
Written Examination, December 18th, 2014 Course no. 02157

The duration of the examination is 4 hours.

Course Name: Functional programming

Allowed aids: All written material

The problem set consists of 4 problems which are weighted approximately as follows:
Problem 1: 20%, Problem 2: 25%, Problem 3: 20%, Problem 4: 35%

Marking: 7 step scale.

02157

DTU CIVILINGENIØREKSAMEN December 18th, 2014 Page 2 of 5 pages

Problem 1 (20%)

We consider relations that are represented by lists of pairs: [(x0, ys0); (x1, ys1); . . . ; (xn, ysn)].
We say that x is related to y when there is a pair (xi, ysi) in the list where x = xi and y
is an element of the list ysi. The following type is used for relations:

type Rel<’a,’b> = (’a * ’b list) list

let rel: Rel<int,string> = [(1, ["a"; "b"; "c"]); (4,["b"; "e"])];;

The value rel describes a relation where, for example, 1 and "b" and 4 and "e" are related,
while 1 and "e" and 2 and "a" are not related.

We require that the xi’s in [(x0, ys0); (x1, ys1); . . . ; (xn, ysn)] are all different; but we do
not care about repetitions and the order of the elements in ysi.

1. Declare a function: apply: ’a -> Rel<’a,’b> -> ’b list, where applyx rel finds
the list of elements related to x in rel. For example: apply 1 rel = ["a"; "b"; "c"]
and apply 0 rel = [].

2. Declare a function inRelationx y rel that checks whether x and y are related in rel.
For example, inRelation 4 "e" rel = true and inRelation 1 "e" rel = false.

3. Declare a function insertx y rel which returns the relation obtained from rel by adding
that x is related to y. For example: insert 2 "c" [(1,["a"]); (2,["b"])] could
give [(1, ["a"]); (2, ["c"; "b"])].

4. Declare a function toRel:(’a*’b) list -> Rel<’a,’b> that converts a list of pairs to
a relation, e.g. toRel[(2,"c");(1,"a");(2,"b")] could give [(2,["c";"b"]);(1,["a"])].

Problem 2 (25%)

1. Declare a function: multTable: int -> seq<int> so that multTablen gives the se-
quence of the first 10 numbers in the multiplication table for n. For example, multTable 3
is the sequence of numbers 3, 6, 9, 12, . . . , 30.

2. Declare a function

tableOf: int -> int -> (int -> int -> ’a) -> seq<int*int*’a>

so that tableOfmnf is the sequence with n ·m elements (i, j, f i j), for 1 ≤ i ≤ m and
1 ≤ j ≤ n. The triples (1, 1, 2), (1, 2, 3), (3, 3, 6), (3, 4, 7) are examples of elements in the
sequence tableOf 3 4 (+). The order in which the elements occur is of no significance.

3. Give a declaration for the infinite sequence of strings "a", "aa", "aaa", "aaaa",

02157 ... Continued on next page

DTU CIVILINGENIØREKSAMEN December 18th, 2014 Page 3 of 5 pages

Consider the following declaration:

let rec f i = function
| [] -> []
| x::xs -> (x+i)::f (i*i) xs;;

4. Give the (most general) type of f and describe what f computes. Your description
should focus on what it computes, rather than on individual computation steps.

5. The function f is not tail recursive.

1. Make a tail-recursive variant of f using an accumulating parameter.

2. Make a continuation-based tail-recursive variant of f.

Problem 3 (20%)

Consider the following F# declarations:

type T<’a> = N of ’a * T<’a> list

let rec f(N(e,es)) = e :: g es
and g = function

| [] -> []
| e::es -> f e @ g es;;

let rec h p t =
match t with
| N(e,_) when p e -> N(e,[])
| N(e,es) -> N(e, List.map (h p) es);;

let rec k (N(_, es)) = 1 + List.fold max 0 (List.map k es);;

1. Give three values of type T<string>.

2. Give the (most general) types of f, g, h and k and describe what each of these four func-
tions computes. Your description for each function should focus on what it computes,
rather than on individual computation steps.

02157 ... Continued on next page

DTU CIVILINGENIØREKSAMEN December 18th, 2014 Page 4 of 5 pages

Problem 4 (35%)

A sample space is the set of all outcomes of an experiment. If the experiment is ‘toss a
coin’, the sample space consists of two samples: ‘head’ (Danish ‘krone’) or ‘tail’ (Danish:
‘plat’). The probability of each outcome is 1

2
if a fair coin is used. This is illustrated in

the left probability tree of Fig. 1, which also contains annotations such as “head?”, “head:
you win” and “tail: you lose”. When an experiment is given by a sequential process, such

head?

