
Written Examination, De
ember 19th, 2012 Course no. 02157The duration of the examination is 4 hours.Course Name: Fun
tional programmingAllowed aids: All written materialThe problem set
onsists of 4 problems whi
h are weighted approximately as follows:Problem 1: 25%, Problem 2: 35%, Problem 3: 20%, Problem 4: 20%Marking: 7 step s
ale.

02157

DTU CIVILINGENIØREKSAMEN De
ember 19th, 2012 Page 2 of 6 pagesProblem 1 (Approx. 25%)In this problem we will
onsider simple
ompetitions, where persons, identi�ed by theirnames, a
hieve s
ores. A result is a pair (n, sc)
onsisting of a name n (given by a string)and a s
ore sc (given by an integer). This leads to the following de
larations:type Name = string;;type S
ore = int;;type Result = Name * S
ore;;A s
ore is
alled legal if it is greater than or equal to 0 and smaller than or equal to 100.1. De
lare a fun
tion legalResults: Result list -> bool that
he
ks whether alls
ores in a list of results are legal.2. De
lare a fun
tion maxS
ore that extra
ts the best s
ore (the largest one) in a non-empty list of results. If the list is empty, then we do not
are about the result of thefun
tion.3. De
lare a fun
tion best: Result list -> Result that extra
ts the best result froma non-empty list of results. An arbitrary result with the best s
ore
an be
hosen ifthere are more than one. If the list is empty, then we do not
are about the result ofthe fun
tion.4. De
lare a fun
tion average: Result list -> float that �nds the average s
orefor a non-empty list of results. If the list is empty, then we do not
are about theresult of the fun
tion.5. De
lare a fun
tion delete: Result -> Result list -> Result list. The valueof delete r rs is the result list obtained from rs by deletion of the �rst o

urren
eof r, if su
h an o

urren
e exists. If r does not o

ur in rs , then delete r rs = rs .6. De
lare a fun
tion bestN: Result list -> int -> Result list, where the valueof bestN rs n, for n ≥ 0, is a list
onsisting of the n best results from rs . Thefun
tion should raise an ex
eption if rs has fewer than n elements.

02157 ... Continued on next page

DTU CIVILINGENIØREKSAMEN De
ember 19th, 2012 Page 3 of 6 pagesProblem 2 (Approx. 35%)In this problem we
onsider simple type
he
king in
onne
tion with a simple imperativelanguage. We
onsider types given by the following de
laration of a type Typ.type Typ = | Integer| Boolean| Ft of Typ list * Typ;;Hen
e, we have an integer type (
onstru
tor Integer), a Boolean type (
onstru
t Boolean)and fun
tion types
onstru
ted using the
onstru
tor Ft, where Ft([t1; t2; . . . ; tn], t), is thetype for a fun
tion having n arguments with types t1, . . . , tn and the value of the fun
tionhas type t. The addition fun
tion has the type Ft([Integer;Integer℄,Integer) and thegreater than fun
tion has the type Ft([Integer;Integer℄,Boolean), for example.A de
laration is a pair (x, t) of type De
l, whi
h asso
iates the type t with a variable x:type De
l = string * Typ;;For a list of de
larations [(x0, t0); . . . ; (xn, tn)] we shall require that the variables are alldi�erent, that is, xi 6= xj , when i 6= j.
1. De
lare a fun
tion distin
tVars: De
l list -> bool, where distin
tVars declsreturns true if all variables in decls are di�erent.You
an from now on assume that the variables in a de
laration list are di�erent.A symbol table asso
iates types with the variables and fun
tions in programs. We modelsymbol tables by values of the following Map type, where an entry asso
iate a type with astring:type SymbolTable = Map<string,Typ>;;
2. De
lare a fun
tion toSymbolTable: De
l list -> SymbolTable that transforms a listof de
larations into a symbol table.
3. De
lare a fun
tion extendST: SymbolTable -> De
l list -> SymbolTable, wherethe value of extendST sym decls is the symbol table obtained from sym by addingentries (x, t), for every de
laration (x, t) in decls. An existing entry in sym having x askey will be overridden by this operation.
02157 ... Continued on next page

