=]
=
=

M

02157 Functional Programming
Lecture 11:

Imperative, Asynchronous, Parallel and Monadic Programming
A short story

Michael R. Hansen

fevan=3 @)

DTU Informatics
Department of Informatics and Mathematical Modelling

X . o Lecture 11:, Imperative, Asynchronous, Parallel and Monadic Programming,
DTU Informatics, Technical University of Denmark A short story MRH 29/11/2012

2

Overview

e Imperative programming,

e asynchronous programming,
e parallel programming, and

e monadic programming

by simple examples.

DTU Informatics, Technical University of Denmark

=]
=
=

M

Lecture 11:, Imperative, Asynchronous, Parallel and Monadic Programming,
A short story MRH 29/11/2012

3

What is this?
let ...
let rec visit u =
color.[u] <- Gay ; time :=!Itime + 1; d.[u] <-
let rec hv =if color.[v] = Wite
then pi.[v] <-u
visit v

List.iter h (adj.[u])
color.[u] <- Black

tinme = ltime + 1
f.[u] <- Iltine
let mutable i =0

while i < V do
if color.[i] = Wite
then visit i
i< i +1

(d, f, pi);;

=]
=
=

M

I'tine

Lecture 11:, Imperative, Asynchronous, Parallel and Monadic Programming,

DTU Informatics, Technical University of Denmark

A short story

MRH 29/11/2012

=]
=
=

Depth-First Search of directed graphs

M

"Direct” translation of pseudocode from Corman, Leiserson, Rivest.
Remaining parts:

type color = Wiite | Gray | Black;;

let dfs(V,adj: int list[]) =

l et color = Array.create V Wite
l et pi = Array.create V -1
let d = Array.create V -1
let f = Array.create V -1
let time =ref O

let rec visit u =

let nutable i =0
while i <V do
(d, f, pi);;

Lecture 11:, Imperative, Asynchronous, Parallel and Monadic Programming,
4 DTU Informatics, Technical University of Denmark A short story MRH 29/11/2012

[}
=
=

DFS — an example

M

val (d,f,pi) = dfs(g6);

0 1 2
d : Discoverytimes
f : Finishing times @ @
pi : Predecessors
A node i is marked d; /f; @ = . Q
3 4 5

. . . ’ Lecture 11:, Imperative, Asynchronous, Parallel and Monadic Programming,
DTU Informatics, Technical University of Denmark A short story MRH 29/11/2012

[}
=
=

Elements of imperative F#

M

A store is a table associating values v; with locations |;:

|1 = Vi
|2 = V2
I — Vn

. . . ’ Lecture 11:, Imperative, Asynchronous, Parallel and Monadic Programming,
6 DTU Informatics, Technical University of Denmark A short story MRH 29/11/2012

=]
=
=

Allocation of a new cell in the store

M

let nutable x = 1;;
val mutable x : int =1
let mutable y = 3;;
val nutabley : int = 3

. . . ’ Lecture 11:, Imperative, Asynchronous, Parallel and Monadic Programming,
DTU Informatics, Technical University of Denmark A short story MRH 29/11/2012

=]
=
=

Allocation of a new cell in the store

M

let nutable x = 1;;
val mutable x : int =1
let mutable y = 3;;
val nutabley : int = 3

Results in the following environment and store:

Environment Store

X = |1 |1 — 1
Y = P b — 3

. . . ’ Lecture 11:, Imperative, Asynchronous, Parallel and Monadic Programming,
DTU Informatics, Technical University of Denmark A short story MRH 29/11/2012

=]
=
=

Allocation of a new cell in the store

M

let nutable x = 1;;
val mutable x : int =1
let mutable y = 3;;
val nutabley : int = 3

Results in the following environment and store:

Environment Store
X = |1 |1 — 1
y = 2 b — 3

A similar effect is achieved by:

let x =ref 1;;
let y =ref 3;;

