
02157
Functional
Program-

ming

Michael R. Hansen02157 Functional Programming
Interpreters for two simple languages
– including exercises

Michael R. Hansen

1 DTU Informatics, Technical University of Denmark
Interpreters for two simple languages, – including exercises MRH

25/10/2012

02157
Functional
Program-

ming

Michael R. Hansen

Purpose

To show the power of a functional programming language, we
present a prototype for interpreters for a simple expression language
with local declarations and a simple WHILE language.

• Concrete syntax: defined by a contextfree grammar
• Abstract syntax (parse trees): defined by algebraic datatypes
• Semantics, i.e. meaning of programs: inductively defined

following the structure of the abstract syntax

succinct programs, fast prototyping

The interpreter for the simple expression language is a higher-order
function:

eval : Program → Environment → Value

The interpreter for a simple imperative programming language is a
higher-order function:

I : Program → State → State

2 DTU Informatics, Technical University of Denmark
Interpreters for two simple languages, – including exercises MRH

25/10/2012

02157
Functional
Program-

ming

Michael R. Hansen

Purpose

To show the power of a functional programming language, we
present a prototype for interpreters for a simple expression language
with local declarations and a simple WHILE language.

• Concrete syntax: defined by a contextfree grammar
• Abstract syntax (parse trees): defined by algebraic datatypes
• Semantics, i.e. meaning of programs: inductively defined

following the structure of the abstract syntax

succinct programs, fast prototyping

The interpreter for the simple expression language is a higher-order
function:

eval : Program → Environment → Value

The interpreter for a simple imperative programming language is a
higher-order function:

I : Program → State → State

3 DTU Informatics, Technical University of Denmark
Interpreters for two simple languages, – including exercises MRH

25/10/2012

02157
Functional
Program-

ming

Michael R. Hansen

Purpose

To show the power of a functional programming language, we
present a prototype for interpreters for a simple expression language
with local declarations and a simple WHILE language.

• Concrete syntax: defined by a contextfree grammar
• Abstract syntax (parse trees): defined by algebraic datatypes
• Semantics, i.e. meaning of programs: inductively defined

following the structure of the abstract syntax

succinct programs, fast prototyping

The interpreter for the simple expression language is a higher-order
function:

eval : Program → Environment → Value

The interpreter for a simple imperative programming language is a
higher-order function:

I : Program → State → State

4 DTU Informatics, Technical University of Denmark
Interpreters for two simple languages, – including exercises MRH

25/10/2012

02157
Functional
Program-

ming

Michael R. Hansen

Purpose

To show the power of a functional programming language, we
present a prototype for interpreters for a simple expression language
with local declarations and a simple WHILE language.

• Concrete syntax: defined by a contextfree grammar
• Abstract syntax (parse trees): defined by algebraic datatypes
• Semantics, i.e. meaning of programs: inductively defined

following the structure of the abstract syntax

succinct programs, fast prototyping

The interpreter for the simple expression language is a higher-order
function:

eval : Program → Environment → Value

The interpreter for a simple imperative programming language is a
higher-order function:

I : Program → State → State

5 DTU Informatics, Technical University of Denmark
Interpreters for two simple languages, – including exercises MRH

25/10/2012

02157
Functional
Program-

ming

Michael R. Hansen

Purpose

To show the power of a functional programming language, we
present a prototype for interpreters for a simple expression language
with local declarations and a simple WHILE language.

• Concrete syntax: defined by a contextfree grammar
• Abstract syntax (parse trees): defined by algebraic datatypes
• Semantics, i.e. meaning of programs: inductively defined

following the structure of the abstract syntax

succinct programs, fast prototyping

The interpreter for the simple expression language is a higher-order
function:

eval : Program → Environment → Value

The interpreter for a simple imperative programming language is a
higher-order function:

I : Program → State → State

6 DTU Informatics, Technical University of Denmark
Interpreters for two simple languages, – including exercises MRH

25/10/2012

02157
Functional
Program-

ming

Michael R. Hansen

Expressions with local declarations

Concrete syntax:

a * (-3 + (let x = 5 in x + a))

