Written Examination, December 19th, 2012 Course no. 02157
The duration of the examination is 4 hours.

Course Name: Functional programming

Allowed aids: All written material

The problem set consists of 4 problems which are weighted approximately as follows:
Problem 1: 25%, Problem 2: 35%, Problem 3: 20%, Problem 4: 20%

Marking: 7 step scale.

02157

DTU CIVILINGENIGREKSAMEN December 19th, 2012 Page 2 of 6 pages

Problem 1 (Approx. 25%)

In this problem we will consider simple competitions, where persons, identified by their
names, achieve scores. A result is a pair (n, s¢) consisting of a name n (given by a string)

and a score sc (given by an integer). This leads to the following declarations:
type Name = string;;
type Score = int;;

type Result

Name * Score;;

A score is called legal if it is greater than or equal to 0 and smaller than or equal to 100.

02157

. Declare a function legalResults: Result list -> bool that checks whether all

scores in a list of results are legal.

. Declare a function maxScore that extracts the best score (the largest one) in a non-

empty list of results. If the list is empty, then we do not care about the result of the
function.

Declare a function best: Result list -> Result that extracts the best result from
a non-empty list of results. An arbitrary result with the best score can be chosen if
there are more than one. If the list is empty, then we do not care about the result of
the function.

. Declare a function average: Result list -> float that finds the average score

for a non-empty list of results. If the list is empty, then we do not care about the
result of the function.

Declare a function delete: Result -> Result list -> Result list. The value
of delete r rs is the result list obtained from rs by deletion of the first occurrence
of r, if such an occurrence exists. If r does not occur in rs, then delete r rs = rs.

. Declare a function bestN: Result list -> int -> Result list, where the value

of bestN rs n, for n > 0, is a list consisting of the n best results from rs. The
function should raise an exception if rs has fewer than n elements.

... Continued on next page

DTU CIVILINGENIGREKSAMEN December 19th, 2012 Page 3 of 6 pages

Problem 2 (Approx. 35%)

In this problem we consider simple type checking in connection with a simple imperative
language. We consider types given by the following declaration of a type Typ.

type Typ = | Integer
| Boolean
| Ft of Typ list * Typ;;

Hence, we have an integer type (constructor Integer), a Boolean type (construct Boolean)
and function types constructed using the constructor Ft, where Ft([t1;o;...;,],), is the
type for a function having n arguments with types ¢q,...,t, and the value of the function
has type t. The addition function has the type Ft ([Integer;Integer],Integer) and the
greater than function has the type Ft ([Integer;Integer],Boolean), for example.

A declaration is a pair (x,t) of type Decl, which associates the type t with a variable x:
type Decl = string * Typ;;

For a list of declarations [(zg,%0);. . .; (2, t,)] we shall require that the variables are all
different, that is, x; # x;, when i # j.

1. Declare a function distinctVars: Decl list -> bool, where distinctVars decls
returns true if all variables in decls are different.

You can from now on assume that the variables in a declaration list are different.

A symbol table associates types with the variables and functions in programs. We model
symbol tables by values of the following Map type, where an entry associate a type with a
string:

type SymbolTable = Map<string,Typ>;;
2. Declare a function toSymbolTable: Decl list -> SymbolTable that transforms a list

of declarations into a symbol table.

3. Declare a function extendST: SymbolTable -> Decl list -> SymbolTable, where
the value of extendST sym decls is the symbol table obtained from sym by adding
entries (x,t), for every declaration (z,t) in decls. An existing entry in sym having z as
key will be overridden by this operation.

02157 ... Continued on next page

DTU CIVILINGENIGREKSAMEN December 19th, 2012 Page 4 of 6 pages

We consider expressions generated from variables (constructor V) using function application
(constructor A), where, e.g., A(">" [V "x";V "y"]) represents the comparison z > y:

type Exp = | V of string
| A of string * Exp list;;

Suppose that a symbol table sym associates the type Integer with "x" and "y", and the
type Ft ([Integer;Integer],Boolean) with ">". All symbols (variables and functions)
in the expression A(">", [V "x";V "y"]) are therefore defined in sym. Furthermore, the
expression is well-typed since the types of the arguments to > match the argument types in
Ft ([Integer;Integer] ,Boolean), and the type of A(">",[V "x";V "y"]) is Boolean.