Lecture 11:, Imperative, Asynchronous, Parallel and Monadic Programming,
9 DTU Informatics, Technical University of Denmark A short story MRH 29/11/2012

Value in a location in the store and Assignment

Given the following environment and store:

Environment Store

X'—>|1 |1>—>l
y — |z b — 3

=]
=
=

M

Lecture 11:, Imperative, Asynchronous, Parallel and Monadic Programming,

DTU Informatics, Technical University of Denmark

A short story

MRH 29/11/2012

=]
=
=

Value in a location in the store and Assignment

M

Given the following environment and store:

Environment Store
X = |1 |1 — 1
y — |z b — 3
The assignment x <- y+2 results in the new store:
|1 — 5
|2 — 3

Lecture 11:, Imperative, Asynchronous, Parallel and Monadic Programming,
11 DTU Informatics, Technical University of Denmark A short story MRH 29/11/2012

12

Value in a location in the store and Assignment

Given the following environment and store:

Environment Store

X = |1 |1 — 1

y = 2 b — 3

The assignment x <- y+2 results in the new store:
|1 — 5
|2 — 3

A similar effect is achieved by the assignmentx := !y + 2

e The assignmentx : = ... isused

e The explicit “contentsOf” ! y is necessary
whenlet x =ref ... andlet y = ref ... areused

=]
=
=

M

Lecture 11:, Imperative, Asynchronous, Parallel and Monadic Programming,

DTU Informatics, Technical University of Denmark

A short story

MRH 29/11/2012

=]
=
=

Arrays

M

e "a[]is the type of one-dimensional, mutable, zero-based
constant-time-access arrays with elements of type 'a.”

. . .) Lecture 11:, Imperative, Asynchronous, Parallel and Monadic Programming,
13 DTU Informatics, Technical University of Denmark A short story MRH 29/11/2012

=]
=
=

Arrays

M

e "a[]is the type of one-dimensional, mutable, zero-based
constant-time-access arrays with elements of type 'a.”

Array. creat e nv creates an array with n entries all containing v

Examples:
let a = Array.create 5 "a";;
val a: string [] =[["a"; "a"; "a"; "a"; "a"|]
a.[2] < "b";
val it : unit = ()
a,;
val it : string [] =[|"a"; "a"; "b"; "a"; "a"|]
a.[0];;
val it : string = "a"

Lecture 11:, Imperative, Asynchronous, Parallel and Monadic Programming,
14 DTU Informatics, Technical University of Denmark A short story MRH 29/11/2012

[}
=
=

Graph representation: neighbour-list

M

. . .) Lecture 11:, Imperative, Asynchronous, Parallel and Monadic Programming,
15 DTU Informatics, Technical University of Denmark A short story MRH 29/11/2012

[}
=
=

Graph representation: neighbour-list

M

let adj =
Array.ofList [[1;3];
[4];
[4;5]; 0
[1];
[3];
[51]

let g6 = (6,adj);;

. . .) Lecture 11:, Imperative, Asynchronous, Parallel and Monadic Programming,
16 DTU Informatics, Technical University of Denmark A short story MRH 29/11/2012

=]
=
=

Graph representation: neighbour-list

M

let adj =
Array.ofList [[1;3];
[4];
[4;5]; 0
[1];
[3];
[51]

let g6 = (6,adj);;

gb;;
val it : int = int list []
= (6, [I[1;, 3]; [4]: [4: 5]: [1]; [3]: [5]I])

Lecture 11:, Imperative, Asynchronous, Parallel and Monadic Programming,
17 DTU Informatics, Technical University of Denmark A short story MRH 29/11/2012

[}
=
=

Inspecting results

M

val (d,f,pi) = dfs(g6);
? @
(of—Cf o)

. . .) Lecture 11:, Imperative, Asynchronous, Parallel and Monadic Programming,
18 DTU Informatics, Technical University of Denmark A short story MRH 29/11/2012