The abstract syntax is defined by an algebraic datatype:

type ExprTree = | Const of int
| Ident of string
| Minus of ExprTree
| Sum of ExprTree * ExprTree
| Diff of ExprTree * ExprTree
| Prod of ExprTree * ExprTree
| Let of string * ExprTree * ExprTree;;

Example:

let et =
Prod(Ident "a",

Sum(Minus (Const 3),
Let("x", Const 5, Sum(Ident "x", Ident "a"))));;

7 DTU Informatics, Technical University of Denmark
Interpreters for two simple languages, – including exercises MRH

25/10/2012

02157
Functional
Program-

ming

Michael R. Hansen

Expressions with local declarations

Concrete syntax:

a * (-3 + (let x = 5 in x + a))

The abstract syntax is defined by an algebraic datatype:

type ExprTree = | Const of int
| Ident of string
| Minus of ExprTree
| Sum of ExprTree * ExprTree
| Diff of ExprTree * ExprTree
| Prod of ExprTree * ExprTree
| Let of string * ExprTree * ExprTree;;

Example:

let et =
Prod(Ident "a",

Sum(Minus (Const 3),
Let("x", Const 5, Sum(Ident "x", Ident "a"))));;

8 DTU Informatics, Technical University of Denmark
Interpreters for two simple languages, – including exercises MRH

25/10/2012

02157
Functional
Program-

ming

Michael R. Hansen

Expressions with local declarations

Concrete syntax:

a * (-3 + (let x = 5 in x + a))

The abstract syntax is defined by an algebraic datatype:

type ExprTree = | Const of int
| Ident of string
| Minus of ExprTree
| Sum of ExprTree * ExprTree
| Diff of ExprTree * ExprTree
| Prod of ExprTree * ExprTree
| Let of string * ExprTree * ExprTree;;

Example:

let et =
Prod(Ident "a",

Sum(Minus (Const 3),
Let("x", Const 5, Sum(Ident "x", Ident "a"))));;

9 DTU Informatics, Technical University of Denmark
Interpreters for two simple languages, – including exercises MRH

25/10/2012

02157
Functional
Program-

ming

Michael R. Hansen

Evaluation in Environments

An environment contains bindings of identifiers to values.

A let tree Let(str,t1,t2) is evaluated as in an environment env:
1 Evaluate t1 to value v1

2 Evaluate t2 in the env extended with the binding of str to v.

An evaluation function

eval: ExprTree -> map<string,int> -> int

is defined as follows:

let rec eval t env =
match t with
| Const n -> n
| Ident s -> Map.find s env
| Minus t -> - (eval t env)
| Sum(t1,t2) -> eval t1 env + eval t2 env
| Diff(t1,t2) -> eval t1 env - eval t2 env
| Prod(t1,t2) -> eval t1 env * eval t2 env
| Let(s,t1,t2) -> let v1 = eval t1 env

let env1 = Map.add s v1 env
eval t2 env1;;

10 DTU Informatics, Technical University of Denmark
Interpreters for two simple languages, – including exercises MRH

25/10/2012

02157
Functional
Program-

ming

Michael R. Hansen

Evaluation in Environments

An environment contains bindings of identifiers to values.

A let tree Let(str,t1,t2) is evaluated as in an environment env:
1 Evaluate t1 to value v1

2 Evaluate t2 in the env extended with the binding of str to v.

An evaluation function

eval: ExprTree -> map<string,int> -> int

is defined as follows:

let rec eval t env =
match t with
| Const n -> n
| Ident s -> Map.find s env
| Minus t -> - (eval t env)
| Sum(t1,t2) -> eval t1 env + eval t2 env
| Diff(t1,t2) -> eval t1 env - eval t2 env
| Prod(t1,t2) -> eval t1 env * eval t2 env
| Let(s,t1,t2) -> let v1 = eval t1 env

let env1 = Map.add s v1 env
eval t2 env1;;

11 DTU Informatics, Technical University of Denmark
Interpreters for two simple languages, – including exercises MRH

25/10/2012

02157
Functional
Program-

ming

Michael R. Hansen

Evaluation in Environments

An environment contains bindings of identifiers to values.

