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Overview

Finite Trees
o Algebraic Datatypes.

e Non-recursive type declarations: Disjoint union (Lecture 4)
e Recursive type declarations: Finite trees
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Overview

M

Finite Trees
o Algebraic Datatypes.

e Non-recursive type declarations: Disjoint union (Lecture 4)
e Recursive type declarations: Finite trees

e Recursions following the structure of trees
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Overview

Finite Trees
o Algebraic Datatypes.
e Non-recursive type declarations: Disjoint union (Lecture 4)
e Recursive type declarations: Finite trees
e Recursions following the structure of trees

o lllustrative examples:

Search trees
Expression trees
File systems
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Overview

M

Finite Trees
o Algebraic Datatypes.
e Non-recursive type declarations: Disjoint union (Lecture 4)
e Recursive type declarations: Finite trees
e Recursions following the structure of trees

o lllustrative examples:

Search trees
Expression trees
File systems

o Mutual recursion, layered pattern, polymorphic type declarations
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Finite trees

M

A finite tree is a value which may contain a subcomponent of the
same type.
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Finite trees

A finite tree is a value which may contain a subcomponent of the
same type.

Example: A binary search tree
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Condition: for every node containing the value x: every value in the
left subtree is smaller then x, and every value in the right subtree is
greater than x.
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Example: Binary Trees

M

A recursive datatype is used to represent values which are trees.

type Tree = Lf

| Br of Treexint*Tree;;
Lf;;
val it : Tree = Lf

Br;;
val it : Tree = int » Tree -> Tree = <fun:clo@>
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Example: Binary Trees

A recursive datatype is used to represent values which are trees.

type Tree = Lf
| Br of Treexint*Tree;;
Lf;;
val it : Tree = Lf
Br;;
val it : Tree = int » Tree -> Tree = <fun:clo@>

The two parts in the declaration are rules for generating trees:
o Lf isatree
e ift1,t are trees, n is an integer, then Br (t1,n, ) is a tree.
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Example: Binary Trees

A recursive datatype is used to represent values which are trees.

type Tree = Lf
| Br of Treexint*Tree;;

Lf;;
val it : Tree = Lf

Br;;
val it : Tree *x int = Tree -> Tree = <fun:clo@>

The two parts in the declaration are rules for generating trees:
o Lf isatree
e ift1,t are trees, n is an integer, then Br (t1,n, ) is a tree.

The tree from the previous slide is denoted by:

Br (Br(Br(Lf,2,Lf),7, Lf),
9,
Br(Br(Lf, 13, Lf), 21, Br (Lf, 25, Lf)))
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Binary search trees: Insertion

M

e Recursion on the structure of trees
e Constructors Lf and Br are used in patterns
e The search tree condition is an invariant for i nsert

11 DTU Informatics, Technical University of Denmark Finite Trees (I) MRH 11/10/2012



Binary search trees: Insertion

e Recursion on the structure of trees
e Constructors Lf and Br are used in patterns
e The search tree condition is an invariant for i nsert

let rec insert i = function
| Lf -> Br(Lf,i,Lf)
| Br(tl,j,t2) as tr ->
mat ch conpare i j with
| O -> tr
| n when n<0O -> Br(insert i t1, j, t2)
| _ -> Br(tl,j, insert i t2);;
val insert : int -> Tree -> Tree
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Binary search trees: Insertion

e Recursion on the structure of trees
e Constructors Lf and Br are used in patterns
e The search tree condition is an invariant for i nsert

let rec insert i = function
| Lf -> Br(Lf,i,Lf)
| Br(tl,j,t2) as tr ->
mat ch conpare i j with
| O ->tr
| n when n<0 -> Br(insert i t1, j, t2)
| -> Br(tl,j, insert i t2);;

val inser_t cint -> Tree -> Tree
Example:

let t1 = Br(Lf, 3, Br(Lf, 5, Lf));;

let t2 = insert 4 t1;;

val t2 : Tree = Br (Lf,3,Br (Br (Lf,4,Lf),5,Lf))
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Binary search trees: nenber and i nOr der traversal

