

02157 Functional Programming

Lecture 2: Functions, Basic Types and Tuples

Michael R. Hansen

DTU Informatics

Department of Informatics and Mathematical Modelling

Outline

- A further look at functions, including higher-order (or curried) functions
- A further look at basic types, including characters, equality and ordering
- A first look at polymorphism
- A further look at tuples and patterns
- · A further look at lists and list recursion

Goal: By the end of the day you are acquainted with a major part of the F# language.

Outline

- A further look at functions, including higher-order (or curried) functions
- A further look at basic types, including characters, equality and ordering
- · A first look at polymorphism
- A further look at tuples and patterns
- · A further look at lists and list recursion

Goal: By the end of the day you are acquainted with a major part of the F# language.

Function expressions with general patterns, e.g.

Simple function expressions, e.g.

```
fun r -> System.Math.PI * r * r ;;
val it : float -> float = <fun:clo@10-1>
it 2.0 ;;
val it : float = 12.56637061
```


MRH 13/09/2012

Function expressions with general patterns, e.g.

Simple function expressions, e.g.

```
fun r -> System.Math.PI * r * r ;;
val it : float -> float = <fun:clo@10-1>
it 2.0 ;;
val it : float = 12.56637061
```


Simple functions expressions with currying

$$\text{fun } \textit{x} \textit{y} \; \cdots \; \textit{z} \; \rightarrow \textit{e}$$

with the same meaning as

$$\operatorname{fun} X \to (\operatorname{fun} Y \to (\cdots (\operatorname{fun} Z \to e) \cdots))$$

For example: The function below takes an integer as argument and returns a function of type int -> int as value:

```
fun x y -> x + x*y;;
val it : int -> int -> int = <fun:clo@2-1>
let f = it 2;;
val f : ( int -> int)
f 3;;
val it : int = 8
```


Simple functions expressions with *currying*

fun
$$x y \cdots z \rightarrow e$$

with the same meaning as

$$\operatorname{fun} X \to (\operatorname{fun} Y \to (\cdots (\operatorname{fun} Z \to e) \cdots))$$

For example: The function below takes an integer as argument and returns a function of type int -> int as value:

```
fun x y -> x + x*y;;
val it : int -> int -> int = <fun:clo@2-1>
let f = it 2;;
val f : ( int -> int)
f 3;;
val it : int = 8
```


Simple functions expressions with *currying*

fun
$$x y \cdots z \rightarrow e$$

with the same meaning as

$$\operatorname{fun} X \to (\operatorname{fun} Y \to (\cdots (\operatorname{fun} Z \to e) \cdots))$$

For example: The function below takes an integer as argument and returns a function of type int -> int as value:

```
fun x y -> x + x*y;;
val it : int -> int -> int = <fun:clo@2-1>
let f = it 2;;
val f : ( int -> int)
f 3;;
val it : int = 8
```


Simple functions expressions with *currying*

$$fun xy \cdots z \rightarrow e$$

with the same meaning as

$$\operatorname{fun} X \to (\operatorname{fun} Y \to (\cdots (\operatorname{fun} Z \to e) \cdots))$$

For example: The function below takes an integer as argument and returns a function of type int -> int as value:

```
fun x y -> x + x*y;;
val it : int -> int -> int = <fun:clo@2-1>
let f = it 2;;
val f : ( int -> int)
f 3;;
val it : int = 8
```


Simple functions expressions with *currying*

$$fun xy \cdots z \rightarrow e$$

with the same meaning as

$$\operatorname{fun} X \to (\operatorname{fun} Y \to (\cdots (\operatorname{fun} Z \to e) \cdots))$$

For example: The function below takes an integer as argument and returns a function of type int -> int as value:

```
fun x y -> x + x*y;;
val it : int -> int -> int = <fun:clo@2-1>
let f = it 2;;
val f : ( int -> int)
f 3;;
val it : int = 8
```

Function declarations

A simple function declaration:

let
$$f x = e$$
 means let $f = f un x \rightarrow e$

For example: let circleArea r = System.Math.PI *r*r

A declaration of a curried function

let
$$f \times y \cdots z = e$$

has the same meaning as:

$$let f = fun X \rightarrow (fun Y \rightarrow (\cdots (fun Z \rightarrow e) \cdots))$$

```
let addMult x y = x + x*y;;
val addMult : int -> int -> in
let f = addMult 2;;
val f : (int -> int)
f 3;;
```

