=
=
=

>
>
>

02157 Functional Programming
Lecture 2: Functions, Basic Types and Tuples

Michael R. Hansen

b
. A
f(x+Ax):Z(l.ATx)f“’(x) 8

a

DTU Informatics
Department of Informatics and Mathematical Modelling

DTU Informatics, Technical University of Denmark Lecture 2: Functions, Basic Types and Tuples MRH 13/09/2012

2

Outline

A further look at functions, including higher-order (or curried)
functions

A further look at basic types, including characters, equality and
ordering

A first look at polymorphism

A further look at tuples and patterns
A further look at lists and list recursion

Goal: By the end of the day you are acquainted with a major part of
the F# language.

DTU Informatics, Technical University of Denmark Lecture 2: Functions, Basic Types and Tuples

=]
=
=

M

MRH 13/09/2012

3

Anonymous functions

Function expressions with general patterns, e.qg.

function

| 2 -> 28 /] February

|416]9/11 -> 30 // April, June, Septenber,
| ->31 // Al other nonths

Simple function expressions, e.g.
funr -> SystemMath.Pl = r * r ;;
val it : float -> float = <fun:clo@O-1>
it 2.0 ;;
val it : float = 12.56637061

=]
=
=

M

Novemnber

DTU Informatics, Technical University of Denmark Lecture 2: Functions, Basic Types and Tuples MRH 13/09/2012

Anonymous functions

Simple functions expressions with currying
funxy ---z —e
with the same meaning as

funx - (funy = (--- (funz —e)--+))

For example: The function below takes an integer as argument and
returns a function of type i nt -> i nt as value:

fun X y -> x + xxy;;

val it : int -> int ->int = <fun:clo@-1>
let f =it 2;;

val f : (int ->int)

f 3;;

val it : int =8

Functions are first class citizens:
the argument and the value of a function may be functions

4 DTU Informatics, Technical University of Denmark Lecture 2: Functions, Basic Types and Tuples

=]
=
=

M

MRH 13/09/2012

=]
=
=

Function declarations

M

A simple function declaration:
let fx = e means let f = funx —e
Forexample: let circleArea r = System Math. Pl xrxr
A declaration of a curried function
let fxy . --.z=¢e
has the same meaning as:

let f = funx — (funy = (--- funz —e)--+))

For example:
let addMult x y = X + x*y;;
val addMult : int ->int ->int
let f = addMult 2;;
val f (int ->int)
f 35
val it : int =8

5 DTU Informatics, Technical University of Denmark Lecture 2: Functions, Basic Types and Tuples MRH 13/09/2012

=]
=
=

An example

M

Suppose that we have a cube with side length s, containing a liquid
with density p. The weight of the liquid is then given by p - s*:

let weight ros =ro * s xx 3.0;;
val weight : float -> float -> float

We can make partial evaluations to define functions for computing
the weight of a cube of either water or methanol:

| et waterWight = weight 1000.0;;
val waterWeight : (float -> float)

wat er Wei ght 2. 0; ;
val it : float = 8000.0

| et met hanol Wi ght = weight 786.5 ;;
val nethanol Weight : (float -> float)

nmet hanol Wi ght 2. 0; ;
val it : float = 6292.0

6 DTU Informatics, Technical University of Denmark Lecture 2: Functions, Basic Types and Tuples MRH 13/09/2012

=]
=
=

Patterns

M

We have in previous examples exploited the pattern matching in
function expression:

function
|pat; — e

| pat, — en

A match expression has a similar pattern matching feature:

matchew th
|pati — ex

| pat,, — en
The value of e is computed and the expressing e; corresponding to

the first matching pattern is chosen for further evaluation.