M

let rec menber™ i = function
| Lf -> fal se
| Br(tl,j,t2) -> match conpare i j with
| O -> true

| n when n<0 -> menberf i t1l
| _ -> nenberF i t2;;
val menber™ : int -> Tree -> bool
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Binary search trees: nenber and i nOr der traversal

M

let rec menber™ i = function
| Lf -> fal se
| Br(tl,j,t2) -> match conpare i j with
| O -> true

| n when n<0 -> nenberOF i t1
| _ -> nenberF i t2;;
val menber™ : int -> Tree -> bool
In-order traversal
let rec inOrder = function
| Lf -> ]
| Br(tl,j,t2) -> inOder t1 @[j] @inOder t2;;

val toList : Tree -> int |ist
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Binary search trees: nenber and i nOr der traversal

M

let rec menber™ i = function
| Lf -> fal se
| Br(tl,j,t2) -> match conpare i j with
| O -> true

| n when n<0 -> menberf i t1l
| _ -> nenberF i t2;;
val menber™ : int -> Tree -> bool

In-order traversal
let rec inOrder = function
| Lf -> ]
| Br(tl,j,t2) -> inOder t1 @[j] @inOder t2;;
val toList : Tree -> int |ist

gives a sorted list

inOrder (Br(Br(Lf,1,Lf), 3, Br(Br(Lf,4,Lf), 5, Lf)));;
val it : int list =[1; 3; 4; 5]
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Deletions in search trees

M

Delete minimal element in a search tree: Tree -> int * Tree

let rec delMn = function

| Br(Lf,i,t2) -> (i,t2)

| Br(tl,i,t2) ->let (mtl') =delMn t1l
(m Br(tl,i,t2));;
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Deletions in search trees

Delete minimal element in a search tree: Tree -> int * Tree

let rec delMn = function
| Br(Lf,i,t2) -> (i,t2)
| Br(tl,i,t2) ->let (mtl') =delMn t1l
(m Br(t1,i,t2));;

Delete element in a search tree:int -> Tree -> Tree

let rec delete j = function
| Lf -> Lf
| Br(tl,i,t2) ->
match conpare i j with
| n when n<O -> Br(tl,i,delete j t2)
| n when n>0 -> Br(delete j t1,i,t2)

| _ ->
match t2 with
| Lf ->1t1
| _ ->let (mt2') = delMn t2
Br(tl,mt2');;
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Parameterize type declarations

M

The programs on search trees just requires an ordering on elements
— they no not need to be integers.
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Parameterize type declarations

M

The programs on search trees just requires an ordering on elements
— they no not need to be integers.

A polymorphic tree type is declared as follows:

type Tree<'a> = Lf | Br of Tree<'a> x 'a * Tree< a>;;
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Parameterize type declarations

M

The programs on search trees just requires an ordering on elements
— they no not need to be integers.

A polymorphic tree type is declared as follows:

type Tree<'a> = Lf | Br of Tree<'a> x 'a * Tree< a>;;

Program texts are unchanged (though polymorphic now), for example
let rec insert i = function
| Br(tl,j,t2) as tr -> match conpare i j with

val insert: 'a -> Tree<'a> -> Tree<'a> when ’'a: conparison
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Parameterize type declarations

M

The programs on search trees just requires an ordering on elements
— they no not need to be integers.

A polymorphic tree type is declared as follows:

type Tree<'a> = Lf | Br of Tree<'a> x 'a * Tree< a>;;

Program texts are unchanged (though polymorphic now), for example

let rec insert i = function
| Br(tl,j,t2) as tr -> match conpare i j with

val insert: 'a -> Tree<'a> -> Tree<'a> when ’'a: conparison

let ti =insert 4 (Br(Lf, 3, Br(Lf, 5, Lf)));;
val ti : Tree<int> = Br (Lf,3,Br (Br (Lf,4,Lf),5,Lf))
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Parameterize type declarations