[}
=
=

Inspecting results

M

val (d,f,pi) = dfs(g6);

d;; (* Discovery tines x)
val it : int []
=[11 27 9; 4; 3; 10/]

0 1 2
3 4 5
. . .) Lecture 11:, Imperative, Asynchronous, Parallel and Monadic Programming,
DTU Informatics, Technical University of Denmark A short story MRH 29/11/2012

[}
=
=

Inspecting results

M

val (d,f,pi) = dfs(g6);

d;; (* Discovery tines x)
val it : int []
=[11 27 9; 4; 3; 10/]

0 1 2
fi; (» Finishing times *) ? (9
val it : int []
=[]8; 7; 12; 5; 6; 11|]
o @D
3 4 5

. . .) Lecture 11:, Imperative, Asynchronous, Parallel and Monadic Programming,
20 DTU Informatics, Technical University of Denmark A short story MRH 29/11/2012

[}
=
=

Inspecting results

M

val (d,f,pi) = dfs(g6);

d;; (» Discovery tines *)
val it : int []
=[11 27 9; 4; 3; 10/]

0 1 2
fi; (» Finishing times *) ? (9
val it : int []
=[]8; 7; 12; 5; 6; 11]]
o @D
3 4 5

pi;; (* Predecessors *)
val it : int []
=[l-1, 0; -1; 4 1; 2|]

Lecture 11:, Imperative, Asynchronous, Parallel and Monadic Programming,
21 DTU Informatics, Technical University of Denmark A short story MRH 29/11/2012

22

=]
=
=

M

o F#is an excellent imperative language

¢ the combination of imperative and applicative constructs is
powerful

. . .) Lecture 11:, Imperative, Asynchronous, Parallel and Monadic Programming,
DTU Informatics, Technical University of Denmark A short story MRH 29/11/2012

=]
=
=

Asynchronous computations by example

M

open Systent;
open System Net; ;
| et downLoadDTUconp =

async {
| et webd = new WebCd ient()
let! htm = webd . AsyncDownl oadSt ri ng(

Ui "http://ww.dtu.dk")
return htm} ;;
val downLoadDTUconp : Async<string>

. . .) Lecture 11:, Imperative, Asynchronous, Parallel and Monadic Programming,
23 DTU Informatics, Technical University of Denmark A short story MRH 29/11/2012

=]
=
=

Asynchronous computations by example

M

open Systent;
open System Net; ;
| et downLoadDTUconp =

async {
| et webd = new WebCd ient()
let! htm = webd . AsyncDownl oadSt ri ng(

Ui "http://ww.dtu.dk")
return htm} ;;
val downLoadDTUconp : Async<string>

1 Create a WebCl i ent object.

Lecture 11:, Imperative, Asynchronous, Parallel and Monadic Programming,
24 DTU Informatics, Technical University of Denmark A short story MRH 29/11/2012

=]
=
=

Asynchronous computations by example

M

open Systent;
open System Net; ;
| et downLoadDTUconp =

async {
| et webd = new WebCd ient()
let! htm = webd . AsyncDownl oadSt ri ng(

Ui "http://ww.dtu.dk")
return htm} ;;
val downLoadDTUconp : Async<string>

1 Create a WebCl i ent object.

2 Initiate the download using AsyncDownl oadSt ri ng. This
function makes the task an wait item and will eventually
terminate when the download has completed.

It uses no thread while waiting.

Lecture 11:, Imperative, Asynchronous, Parallel and Monadic Programming,
25 DTU Informatics, Technical University of Denmark A short story MRH 29/11/2012

=]
=
=

Asynchronous computations by example

M

open Systent;
open System Net;;
| et downLoadDTUconp =

async {
| et webd = new WebCd ient()
let! htm = webd . AsyncDownl oadSt ri ng(

Ui "http://ww.dtu.dk")
return htm} ;;
val downLoadDTUconp : Async<string>

1 Create a WebCl i ent object.

2 Initiate the download using AsyncDownl oadSt ri ng. This
function makes the task an wait item and will eventually
terminate when the download has completed.

