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WELCOME to
02157 Functional Programming

Teacher: Michael R. Hansen
DTU Informatics, mrh@imm.dtu.dk

Teaching assistant: Phan Anh Dung, PhD Student.
Søren Olofsson, master’s student
Both at DTU Informatics

Homepage: www.imm.dtu.dk/courses/02157
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Today: Friday, September 7.

• Introduction to functional programming and F#
(341.23 — here)

• about 9:15 – lecture notes can be bought here.

• Make your first programs in the databar
(341 Rooms: 015 and 019 — E-databar)

• Introduction to lists in F#
(341.23 — here)

• Computations with polynomials in F#
(341 Rooms: 015 and 019 — E-databar)

By noon you have solved a non-trivial problem using F#
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Practical Matters

• Textbook: Functional Programming using F#, Chapters 1-7, 9.
by Michael R. Hansen and Hans Rischel.

Can be bought at the reception of DTU Informatics. Price 100 kr.

Published by Cambridge University Press the coming winter.

• F# is an open-source functional language integrated in the
Visual Studio development platform and with access to all
features in the .NET program library. The language is also
supported on Linux and MAC systems using the Mono platform.

• We use F# on the Windows platform in the E-databar.

• Look at homepage concerning installations for your own PC
(Windows, Linux or Mac).
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Imperative models

• Imperative models of computations are expressed in terms of
states and sequences of state-changing operations

Example:

i := 0;
s := 0;
while i < length(A)

do s := s+A[i];
i := i+1

od

An imperative model describes how a solution is obtained
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Object-oriented models

• An object is characterized by a state and an interface specifying
a collection of state-changing operations.

• Object-oriented models of computations are expressed in terms
of a collection of objects which exchange messages by using
interface operations.

Object-oriented models add structure to imperative models

An object-oriented model describes how a solution is obtained
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Declarative models

In declarative models focus is on what a solution is.

• Logical programming (02156 Logical Systems and Logical
Programming)

• Programs are (typically) expressed in a fragment of first-order logic.
The formulas have a standard meaning, as well as a procedural
interpretation based on logical inferences.

• Functional programming
• A program is expressed as a mathematical function

f : A → B

and function applications guide computations.

Some advantages
• fast prototyping based on abstract concepts
• more advanced applications are within reach
• Supplement modelling and problem solving techniques
• Execute in parallel on multi-core platforms

F# is as efficient as C#
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Some functional programming background

In functional programming, the model of computation is the
application of functions to arguments. no side-effects

• Introduction of λ-calculus around 1930 by Church and Kleene
when investigating function definition, function application,
recursion and computable functions. For example, f (x) = x + 2
is represented by λx .x + 2.

• Introduction of the type-less functional-like programming
language LISP was developed by McCarthy in the late 1950s.

• Introduction of the ”variable-free” programming language FP
(Backus 1977), by providing a rich collection of functionals
(combining forms for functions).

• Introduction of functional languages with a strong type system
like ML (by Milner) and Miranda (by Turner) in the 1970s.
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Some background of the “SML-family”

• Standard Meta Language (SML) was originally designed for
theorem proving

Logic for Computable Functions (Edinburgh LCF)
Gordon, Milner, Wadsworth (1977)

• High quality compilers, e.g. Standard ML of New Jersey and
Moscow ML, based on a formal semantics

Milner, Tofte, Harper, MacQueen 1990 & 1997

• SML-like systems (SML, OCAML, F#, . . .) have now applications
far away from its origins

Compilers, Artificial Intelligence, Web-applications, Financial
sector, . . .

• F# is now integrated in the .net environment

• Declarative aspects are sneaking into more ”main stream
languages”

• Often used to teach high-level programming concepts
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Overview of the course

• Functional programming concepts and techniques

• A model-based programming approach using a functional
language with a strong type system.

