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@variate statistical analysis in Neurolmaging \

Problems:

1)Multiple comparisons, i.e. many voxels
tested.

2)What is the true number of
iIndependent tests, i.e. voxels are highly
correlated

3)Data extremely noisy, i.e. low SNR

- rendering tests insignificant.

Need for advanced multivariate methods
) that can efficiently extract the underlying

sources in the data
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@s problem is no different than the problems \

encountered in general in Modern Massive Datasets
(MMDS)
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Unsupervised Learning attempts to find the
hidden causes and underlying structure in the data
(Multivariate exploratory analysis — driving hypotheses)
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>

Goal of unsupervised Learning
(Ghahramani & Roweis, 1999)

B Perform dimensionality reduction
B Build topographic maps

B Find the hidden causes or sources of the data
B Model the data density

B Cluster data

Purpose of unsupervised learning O ?
(Hinton and Sejnowski, 1999) R AN

B Extract an efficient internal representation of the

\statistical structure implicit in the inputs /
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WIRED MAGAZINE: 16.07 2008

SCIENCE : DISCOVERIES [

The End of Theory: The Data Deluge Makes the
Scientific Method Obsolete

grown up in an era of v abundant data, don't

AnaIyS|s of massive amounts of data will be the main
driving force of all sciences in the future!!
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Within Unsupervised learning the analysis of complex network has lately

emerged as an important field of research

B Biology:

Protein

] Epidemic Spread
Interaction _

B Social sciences:

Sexual relations

B Economics:

B Technology:

The internet

Tele communication network Airline connections
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http://personalpages.manchester.ac.uk/staff/m.dodge/cybergeography/atlas/teleglobe_large.gif�
http://meetings.aps.org/Meeting/MAR10/Event/116388�
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The perhaps most formidable and fascinating of all
networks is the complex network of neurons
constituting our mind, I.e. our connectome!

Neuron

By

Neuron

This can be represented
as a complex network
~1011 neurons,

~ 1015 connections
(Sporns et al. 2005, Murre et. al. 1995, Braitenberg et al. 1991
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B Micro-scale (units; single neurons)
C. Elegans

B Macro scale (units; voxels in mm3)
Structural connectivity: Diffusion Tensor Imaging (DTI)
Functional connectivity: functional Magnetic Resonance Imaging (fMRI)
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Estimating the functional communication |
the brain at a macro scale from fMRI.

Assumption: If a region in the brain is functionally connected to another region of
the brain they consume energy at the same time.

Functional connectivity measured by the information theoretic quantity Mutual
information

Correlation: Linear dependency H(X)

T p(X)p(Y)

~ > p(X) log(p(X))
- - X
between tlme—se_rles. - HO) = o) Clangel%._ggg?-;lon
Mutual Information: Both linear o —)menog(pm’n
and non-linear dependencies | | N
between time series. IXY) = HX)+ ) - HEY) = 3 p(X.Y) log P

X.Y
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http://upload.wikimedia.org/wikipedia/commons/2/2e/Conditional_entropy.png�
http://en.wikipedia.org/wiki/File:Claude_Elwood_Shannon_(1916-2001).jpg�
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Functional connectivity graphs derived from resting state fMRI
Complex network of
derived functional
connectivity across a

total of 72 subjects
Pairwise Mutual Informationbetween voxel i

and j, form a graph A(i,j) of pairwise relations

Thresholding
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fMRI recorded time-
courses at voxel i and j
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~

How should we comprehend the complex

dynamics of the derived functional
networks?
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Complex Network analysis— The Classic analysis approach:
Compare network properties to those of random graphs.

These analysis have all shown that brain dereived networks are far from
random (Sporns et al. 2010, )

Tt,_-_- W
Normal 0.0164 2.7 0.1116 0.8587
MS 0.0163  2.70 0.0898 0.8810

Random - 2.73 0.0079 I
P-value(Normal vs. MS) 0.9964 0.9954 (.7448 0.7928
P-value(Normal and MS vs. Random) - 0.6764 p<0.001 p<0001 p<0.001

tc: Median threshold values
L: Shortest path

C: Clustering coefficient
v: degree distribution exponent

These measures give however little information as to the intrinsic
roperties and structure of the networks, nor do they differentiate MS from Normal.
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m of analysis of brain networks: To capture large brain systems thh
can be parcellated into anatomically distinct modules (areas, parcels or
nodes), each having a distinct pattern of connectivity

