=
=
=

>
>
>

02157 Functional Programming
Finite Trees (1)

Michael R. Hansen

b
A
Sxsan)=3 G 5@y N E

a

DTU Informatics
Department of Informatics and Mathematical Modelling

DTU Informatics, Technical University of Denmark Finite Trees (1) MRH 11/10/2012

2

Overview

Finite Trees
o Algebraic Datatypes.

e Non-recursive type declarations: Disjoint union (Lecture 4)
e Recursive type declarations: Finite trees

DTU Informatics, Technical University of Denmark

Finite Trees (1)

=]
=
=

M

MRH 11/10/2012

=]
=
=

Overview

M

Finite Trees
o Algebraic Datatypes.

e Non-recursive type declarations: Disjoint union (Lecture 4)
e Recursive type declarations: Finite trees

e Recursions following the structure of trees

3 DTU Informatics, Technical University of Denmark Finite Trees (1) MRH 11/10/2012

Overview

Finite Trees
o Algebraic Datatypes.
e Non-recursive type declarations: Disjoint union (Lecture 4)
e Recursive type declarations: Finite trees
e Recursions following the structure of trees

o lllustrative examples:

Search trees
Expression trees
File systems

4 DTU Informatics, Technical University of Denmark Finite Trees (1)

=]
=
=

M

MRH 11/10/2012

=]
=
=

Overview

M

Finite Trees
o Algebraic Datatypes.
e Non-recursive type declarations: Disjoint union (Lecture 4)
e Recursive type declarations: Finite trees
e Recursions following the structure of trees

o lllustrative examples:

Search trees
Expression trees
File systems

o Mutual recursion, layered pattern, polymorphic type declarations

5 DTU Informatics, Technical University of Denmark Finite Trees (1) MRH 11/10/2012

=]
=
=

Finite trees

M

A finite tree is a value which may contain a subcomponent of the
same type.

6 DTU Informatics, Technical University of Denmark Finite Trees (1) MRH 11/10/2012

Finite trees

A finite tree is a value which may contain a subcomponent of the
same type.

Example: A binary search tree

Br

Br
Lf 13 Lf Lf 25 Lf

Lf 2 Lf

@
\‘>E
—
Ly
©
@
N:
'_\
@

Condition: for every node containing the value x: every value in the
left subtree is smaller then x, and every value in the right subtree is
greater than x.

7 DTU Informatics, Technical University of Denmark Finite Trees (1)

=]
=
=

M

MRH 11/10/2012

[}
=
=

Example: Binary Trees

M

A recursive datatype is used to represent values which are trees.

type Tree = Lf

| Br of Treexint*Tree;;
Lf;;
val it : Tree = Lf

Br;;
val it : Tree = int » Tree -> Tree = <fun:clo@>

8 DTU Informatics, Technical University of Denmark Finite Trees (1) MRH 11/10/2012

9

Example: Binary Trees

A recursive datatype is used to represent values which are trees.

type Tree = Lf
| Br of Treexint*Tree;;
Lf;;
val it : Tree = Lf
Br;;
val it : Tree = int » Tree -> Tree = <fun:clo@>

The two parts in the declaration are rules for generating trees:
o Lf isatree
e ift1,t are trees, n is an integer, then Br (t1,n,) is a tree.

DTU Informatics, Technical University of Denmark Finite Trees (1)

=]
=
=

M

MRH 11/10/2012

Example: Binary Trees

A recursive datatype is used to represent values which are trees.

type Tree = Lf
| Br of Treexint*Tree;;

Lf;;
val it : Tree = Lf

Br;;
val it : Tree *x int = Tree -> Tree = <fun:clo@>

The two parts in the declaration are rules for generating trees:
o Lf isatree
e ift1,t are trees, n is an integer, then Br (t1,n,) is a tree.