• Program correctness, including structural induction and
well-founded induction

Fun with a variety of applications, such as

• a library for piecewise linear curves – with applications

• a Sudoko solver

• an interpreter for a simple programming language

• a lambda-calculus interpreter

• a model checker for CTL – a temporal logic

• ...

Homepage for the course: www.imm.dtu.dk/courses/02157
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A major goal

Teach abstraction (not a concrete programming language)

• Modelling

• Design

• Programming

Why?

More complex problems can be solved in an succinct, elegant and
understandable manner

How?

Solving a broad class of problems showing the applicability of the
theory, concepts, techniques and tools.

Functional programming techniques once mastered are useful for the
design of programs in other programming paradigms as well.

29 DTU Informatics, Technical University of Denmark Lecture 1: Introduction and Getting Started MRH 6/09/2012



02157
Functional
Program-

ming

Michael R. Hansen

A major goal

Teach abstraction (not a concrete programming language)

• Modelling

• Design

• Programming

Why?

More complex problems can be solved in an succinct, elegant and
understandable manner

How?

Solving a broad class of problems showing the applicability of the
theory, concepts, techniques and tools.

Functional programming techniques once mastered are useful for the
design of programs in other programming paradigms as well.

30 DTU Informatics, Technical University of Denmark Lecture 1: Introduction and Getting Started MRH 6/09/2012



02157
Functional
Program-

ming

Michael R. Hansen

A major goal

Teach abstraction (not a concrete programming language)

• Modelling

• Design

• Programming

Why?

More complex problems can be solved in an succinct, elegant and
understandable manner

How?

Solving a broad class of problems showing the applicability of the
theory, concepts, techniques and tools.

Functional programming techniques once mastered are useful for the
design of programs in other programming paradigms as well.

31 DTU Informatics, Technical University of Denmark Lecture 1: Introduction and Getting Started MRH 6/09/2012



02157
Functional
Program-

ming

Michael R. Hansen

A major goal

Teach abstraction (not a concrete programming language)

• Modelling

• Design

• Programming

Why?

More complex problems can be solved in an succinct, elegant and
understandable manner

How?

Solving a broad class of problems showing the applicability of the
theory, concepts, techniques and tools.

Functional programming techniques once mastered are useful for the
design of programs in other programming paradigms as well.

32 DTU Informatics, Technical University of Denmark Lecture 1: Introduction and Getting Started MRH 6/09/2012



02157
Functional
Program-

ming

Michael R. Hansen

F# supports

• Functions as first class citizens

• Structured values like lists, trees, . . .

• Strong and flexible type discipline, including

type inference and polymorphism

• Imperative and object-oriented programming

assignments, loops, arrays, objects, Input/Output, etc.

Programming as a modelling discipline

• High-level programming, declarative programming, executable
declarative specifications B, Z, VDM, RAISE

• Fast time-to-market
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Course context

Prerequisites for 02157: Programming in an
imperative/object-oriented language, discrete mathematics,
algorithms and data structure, as obtained, for example, from the
bachelor programme in Software Technology.

Successor course of 02157:

02257 Applied functional programming
3-weeks period January

An extension of 02157 that aims at an effective use of functional
programming in connection with courses and projects at the M.Sc.
programme in computer science and engineering, and in industrial
applications.

• Computer science applications. Interpreter for a programming
language, for example.

• “Practical applications”. Involving a database, for example.

• Functional pearls. Monadic parsing, for example.
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Overview of Getting Started

Main functional ingredients of F#:

• The interactive environment

• Values, expressions, types, patterns

• Declarations of values and recursive functions

• Binding, environment and evaluation

• Type inference

GOAL: By the end of this first part you have constructed succinct,
elegant and understandable F# programs, e.g. for

• sum(m, n) =
∑n

i=m i

• Fibonacci numbers (F0 = 0,F1 = 1,Fn = Fn−1 + Fn−2)

• Binomial coefficients
(

n
k

)
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The Interactive Environment