Function declarations

A simple function declaration:

let
$$f x = e$$
 means let $f = f un x \rightarrow e$

A declaration of a curried function

let
$$f x y \cdots z = e$$

has the same meaning as:

let
$$f = \operatorname{fun} X \to (\operatorname{fun} Y \to (\cdots (\operatorname{fun} Z \to e) \cdots))$$

```
let addMult x y = x + x*y;;
val addMult : int -> int -> int
let f = addMult 2;;
val f : (int -> int)
f 3;;
```

Function declarations

A simple function declaration:

let
$$f x = e$$
 means let $f = f un x \rightarrow e$

For example: let circleArea r = System.Math.PI *r*r

A declaration of a curried function

let
$$f x y \cdots z = e$$

has the same meaning as:

$$let f = fun x \rightarrow (fun y \rightarrow (\cdots (fun z \rightarrow e) \cdots))$$

```
let addMult x y = x + x*y;;
val addMult : int -> int -> int
let f = addMult 2;;
val f : (int -> int)
f 3;;
val it : int = 8
```

An example

Suppose that we have a cube with side length s, containing a liquid with density ρ . The weight of the liquid is then given by $\rho \cdot s^3$:

```
let weight ro s = ro * s ** 3.0;;
val weight : float -> float -> float
```

We can make *partial evaluations* to define functions for computing the weight of a cube of either water or methanol:

```
let waterWeight = weight 1000.0;;
val waterWeight : (float -> float)

waterWeight 2.0;;
val it : float = 8000.0

let methanolWeight = weight 786.5 ;;
val methanolWeight : (float -> float

methanolWeight 2.0;;
val it : float = 6292.0
```

An example

Suppose that we have a cube with side length s, containing a liquid with density ρ . The weight of the liquid is then given by $\rho \cdot s^3$:

```
let weight ro s = ro * s ** 3.0;;
val weight : float -> float -> float
```

We can make *partial evaluations* to define functions for computing the weight of a cube of either water or methanol:

```
let waterWeight = weight 1000.0;;
val waterWeight : (float -> float)

waterWeight 2.0;;
val it : float = 8000.0

let methanolWeight = weight 786.5;;
val methanolWeight : (float -> float,
methanolWeight 2.0;;
val it : float = 6292.0
```

An example

Suppose that we have a cube with side length s, containing a liquid with density ρ . The weight of the liquid is then given by $\rho \cdot s^3$:

```
let weight ro s = ro * s ** 3.0;;
val weight : float -> float -> float
```

We can make *partial evaluations* to define functions for computing the weight of a cube of either water or methanol:

```
let waterWeight = weight 1000.0;;
val waterWeight : (float -> float)

waterWeight 2.0;;
val it : float = 8000.0

let methanolWeight = weight 786.5 ;;
val methanolWeight : (float -> float)

methanolWeight 2.0;;
val it : float = 6292.0
```

Patterns

We have in previous examples exploited the pattern matching in function expression:

$$\begin{array}{ccc} \text{function} & & \\ | \textit{pat}_1 & \rightarrow & e_1 \\ & \vdots & \\ | \textit{pat}_n & \rightarrow & e_n \end{array}$$

A match expression has a similar pattern matching feature:

match
$$e$$
 with $| pat_1 \rightarrow e_1$ \vdots $| pat_n \rightarrow e_n$

The value of e is computed and the expressing e_i corresponding to the first matching pattern is chosen for further evaluation.

Patterns

We have in previous examples exploited the pattern matching in function expression:

```
\begin{array}{cccc} \text{function} & & \\ | \textit{pat}_1 & \rightarrow & e_1 \\ & & \vdots \\ | \textit{pat}_n & \rightarrow & e_n \end{array}
```

A match expression has a similar pattern matching feature:

```
match e with | pat_1 \rightarrow e_1  \vdots | pat_n \rightarrow e_n
```

The value of e is computed and the expressing e_i corresponding to the first matching pattern is chosen for further evaluation.