M

The programs on search trees just requires an ordering on elements
— they no not need to be integers.
A polymorphic tree type is declared as follows:

type Tree<'a> = Lf | Br of Tree<'a> x 'a * Tree< a>;;

Program texts are unchanged (though polymorphic now), for example
let rec insert i = function
| Br(tl,j,t2) as tr -> match conpare i j with

val insert: 'a -> Tree<'a> -> Tree<'a> when ’'a: conparison

let ti insert 4 (Br(Lf, 3, Br(Lf, 5, Lf)));;
val ti : Tree<int> = Br (Lf,3,Br (Br (Lf,4,Lf),5,Lf))

let ts insert "4" (Br(Lf, "3", Br(Lf, "5", Lf)));;
val ts : Tree<string>
Br (Lf,"3",Br (Br (Lf,"4",Lf),"5",Lf))
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Higher-order functions for tree traversals

M

For example

let rec inFoldBack f t e =
match t with
| Lf -> e
| Br(tl,x,t2) ->let er = inFoldBack f t2 e
i nFol dBack f t1 (f x er);;
val inFoldBack: ("a ->'b ->"'b) -> Tree<"a>->"'b ->"'b
satisfies

i nFol dBack f t e =List.fol dBackf (i nOrder t)e
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Higher-order functions for tree traversals

M

For example

let rec inFoldBack f t e =
match t with
| Lf -> e
| Br(tl,x,t2) ->let er = inFoldBack f t2 e
i nFol dBack f t1 (f x er);;
val inFoldBack: ("a ->'b ->"'b) -> Tree<"a>->"'b ->"'b

satisfies
i nFol dBack f t e =List.fol dBackf (i nOrder t)e

It traverses the tree without building the list- For example:
let ta = Br(Br(Br(Lf,-3,Lf),0,Br(Lf,2,Lf)),5,Br(Lf,7,Lf));;

inOrder ta;;
val it : int list =[-3; 0; 2; 5; 7]

i nFol dBack (-) ta O0;;
val it @ int =1
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Example: Expression Trees

type Fexpr =
| Const of float
| X
| Add of Fexpr =
| Sub of Fexpr =*
| Ml of Fexpr =
| Div of Fexpr =*
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Example: Expression Trees

type Fexpr =

| Const of float

| X

| Add of Fexpr * Fexpr

| Sub of Fexpr * Fexpr

| Ml of Fexpr * Fexpr

| Div of Fexpr » Fexpr;;

Defines 6 constructors:

e Const: float -> Fexpr
e X : Fexpr
e Add: Fexpr * Fexpr -> Fexpr
e Sub: Fexpr * Fexpr -> Fexpr
e Mul : Fexpr * Fexpr -> Fexpr
e Div: Fexpr *» Fexpr -> Fexpr
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Symbolic Differentiation D. Fexpr -> Fexpr

M

A classic example in functional programming:

let rec D= function

| Const _ -> Const 0.0

| X -> Const 1.0

| Add(fel,fe2) -> Add(D fel, D fe2)

| Sub(fel,fe2) -> Sub(D fel, D fe2)

| Ml (fel,fe2) -> Add(Mul (D fel, fe2), Ml (fel, D fe2))

| Div(fel,fe2) -> Div(
Sub(Mil (D fel, fe2), Ml (fel, D fe2)),
Ml (fe2,fe2));;

Notice the direct correspondence with the rules of differentiation.
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Symbolic Differentiation D. Fexpr -> Fexpr

M

A classic example in functional programming:

let rec D= function

| Const _ -> Const 0.0

| X -> Const 1.0

| Add(fel,fe2) -> Add(D fel, D fe2)

| Sub(fel,fe2) -> Sub(D fel, D fe2)

| Ml (fel,fe2) -> Add(Mul (D fel, fe2), Ml (fel, D fe2))

| Div(fel,fe2) -> Div(
Sub(Mil (D fel, fe2), Ml (fel, D fe2)),
Ml (fe2,fe2));;

Notice the direct correspondence with the rules of differentiation.