A let tree Let(str,t1,t2) is evaluated as in an environment env:
1 Evaluate t1 to value v1

2 Evaluate t2 in the env extended with the binding of str to v.

An evaluation function

eval: ExprTree -> map<string,int> -> int

is defined as follows:

let rec eval t env =
match t with
| Const n -> n
| Ident s -> Map.find s env
| Minus t -> - (eval t env)
| Sum(t1,t2) -> eval t1 env + eval t2 env
| Diff(t1,t2) -> eval t1 env - eval t2 env
| Prod(t1,t2) -> eval t1 env * eval t2 env
| Let(s,t1,t2) -> let v1 = eval t1 env

let env1 = Map.add s v1 env
eval t2 env1;;

12 DTU Informatics, Technical University of Denmark
Interpreters for two simple languages, – including exercises MRH

25/10/2012

02157
Functional
Program-

ming

Michael R. Hansen

Example

Note that the meaning of a let expression is directly represented in
the program.

Example

let env = Map.add "a" -7 Map.empty;;
eval et env;;
val it : int = 35

13 DTU Informatics, Technical University of Denmark
Interpreters for two simple languages, – including exercises MRH

25/10/2012

02157
Functional
Program-

ming

Michael R. Hansen

Example: Imperative Factorial program

An example of concrete syntax for a factorial program:

{Pre: x=K and x>=0}
y:=1 ;
while !(x=0)
do (y:= y*x;x:=x-1)

{Post: y=K!}

Typical ingredients

• Arithmetical expressions

• Boolean expressions

• Statements (assignments, sequential composition, loops, . . .

14 DTU Informatics, Technical University of Denmark
Interpreters for two simple languages, – including exercises MRH

25/10/2012

02157
Functional
Program-

ming

Michael R. Hansen

Example: Imperative Factorial program

An example of concrete syntax for a factorial program:

{Pre: x=K and x>=0}
y:=1 ;
while !(x=0)
do (y:= y*x;x:=x-1)

{Post: y=K!}

Typical ingredients

• Arithmetical expressions

• Boolean expressions

• Statements (assignments, sequential composition, loops, . . .

15 DTU Informatics, Technical University of Denmark
Interpreters for two simple languages, – including exercises MRH

25/10/2012

02157
Functional
Program-

ming

Michael R. Hansen

Example: Imperative Factorial program

An example of concrete syntax for a factorial program:

{Pre: x=K and x>=0}
y:=1 ;
while !(x=0)
do (y:= y*x;x:=x-1)

{Post: y=K!}

Typical ingredients

• Arithmetical expressions

• Boolean expressions

• Statements (assignments, sequential composition, loops, . . .

16 DTU Informatics, Technical University of Denmark
Interpreters for two simple languages, – including exercises MRH

25/10/2012

02157
Functional
Program-

ming

Michael R. Hansen

Example: Imperative Factorial program

An example of concrete syntax for a factorial program:

{Pre: x=K and x>=0}
y:=1 ;
while !(x=0)
do (y:= y*x;x:=x-1)

{Post: y=K!}

Typical ingredients

• Arithmetical expressions

• Boolean expressions

• Statements (assignments, sequential composition, loops, . . .

17 DTU Informatics, Technical University of Denmark
Interpreters for two simple languages, – including exercises MRH

25/10/2012

02157
Functional
Program-

ming

Michael R. Hansen

Arithmetic Expressions

• Grammar:

aExp :: − n | v | aExp+aExp |aExp ·aExp | aExp−aExp | (aExp)

where n is an integer and v is a variable.

• The declaration for the abstract syntax follows the grammar

type aExp = (* Arithmetical expressions *)
| N of int (* numbers *)
| V of string (* variables *)
| Add of aExp * aExp (* addition *)
| Mul of aExp * aExp (* multiplication *)
| Sub of aExp * aExp;; (* subtraction *)

The abstract syntax is representation independent (no ’+’, ’-’,
’(’,’)’, etc.), no ambiguities — one works directly on syntax trees.