DTU CIVILINGENIØREKSAMEN De
ember 19th, 2012 Page 4 of 6 pagesWe
onsider expressions generated from variables (
onstru
tor V) using fun
tion appli
ation(
onstru
tor A), where, e.g., A(">",[V "x";V "y"℄) represents the
omparison x > y:type Exp = | V of string| A of string * Exp list;;Suppose that a symbol table sym asso
iates the type Integer with "x" and "y", and thetype Ft([Integer;Integer℄,Boolean) with ">". All symbols (variables and fun
tions)in the expression A(">",[V "x";V "y"℄) are therefore de�ned in sym. Furthermore, theexpression is well-typed sin
e the types of the arguments to > mat
h the argument types inFt([Integer;Integer℄,Boolean), and the type of A(">",[V "x";V "y"℄) is Boolean.
4. De
lare a fun
tion symbolsDefined: SymbolTable -> Exp -> bool, where the valueof the expression symbolsDefined sym e is true if there is an entry in sym for everysymbol (variable or fun
tion) o

urring in e.
5. De
lare a fun
tion typOf: SymbolTable -> Exp -> Typ, so that typOf sym e givesthe type of e for the symbol table sym. The fun
tion should raise an ex
eption if e isnot well-typed. You may assume that all symbols in e are de�ned in sym.We
onsider statements generated from assignments using sequential
omposition, if-then-else statements, while statements and blo
k statements:type Stm = | Ass of string * Exp // assignment| Seq of Stm * Stm // sequential
omposition| Ite of Exp * Stm * Stm // if-then-else| While of Exp * Stm // while| Blo
k of De
l list * Stm;; // blo
kThe well-typedness of a statement for a given symbol table sym is given by:

• An assignment Ass(x, e) is well-typed if x and the symbols of e are de�ned in symand x and e have the same type.
• A sequential
omposition Seq(stm1, stm2) is well-typed if stm1 and stm2 are.
• An if-then-else statement Ite(e, stm1, stm2) is well-typed if the symbols in e arede�ned in sym, e has type Boolean, and stm1 and stm2 are well-typed.
• A while statement While(e, stm) is well-typed if the symbols in e are de�ned in sym,
e has type Boolean, and stm is well-typed.

• A blo
k statement Blo
k(decls, stm) is well-typed if the variables in decls are alldi�erent, and stm is well-typed in the symbol table obtained by extending sym withthe de
larations of decls .
6. De
lare a fun
tion wellTyped: SymbolTable -> Stm -> Bool that
he
ks that a state-ment is well-typed for a given symbol table, and if so returns true.02157 ... Continued on next page

DTU CIVILINGENIØREKSAMEN De
ember 19th, 2012 Page 5 of 6 pagesProblem 3 (20%)Consider the following F# de
larations:let re
 h a b =mat
h a with| [℄ -> b|
::d ->
::(h d b);;type T<'a,'b> = | A of 'a | B of 'b | C of T<'a,'b> * T<'a,'b>;;let re
 f1 = fun
tion| C(t1,t2) -> 1 + max (f1 t1) (f1 t2)| _ -> 1;;let re
 f2 = fun
tion| A e | B e -> [e℄| C(t1,t2) -> f2 t1 � f2 t2;;let re
 f3 e b t =mat
h t with| C(t1,t2) when b -> C(f3 e b t1, t2)| C(t1,t2) -> C(t1, f3 e b t2)| _ when b -> C(A e, t)| _ -> C(t, B e);;1. Give the type of h and des
ribe what h
omputes. Your des
ription should fo
us onwhat it
omputes, rather than on individual
omputation steps.2. Write a value of type T<int,bool> using all three
onstru
tors A, B and C.3. Write a value of type T<'a list,'b option> using all three
onstru
tors A, B andC.4. Give the types of f1, f2 and f3, and des
ribe what ea
h of these three fun
tions
ompute.

02157 ... Continued on next page

DTU CIVILINGENIØREKSAMEN De
ember 19th, 2012 Page 6 of 6 pagesProblem 4 (Approx. 20%)Consider the following F# de
larations:type 'a tree = | Lf| Br of 'a * 'a tree * 'a tree;;let re
 sumTree = fun
tion| Lf -> 0 (* sT1 *)| Br(x, t1, t2) -> x + sumTree t1 + sumTree t2;; (* sT2 *)let re
 toList = fun
tion| Lf -> [℄ (* tL1 *)| Br(x, t1, t2) -> x::(toList t1 � toList t2);; (* tL2 *)let re
 sumList = fun
tion| [℄ -> 0 (* sL1 *)| x::xs -> x + sumList xs;; (* sL2 *)let re
 sumListA n = fun
tion| [℄ -> n (* sLA1 *)| x::xs -> sumListA (n+x) xs;; (* sLA2 *)
1. Prove that sumTree t = sumList(toList t)holds for all trees t of type int tree.In the proof you
an assume thatsumList((toList t1) � (toList t2))

= sumList(toList t1) + sumList(toList t2)holds for all trees t1 and t2 of type int tree.
2. Prove that sumListA n xs = n+ sumList(xs)holds for all integers n and all lists xs of type int list.
02157

