling approaches based on i
reversible jump MCMC for the B
described models.

(See also Schmidt and Mgrup, Infinite Non-negative Matrix
Factorization, to appear EUSIPCO 2010)

B Analysis of neuroimaging data
as complex networks using non-
parametric community detection %
approaches. ' '

.

28th May 2010
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