The tree from the previous slide is denoted by:

Br (Br(Br(Lf,2,Lf),7, Lf),
9,
Br(Br(Lf, 13, Lf), 21, Br (Lf, 25, Lf)))

10 DTU Informatics, Technical University of Denmark Finite Trees (1)

=]
=
=

M

MRH 11/10/2012

=]
=
=

Binary search trees: Insertion

M

e Recursion on the structure of trees
e Constructors Lf and Br are used in patterns
e The search tree condition is an invariant for i nsert

11 DTU Informatics, Technical University of Denmark Finite Trees (I) MRH 11/10/2012

Binary search trees: Insertion

e Recursion on the structure of trees
e Constructors Lf and Br are used in patterns
e The search tree condition is an invariant for i nsert

let rec insert i = function
| Lf -> Br(Lf,i,Lf)
| Br(tl,j,t2) as tr ->
mat ch conpare i j with
| O -> tr
| n when n<0O -> Br(insert i t1, j, t2)
| _ -> Br(tl,j, insert i t2);;
val insert : int -> Tree -> Tree

12 DTU Informatics, Technical University of Denmark Finite Trees (1)

=]
=
=

M

MRH 11/10/2012

Binary search trees: Insertion

e Recursion on the structure of trees
e Constructors Lf and Br are used in patterns
e The search tree condition is an invariant for i nsert

let rec insert i = function
| Lf -> Br(Lf,i,Lf)
| Br(tl,j,t2) as tr ->
mat ch conpare i j with
| O ->tr
| n when n<0 -> Br(insert i t1, j, t2)
| -> Br(tl,j, insert i t2);;

val inser_t cint -> Tree -> Tree
Example:

let t1 = Br(Lf, 3, Br(Lf, 5, Lf));;

let t2 = insert 4 t1;;

val t2 : Tree = Br (Lf,3,Br (Br (Lf,4,Lf),5,Lf))

13 DTU Informatics, Technical University of Denmark Finite Trees (1)

=]
=
=

M

MRH 11/10/2012

=]
=
=

Binary search trees: nenber and i nOr der traversal

M

let rec menber™ i = function
| Lf -> fal se
| Br(tl,j,t2) -> match conpare i j with
| O -> true

| n when n<0 -> menberf i t1l
| _ -> nenberF i t2;;
val menber™ : int -> Tree -> bool

14 DTU Informatics, Technical University of Denmark Finite Trees (I) MRH 11/10/2012

=]
=
=

Binary search trees: nenber and i nOr der traversal

M

let rec menber™ i = function
| Lf -> fal se
| Br(tl,j,t2) -> match conpare i j with
| O -> true

| n when n<0 -> nenberOF i t1
| _ -> nenberF i t2;;
val menber™ : int -> Tree -> bool
In-order traversal
let rec inOrder = function
| Lf ->]
| Br(tl,j,t2) -> inOder t1 @[j] @inOder t2;;

val toList : Tree -> int |ist

15 DTU Informatics, Technical University of Denmark Finite Trees (1) MRH 11/10/2012

=]
=
=

Binary search trees: nenber and i nOr der traversal

M

let rec menber™ i = function
| Lf -> fal se
| Br(tl,j,t2) -> match conpare i j with
| O -> true

| n when n<0 -> menberf i t1l
| _ -> nenberF i t2;;
val menber™ : int -> Tree -> bool

In-order traversal
let rec inOrder = function
| Lf ->]
| Br(tl,j,t2) -> inOder t1 @[j] @inOder t2;;
val toList : Tree -> int |ist

gives a sorted list

inOrder (Br(Br(Lf,1,Lf), 3, Br(Br(Lf,4,Lf), 5, Lf)));;
val it : int list =[1; 3; 4; 5]

16 DTU Informatics, Technical University of Denmark Finite Trees (1) MRH 11/10/2012

=]
=
=

Deletions in search trees

M

Delete minimal element in a search tree: Tree -> int * Tree

let rec delMn = function

| Br(Lf,i,t2) -> (i,t2)

| Br(tl,i,t2) ->let (mtl') =delMn t1l
(m Br(tl,i,t2));;

17 DTU Informatics, Technical University of Denmark Finite Trees (I) MRH 11/10/2012

Deletions in search trees

Delete minimal element in a search tree: Tree -> int * Tree

let rec delMn = function
| Br(Lf,i,t2) -> (i,t2)
| Br(tl,i,t2) ->let (mtl') =delMn t1l
(m Br(t1,i,t2));;

Delete element in a search tree:int -> Tree -> Tree

let rec delete j = function
| Lf -> Lf
| Br(tl,i,t2) ->
match conpare i j with
| n when n<O -> Br(tl,i,delete j t2)
| n when n>0 -> Br(delete j t1,i,t2)

| _ ->
match t2 with
| Lf ->1t1
| _ ->let (mt2') = delMn t2
Br(tl,mt2');;

18 DTU Informatics, Technical University of Denmark Finite Trees (1)

=]
=
=

M

MRH 11/10/2012

=]
=
=

Parameterize type declarations

M

The programs on search trees just requires an ordering on elements
— they no not need to be integers.