Example

Alternative declarations of the power function:

```
let rec power = function
 (-,0) \rightarrow 1.0
 | (x,n) -> x * power(x,n-1);;
```

Example

Alternative declarations of the power function:

are

```
let rec power a = match a with  | \ (\_,0) \ -> \ 1.0 \\ | \ (x,n) \ -> \ x \ * \ power(x,n-1);;
```

and

Example

Alternative declarations of the power function:

are

```
let rec power a = match a with  | (\_,0) -> 1.0   | (x,n) -> x * power(x,n-1);;
```

and

Infix functions

The prefix version (\oplus) of an infix operator \oplus is a curried function.

For example:

```
(+);;
val it : (int -> int -> int) = <fun:it@1>
```

Arguments can be supplied one by one:

```
let plusThree = (+) 3;;
val plusThree : (int -> int)
plusThree 5;;
val it : int = 8
```

Infix functions

The prefix version (\oplus) of an infix operator \oplus is a curried function.

For example:

```
(+);;
val it : (int -> int -> int) = <fun:it@1>
```

Arguments can be supplied one by one:

```
let plusThree = (+) 3;;
val plusThree : (int -> int)
plusThree 5;;
val it : int = 8
```


For example, if f(y) = y + 3 and $g(x) = x^2$, then $(f \circ g)(z) = z^2 + 3$.

The infix operator << in F# denotes functional composition

Using just anonymous functions

```
((fun y -> y+3) << (fun x -> x*x)) 4;;
val it : int = 19
```


For example, if f(y) = y + 3 and $g(x) = x^2$, then $(f \circ g)(z) = z^2 + 3$.

The infix operator << in F# denotes functional composition:

Using just anonymous functions

```
((fun y -> y+3) << (fun x -> x*x)) 4;;
val it : int = 19
```


For example, if f(y) = y + 3 and $g(x) = x^2$, then $(f \circ g)(z) = z^2 + 3$.

The infix operator << in F# denotes functional composition:

Using just anonymous functions:

```
((\text{fun y -> y+3}) << (\text{fun x -> x*x})) 4;;
val it : int = 19
```


For example, if f(y) = y + 3 and $g(x) = x^2$, then $(f \circ g)(z) = z^2 + 3$.

The infix operator << in F# denotes functional composition:

Using just anonymous functions:

```
((\text{fun y -> y+3}) << (\text{fun x -> x*x})) 4;;
val it : int = 19
```

Basic Types: equality and ordering

The basic types: integers, floats, booleans, and strings type were covered last week. Characters are considered on the next slide. For these types (and many other) equality and ordering are defined.

In particular, there is a function:

compare
$$x y = \begin{cases} > 0 & \text{if } x > y \\ 0 & \text{if } x = y \\ < 0 & \text{if } x < y \end{cases}$$

```
compare 7.4 2.0;;
val it : int = 1

compare "abc" "def";;
val it : int = -3

compare 1 4;;
```

Basic Types: equality and ordering

The basic types: integers, floats, booleans, and strings type were covered last week. Characters are considered on the next slide. For these types (and many other) equality and ordering are defined.

In particular, there is a function:

compare
$$x y = \begin{cases} >0 & \text{if } x > y \\ 0 & \text{if } x = y \\ <0 & \text{if } x < y \end{cases}$$

```
compare 7.4 2.0;;
val it : int = 1

compare "abc" "def";;
val it : int = -3

compare 1 4;;
val it : int = -1
```

Pattern matching with guards

It is often useful to have when guards in patterns:

The first clause is only taken when t > 0 evaluates to true.

Polymorphism and comparison

The type of ordText

```
val ordText : 'a -> 'a -> string when 'a : comparison
contains
```

- a type variable 'a, and
- a type constraint 'a : comparison

The type variable can be instantiated to any type provided comparison is defined for that type. It is called a polymorphic type.

For example

```
ordText true false;;
val it : string = "greater"

ordText (1,true) (1,false);;
val it : string = "greater"

ordText sin cos;;
... '('a -> 'a)' does not support the 'comparison' ...
```

Comparison is not defined for types involving functions.

Polymorphism and comparison

The type of ordText

```
val ordText : 'a -> 'a -> string when 'a : comparison
```

contains

- a type variable 'a, and
- a type constraint 'a : comparison

The type variable can be instantiated to any type provided comparison is defined for that type. It is called a polymorphic type.

For example:

```
ordText true false;;
val it : string = "greater"

ordText (1,true) (1,false);;
val it : string = "greater"

ordText sin cos;;
... '('a -> 'a)' does not support the 'comparison' ...
```

Comparison is not defined for types involving functions.

