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Univariate statistical analysis

Problems:

1)Multiple comparisons, i.e. many voxels 
tested. 

2)What is the true number of 
independent tests, i.e. voxels are highly 
correlated

3)Data extremely noisy, i.e. low SNR 
rendering tests insignificant.

Need for advanced multivariate methods 
that can efficiently extract the underlying 
sources in the data
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This problem is no different than the problems 
encountered in general in Modern Massive Datasets 
(MMDS)

NeuroInformatics BioInformatics ComplexNetworks WebDataMining

Unsupervised Learning attempts to find the 
hidden causes and underlying structure in the data.

(Multivariate exploratory analysis – driving hypotheses)
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Goal of unsupervised Learning 
(Ghahramani & Roweis, 1999)

 Perform dimensionality reduction

 Build topographic maps

 Find the hidden causes or sources of the data

 Model the data density

 Cluster data

Purpose of unsupervised learning 
(Hinton and Sejnowski, 1999)

 Extract an efficient internal representation of the 
statistical structure implicit in the inputs
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Analysis of massive amounts of data will be the main 

driving force of all sciences in the future!!

2008
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Factor Analysis
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The Cocktail Party problem (Blind source separation)
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Illustration of Factor Analysis on 
frequency transformed EEG



Xelectrodes x time-frequency
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Assumption: Data instantaneous mixture 
of temporal signatures. (PCA/ICA/NMF)          

Flaw: XAS=(AQ-1)(QS)=ÂŜ Representation not unique!

The EEG/MEG/fMRI Party problem


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From 2-way to multi-way analysis
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Multi-subject analysis

At least four possibilities:

• Pre-average data

• Separate analysis

• Data concatenation

• Tensor/multi-way models
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Pre-averaging

Simply average data over subjects prior to analysis

• Common spatial profiles

• Common time profiles

• Model must generalise in both space and time over 
subjects
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Separate analysis

Run analysis separately for each subject

• Separate spatial maps for each subject

• Separate time series for each subject

• Cluster components after analysis to establish 
correspondence

• Many parameters
Subj 1

Subj 2

Subj N






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Concatenation of multi-way data to 2-way



timesp
ace Subj 1

Subj 2

Subj N

(identical time series varying spatial maps)



timesp
ace Subj 1 Subj 2 Subj N

(identical spatial map, varying time series)
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Bilinear Model:

Trilinear Model:

Assumption: Data instantaneous mixture of temporal signatures.

(PCA/ICA/NMF)

Assumption: Data instantaneous mixture of temporal signatures 

that are expressed to various degree over the Subjects/trials 

(Canoncial Decomposition, Parallel Factor (CP)) 

(weighted averages over the trials)

Multilinear modelling
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History of multi-way decomposition

 Hitchcock 1927 (not the filmmaker!)
Generalized 2-way rank to n-way (i.e. proposed the CP-
model,) as well as introduced the notion of n-mode rank 

 Cattell 1944
Parallel Proportional Profiles (to resolve rotational 
indeterminacy in factor analysis)

 Harshman and Carrol & Chang 1970
Independently proposed the PARAFAC and 
CanDecomp models (CP model, see later slides)

Cattell: Also very famous 
for 16 personality factor 

model and the 16PF 
Questionnaire

Harshman Carrol

http://en.wikipedia.org/wiki/File:Raymond_Cattell.jpg


Informatics and Mathematical Modelling / Cognitive Systems

Many ways of writing the CP model

•Matricized array

•+ •+ ...

•Scalar form•Outer product form

•Tensor slice form •Matrix form

•=



Informatics and Mathematical Modelling / Cognitive Systems

17

Multi-linear decomposition is in general unique!!

Kruskal (1976, 1977) derived the following uniqueness criterion

generalized to N-ways arrays in (Sidiropoulos and Bro, 2000):

Bilinear decomposition not unique

"A surprising fact is that the nonrotatability characteristic can hold even 
when the number of factors extracted is greater than every dimension of the 
three-way array.” - Kruskal 1976
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Unfortunately, Violation of multi-linearity causes degeneracy
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Common Fixes: Impose orthogonality, reguarlization or non-negativey constraints by analyzing 

Data transformed to a time-frequency domain representation
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time

Complex Morlet wavelet 

- Real part - Complex part

Captures frequency changes through time

 ie

Absolute value of wavelet coefficient

time
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Time-frequency representation of EEG 
through wavelet transformation
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Wavelet transformed event related data
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Measures of the event related ERP
in the time-frequency domain

ERSP

WTav

ITPC

avWT
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Measures of the event related ERP in 

the time-frequency domain (cont.)