19 DTU Informatics, Technical University of Denmark Finite Trees (1) MRH 11/10/2012

=]
=
=

Parameterize type declarations

M

The programs on search trees just requires an ordering on elements
— they no not need to be integers.

A polymorphic tree type is declared as follows:

type Tree<'a> = Lf | Br of Tree<'a> x 'a * Tree< a>;;

20 DTU Informatics, Technical University of Denmark Finite Trees (1) MRH 11/10/2012

=]
=
=

Parameterize type declarations

M

The programs on search trees just requires an ordering on elements
— they no not need to be integers.

A polymorphic tree type is declared as follows:

type Tree<'a> = Lf | Br of Tree<'a> x 'a * Tree< a>;;

Program texts are unchanged (though polymorphic now), for example
let rec insert i = function
| Br(tl,j,t2) as tr -> match conpare i j with

val insert: 'a -> Tree<'a> -> Tree<'a> when ’'a: conparison

21 DTU Informatics, Technical University of Denmark Finite Trees (I) MRH 11/10/2012

=]
=
=

Parameterize type declarations

M

The programs on search trees just requires an ordering on elements
— they no not need to be integers.

A polymorphic tree type is declared as follows:

type Tree<'a> = Lf | Br of Tree<'a> x 'a * Tree< a>;;

Program texts are unchanged (though polymorphic now), for example

let rec insert i = function
| Br(tl,j,t2) as tr -> match conpare i j with

val insert: 'a -> Tree<'a> -> Tree<'a> when ’'a: conparison

let ti =insert 4 (Br(Lf, 3, Br(Lf, 5, Lf)));;
val ti : Tree<int> = Br (Lf,3,Br (Br (Lf,4,Lf),5,Lf))

22 DTU Informatics, Technical University of Denmark Finite Trees (I) MRH 11/10/2012

=]
=
=

Parameterize type declarations

M

The programs on search trees just requires an ordering on elements
— they no not need to be integers.
A polymorphic tree type is declared as follows:

type Tree<'a> = Lf | Br of Tree<'a> x 'a * Tree< a>;;

Program texts are unchanged (though polymorphic now), for example
let rec insert i = function
| Br(tl,j,t2) as tr -> match conpare i j with

val insert: 'a -> Tree<'a> -> Tree<'a> when ’'a: conparison

let ti insert 4 (Br(Lf, 3, Br(Lf, 5, Lf)));;
val ti : Tree<int> = Br (Lf,3,Br (Br (Lf,4,Lf),5,Lf))

let ts insert "4" (Br(Lf, "3", Br(Lf, "5", Lf)));;
val ts : Tree<string>
Br (Lf,"3",Br (Br (Lf,"4",Lf),"5",Lf))

23 DTU Informatics, Technical University of Denmark Finite Trees (1) MRH 11/10/2012

[}
=
=

Higher-order functions for tree traversals

M

For example

let rec inFoldBack f t e =
match t with
| Lf -> e
| Br(tl,x,t2) ->let er = inFoldBack f t2 e
i nFol dBack f t1 (f x er);;
val inFoldBack: ("a ->'b ->"'b) -> Tree<"a>->"'b ->"'b
satisfies

i nFol dBack f t e =List.fol dBackf (i nOrder t)e

24 DTU Informatics, Technical University of Denmark Finite Trees (I) MRH 11/10/2012

=]
=
=

Higher-order functions for tree traversals

M

For example

let rec inFoldBack f t e =
match t with
| Lf -> e
| Br(tl,x,t2) ->let er = inFoldBack f t2 e
i nFol dBack f t1 (f x er);;
val inFoldBack: ("a ->'b ->"'b) -> Tree<"a>->"'b ->"'b