DTU Informatics, Technical University of Denmark Lecture 2: Functions, Basic Types and Tuples MRH 13/09/2012

=]
=
=

Example

M

Alternative declarations of the power function:

l et rec power = function
| (,0) ->1.0
| (x,n) ->x * power(x,n-1);;

are
let rec power a = match a with
| (_,0) ->1.0
| (x,n) ->x * power(x,n-1);;
and
let rec power(x,n) = match n with
| 0 ->1.0
| n ->x * power(x,n -1);;

8 DTU Informatics, Technical University of Denmark Lecture 2: Functions, Basic Types and Tuples MRH 13/09/2012

9

Infix functions

The prefix version (¢) of an infix operator & is a curried function.

For example:

(4

val it : (int ->int ->int) = <fun:it@>
Arguments can be supplied one by one:

let plusThree = (+) 3;;

val plusThree : (int -> int)

pl usThree 5;;
val it : int =8

DTU Informatics, Technical University of Denmark Lecture 2: Functions, Basic Types and Tuples

=]
=
=

M

MRH 13/09/2012

Function composition: (f o g)(x) = f(g(x))

For example, if f(y) =y + 3 and g(x) = x?, then (f o g)(z) = 22 + 3.

The infix operator << in F# denotes functional composition:

let f y = y+3;; Il f(y) = y+3

let g X = x*X;; [l g(x) = x*x

let h = f << g;; Il h=(f oqg)

val h: int ->int

h 4;; Il h(4) = (f o g)(4)
val it : int =19

Using just anonymous functions:

((fun y -> y+3) << (fun x -> x*x)) 4;;
val it : int =19

Type of (<<) ?

DTU Informatics, Technical University of Denmark Lecture 2: Functions, Basic Types and Tuples

[}
=
=

M

MRH 13/09/2012

Basic Types: equality and ordering

The basic types: integers, floats, booleans, and strings type were
covered last week. Characters are considered on the next slide.
For these types (and many other) equality and ordering are defined.

In particular, there is a function:

>0 ifx>y
conparexy = 0 ifx =
<0 ifx<y

For example:

conmpare 7.4 2.0;;
val it : int =1

conpare "abc" "def";;

val it : int = -3
conpare 1 4;,;
val it : int =-1

11 DTU Informatics, Technical University of Denmark Lecture 2: Functions, Basic Types and Tuples

=]
=
=

M

MRH 13/09/2012

=]
=
=

Pattern matching with guards

M

It is often useful to have when guards in patterns:

let ordText x y = match conpare x y with
| t whent > 0 -> "greater"
| O -> "equal "
| _ -> "less";;
ordText "abc" "Abc";;
val it : bool = true

The first clause is only taken whent > 0 evaluates to true.

12 DTU Informatics, Technical University of Denmark Lecture 2: Functions, Basic Types and Tuples MRH 13/09/2012

=]
=
=

Polymorphism and comparison

M

The type of or dText

’

val ordText a->"a->string when "a : conparison

contains

e atype variable’ a, and
e atype constraint’ a : conpari son

The type variable can be instantiated to any type provided
comparison is defined for that type. It is called a polymorphic type.

For example:
ordText true false;;
val it : string = "greater”

ordText (1,true) (1,false);;
val it : string = "greater”

ordText sin cos;;
"("a ->"a)’ does not support the 'conparison’

Comparison is not defined for types involving functions.

13 DTU Informatics, Technical University of Denmark Lecture 2: Functions, Basic Types and Tuples MRH 13/09/2012

Characters

Type name: char
Values'a', ' ', "\’
Examples

| et isLower CaseVowel ch =

(escape sequence for ')

System Char. | sLower ch &&

(ch="a' || ch="¢e" ||
val isLower CaseVowel

i sLower CaseVowel 'i';;

val it bool = true
i sLower CaseVowel 'I|';;
val it bool = false

ch =i’

char -> bool

|| ch="0" || ch

The i’th character in a string is achieved using the "dot"-notation:

"abc".[0];;
val it char = "a

’

14 DTU Informatics, Technical University of Denmark

Lecture 2: Functions, Basic Types and Tuples

=]
=
=

M

1

='u)ss

MRH 13/09/2012

15

Overloaded Operators and Type inference

A squaring function on integers:

Declaration | Type |
let square x = x * x [int ->int | Default

A squaring function on floats: square: float -> fl oat

Declaration |

let square(x:float) = x » x Type the argument

let square x:float = x * X Type the result

let square x = x » x: float | Type expression for the result
let square x = x:float * x Type a variable

You can mix these possibilities

DTU Informatics, Technical University of Denmark Lecture 2: Functions, Basic Types and Tuples

=]
=
=

M

MRH 13/09/2012

16

Tuples

An ordered collection of n values (v1, V2, ..., Vy) is called an n-tuple
Examples
(3, false); i .
val it = (3, false) : int * bool 2-uples (pairs)

(1, 2, ("ab",true));

val it = (1, 2, ("ab", true)) : ? 3-tuples (triples)

Equality defined componentwise, ordering lexicographically

(1, 2.0, true) = (2-1, 2.0+«1.0, 1<2);;
val it = true : bool

conpare (1, 2.0, true) (2-1, 3.0, false);;
val it : int =-1
provided = is defined on components

DTU Informatics, Technical University of Denmark Lecture 2: Functions, Basic Types and Tuples

=]
=
=

M

MRH 13/09/2012

Tuple patterns

Extract components of tuples

let ((x,.),(_Yy,)) =((2,true),("a","b",false));;

val x : int =1
val y : string = "b"

Pattern matching yields bindings

Restriction
let (x,x) =(1,1);;

ERROR ... 'Xx' is bound tw ce

inthis pattern

17 DTU Informatics, Technical University of Denmark Lecture 2: Functions, Basic Types and Tuples

=]
=
=

M

MRH 13/09/2012

=]
=
=

Local declarations

M

Examples

let g x =
let a =6
let f y=y+a
x + f x;;

val g : int ->int

g1

val it int =8

Note: a and f are not visible outside of g

18 DTU Informatics, Technical University of Denmark Lecture 2: Functions, Basic Types and Tuples MRH 13/09/2012

[}
=
=

Declaration of types and exceptions

M

Example: Solve ax? +bx +¢c =0

type Equation = float » float *» float
type Solution = float * float
exception Solve; (* declares an exception =)

let solve(a,b,c) =
if bxb-4.0xaxc < 0.0 || a = 0.0 then raise Sol ve
else ((-b + sqrt(bxb-4.0+axc))/(2.0+a),
(-b - sgrt(b*b-4.0+axc))/(2.0*a));;
val solve : float = float » float -> float * float
The type of the function sol ve is (the expansion of)

Equation -> Sol ution

d is declared once and used 3 times readability, efficiency

19 DTU Informatics, Technical University of Denmark Lecture 2: Functions, Basic Types and Tuples MRH 13/09/2012

Solution using local declarations

let solve(a,b,c) =
let d = bxb-4.0+ax*c
if d<0.0]||] a=0.0then raise Solve el se
((-b + sqgrt d)/(2.0%a),(-b - sqgrt d)/(2.0xa));;

let solve(a,b,c) =
let sqrtD =
let d = bxb-4.0xa*
if d<00]] a-=
el se sqrt d
((-b + sqrtD)/(2.0+a),(-b - sqrtD)/(2.0*a));;

c
0.0 then raise Solve

Indentation matters

20 DTU Informatics, Technical University of Denmark Lecture 2: Functions, Basic Types and Tuples

=]
=
=

M

MRH 13/09/2012

21

Example: Rational Numbers

Consider the following signature, specifying operations and their

types:

Specification

Comment

type gnum = int * int
exception QDiv

mkQ: int *int — gnum
.+.: gnum * gnum — gnum
-2 gnum * gnum — gnum
*.gnum * gnum — gnum
J.: gnum * gnum — gnum
.=.. gnum * gnum — bool
toString: gnum — string

rational numbers

division by zero

construction of rational numbers
addition of rational numbers
subtraction of rational numbers
multiplication of rational numbers
division of rational numbers
equality of rational numbers