18 DTU Informatics, Technical University of Denmark
Interpreters for two simple languages, – including exercises MRH

25/10/2012

02157
Functional
Program-

ming

Michael R. Hansen

Arithmetic Expressions

• Grammar:

aExp :: − n | v | aExp+aExp |aExp ·aExp | aExp−aExp | (aExp)

where n is an integer and v is a variable.

• The declaration for the abstract syntax follows the grammar

type aExp = (* Arithmetical expressions *)
| N of int (* numbers *)
| V of string (* variables *)
| Add of aExp * aExp (* addition *)
| Mul of aExp * aExp (* multiplication *)
| Sub of aExp * aExp;; (* subtraction *)

The abstract syntax is representation independent (no ’+’, ’-’,
’(’,’)’, etc.), no ambiguities — one works directly on syntax trees.

19 DTU Informatics, Technical University of Denmark
Interpreters for two simple languages, – including exercises MRH

25/10/2012

02157
Functional
Program-

ming

Michael R. Hansen

Arithmetic Expressions

• Grammar:

aExp :: − n | v | aExp+aExp |aExp ·aExp | aExp−aExp | (aExp)

where n is an integer and v is a variable.

• The declaration for the abstract syntax follows the grammar

type aExp = (* Arithmetical expressions *)
| N of int (* numbers *)
| V of string (* variables *)
| Add of aExp * aExp (* addition *)
| Mul of aExp * aExp (* multiplication *)
| Sub of aExp * aExp;; (* subtraction *)

The abstract syntax is representation independent (no ’+’, ’-’,
’(’,’)’, etc.), no ambiguities — one works directly on syntax trees.

20 DTU Informatics, Technical University of Denmark
Interpreters for two simple languages, – including exercises MRH

25/10/2012

02157
Functional
Program-

ming

Michael R. Hansen

Semantics of Arithmetic Expressions

• A state maps variables to integers

type state = Map<string,int>;;

• The meaning of an expression is a function:

A: aExp -> state -> int

defined inductively on the structure of arithmetic expressions

let rec A a s =
match a with
| N n -> n
| V x -> Map.find x s
| Add(a1, a2) -> A a1 s + A a2 s
| Mul(a1, a2) -> A a1 s * A a2 s
| Sub(a1, a2) -> A a1 s - A a2 s;;

21 DTU Informatics, Technical University of Denmark
Interpreters for two simple languages, – including exercises MRH

25/10/2012

02157
Functional
Program-

ming

Michael R. Hansen

Semantics of Arithmetic Expressions

• A state maps variables to integers

type state = Map<string,int>;;

• The meaning of an expression is a function:

A: aExp -> state -> int

defined inductively on the structure of arithmetic expressions

let rec A a s =
match a with
| N n -> n
| V x -> Map.find x s
| Add(a1, a2) -> A a1 s + A a2 s
| Mul(a1, a2) -> A a1 s * A a2 s
| Sub(a1, a2) -> A a1 s - A a2 s;;

22 DTU Informatics, Technical University of Denmark
Interpreters for two simple languages, – including exercises MRH

25/10/2012

02157
Functional
Program-

ming

Michael R. Hansen

Semantics of Arithmetic Expressions

• A state maps variables to integers

type state = Map<string,int>;;

• The meaning of an expression is a function:

A: aExp -> state -> int

defined inductively on the structure of arithmetic expressions

let rec A a s =
match a with
| N n -> n
| V x -> Map.find x s
| Add(a1, a2) -> A a1 s + A a2 s
| Mul(a1, a2) -> A a1 s * A a2 s
| Sub(a1, a2) -> A a1 s - A a2 s;;

23 DTU Informatics, Technical University of Denmark
Interpreters for two simple languages, – including exercises MRH

25/10/2012

02157
Functional
Program-

ming

Michael R. Hansen

Boolean Expressions

• Abstract syntax

type bExp = (* Boolean expressions *)
| TT (* true *)
| FF (* false *)
| Eq of (* equality *)
| Lt of (* less than *)
| Neg of (* negation *)
| Con of ;; (* conjunction *)

