02157 Functional programming Michael R. Hansen
DTU Informatics

November 10, 2011

Revised November 6, 2013

Mandatory assignment: Solver for Propositional Logic

This is the second mandatory assignment where you should make a simple solver for Propo-
sitional Logic. The purpose of the exercise is to cover basic program construction principles
involving finite trees and sets. The requirements for your submission are as follows:

e Your solution should be handed in no later than Tuesday, November 29, 2011.
The mandatory assignments can be solved individually or in groups of 2 or 3 students.
If the students in a group do not contribute equally, the role of each student must
be explicitly stated in the report.
e One member of each group must hand in the assignment using the ” Assignments”
link in the course group on CampusNet. Two individual files must be uploaded:
— A PDF-file ’assignment2.pdf’ containing just one page with the names and
study numbers for all members of the group. This page must also contain:
x A formulation of the Knight-Knave puzzle in propositional logic (Ques-
tion 7) together with a solution.
— A file "Prop.fs’ containing your program solution to this assignment together
with suitable tests.

Propositional Logic

In this assignment you shall consider formulas of propositional logic, also called proposi-
tions, which are generated from a set of atoms P,Q, R, ... by the use of the well-known
operators: negation —, disjunction V and conjunction A. An atom can be either true or
false, and the meaning of each the connectives is:

e —A is true if and only is A is false,
e AV B is true if and only if A is true or B is true or both are true, and
e A A B is true if and only if both A and B are true,

where A and B can be arbitrary propositions.

Any other propositional operator can be expressed using —,V, and A. (Actually nega-
tion together with just disjunction or just conjunction would suffice.) Implication and
biimplication (or equivalence), for example, are definable as follows

A= B isexpressed as (—A)V B
A< B isexpressed as (A= B)A(B=A)

Questions 1

You should define a type Prop for propositions so that the following are values of type
Prop:

A "p" represents the atom p,

Dis(A "p", A "g") represents the proposition pV q.
Con(A "p", A "q") represents the proposition p A q.
Neg(A "p") represents the proposition —p.

Question 2
A proposition is in negation normal form if the negation operator just appears as applied

directly to atoms. Write an F# function transforming a proposition into an equivalent
proposition in negation normal form, using the de Morgan laws:

() ©
-~(AVB) & (—mA)A(—B)

and the law: -(—A) < A.

Question 3

A literal is an atom or the negation of an atom and a basic conjunct is a conjunction of
literals. A proposition is in disjunctive normal form if it is a disjunction of basic conjuncts.
Write an F# function which transforms a proposition in negation normal form into an
equivalent proposition in disjunctive normal form using the laws:

AN(BVC) & (ANB)V(AANC)
(AVB)AC &)V ()

Question 4

We shall use a set-based representation of formulas in disjunctive normal form. Since
conjunction is commutative, associative and satisfies that (A A A) < A it is convenient to
represent a basic conjunct be by its set of literals 1it0f(bc).

Similarly, we represent a disjunctive normal form formula A:

bey V...V be,

by the set
dnfToSet(A) = {1it0£(bcy),...,1it0f(be,)}

that we will call the dns set of A.

Write F# declarations for the functions 1it0f and dnfToSet.

Question 5

A set of literals Is (and the corresponding basic conjunction) is consistent, if for no atom
p we have have that both p and —p are literals in [s. Otherwise, ls (and the corresponding
basic conjunctions) is inconsistent. An inconsistent basic conjunct is false regardless of the
truth values assigned to atoms. Removing it from a disjunctive normal form formula will
therefore not change the meaning of that formula.

Declare an F# function isConsistent that checks the consistency of a set of literals.
Declare an F# function removeInconsistent that removes inconsistent literal sets from
a dns set.

Question 6

A proposition is satisfiable if it is true for some assignment of truth values to the atoms.

A formula in disjunctive normal is satisfiable when one (or more) of its basic conjunctions
are. Therefore, the satisfying assignments of a proposition can be inspected from the
consistent literal sets of its disjunctive normal form.

Declare an F# function toDNFsets that transforms an arbitrary proposition into a dns set
with just consistent literal sets.

Declare a function impl A B for implication A = B and a function iff A B for biimpli-
cation A & B.

Use toDNFsets to determine the satisfying assignments for the following two formulas:

e ((-p)=(=q) = (p=1q)
e ((-p) = (=q)) = (¢ = p)

Question 7

In this question you shall solve a Knights and Knaves puzzle, which is a kind of puzzle
originating from the logician R. Smullyan. The general theme addresses an island that is

inhibited by two kinds of citizens: Knights, who always tell the truth, and knaves, who
always tell lies. On the basis of utterances from some inhabitants you must decide what
kind they are.

You may find many Knight and Knave puzzles on the internet. The following is originates
from http://www.homeschoolmath.net/reviews/eimacs-logic.php.

Three inhabitants, A, B and C, are talking.

o A says: 7All of us are knaves.”
e B says: "Exactly one of us is a knight.”

To solve the puzzle you should determine: What kinds of citizens are A, B and C?

Solve this puzzle by modelling the two utterances above in propositional logic and using
toDNSsets to find the satisfying assignments. (Hint: Use A to describe that A is a knight
and —A to describe that A is a Knave.)

Question 8

The satisfiability problem for propositional logic is an NP-complete problem, and the above
transformation to disjunctive normal form proposition or to a dns set has in the worst case
an exponential running time.

The disjunctive normal form of the following proposition:

(Pval)/\(PZVQ2)/\"'/\(PH\/QN) (1)

will, for example, have 2" basic conjuncts.
Declare an F# function badProp n that computes the F# representation of (1).

Compute toDNFsets(badProp n) for a small number of cases and check that the resulting
sets indeed have 2" elements.