It uses no thread while waiting.

3 At termination the rest of the computation is re-started with the

identifier ht M bound to the result.

Lecture 11:, Imperative, Asynchronous, Parallel and Monadic Programming,
26 DTU Informatics, Technical University of Denmark A short story MRH 29/11/2012

=]
=
=

Asynchronous computations by example

M

open Systent;
open System Net;;
| et downLoadDTUconp =

async {
| et webd = new WebCd ient()
let! htm = webd . AsyncDownl oadSt ri ng(

Ui "http://ww.dtu.dk")
return htm} ;;
val downLoadDTUconp : Async<string>

1 Create a WebCl i ent object.

2 Initiate the download using AsyncDownl oadSt ri ng. This
function makes the task an wait item and will eventually
terminate when the download has completed.

It uses no thread while waiting.

3 At termination the rest of the computation is re-started with the
identifier ht M bound to the result.

4 The expressionr et urn ht m returns the value bound to ht ni |
that is, the result of the download.

Lecture 11:, Imperative, Asynchronous, Parallel and Monadic Programming,
27 DTU Informatics, Technical University of Denmark A short story MRH 29/11/2012

=]
=
=

Parallel downloads of web pages

M

| et downl oadConp url =
| et webd = new WebCd ient()
async {let! htm = webd .AsyncDownl oadString(Uri url)
return htnm};;

. . .) Lecture 11:, Imperative, Asynchronous, Parallel and Monadic Programming,
DTU Informatics, Technical University of Denmark A short story MRH 29/11/2012

=]
=
=

Parallel downloads of web pages

M

| et downl oadConp url =
| et webd = new WebCd ient()
async {let! htm = webd .AsyncDownl oadString(Uri url)
return htnm};;

A computation for parallel downloads:

I et downl ArrayConp (url Arr: string[]) =
Async. Parall el (Array.map downl oadConp url Arr);;
val downl ArrayConp : string [] -> Async<string []>

. . .) Lecture 11:, Imperative, Asynchronous, Parallel and Monadic Programming,
29 DTU Informatics, Technical University of Denmark A short story MRH 29/11/2012

=]
=
=

Parallel downloads of web pages

M

| et downl oadConp url =
| et webd = new WebCd ient()
async {let! htm = webd .AsyncDownl oadString(Uri url)
return htnm};;

A computation for parallel downloads:

I et downl ArrayConp (url Arr: string[]) =
Async. Parall el (Array.map downl oadConp url Arr);;
val downl ArrayConp : string [] -> Async<string []>

Activation of the computation:

| et paral DTUandMSconmp =
downl Ar r ayConp
[|"http://ww dtu.dk"; "http://ww.mcrosoft.cont|];;

Array. map (fun (s:string) -> s.Length)

(Async. RunSynchr onousl y par al DTUandMsconp) ; ;
val it : int [] = []45199; 1020]|]
Real : 00:00: 02.235, CPU: 00:00: 00. 046

Uses limited CPU time.
Lecture 11:, Imperative, Asynchronous, Parallel and Monadic Programming,
30 DTU Informatics, Technical University of Denmark A short story MRH 29/11/2012

=]
=
=

Parallel computation — exploiting multiple cores

M

type BinTree<' a> = | Leaf
| Node of BinTree< a>+'a*Bi nTree<’ a>;;
let rec exists pt =

match t with

| Leaf -> fal se
| Node(_,v,_) when p v -> true
| Node(tl,_,tr) -> exists ptl || exists ptr;;

. . .) Lecture 11:, Imperative, Asynchronous, Parallel and Monadic Programming,
31 DTU Informatics, Technical University of Denmark A short story MRH 29/11/2012

=]
=
=

Parallel computation — exploiting multiple cores

M

type BinTree<' a> = | Leaf
| Node of BinTree< a>+'a*Bi nTree<’ a>;;
let rec exists pt =

match t with

| Leaf -> fal se
| Node(_,v,_) when p v -> true
| Node(tl,_,tr) -> exists ptl || exists ptr;;