• Semantics B : bExp → State → bool

let B b s =
match b with
| TT -> true
|

24 DTU Informatics, Technical University of Denmark
Interpreters for two simple languages, – including exercises MRH

25/10/2012

02157
Functional
Program-

ming

Michael R. Hansen

Boolean Expressions

• Abstract syntax

type bExp = (* Boolean expressions *)
| TT (* true *)
| FF (* false *)
| Eq of (* equality *)
| Lt of (* less than *)
| Neg of (* negation *)
| Con of ;; (* conjunction *)

• Semantics B : bExp → State → bool

let B b s =
match b with
| TT -> true
|

25 DTU Informatics, Technical University of Denmark
Interpreters for two simple languages, – including exercises MRH

25/10/2012

02157
Functional
Program-

ming

Michael R. Hansen

Statements: Abstract Syntax

type stm = (* statements *)
| Ass of string * aExp (* assignment *)
| Skip
| Seq of stm * stm (* sequential composition *)
| ITE of bExp * stm * stm (* if-then-else *)
| While of bExp * stm;; (* while *)

Example of concrete syntax:

y:=1 ; while not(x=0) do (y:= y*x ; x:=x-1)

Abstract syntax ?

26 DTU Informatics, Technical University of Denmark
Interpreters for two simple languages, – including exercises MRH

25/10/2012

02157
Functional
Program-

ming

Michael R. Hansen

Statements: Abstract Syntax

type stm = (* statements *)
| Ass of string * aExp (* assignment *)
| Skip
| Seq of stm * stm (* sequential composition *)
| ITE of bExp * stm * stm (* if-then-else *)
| While of bExp * stm;; (* while *)

Example of concrete syntax:

y:=1 ; while not(x=0) do (y:= y*x ; x:=x-1)

Abstract syntax ?

27 DTU Informatics, Technical University of Denmark
Interpreters for two simple languages, – including exercises MRH

25/10/2012

02157
Functional
Program-

ming

Michael R. Hansen

Update of states

An imperative program performs a sequence of state updates.

• The expression
update y v s

is the state that is as s except that y is mapped to v .
Mathematically:

(update y v s)(x) =
{

v if x = y
s(x) if x 6= y

• Update is a higher-order function with the declaration:

let update x v s = Map.add x v s;;

• Type?

28 DTU Informatics, Technical University of Denmark
Interpreters for two simple languages, – including exercises MRH

25/10/2012

02157
Functional
Program-

ming

Michael R. Hansen

Update of states

An imperative program performs a sequence of state updates.

• The expression
update y v s

is the state that is as s except that y is mapped to v .
Mathematically:

(update y v s)(x) =
{

v if x = y
s(x) if x 6= y

• Update is a higher-order function with the declaration:

let update x v s = Map.add x v s;;

• Type?

29 DTU Informatics, Technical University of Denmark
Interpreters for two simple languages, – including exercises MRH

25/10/2012

02157
Functional
Program-

ming

Michael R. Hansen

Update of states

An imperative program performs a sequence of state updates.

• The expression
update y v s

is the state that is as s except that y is mapped to v .
Mathematically:

(update y v s)(x) =
{

v if x = y
s(x) if x 6= y

• Update is a higher-order function with the declaration:

let update x v s = Map.add x v s;;

• Type?