 
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www.ERPWAVELAB.org
Features:

Wavelet analysis

Data visualization

Artifact Rejection

2-way decomposition

3-way decomposition

Coherence tracking

Bootstrapping

(Mørup et al, Journ. of Neurosc. Meth. 2007)
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CP model extracts consistent activation allowing for 
subject/trial/condition dependent weights

(i.e. ”clever averaging”)

(Mørup et al., NeuroImage 2006)
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Degeneracy often a result of multi-
linear models being to restrictive

Trilinear model can encompass:

Variability in strength over repeats

However, other common causes of 
variation are:

Delay Variability

Shape Variability

Trial 1

Trial 2

Trial 1

Trial 2
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Modelling Delay Variability

Shifted CP:
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(Mørup et al., 

NeuroImage 2008)
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Delay modelling of fMRI data from
retinotopic mapping paradigm

B

(Analysis by Kristoffer Hougaard Madsen)
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Modeling Shape (and delay) Variability

convolutive CP:

*

(Mørup et al., Nips workshop on New Directions in Statistical Learning for Meaningful and Reproducible fMRI Analysis 2008)
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ConvCP: Can model arbitrary number of component delays within the 
trials and account for shape variation within the convolutional model 
representation. Redundancy between what is coded in C and B resolved 
by imposing sparsity on C.

CP, ShiftCP and ConvCP

(Mørup et al., Nips workshop on New Directions in Statistical Learning for Meaningful and Reproducible fMRI Analysis 2008)
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Convolutive Multi-linear decomposition
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Analysis of fMRI data

Each trial consists of  a visual stimulus delivered as an annular full-field checkerboard reversing at 8 Hz.

’ is L1 sparsity regularization imposed on third mode

(Mørup et al., Nips workshop on New Directions in Statistical Learning for Meaningful and Reproducible fMRI Analysis 2008)
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Convolutive bi-linear model form a Latent 
Causal Modeling framework

34

Channel Specific 
Input Functions

Noise

Latent SourcesTransfer Functions

(Mørup et al., Nips workshop on Connectivity Inference in Neuroimaging 2009)

We impose sparsity on
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x4

s1

s2

Latent Source

Measurement Channel

Benefits of SLCM over DTF:
 SLCM can potentially perform 
dimensionality reduction resulting in fewer 
latent sources than observed measurement 
voxels/channels.

 Constraints on the causal relations can be 
directly imposed on A(t) such as sparsity and 
restricting the transfer function to specific 
delays. 

 Spatial regions that are caused by the dth

source sd(t) are automatically grouped in 
ad(t).

 SLCM can handle instantaneous mixing 
whereas DTF is hard to interpret in case of 
instantaneous propagation between 
voxels/channels.

 SLCM can naturally handle overcomplete
representations, i.e. I>>T.

 The estimation of SLCM is a non-convex 
problem!

e2
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Channel Specific Input Function
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Bayesian Learning and the Principle of Parsimony

Bayesian learning embodies Occam’s razor, i.e. 
Complex models are penalized.

David J.C. MacKay

To get the posterior probability distribution, 
multiply the prior probability distribution by 
the likelihood function and then normalize

The explanation of any phenomenon 
should make as few assumptions as 

possible, eliminating those that make 
no difference in the observable 
predictions of the explanatory 

hypothesis or theory.

Thomas Bayes

William of Ockham
Open problem: 

What is an adeqaute 
degree of sparsity

and the ”correct”
number of components?



Informatics and Mathematical Modelling / Cognitive Systems

Bayesian inference admit estimation of model order and degree of 

sparsity through Automatic Relevance Determination

3718th February 2010

Regularization strength learned from data, i.e. 
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SLCM analysis of synthetic and real EEG
Synthetic EEG data

Real EEG data
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Summary of the ”tour de models”
Bi-linear modelling 

(ICA/SVD/PCA/NMF)

Convolutive Bi-linear modelling 
(related to Latent Causal Modeling)

Multi-linear modelling 
(CandeComp/PARAFAC (CP))

Convolutive multi-linear modelling 
(shiftCP/convCP)

AIM of analysis

Extract an efficient internal representation of the statistical structure implicit
in the data

Drive novel hypothesis for formal testing on validation data sets

Extensions to model delay and shape changes
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Conclusion
 Multi-linear modeling offers the ability to extract the 

consistent activity of neuroimaging data over 
repeats/subjects/conditions etc.

 However, violation of multi-linearity due to variability 
causes degeneracy

 Common causes of variability in neuroimaging data  
are delay and shape variation

 Advancing the CP model to ShiftCP and ConvCP
enables to address these types of variability. 

 Modelling delay and shape changes is also relevant 
for bi-linear modelling and open doorways to address 
latent causal relations.
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Current research

 Non-parametric efficient 
sampling approaches based on 
reversible jump MCMC for the 
described models.
(See also Schmidt and Mørup, Infinite Non-negative Matrix 
Factorization, to appear EUSIPCO 2010)

 Analysis of neuroimaging data 
as complex networks using non-
parametric community detection 
approaches.

4128th May 2010
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