Characters

Type name: char

```
Values 'a', ' ', '\'' (escape sequence for ')
```

Examples

```
let isLowerCaseVowel ch =
        System.Char.IsLower ch &&
        (ch='a' || ch='e' || ch = 'i' || ch='o' || ch = 'u')
val isLowerCaseVowel : char -> bool

isLowerCaseVowel 'i';;
val it : bool = true
```

The i'th character in a string is achieved using the "dot"-notation

```
"abc".[0];;
val it : char = 'a'
```

Characters


```
Type name: char

Values 'a', '', '\'' (escape sequence for ')
```

Examples

```
let isLowerCaseVowel ch =
        System.Char.IsLower ch &&
        (ch='a' || ch='e' || ch = 'i' || ch='o' || ch = 'u');;
val isLowerCaseVowel : char -> bool

isLowerCaseVowel 'i';;
val it : bool = true

isLowerCaseVowel 'I';;
```

The *i*'th character in a string is achieved using the "dot"-notation

```
"abc".[0];;
val it : char = 'a'
```

val it : bool = false

Characters


```
Type name: char
```

```
Values 'a', ' ', '\' (escape sequence for ')
```

Examples

```
let isLowerCaseVowel ch =
        System.Char.IsLower ch &&
        (ch='a' || ch='e' || ch = 'i' || ch='o' || ch = 'u');;
val isLowerCaseVowel : char -> bool

isLowerCaseVowel 'i';;
val it : bool = true

isLowerCaseVowel 'I';;
```

The *i*'th character in a string is achieved using the "dot"-notation:

```
"abc".[0];;
val it : char = 'a'
```

val it : bool = false

Overloaded Operators and Type inference

A squaring function on integers:

Declaration	Type	
let square $x = x * x$	int -> int	Default

A squaring function on floats: square: float -> float

Declaration	
let square(x:float) = x * x	

You can mix these possibilities

A squaring function on integers:

Declaration	Туре	
let square x = x * x	int -> int	Default

A squaring function on floats: square: float -> float

Declaration	
<pre>let square(x:float) = x * x</pre>	Type the argument
let square x:float = x * x	Type the result
let square $x = x * x$: float	Type expression for the result
let square x = x:float * x	Type a variable

A squaring function on integers:

Declaration	Туре	
let square x = x * x	int -> int	Default

A squaring function on floats: square: float -> float

Declaration	
<pre>let square(x:float) = x * x</pre>	Type the argument
let square $x:float = x * x$	Type the result
let square $x = x * x$: float	Type expression for the result
let square x = x:float * x	Type a variable

A squaring function on integers:

Declaration	Туре	
let square x = x * x	int -> int	Default

A squaring function on floats: square: float -> float

Declaration	
	Type the argument
let square $x:float = x * x$	Type the result
let square $x = x * x$: float	Type expression for the result
<pre>let square x = x:float * x</pre>	Type a variable

A squaring function on integers:

Declaration	Туре	
let square x = x * x	int -> int	Default

A squaring function on floats: square: float -> float

Declaration	
<pre>let square(x:float) = x * x</pre>	Type the argument
let square $x:float = x * x$	Type the result
let square $x = x * x$: float	Type expression for the result
<pre>let square x = x:float * x</pre>	Type a variable

A squaring function on integers:

Declaration	Туре	
let square x = x * x	int -> int	Default

A squaring function on floats: square: float -> float

Declaration	
<pre>let square(x:float) = x * x</pre>	Type the argument
let square $x:float = x * x$	Type the result
let square $x = x * x$: float	Type expression for the result
let square $x = x$:float * x	Type a variable

A squaring function on integers:

Declaration	Туре	
let square x = x * x	int -> int	Default

A squaring function on floats: square: float -> float

Declaration	
<pre>let square(x:float) = x * x</pre>	Type the argument
let square $x:float = x * x$	Type the result
let square $x = x * x$: float	Type expression for the result
let square $x = x$:float * x	Type a variable

Tuples

An ordered collection of n values (v_1, v_2, \dots, v_n) is called an n-tuple

Examples

```
(3, false);
val it = (3, false) : int * bool

(1, 2, ("ab", true));
val it = (1, 2, ("ab", true)) :?

2-tuples (pairs)

3-tuples (triples)
```

