
320 Asynchronous and parallel computations

A task executing anasync computation reacts in case of anexception or a cancellation
by calling the correspondingcontinuation (determined e.g. by atry...with construct, cf.
Section 3.10). A cancellation is requested (from outside the task) by setting thecancellation
token of the execution of the computation (see example below). Thecancellation token is
polled regularly by the asynchronous library functions andby the member functions of the
async computation expression. The cancellation is performed with a proper clean-up of
resources as soon as the cancellation request has been discovered.

Using the library functionAsync.StartWithContinuations you may supply your
own continuations when an asynchronous computation is started. This function requires
three continuations among its parameters:

• Normal continuationokCon – invoked after normal termination.
• Exception continuationexnCon – invoked if an exception is raised.
• Cancellation continuationcanCon – invoked if the computation is cancelled.

The following examples execute the computationdownloadComp (cf. Page 318) with the
continuations:

let okCon (s: string) = printf "Length = %d\n" (s.Length)
let exnCon _ = printf "Exception raised\n"
let canCon _ = printf "Operation cancelled\n"

Such an execution may terminate normally:

Async.StartWithContinuations
(downloadComp "http://www.microsoft.com",
okCon, exnCon, canCon);;

val it : unit = ()
Length = 1020

it may be terminated by an exception:

Async.StartWithContinuations
(downloadComp "ppp",
okCon, exnCon, canCon);;

val it : unit = ()
Exception raised

or it may be cancelled:

open System.Threading;; // CancellationTokenSource
let ts = new CancellationTokenSource()

Async.StartWithContinuations
(downloadComp "http://www.dtu.dk",
okCon, exnCon, canCon, ts.Token);;

val it : unit = ()

ts.Cancel();;
Operation cancelled