2* 3 + 4;;
val it : int = 10

⇐ Input to the F# system

⇐ Answer from the F# system

• The keyword val indicates a value is computed

• The integer 10 is the computed value

• int is the type of the computed value

• The identifier it names the (last) computed value

The notion binding explains which entities are named by identifiers.

it 7→ 10 reads: “it is bound to 10”
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Value Declarations

A value declaration has the form: let identifier = expression

let price = 25 * 5;;

val price : int = 125

⇐ A declaration as input

⇐ Answer from the F# system

The effect of a declaration is a binding: price 7→ 125

Bound identifiers can be used in expressions and declarations, e.g.

let newPrice = 2 * price;;
val newPrice : int = 250

newPrice > 500;;
val it : bool = false

A collection of bindings




price 7→ 125
newPrice 7→ 250
it 7→ false





is called an environment
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Function Declarations 1: let f x = e

Declaration of the circle area function:

let circleArea r = System.Math.PI * r * r;;

• System.Math is a program library

• PI is an identifier (with type float ) for π in System.Math

The type is automatically inferred in the answer:

val circleArea : float -> float

Applications of the function:

circleArea 1.0;; ( * this is a comment * )
val it : float = 3.141592654

circleArea(3.2);; // A comment: optional brackets
val it : float = 32.16990877
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Anonymous functions: by example (1)

An anonymous function computing the number of days in a month:

function
| 1 -> 31 // January
| 2 -> 28 // February // not a leap year
| 3 -> 31 // March
| 4 -> 30 // April
| 5 -> 31 // May
| 6 -> 30 // June
| 7 -> 31 // July
| 8 -> 31 // August
| 9 -> 30 // September
| 10 -> 31 // October
| 11 -> 30 // November
| 12 -> 31;;// December
... warning ... Incomplete pattern matches ...
val it : int -> int = <fun:clo@17-2>

it 2;;
val it : int = 28

A function expression with a pattern for every month
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Anonymous functions: by example (2)

One wildcard pattern can cover many similar cases:

function
| 2 -> 28 // February
| 4 -> 30 // April
| 6 -> 30 // June
| 9 -> 30 // September
| 11 -> 30 // November
| _ -> 31;;// All other months

An even more succinct definition can be given using an or-pattern:

function
| 2 -> 28 // February
| 4|6|9|11 -> 30 // April, June, September, November
| _ -> 31 // All other months

;;
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Recursion. Example n! = 1 · 2 · . . . · n, n ≥ 0

Mathematical definition: recursion formula

0! = 1 (i)
n! = n · (n − 1)!, for n > 0 (ii)

Computation:
3!

= 3 · (3 − 1)! (ii)
= 3 · 2 · (2 − 1)! (ii)
= 3 · 2 · 1 · (1 − 1)! (ii)
= 3 · 2 · 1 · 1 (i)
= 6
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Recursive declaration. Example n!

Function declaration:

let rec fact = function
| 0 -> 1 ( * i * )
| n -> n * fact(n-1);; ( * ii * )

val fact : int -> int

Evaluation:

fact (3)
 3 ∗ fact (3 − 1) (ii) [n 7→ 3]
 3 ∗ 2 ∗ fact (2 − 1) (ii) [n 7→ 2]
 3 ∗ 2 ∗ 1 ∗ fact (1 − 1) (ii) [n 7→ 1]
 3 ∗ 2 ∗ 1 ∗ 1 (i) [n 7→ 0]
 6

e1  e2 reads: e1 evaluates to e2
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Recursive declaration. Example n!
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Recursion. Example xn
= x · . . . · x , n occurrences of x

Mathematical definition: recursion formula

x0 = 1 (1)
xn = x · xn−1, for n > 0 (2)

Function declaration:

let rec power = function
| ( ,0) -> 1.0 ( * 1 * )
| (x,n) -> x * power(x,n-1) ( * 2 * )

Patterns:

( , 0) matches any pair of the form (x , 0).
The wildcard pattern matches any value.