Can be tried out directly, as tree are "just” values, for example:

D(Add( Ml (Const 3.0, X), Ml (X, X)));;
val it : Fexpr =
Add
(Add (Mul (Const 0.0, X), Mul (Const 3.0,Const 1.0)),
Add (Mul (Const 1.0,X), Mul (X Const 1.0)))
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Expressions: Computation of values

M

Given a value (a float) for X, then every expression denote a float.

conpute : float -> Fexpr -> float
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Expressions: Computation of values

Given a value (a float) for X, then every expression denote a float.

conpute : float -> Fexpr -> float

let rec conpute x = function

Const r ->r

X -> X

Add(fel,fe2) -> conpute x fel + conpute x fe2
Sub(fel,fe2) -> conpute x fel - conpute x fe2
Mul (fel,fe2) -> conmpute x fel » conpute x fe2

DTU Informatics, Technical University of Denmark Finite Trees (1)
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Div(fel, fe2) -> conpute x fel / conpute x fe2;;
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Expressions: Computation of values

M

Given a value (a float) for X, then every expression denote a float.

conpute : float -> Fexpr -> float

let rec conpute x = function

Const r ->r

X -> X

Add(fel,fe2) -> conpute x fel + conpute x fe2
Sub(fel,fe2) -> conpute x fel - conpute x fe2
Mul (fel,fe2) -> conmpute x fel » conpute x fe2
Div(fel, fe2) -> conpute x fel / conpute x fe2;;

Example:

conpute 4.0 (Ml (X, Add(Const 2.0, X)));;
val it : float = 24.0
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Mutual recursion. Example: File system

M

ds

a dz as ds

a  ds as

as

o Afile system is a list of elements
e an elementis a file or a directory, which is a named file system
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Mutually recursive type declarations

M

e are combined using and

type FileSys = Elenent |ist
and El ement =

| File of string

| Dir of string = FileSys
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Mutually recursive type declarations

e are combined using and

type FileSys = Elenent |ist
and El ement =

| File of string

| Dir of string = FileSys

let dl =
Dir("dl1",[File "al";
Dir("d2", [File "a2";
Dir("d3", [File "a3"])]);

File "a4";
Dir("d3", [File "a5"])
1)
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Mutually recursive type declarations

M

e are combined using and

type FileSys = Elenent |ist
and El ement =

| File of string

| Dir of string = FileSys

let dl =
Dir("dl",[File "al";
Dir("d2", [File "a2";
Dir("d3", [File "a3"])]);

File "a4";
Dir("d3", [File "a5"])
1)

The type of d1is ?
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Mutually recursive function declarations

e are combined using and

Example: extract the names occurring in file systems and elements.

| et rec namesFileSys = function

| [] -> []

| e::es -> (nanmesEl ement e) @ (nanesFil eSys es)
and nanesEl enent = function

| File s -> [s]

| Dir(s,fs) ->s :: (nanesFileSys fs) ;;
val nanesFileSys : Element list -> string |ist
val nanesEl ement : Elenment -> string |ist
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Mutually recursive function declarations

M

e are combined using and

Example: extract the names occurring in file systems and elements.

| et rec namesFileSys = function

| [] -> []

| e::es -> (nanmesEl ement e) @ (nanesFil eSys es)
and nanesEl enent = function

| File s -> [s]

| Dir(s,fs) ->s :: (nanesFileSys fs) ;;
val nanesFileSys : Element list -> string |ist
val nanesEl ement : Elenment -> string |ist

nanesEl enment dil ;;
val it : string list =["d1"; "al"; "d2"; "a2";
"d3"; "a3"; "a4"; "d3"; "ab"]
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Summary

Finite Trees
e concepts
o illustrative examples
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Summary

M

Finite Trees
e concepts
o illustrative examples

Notice the strength of having trees as values.
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Summary

M

Finite Trees
e concepts
o illustrative examples

Notice the strength of having trees as values.

Notice that polymorphic types and mutual recursion are NOT biased
to trees.
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