Sequential search in big trees:

let rec genTree n range =
if n=0 then Leaf
else let tlI = genTree (n-1) range
let tr = genTree (n-1) range
Node(tl, gen range, tr);;
let t = genTree 25 10000; ;

exists (fun n -> isPrine n & n>10000) t;;
Real : 00:01:22.818, CPU. 00:01:22.727
val it : bool = false

Lecture 11:, Imperative, Asynchronous, Parallel and Monadic Programming,
32 DTU Informatics, Technical University of Denmark A short story MRH 29/11/2012

[}
=
=

Parallel search in big trees

M

open System Threadi ng. Tasks; ;

let rec parExistsDepth pt n =
if n=0 then exists pt else
match t with

| Leaf -> fal se
| Node(_,v,_) when p v -> true
| Node(tl,_,tr) ->

l et bl = Task. Factory. StartNew(
fun () -> parExistsDepth p tl (n-1))
| et b2 = Task. Factory. Start New(
fun () -> parExistsDepth p tr (n-1))
bl. Result||b2. Result;;
val parExi stsDepth: (’a->bool)->Bi nTree<’ a>->i nt->bool

Lecture 11:, Imperative, Asynchronous, Parallel and Monadic Programming,
33 DTU Informatics, Technical University of Denmark A short story MRH 29/11/2012

34

Parallel search in big trees

open System Threadi ng. Tasks; ;

let rec parExistsDepth pt n =
if n=0 then exists pt else
match t with

| Leaf -> fal se
| Node(_,v,_) when p v -> true
| Node(tl,_,tr) ->

l et bl = Task. Factory. StartNew(

fun () -> parExistsDepth p tl

| et b2 = Task. Factory. Start New(

fun () -> parExistsDepth p tr

bl. Result||b2. Result;;

[}
=
=

M

(n-1))
(n-1))

val parExi stsDepth: (’a->bool)->Bi nTree<’ a>->i nt->bool

Experiments show that the best result is obtained using depth 4:

par Exi stsDepth (fun n -> isPrine n & n>10000) t 4;;

Real : 00: 00: 35. 303, CPU: 00:02:18. 669
The speedup is approximately 2.3.

DTU Informatics, Technical University of Denmark

A short story

Lecture 11:, Imperative, Asynchronous, Parallel and Monadic Programming,

MRH 29/11/2012

=]
=
=

Defining computation expressions

M

also called workflows or monads.

Purpose: hide low-level details in a builder class.

. . .) Lecture 11:, Imperative, Asynchronous, Parallel and Monadic Programming,
35 DTU Informatics, Technical University of Denmark A short story MRH 29/11/2012

Defining computation expressions

also called workflows or monads.
Purpose: hide low-level details in a builder class.

Expression evaluation with error handling:

let | e env =
let rec eval = function
| Numi -> Sone i
| Var x -> Map.tryFind
| Add(el,e2) -> match (eval
| (Some v1,
[_
| Div(el,e2) -> match (eval
| (_, Some
| (Some v1,
I
eval e;;

=]
=
=

=
>
X env
el, eval e2) with
Sonme v2) -> Sone(v1+v2)
-> None
el, eval e2) with
0) -> None
Sone v2) -> Sonme(vl/v2)

-> None

Lecture 11:, Imperative, Asynchronous, Parallel and Monadic Programming,

DTU Informatics, Technical University of Denmark

A short story MRH 29/11/2012

=]
=
=

Defining computation expressions

M

also called workflows or monads.
Purpose: hide low-level details in a builder class.
Expression evaluation with error handling:

let | e env =

let rec eval = function
| Numi -> Sone i
| Var x -> Map.tryFind x env

| Add(el,e2) -> match (eval el, eval e2) wth
| (Some v1, Some v2) -> Sone(v1l+v2)

| _ -> None
| Div(el,e2) -> match (eval el, eval e2) with
| (_, Some 0) -> None
| (Sonme v1, Sone v2) -> Sone(vl/v2)
| -> None

eval e;;

How can the Some/None manipulations be hidden?