1
2

1
2

head: you win

tail: you lose

">2"

2
3

1
3

">3"
"A"

"B"

1
2

1
2

">3"
"C"

"D"

1
2

1
2

Figure 1: Two probability trees

as tossing a coin three times, a sample is a list where the elements describe the outcome
at each stage of the process. If a coin is tossed three times, a list comprising ‘tail’, ‘head’
and ‘tail’ is one sample and the sample space has 8 elements.

We shall consider a simple form of probability trees to represent sample spaces of sequential
processes, where the outcomes at each stage in the process is either success or failure. The
left tree in Fig. 1 is such a tree when we consider ‘head’ as success and ‘tail’ as failure. The
right tree in the figure is a probability tree for a process where a dice (Danish: ‘terning’) is
rolled twice. The first roll is successful when more than 2 pips (Danish: ‘øjne’) are facing
up (with probability 2

3
) and the second roll is successful when more than 3 pips are facing

up (with probability 1
2
). We shall use the following F# types to model this:

type Outcome = | S | F // S: for success and F: for failure
type Sample = Outcome list
type ProbTree = | Branch of string * float * ProbTree * ProbTree

| Leaf of string

The F# representation of the right tree in Fig. 1 (where 2
3
is approximated by 0.67) is:

let exp = Branch(">2",0.67, Branch(">3",0.5, Leaf "A", Leaf "B")
, Branch(">3",0.5, Leaf "C", Leaf "D"))

For a branch Branch(ds, p, tl, tr), the string ds describes a successful stage of an experiment,
the float value p is the probability for a successful outcome leading to the left subtree tl.
Therefore, 1.0 − p is the probability for a failing outcome leading to the right subtree tr.
Notice that the successful branches are the upper branches in Fig. 1.

02157 ... Continued on next page

DTU CIVILINGENIØREKSAMEN December 18th, 2014 Page 5 of 5 pages

1. Declare a function probOK: ProbTree -> bool that is true iff every probability p oc-
curring in a probability tree satisfies: 0 ≤ p ≤ 1.

A list of outcomes os is a correct sample for a given probability tree t, if traversing t as os
describes leads to a leaf. For example, if F is the head of os then the right subtree tr of a
branch Branch(ds, p, tl, tr) is chosen for further traversal using the tail of os. The list of
outcomes [F; S] is a correct sample for the right subtree in Fig. 1 because it leads to the
leaf with annotation "C". Any correct sample for this tree has length 2.

2. Declare a function isSample(os, t) that is true iff os is a correct sample given t. Fur-
thermore, state the type of isSample.

The description of a correct sample os = [o1; . . . ; on] for a probability tree t is a tuple
([(o1, ds1); . . . ; (on, dsn)], p, s) where dsi is the string in a branch node Branch(dsi, pi, tli, tri)
describing stage i in the experiment according to os, p is the probability of the sample
(described below), and s is the string in the leaf node reached by os. The probability p of
the sample os is the product p′1 · p′2 · · · · · p′n, where p′i is the probability of outcome oi of
os, that is, pi if oi = S and 1.0 − pi if oi = F. For example, the description of the sample
[F; S] for the probability tree exp is

([(F,">2");(S,">3")], 0.165, "C"), because 0.165 = (1.0− 0.67) · 0.5.

3. Declare a type Description for descriptions and a function descriptionOf os t that
gives the description of the sample os for the probability tree t. The function should
raise an exception if os is not a correct sample.

4. Declare a function allDescriptions: PropTree -> Set<Description> that computes
the set of all descriptions for a probability tree. The set of all descriptions for exp, for
example, has the following 4 elements:

([(S,">2");(S,">3")], 0.335, "A"), ([(S,">2");(F,">3")], 0.335, "B"),
([(F,">2");(S,">3")], 0.165, "C") and ([(F,">2");(F,">3")], 0.165, "D")

Let pred : string -> bool be a predicate on strings and t a probability tree. The proba-
bility of samples leading to leaves of t whose strings satisfy pred is the sum of the proba-
bilities of these samples. For example, the probability of samples for exp leading to leaves
annotated with either "B" or "C" is 0.335 + 0.165 = 0.5.

5. Declare a function probabilityOf: PropTree -> (string->bool) -> float, so that
probabilityOf t pred is the probability of reaching leaves Leaf s where pred s is true.

6. Show how probabilityOf can be used to calculate the probability of samples for exp
leading to leaves annotated with either "B" or "C".

02157