satisfies
i nFol dBack f t e =List.fol dBackf (i nOrder t)e

It traverses the tree without building the list- For example:
let ta = Br(Br(Br(Lf,-3,Lf),0,Br(Lf,2,Lf)),5,Br(Lf,7,Lf));;

inOrder ta;;
val it : int list =[-3; 0; 2; 5; 7]

i nFol dBack (-) ta O0;;
val it @ int =1

25 DTU Informatics, Technical University of Denmark Finite Trees (1) MRH 11/10/2012

Example: Expression Trees

type Fexpr =
| Const of float
| X
| Add of Fexpr =
| Sub of Fexpr =*
| Ml of Fexpr =
| Div of Fexpr =*

26 DTU Informatics, Technical University of Denmark

Fexpr
Fexpr
Fexpr
Fexpr; ;

Finite Trees (1)

(=)
|
=

M

MRH 11/10/2012

27

Example: Expression Trees

type Fexpr =

| Const of float

| X

| Add of Fexpr * Fexpr

| Sub of Fexpr * Fexpr

| Ml of Fexpr * Fexpr

| Div of Fexpr » Fexpr;;

Defines 6 constructors:

e Const: float -> Fexpr
e X : Fexpr
e Add: Fexpr * Fexpr -> Fexpr
e Sub: Fexpr * Fexpr -> Fexpr
e Mul : Fexpr * Fexpr -> Fexpr
e Div: Fexpr *» Fexpr -> Fexpr

DTU Informatics, Technical University of Denmark

Finite Trees (1)

=]
=
=

M

MRH 11/10/2012

=]
=
=

Symbolic Differentiation D. Fexpr -> Fexpr

M

A classic example in functional programming:

let rec D= function

| Const _ -> Const 0.0

| X -> Const 1.0

| Add(fel,fe2) -> Add(D fel, D fe2)

| Sub(fel,fe2) -> Sub(D fel, D fe2)

| Ml (fel,fe2) -> Add(Mul (D fel, fe2), Ml (fel, D fe2))

| Div(fel,fe2) -> Div(
Sub(Mil (D fel, fe2), Ml (fel, D fe2)),
Ml (fe2,fe2));;

Notice the direct correspondence with the rules of differentiation.

28 DTU Informatics, Technical University of Denmark Finite Trees (1) MRH 11/10/2012

29

=]
=
=

Symbolic Differentiation D. Fexpr -> Fexpr

M

A classic example in functional programming:

let rec D= function

| Const _ -> Const 0.0

| X -> Const 1.0

| Add(fel,fe2) -> Add(D fel, D fe2)

| Sub(fel,fe2) -> Sub(D fel, D fe2)

| Ml (fel,fe2) -> Add(Mul (D fel, fe2), Ml (fel, D fe2))

| Div(fel,fe2) -> Div(
Sub(Mil (D fel, fe2), Ml (fel, D fe2)),
Ml (fe2,fe2));;

Notice the direct correspondence with the rules of differentiation.

Can be tried out directly, as tree are "just” values, for example:

D(Add(Ml (Const 3.0, X), Ml (X, X)));;
val it : Fexpr =
Add
(Add (Mul (Const 0.0, X), Mul (Const 3.0,Const 1.0)),
Add (Mul (Const 1.0,X), Mul (X Const 1.0)))

DTU Informatics, Technical University of Denmark Finite Trees (I) MRH 11/10/2012

=]
=
=

Expressions: Computation of values

M

Given a value (a float) for X, then every expression denote a float.

conpute : float -> Fexpr -> float

30 DTU Informatics, Technical University of Denmark Finite Trees (1) MRH 11/10/2012

Expressions: Computation of values

Given a value (a float) for X, then every expression denote a float.

conpute : float -> Fexpr -> float

let rec conpute x = function

Const r ->r

X -> X

Add(fel,fe2) -> conpute x fel + conpute x fe2
Sub(fel,fe2) -> conpute x fel - conpute x fe2
Mul (fel,fe2) -> conmpute x fel » conpute x fe2

DTU Informatics, Technical University of Denmark Finite Trees (1)

=]
=
=

M

Div(fel, fe2) -> conpute x fel / conpute x fe2;;