Lecture 11:, Imperative, Asynchronous, Parallel and Monadic Programming,
37 DTU Informatics, Technical University of Denmark A short story MRH 29/11/2012

=]
=
=

Declaring a computation builder object

M

Define the computation type:

type maybe<’ a> = option<’ a>;;

. . .) Lecture 11:, Imperative, Asynchronous, Parallel and Monadic Programming,
38 DTU Informatics, Technical University of Denmark A short story MRH 29/11/2012

=]
=
=

Declaring a computation builder object

M

Define the computation type:

type maybe<’ a> = option<’ a>;;

Define a computation builder class:

type MaybeCd ass() =
menber bl d. Bi nd(m naybe<’ a>, f:’ a- >maybe<’ b>) : maybe<’ b>
match mwith | None -> None
| Sone a ->f a
nmenber bl d. Return a: maybe< a> = Sone a
menber bl d. Ret urnFrom m maybe<’ a> = m
nmenber bl d. Zero(): maybe< a> = None;;

Lecture 11:, Imperative, Asynchronous, Parallel and Monadic Programming,
39 DTU Informatics, Technical University of Denmark A short story MRH 29/11/2012

=]
=
=

Declaring a computation builder object

M

Define the computation type:

type maybe<’ a> = option<’ a>;;

Define a computation builder class:

type MaybeCd ass() =
menber bl d. Bi nd(m naybe<’ a>, f:’ a- >maybe<’ b>) : maybe<’ b>
match mwith | None -> None
| Sone a ->f a
nmenber bl d. Return a: maybe< a> = Sone a
menber bl d. Ret urnFrom m maybe<’ a> = m
nmenber bl d. Zero(): maybe< a> = None;;

Declare a computation builder object:

| et maybe = Maybed ass();;

Lecture 11:, Imperative, Asynchronous, Parallel and Monadic Programming,
40 DTU Informatics, Technical University of Denmark A short story MRH 29/11/2012

=]
=
=

Declaring a computation builder object

M

Define the computation type:

type maybe<’ a> = option<’ a>;;

Define a computation builder class:

type MaybeCd ass() =
menber bl d. Bi nd(m naybe<’ a>, f:’ a- >maybe<’ b>) : maybe<’ b>
match mwith | None -> None
| Sone a ->f a
nmenber bl d. Return a: maybe< a> = Sone a
menber bl d. Ret urnFrom m maybe<’ a> = m
nmenber bl d. Zero(): maybe< a> = None;;

Declare a computation builder object:
| et maybe = Maybed ass();;
Many improvements are possible, e.g. to delay computations

Lecture 11:, Imperative, Asynchronous, Parallel and Monadic Programming,
41 DTU Informatics, Technical University of Denmark A short story MRH 29/11/2012

[}
=
=

Using the builder object

>
=
The Some/None manipulations are now hidden
let I e env =
let rec eval = function
| Num i -> maybe {return i}
| Var x -> nmaybe {return! Map.tryFind x env}

| Add(el,e2) -> maybe {let! vl = eval el
let! v2 = eval e2
return vi+v2}
| Div(el,e2) -> naybe {let! v2 = eval e2
if v2<>0 then
let! vl = eval el
return vl1/v2}
eval e;;
val | : expr -> Map<string,int> -> maybe<int>

Lecture 11:, Imperative, Asynchronous, Parallel and Monadic Programming,
42 DTU Informatics, Technical University of Denmark A short story MRH 29/11/2012

=
=
=

M

F# supports a rich collection of different programming paradigms

. X o Lecture 11:, Imperative, Asynchronous, Parallel and Monadic Programming,
43 DTU Informatics, Technical University of Denmark A short story MRH 29/11/2012