(Sporns et al. 2005, 2010, Wallace, 2004)

What we would like to identify

B Functional units (distinct modules), i.e. groups of
voxels that communicate in the same manner with
the rest of the network (distinct patterns of
connectivity)
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The Infinite Relational Model

(A statistical framework of modeling the structure of complex networks)

Learning Systems of Concepts with an Infinite Relational Model (AAA12006)

Charles Kemp Josh Tenenbaum Thomas Griffith Takeshi Yamada Naonori Ueda
Infinite Hidden Relational Model (UAI 2006)

Volker Tresp Hanseter Kriegel
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1000
n

IRM identifies groups of voxels (i.e. functional units) that share the same
communication pattern with the rest of the networks. Number of groups inferred
from a hypothesis space of infinitely many clusters (Bayesian non-parametrics)

Functional units defined by Communication between
coherent Groups of Voxels (Z) the functional units (p™)

————,
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Outline of the analysis

Infinite Relational Model
(IRM)

A ) Z, p" ~ Bernoulli(z; p'™z; )

Pairwise Mutual Information (MI)
between 2x2x2 voxel groups

I(i.j) = Z P;j(u,v)log

P;j(u,v)

(u) P ()

Top 100000
Ml links

Components

Functional units defined by Communication between
coherent Groups of Voxels (Z) the functional units (p™)
..'-"'""‘-\‘

5039 Voxel groups

e

5039 Voxel groups

IRM automatically infer the functional units as well as their
subject specific interactions (Unsupervised Learning)

May 27th 2011 17 )<
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4 \

How do the proposed framework differ from
traditional Unsupervised learning approaches such
as ICA/PCA and clustering?

B The graph derived by mutual information can also take non-
linear interactions into account.

B Functional units are by the IRM defined by having similar
interaction with the remaining network, and as such does not
need to have a strong degree of self-similarity. l.e. what
defines a group is not necessarily strong communication within
the group but that the group of voxels communicate similarly to
the remaining network, i.e. IRM specifically extracts consistent
patterns of interaction/communication between groups.
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ﬂ?l\/l model evalutation by link-prediction o
hold out links and non-links in the graph

a=0.34292

1234567 8 9101112131415161718192021222324252627282930
Normal Group

1234567 8 9101112131415161718192021222324252627282930313233343536373839404142
Multiple-Schlerosis Group

The IRM model predicts communication patterns significantly
better than random while there is no significant difference in the
models ability to predict structure in Normal and MS group.
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IRM = 2 e W 'ﬂﬁu a" &1‘ L]

Extracted functional

units and there median - 59 -~ N e e hf- .:" s
communication pattep - : _ ﬂ 2 L5 o &
ICA1 ICA2 ICA3 ICA4

Group ICA analysis
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IRM

Patterns of Communication_
that significantly differ &8 @&
between Normal and MS &
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giscriminating MS and Normal subjects
based on extracted communication patterns

Table 1: Leave one out classification performance based on support vector ma-
chine (SVM) with a linear kernel, linear discriminant analysis (LDA) and K-
nearest neighbor (KNN). Significance level estimated by comparing to classi-
fication performance for the corresponding classifiers with randomly permuted
class labels, bold indicates significant classification at a p < 0.05.

Raw data PCA ICA Degree IRM

SVM 51.39 55.56  63.89 (p <0.04)  59.72  72.22(p < 0.002)
LDA 59.72 51.39 63.89 (p <0.05) 51.39  75.00(p < 0.001)
KNN 38.89 58.33 56.94 51.39  66.67(p < 0.01)
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Future Research

B Functional Connectivity changes during tasks, neurological disorders, intervention (TMS)
B Structural Connectivity by Diffusion Tensor Imaging.

B Combining structural and functional connectivy in unified analysis

Overlapping functional Varying node Varying connection Connection
units and hierarchy strength Directionality

DO OC ojb O C
Imporved Statistical Modeling of Complex Networks
B Multiple functional roles, latent feature models

B Hierarchy, tree structured relational modeling
B Functional authority, degree corrected modeling
B Importance, weighted graphs
B Influence, directed graphs > |
oy
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