(x , n) matches any pair (u, i) yielding the bindings

x 7→ u, n 7→ i
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Evaluation. Example: power(4.0, 2)

Function declaration:

let rec power = function
| ( ,0) -> 1.0 ( * 1 * )
| (x,n) -> x * power(x,n-1) ( * 2 * )

Evaluation:

power (4.0,2)
 4.0 ∗ power (4.0,2 − 1) Clause 2, [x 7→ 4.0, n 7→ 2]
 4.0 ∗ power (4.0,1)
 4.0 ∗ (4.0 ∗ power (4.0,1 − 1)) Clause 2, [x 7→ 4.0, n 7→ 1]
 4.0 ∗ (4.0 ∗ power (4.0,0))
 4.0 ∗ (4.0 ∗ 1) Clause 1
 16.0
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If-then-else expressions

Form:
if b then e1 else e2

Evaluation rules:

if true then e1 else e2  e1

if false then e1 else e2  e2

Alternative declarations:

let rec fact n = if n=0 then 1
else n * fact(n-1);

let rec power(x,n) = if n=0 then 1.0
else x * power(x,n-1);

Use of patterns usually gives more understandable programs
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Booleans

Type name bool

Values false , true

Operator Type
not bool -> bool negation

not true = false
not false = true

Expressions

e1 && e2 “conjunction e1 ∧ e2”
e1 || e2 “disjunction e1 ∨ e2”

— are lazily evaluated, e.g.
1<2 || 5/0 = 1
 true

Precedence: && has higher than ||
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Strings

Type name string

Values "abcd" , " " , "" , "123 \" 321" (escape sequence for " )

Operator Type
String.length string -> int length of string
+ string * string -> string concatenation
= < <= ... string * string -> bool comparisons
string obj -> string conversions

Examples

- "auto" < "car";
> val it = true : bool

- "abc"+"de";
> val it = "abcde": string

- String.length("abc"ˆ"def");
> val it = 6 : int

- string(6+18);
> val it = "24": string
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Types — every expression has a type e : τ

Basic types:
type name example of values

Integers int ˜ 27, 0, 15, 21000
Floats float ˜ 27.3, 0.0, 48.21
Booleans bool true, false

Pairs:
If e1 : τ1 and e2 : τ2

then (e1, e2) : τ1∗τ2 pair (tuple) type constructor

Functions:
if f : τ1 -> τ2 and a : τ1 function type constructor
then f (a) : τ2

Examples:

(4.0, 2): float * int
power: float * int -> float
power(4.0, 2): float

* has higher precedence that ->
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Type inference: power

let rec power = function
| (_,0) -> 1.0 ( * 1 * )
| (x,n) -> x * power(x,n-1) ( * 2 * )

• The type of the function must have the form: τ1 * τ2 -> τ3,
because argument is a pair.

• τ3 = float because 1.0:float (Clause 1, function value.)

• τ2 = int because 0:int .

• x* power(x,n-1):float , because τ3 = float .

• multiplication can have

int * int -> int or float * float -> float

as types, but no “mixture” of int and float

• Therefore x:float and τ1=float .

The F# system determines the type float * int -> float
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let rec power = function
| (_,0) -> 1.0 ( * 1 * )
| (x,n) -> x * power(x,n-1) ( * 2 * )

• The type of the function must have the form: τ1 * τ2 -> τ3,
because argument is a pair.

• τ3 = float because 1.0:float (Clause 1, function value.)

• τ2 = int because 0:int .

• x* power(x,n-1):float , because τ3 = float .

• multiplication can have

int * int -> int or float * float -> float

as types, but no “mixture” of int and float

• Therefore x:float and τ1=float .

The F# system determines the type float * int -> float
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• τ3 = float because 1.0:float (Clause 1, function value.)

• τ2 = int because 0:int .

• x* power(x,n-1):float , because τ3 = float .

