320 Asynchronous and parallel computations

A task executing amsync computation reacts in case of axception or a cancellation
by calling the correspondingpntinuation (determined e.g. by ar y..wi t h construct, cf.
Section 3.10). A cancellation is requested (from outsigdaisk) by setting theancellation
token of the execution of the computation (see example below). CEreellation token is
polled regularly by the asynchronous library functions agdhe member functions of the
async computation expression. The cancellation is performeti wiproper clean-up of
resources as soon as the cancellation request has beevedexto

Using the library functiomAsync. St art Wt hCont i nuat i ons you may supply your
own continuations when an asynchronous computation isestalhis function requires
three continuations among its parameters:

e Normal continuatiorokCon — invoked after normal termination.
e Exception continuatioexnCon — invoked if an exception is raised.
e Cancellation continuatiocanCon — invoked if the computation is cancelled.

The following examples execute the computatitmwnl oadConp (cf. Page 318) with the
continuations:

I et okCon (s: string) = printf "Length = %\ n" (s.Length)
I et exnCon _ printf "Exception raised\n"
I et canCon _ printf "Operation cancelled\n"

Such an execution may terminate normally:

Async. Start Wt hConti nuations
(downl oadConmp "http://ww. m crosoft. cont,
okCon, exnCon, canCon);;

val it : unit = ()

Length = 1020

it may be terminated by an exception:

Async. St art Wt hCont i nuati ons
(downl oadComp " ppp",
okCon, exnCon, canCon);;
val it : unit = ()
Exception raised

or it may be cancelled:

open System Threading;; // Cancel |l ati onTokenSource
let ts = new Cancel | ati onTokenSource()

Async. St art Wt hCont i nuati ons
(downl oadConmp "http://ww. dt u. dk",
okCon, exnCon, canCon, ts.Token);;
val it : unit = ()

ts. Cancel ();;
Operation cancel |l ed