MRH 11/10/2012

32

=]
=
=

Expressions: Computation of values

M

Given a value (a float) for X, then every expression denote a float.

conpute : float -> Fexpr -> float

let rec conpute x = function

Const r ->r

X -> X

Add(fel,fe2) -> conpute x fel + conpute x fe2
Sub(fel,fe2) -> conpute x fel - conpute x fe2
Mul (fel,fe2) -> conmpute x fel » conpute x fe2
Div(fel, fe2) -> conpute x fel / conpute x fe2;;

Example:

conpute 4.0 (Ml (X, Add(Const 2.0, X)));;
val it : float = 24.0

DTU Informatics, Technical University of Denmark Finite Trees (I) MRH 11/10/2012

=]
=
=

Mutual recursion. Example: File system

M

ds

a dz as ds

a ds as

as

o Afile system is a list of elements
e an elementis a file or a directory, which is a named file system

33 DTU Informatics, Technical University of Denmark Finite Trees (1) MRH 11/10/2012

=]
=
=

Mutually recursive type declarations

M

e are combined using and

type FileSys = Elenent |ist
and El ement =

| File of string

| Dir of string = FileSys

34 DTU Informatics, Technical University of Denmark Finite Trees (1) MRH 11/10/2012

Mutually recursive type declarations

e are combined using and

type FileSys = Elenent |ist
and El ement =

| File of string

| Dir of string = FileSys

let dl =
Dir("dl1",[File "al";
Dir("d2", [File "a2";
Dir("d3", [File "a3"])]);

File "a4";
Dir("d3", [File "a5"])
1)

35 DTU Informatics, Technical University of Denmark Finite Trees (1)

=]
=
=

M

MRH 11/10/2012

=]
=
=

Mutually recursive type declarations

M

e are combined using and

type FileSys = Elenent |ist
and El ement =

| File of string

| Dir of string = FileSys

let dl =
Dir("dl",[File "al";
Dir("d2", [File "a2";
Dir("d3", [File "a3"])]);

File "a4";
Dir("d3", [File "a5"])
1)

The type of d1is ?

36 DTU Informatics, Technical University of Denmark Finite Trees (1) MRH 11/10/2012

Mutually recursive function declarations

e are combined using and

Example: extract the names occurring in file systems and elements.

| et rec namesFileSys = function

| [] -> []

| e::es -> (nanmesEl ement e) @ (nanesFil eSys es)
and nanesEl enent = function

| File s -> [s]

| Dir(s,fs) ->s :: (nanesFileSys fs) ;;
val nanesFileSys : Element list -> string |ist
val nanesEl ement : Elenment -> string |ist

37 DTU Informatics, Technical University of Denmark Finite Trees (1)

=]
=
=

M

MRH 11/10/2012

=]
=
=

Mutually recursive function declarations

M

e are combined using and

Example: extract the names occurring in file systems and elements.

| et rec namesFileSys = function

| [] -> []

| e::es -> (nanmesEl ement e) @ (nanesFil eSys es)
and nanesEl enent = function

| File s -> [s]

| Dir(s,fs) ->s :: (nanesFileSys fs) ;;
val nanesFileSys : Element list -> string |ist
val nanesEl ement : Elenment -> string |ist

nanesEl enment dil ;;
val it : string list =["d1"; "al"; "d2"; "a2";
"d3"; "a3"; "a4"; "d3"; "ab"]

38 DTU Informatics, Technical University of Denmark Finite Trees (1) MRH 11/10/2012

Summary

Finite Trees
e concepts
o illustrative examples

39 DTU Informatics, Technical University of Denmark

Finite Trees (1)

(=)
|
=

M

MRH 11/10/2012

=]
=
=

Summary

M

Finite Trees
e concepts
o illustrative examples

Notice the strength of having trees as values.

40 DTU Informatics, Technical University of Denmark Finite Trees (1) MRH 11/10/2012

=]
=
=

Summary

M

Finite Trees
e concepts
o illustrative examples

Notice the strength of having trees as values.

Notice that polymorphic types and mutual recursion are NOT biased
to trees.

41 DTU Informatics, Technical University of Denmark Finite Trees (I) MRH 11/10/2012