30 DTU Informatics, Technical University of Denmark
Interpreters for two simple languages, – including exercises MRH

25/10/2012

02157
Functional
Program-

ming

Michael R. Hansen

Interpreter for Statements

• The meaning of statements is a function

I : stm → state → state

that is defined by induction on the structure of statements:

let rec I stm s =
match stm with
| Ass(x,a) -> update x (...) s
| Skip -> ...
| Seq(stm1, stm2) -> ...
| ITE(b,stm1,stm2) -> ...
| While(b, stm) -> ... ;;

31 DTU Informatics, Technical University of Denmark
Interpreters for two simple languages, – including exercises MRH

25/10/2012

02157
Functional
Program-

ming

Michael R. Hansen

Example: Factorial function

(* {pre: x = K and x>=0}
y:=1 ; while !(x=0) do (y:= y*x;x:=x-1)

{post: y = K!} *)

let fac = Seq(Ass("y", N 1),
While(Neg(Eq(V "x", N 0)),

Seq(Ass("y", Mul(V "x", V "y")) ,
Ass("x", Sub(V "x", N 1)))));;

(* Define an initial state *)
let s0 = Map.ofList [("x",4)];;
val s0 : Map<string,int> = map [("x", 4)]

(* Interpret the program *)
let s1 = I fac s0;;
val s1 : Map<string,int> = map [("x", 1); ("y", 24)]

32 DTU Informatics, Technical University of Denmark
Interpreters for two simple languages, – including exercises MRH

25/10/2012

02157
Functional
Program-

ming

Michael R. Hansen

Example: Factorial function

(* {pre: x = K and x>=0}
y:=1 ; while !(x=0) do (y:= y*x;x:=x-1)

{post: y = K!} *)

let fac = Seq(Ass("y", N 1),
While(Neg(Eq(V "x", N 0)),

Seq(Ass("y", Mul(V "x", V "y")) ,
Ass("x", Sub(V "x", N 1)))));;

(* Define an initial state *)
let s0 = Map.ofList [("x",4)];;
val s0 : Map<string,int> = map [("x", 4)]

(* Interpret the program *)
let s1 = I fac s0;;
val s1 : Map<string,int> = map [("x", 1); ("y", 24)]

33 DTU Informatics, Technical University of Denmark
Interpreters for two simple languages, – including exercises MRH

25/10/2012

02157
Functional
Program-

ming

Michael R. Hansen

Example: Factorial function

(* {pre: x = K and x>=0}
y:=1 ; while !(x=0) do (y:= y*x;x:=x-1)

{post: y = K!} *)

let fac = Seq(Ass("y", N 1),
While(Neg(Eq(V "x", N 0)),

Seq(Ass("y", Mul(V "x", V "y")) ,
Ass("x", Sub(V "x", N 1)))));;

(* Define an initial state *)
let s0 = Map.ofList [("x",4)];;
val s0 : Map<string,int> = map [("x", 4)]

(* Interpret the program *)
let s1 = I fac s0;;
val s1 : Map<string,int> = map [("x", 1); ("y", 24)]

34 DTU Informatics, Technical University of Denmark
Interpreters for two simple languages, – including exercises MRH

25/10/2012

02157
Functional
Program-

ming

Michael R. Hansen

Example: Factorial function

(* {pre: x = K and x>=0}
y:=1 ; while !(x=0) do (y:= y*x;x:=x-1)

{post: y = K!} *)

let fac = Seq(Ass("y", N 1),
While(Neg(Eq(V "x", N 0)),

Seq(Ass("y", Mul(V "x", V "y")) ,
Ass("x", Sub(V "x", N 1)))));;

(* Define an initial state *)
let s0 = Map.ofList [("x",4)];;
val s0 : Map<string,int> = map [("x", 4)]

(* Interpret the program *)
let s1 = I fac s0;;
val s1 : Map<string,int> = map [("x", 1); ("y", 24)]

35 DTU Informatics, Technical University of Denmark
Interpreters for two simple languages, – including exercises MRH

25/10/2012

02157
Functional
Program-

ming

Michael R. Hansen

Exercises

• Complete the program skeleton for the interpreter, and try some
examples.

• Extend the abstract syntax and the interpreter with if-then and
repeat-until statements.

• Suppose that an expression of the form inc(x) is added. It adds
one to the value of x in the current state, and the value of the
expression is this new value of x .

How would you refine the interpreter to cope with this construct?

36 DTU Informatics, Technical University of Denmark
Interpreters for two simple languages, – including exercises MRH

25/10/2012