• multiplication can have

int * int -> int or float * float -> float

as types, but no “mixture” of int and float

• Therefore x:float and τ1=float .

The F# system determines the type float * int -> float

89 DTU Informatics, Technical University of Denmark Lecture 1: Introduction and Getting Started MRH 6/09/2012



02157
Functional
Program-

ming

Michael R. Hansen

Summary

• The interactive environment

• Values, expressions, types, patterns

• Declarations of values and recursive functions

• Binding, environment and evaluation

• Type inference

Breath first round through many concepts aiming at program
construction from the first day.

We will go deeper into each of the concepts later in the course.
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• Declarations of values and recursive functions

• Binding, environment and evaluation

• Type inference

Breath first round through many concepts aiming at program
construction from the first day.

We will go deeper into each of the concepts later in the course.
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Overview

• Lists: values and constructors

• Recursions following the structure of lists

The purpose of this lecture is to give you an (as short as possible)
introduction to lists, so that you can solve a problem which can
illustrate some of F#’s high-level features.

This part is not intended as a comprehensive presentation on lists,
and we will return to the topic again later.
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Lists

A list is a finite sequence of elements having the same type:

[v1; . . . ; vn] ([ ] is called the empty list)

[2;3;6];;
val it : int list = [2; 3; 6]

["a"; "ab"; "abc"; ""];;
val it : string list = ["a"; "ab"; "abc"; ""]

[sin; cos];;
val it : (float->float) list = [<fun:...>; <fun:...>]

[(1,true); (3,true)];;
val it : (int * bool) list = [(1, true); (3, true)]

[[]; [1]; [1;2]];;
val it : int list list = [[]; [1]; [1; 2]]
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Trees for lists

A non-empty list [x1, x2, . . . , xn], n ≥ 1, consists of
• a head x1 and
• a tail [x2, . . . , xn]

::

�
�

�

@
@
@

2 ::

�
�

�

@
@
@

3 ::

�
�

�

@
@
@

2 []

Graph for [2,3,2]

::

�
�

�

@
@
@

2 []

Graph for [2]
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List constructors: [] and ::

Lists are generated as follows:

• the empty list is a list, designated []

• if x is an element and xs is a list,
then so is x :: xs (type consistency)

:: associate to the right, i.e. x1::x2::xs means x1::(x2::xs)

::

�
�

�

@
@
@

x1 ::

�
�

�

@
@
@

x2 xs

Graph for x1:: x2:: xs
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Recursion on lists – a simple example

suml [ x1, x2, . . . , xn ] =

n
∑

i=1

xi = x1 + x2 + · · ·+ xn = x1 +

n
∑

i=2

xi

Constructors are used in list patterns

let rec suml = function
| [] -> 0
| x::xs -> x + suml xs;;

> val suml : int list -> int

suml [1;2]
 1 + suml [2] (x 7→ 1 and xs 7→ [2] )
 1 + (2 + suml []) (x 7→ 2 and xs 7→ [] )
 1 + (2 + 0) (the pattern [] matches the value [] )
 1 + 2
 3

Recursion follows the structure of lists
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Infix functions

It is possible to declare infix functions in F#, i.e. the function symbol
is between the arguments.

The prefix function on lists is declared as follows:

let rec (<=.) xs ys =
match (xs,ys) with
| ([],_) -> true
| (_,[]) -> false
| (x::xs’,y::ys’) -> x=y && xs’ <=. ys’ ;;

[1;2;3] <=. [1;2] ;;
val it : bool = false

• The special way of declaring the function (<=.) xs ys makes
<=. an infix operator

• The match (xs,ys) construct allows for branching out on
patterns for (xs,ys)

Suitable use of infix functions can increase readability significantly
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Exercises

• length xs : the length of the list xs (is a predefined function).

• remove (x , ys) : removes all occurrences of x in the list ys

Have fun with your first non-trivial functional program:
polynomials represented as lists
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