Equality defined componentwise, ordering lexicographically

```
(1, 2.0, true) = (2-1, 2.0*1.0, 1<2);;

val it = true : bool

compare (1, 2.0, true) (2-1, 3.0, false);

val it : int = -1
```

provided = is defined on components

Tuples

An ordered collection of *n* values $(v_1, v_2, ..., v_n)$ is called an *n*-tuple

Examples

```
(3, false);
val it = (3, false) : int * bool

(1, 2, ("ab", true));
val it = (1, 2, ("ab", true)) :?

2-tuples (pairs)

3-tuples (triples)
```

Equality defined componentwise, ordering lexicographically

```
(1, 2.0, true) = (2-1, 2.0*1.0, 1<2);;

val it = true : bool

compare (1, 2.0, true) (2-1, 3.0, false);;

val it : int = -1
```

provided = is defined on components

Tuples

An ordered collection of n values (v_1, v_2, \dots, v_n) is called an n-tuple

Examples

```
(3, false);
val it = (3, false) : int * bool

(1, 2, ("ab", true));
val it = (1, 2, ("ab", true)) :?

2-tuples (pairs)

3-tuples (triples)
```

Equality defined componentwise, ordering lexicographically

```
(1, 2.0, true) = (2-1, 2.0*1.0, 1<2);;

val it = true : bool

compare (1, 2.0, true) (2-1, 3.0, false);;

val it : int = -1
```

provided = is defined on components

Tuple patterns

Extract components of tuples

```
let ((x,_),(_,y,_)) = ((1,true),("a","b",false));;
val x : int = 1
val y : string = "b"
```

Pattern matching yields bindings

Restriction

```
let (x,x) = (1,1);
...
... ERROR ... 'x' is bound twice in this pattern
```

Tuple patterns

Extract components of tuples

```
let ((x,_),(_,y,_)) = ((1,true),("a","b",false));;
val x : int = 1
val y : string = "b"
```

Pattern matching yields bindings

Restriction

```
let (x,x) = (1,1);
...
... ERROR ... 'x' is bound twice in this pattern
```

Local declarations

Examples

```
let g x =
    let a = 6
    let f y = y + a
    x + f x;;
val g : int -> int
g 1;;
val it : int = 8
```

Note: a and f are not visible outside of g

Declaration of types and exceptions


```
Example: Solve ax^2 + bx + c = 0
```

The type of the function solve is (the expansion of

Equation -> Solution

d is declared once and used 3 times

readability, efficiency

Declaration of types and exceptions


```
Example: Solve ax^2 + bx + c = 0
```

The type of the function solve is (the expansion of)

Equation -> Solution

d is declared once and used 3 times

readability, efficiency

Solution using local declarations


```
let solve(a,b,c) =
    let d = b*b-4.0*a*c
    if d < 0.0 | a = 0.0 then raise Solve else
    ((-b + sqrt d)/(2.0*a), (-b - sqrt d)/(2.0*a));;
```

Indentation matters

Solution using local declarations


```
let solve(a,b,c) =
    let d = b*b-4.0*a*c
    if d < 0.0 | a = 0.0 then raise Solve else
    ((-b + sgrt d)/(2.0*a), (-b - sgrt d)/(2.0*a));;
let solve(a,b,c) =
    let sqrtD =
      let d = b*b-4.0*a*c
      if d < 0.0 \mid \mid a = 0.0 then raise Solve
      else sqrt d
    ((-b + sqrtD)/(2.0*a), (-b - sqrtD)/(2.0*a));;
```

Indentation matters

Example: Rational Numbers

Consider the following signature, specifying operations and their types:

Specification	Comment
type qnum = int * int	rational numbers
exception QDiv	division by zero
mkQ: int * int \rightarrow qnum	construction of rational numbers
.+.: qnum * qnum $ ightarrow$ qnum	addition of rational numbers
: qnum * qnum $ ightarrow$ qnum	subtraction of rational numbers
.*.: qnum * qnum \rightarrow qnum	multiplication of rational numbers
./.: qnum * qnum \rightarrow qnum	division of rational numbers
.=.: qnum * qnum \rightarrow bool	equality of rational numbers
toString: qnum → string	String representation of rational numbers