4. Declare a function symbolsDefined: SymbolTable -> Exp -> bool, where the value
of the expression symbolsDefined sym e is true if there is an entry in sym for every
symbol (variable or function) occurring in e.

5. Declare a function typOf: SymbolTable -> Exp -> Typ, so that typ0f sym e gives
the type of e for the symbol table sym. The function should raise an exception if e is
not well-typed. You may assume that all symbols in e are defined in sym.

We consider statements generated from assignments using sequential composition, if-then-
else statements, while statements and block statements:

type Stm = | Ass of string * Exp // assignment
| Seq of Stm * Stm // sequential composition
| Ite of Exp * Stm * Stm // if-then-else
| While of Exp * Stm // while
|

Block of Decl list * Stm;; // block
The well-typedness of a statement for a given symbol table sym is given by:

e An assignment Ass(x,e) is well-typed if x and the symbols of e are defined in sym
and z and e have the same type.

A sequential composition Seq(stmy, stms) is well-typed if stm; and stms are.

An if-then-else statement Ite(e, stmq, stmso) is well-typed if the symbols in e are
defined in sym, e has type Boolean, and stm; and stmsy are well-typed.

A while statement While(e, stm) is well-typed if the symbols in e are defined in sym,
e has type Boolean, and stm is well-typed.

A block statement Block(decls, stm) is well-typed if the variables in decls are all
different, and stm is well-typed in the symbol table obtained by extending sym with
the declarations of decls.

6. Declare a function wellTyped: SymbolTable -> Stm -> Bool that checks that a state-
ment is well-typed for a given symbol table, and if so returns true.

02157 ... Continued on next page

DTU CIVILINGENIGREKSAMEN December 19th, 2012 Page 5 of 6 pages

Problem 3 (20%)

Consider the following F# declarations:

let rec h a b =
match a with
I 11 ->b
| c::d -=> c::(h d b);;

type T<’a,’b> | A of a | Bof b | C of T<’a,’b> * T<’a,’b>;;
let rec f1 = function

| C(t1,t2) -> 1 + max (f1 t1) (f1 t2)

| _ ->1;;

let rec f2 = function
| Ae | Be -> [e]
| C(t1,t2) -> f2 t1 0@ £2 t2;;

let rec f3 e b t =
match t with
| C(t1,t2) when b -> C(f3 e b t1, t2)

| C(t1,t2) -> C(t1, f3 e b t2)
| _ when b -> C(A e, t)
| _ -> C(t, B e);;

1. Give the type of h and describe what h computes. Your description should focus on
what it computes, rather than on individual computation steps.

2. Write a value of type T<int,bool> using all three constructors A, B and C.

3. Write a value of type T<’a list,’b option> using all three constructors A, B and
C.

4. Give the types of £f1, £2 and £3, and describe what each of these three functions
compute.

02157 ... Continued on next page

DTU CIVILINGENIGREKSAMEN December 19th, 2012

Problem 4 (Approx. 20%)

Consider the following F# declarations:

type ’a tree = | Lf
| Br of ’a * ’a tree * ’a tree;;

let rec sumTree = function
| Lf >0
| Br(x, t1, t2) -> x + sumTree tl1 + sumTree t2;;

let rec tolList = function
| Lf >0
| Br(x, t1, t2) -> x::(tolList t1 @ tolList t2);;

let rec sumlList = function
| [>0
| x::xs -> x + sumlList xs;;

let rec sumListA n = function
| [->n

| x::xs -> sumListA (n+x) xs8;;

1. Prove that
sumTree ¢ = sumList(toList)

holds for all trees t of type int tree.

In the proof you can assume that

sumList((toList¢;) @ (toListty))

= sumList(toList ¢;) + sumList(toList ty)

holds for all trees t; and t; of type int tree.

2. Prove that
sumListA n zs = n + sumList(xs)

holds for all integers n and all lists xs of type int list.

02157

(%
(%

(*
(*

(*
(*

(*
(*

Page 6 of 6 pages

sT1 %)
sT2 %)

tL1 *)
tL2 *)

sL1l %)
sL2 x)

sLA1 %)
sLA2 x*)