String representation
of rational numbers

DTU Informatics, Technical University of Denmark

Lecture 2: Functions, Basic Types and Tuples

=]
=
=

M

MRH 13/09/2012

(=)
|
=

Intended use

M

let g1 = mkQ(2,3);; g1 = %

let 2 = mkQ(12, -27);; g2 = _%_; =3

let g3 = mkQ(-1, 4) .*. g2 .-. q1;; QGs=—2G2—CO1= ¢
letgd=ql .-. g2 ./. q3;; Qs =01 —Q2/03 = %,%4/%5
toString q4;;

val it : string = "-2/15" :—12—5

Operators are infix with usual precedences

Note: Without using infix:
let 93 = (.-.)((.*.) (nkQ(-1,4)) g2) ql;;

22 DTU Informatics, Technical University of Denmark Lecture 2: Functions, Basic Types and Tuples MRH 13/09/2012

23

Representation: (a,b), b > 0 and gcd(a,

Example 73—5 is represented by (—4,9)

Greatest common divisor (Euclid’s algorithm)

b)=1

let rec gcd = function
| (0,n) ->n - gcd(12, 27);;
| (mn) ->gcd(n %mmn;; val it int =3
val gcd @ int * int ->int
Function to cancel common divisors:
let canc(p,q) =
let sign =if prq < 0 then -1 else 1
let ap = abs p
let aq = abs q
let d = gcd(ap, aq)
(sign * (ap / d), aq / d);;
canc(12,-27);;
val it int »int = (-4, 9)

DTU Informatics, Technical University of Denmark

Lecture 2: Functions, Basic Types and Tuples

=]
=
=

M

MRH 13/09/2012

24

Program for rational numbers

Declaration of the constructor:

exception QDv;;

let nkQ = function
| (_,0) ->raise Qiv
| pr -> canc pr;;

Rules of arithmetic:

a 4 c _ ad-+bc a_ ¢ ad —bc

b d - bd b d - bd

a. c _ ac aj/c a d

a.c = = 2/ = p-'c Whenc#0
a_ ¢ _ —

5=g = ad=bc

Program corresponds direly to these rules
let (.+.) (a,b) (c,d) = canc(a*d + bxc, bxd);;

let (.-.) (a,b) (c,d) = canc(a*d - bxc, bxd);;
let (.*.) (a,b) (c,d) = canc(axc, b=*d);;

let (./.) (a,b) (c,d) = (a,b) .». nkQd,c);;
let (.=.) (a,b) (c,d) = (a,b) = (c,d);;

Note: Functions must preserve the invariant of the representation

DTU Informatics, Technical University of Denmark Lecture 2: Functions, Basic Types and Tuples

[}
=
=

M

MRH 13/09/2012

=]
=
=

Pattern matching and recursion

M

Consider unzi p that maps a list of pairs to a pair of lists:

unzi p([(Xo,¥0) s (X1,¥1) 5 ---5 (Xn-1,¥n-1)1]
= ([Xo; X1; ...; Xn—1] , [Yo; Y1; .-+ ¥n-1])

with the declaration:

let rec unzip = function

| [] -> ([1.11)
| (x,y)::rest -> let (xs,ys) = unzip rest
(X::Xs,y::y8);;

unzip [(1,"a");(2,"b")];;
val it : int list » string list = ([1; 2], ["a"; "b"])
Notice
e pattern matching on result of recursive call
e unzi p is polymorphic. Type?
e unzi p is available in the Li st library.

25 DTU Informatics, Technical University of Denmark Lecture 2: Functions, Basic Types and Tuples MRH 13/09/2012

=]
=
=

Summary

M

You are acquainted with a major part of the F# language.
¢ Higher-order (or curried) functions

Basic types, equality and ordering

Polymorphism

Tuples

Patterns

A look at lists and list recursion

26 DTU Informatics, Technical University of Denmark Lecture 2: Functions, Basic Types and Tuples MRH 13/09/2012