Intended use

$$\begin{array}{ll} \text{let q1} = \text{mkQ(2,3)}; & q_1 = \frac{2}{3} \\ \\ \text{let q2} = \text{mkQ(12, -27)}; & q_2 = -\frac{12}{27} = -\frac{4}{9} \\ \\ \text{let q3} = \text{mkQ(-1, 4)} \cdot \text{*. q2 .-. q1}; & q_3 = -\frac{1}{4} \cdot q_2 - q_1 = -\frac{5}{9} \\ \\ \text{let q4} = \text{q1 .-. q2 ./. q3}; & q_4 = q_1 - q_2/q_3 = \frac{2}{3} - \frac{-4}{9}/\frac{-5}{9} \\ \\ \text{toString q4};; & = -\frac{2}{15} \end{array}$$

Operators are infix with usual precedences

Note: Without using infix

let
$$q3 = (.-.)((.*.) (mkO(-1,4)) q2) q1;$$

Intended use

$$\begin{array}{ll} \text{let q1} = \text{mkQ(2,3)};; & q_1 = \frac{2}{3} \\ \\ \text{let q2} = \text{mkQ(12, -27)};; & q_2 = -\frac{12}{27} = -\frac{4}{9} \\ \\ \text{let q3} = \text{mkQ(-1, 4) .*. q2 .-. q1};; & q_3 = -\frac{1}{4} \cdot q_2 - q_1 = -\frac{5}{9} \\ \\ \text{let q4} = \text{q1 .-. q2 ./. q3}; & q_4 = q_1 - q_2/q_3 = \frac{2}{3} - \frac{-4}{9}/\frac{-5}{9} \\ \\ \text{toString q4};; & \\ val it : string = "-2/15" & = -\frac{2}{15} \\ \end{array}$$

Operators are infix with usual precedences

Note: Without using infix:

let
$$q3 = (.-.)((.*.) (mkO(-1,4)) q2) q1;$$

Intended use

let q1 = mkQ(2,3);;
$$q_1 = \frac{2}{3}$$
 let q2 = mkQ(12, -27);;
$$q_2 = -\frac{12}{27} = -\frac{4}{9}$$
 let q3 = mkQ(-1, 4) .*. q2 .-. q1;;
$$q_3 = -\frac{1}{4} \cdot q_2 - q_1 = -\frac{5}{9}$$
 let q4 = q1 .-. q2 ./. q3;;
$$q_4 = q_1 - q_2/q_3 = \frac{2}{3} - \frac{-4}{9}/\frac{-5}{9}$$
 toString q4;;
$$val \ it : \ string = "-2/15" = -\frac{2}{15}$$

Operators are infix with usual precedences

Note: Without using infix:

let
$$q3 = (.-.)((.*.) (mkO(-1,4)) q2) q1;;$$

Representation: (a, b), b > 0 and gcd(a, b) = 1

Example $-\frac{12}{27}$ is represented by (-4,9)

Greatest common divisor (Euclid's algorithm)

Function to cancel common divisors:

```
let canc(p,q) =
   let sign = if p*q < 0 then -1 else 1
   let ap = abs p
   let aq = abs q
   let d = gcd(ap,aq)
    (sign * (ap / d), aq / d);;

canc(12,-27);;
val it : int * int = (-4, 9)</pre>
```

Representation: (a, b), b > 0 and gcd(a, b) = 1


```
Example -\frac{12}{27} is represented by (-4,9)
```

Greatest common divisor (Euclid's algorithm)

Function to cancel common divisors:

```
let canc(p,q) =
   let sign = if p*q < 0 then -1 else 1
   let ap = abs p
   let aq = abs q
   let d = gcd(ap,aq)
    (sign * (ap / d), aq / d);;

canc(12,-27);;
val it : int * int = (-4, 9)</pre>
```

Representation: (a, b), b > 0 and gcd(a, b) = 1

Example $-\frac{12}{27}$ is represented by (-4,9)

Greatest common divisor (Euclid's algorithm)

Function to cancel common divisors:

```
let canc(p,q) =
   let sign = if p*q < 0 then -1 else 1
   let ap = abs p
   let aq = abs q
   let d = gcd(ap,aq)
   (sign * (ap / d), aq / d);;

canc(12,-27);;
val it : int * int = (-4, 9)</pre>
```

Program for rational numbers

Declaration of the constructor:

Rules of arithmetic:

$$\begin{array}{lll} \frac{a}{b}+\frac{c}{d}&=&\frac{ad+bc}{bd} & \frac{a}{b}-\frac{c}{d}&=&\frac{ad-bc}{bd} \\ \frac{a}{b}\cdot\frac{c}{d}&=&\frac{ac}{bd} & \frac{a}{b}/\frac{c}{d}&=&\frac{a}{b}\cdot\frac{d}{c} & \text{when } c\neq 0 \\ \frac{a}{b}=\frac{c}{d}&=&ad=bc \end{array}$$

Program corresponds direly to these rules

```
let (.+.) (a,b) (c,d) = canc(a*d + b*c, b*d);;
let (.-.) (a,b) (c,d) = canc(a*d - b*c, b*d);;
let (.*.) (a,b) (c,d) = canc(a*c, b*d);;
let (./.) (a,b) (c,d) = (a,b) .*. mkQ(d,c);;
let (.=.) (a,b) (c,d) = (a,b) = (c,d);;
```

Note: Functions must preserve the invariant of the representation

Program for rational numbers

Declaration of the constructor:

Rules of arithmetic:

$$\begin{array}{lll} \frac{a}{b}+\frac{c}{d} & = & \frac{ad+bc}{bd} & \frac{a}{b}-\frac{c}{d} & = & \frac{ad-bc}{bd} \\ \frac{a}{b}\cdot\frac{c}{d} & = & \frac{ac}{bd} & \frac{a}{b}/\frac{c}{d} & = & \frac{a}{b}\cdot\frac{d}{c} & \text{when } c\neq 0 \\ \frac{a}{b}=\frac{c}{d} & = & ad=bc \end{array}$$

Program corresponds direly to these rules

```
let (.+.) (a,b) (c,d) = canc(a*d + b*c, b*d);;
let (.-.) (a,b) (c,d) = canc(a*d - b*c, b*d);;
let (.*.) (a,b) (c,d) = canc(a*c, b*d);;
let (./.) (a,b) (c,d) = (a,b) .*. mkQ(d,c);;
let (.=.) (a,b) (c,d) = (a,b) = (c,d);;
```

Note: Functions must preserve the invariant of the representation

Program for rational numbers

Declaration of the constructor:

Rules of arithmetic:

$$\begin{array}{lll} \frac{a}{b}+\frac{c}{d} & = & \frac{ad+bc}{bd} & \frac{a}{b}-\frac{c}{d} & = & \frac{ad-bc}{bd} \\ \frac{a}{b}\cdot\frac{c}{d} & = & \frac{ac}{bd} & \frac{a}{b}/\frac{c}{d} & = & \frac{a}{b}\cdot\frac{d}{c} & \text{when } c\neq 0 \\ \frac{a}{b}=\frac{c}{d} & = & ad=bc \end{array}$$

Program corresponds direly to these rules

```
let (.+.) (a,b) (c,d) = canc(a*d + b*c, b*d);;
let (.-.) (a,b) (c,d) = canc(a*d - b*c, b*d);;
let (.*.) (a,b) (c,d) = canc(a*c, b*d);;
let (./.) (a,b) (c,d) = (a,b) .*. mkQ(d,c);;
let (.=.) (a,b) (c,d) = (a,b) = (c,d);;
```

Note: Functions must preserve the invariant of the representation

Pattern matching and recursion

Consider unzip that maps a list of pairs to a pair of lists:

```
unzip([(x_0, y_0); (x_1, y_1); ...; (x_{n-1}, y_{n-1})]
= ([x_0; x_1; ...; x_{n-1}], [y_0; y_1; ...; y_{n-1}])
```

with the declaration:

Notice

- pattern matching on result of recursive call
- unzip is polymorphic. Type?
- unzip is available in the List library.

Pattern matching and recursion

Consider unzip that maps a list of pairs to a pair of lists:

```
unzip([(x_0, y_0); (x_1, y_1); ...; (x_{n-1}, y_{n-1})]
= ([x_0; x_1; ...; x_{n-1}], [y_0; y_1; ...; y_{n-1}])
```

with the declaration:

Notice

- pattern matching on result of recursive call
- unzip is polymorphic. Type?
- unzip is available in the List library.

Summary

You are acquainted with a major part of the F# language.

- Higher-order (or curried) functions
- Basic types, equality and ordering
- Polymorphism
- Tuples
- Patterns
- · A look at lists and list recursion