igital Design

AT

A

Digital Design with Chisel

Sixth Edition

Digital Design with Chisel

Sixth Edition

Martin Schoeberl

Copyright © 2016-2025 Martin Schoeberl

This work is licensed under a Creative Commons Attribution-ShareAlike
BY SA

4.0 International License. http://creativecommons.org/licenses/
by-sa/4.0/

Email: martin@jopdesign.com
Visit the source at https://github.com/schoeberl/chisel-book

The first edition was published in 2019 by Kindle Direct Publishing,
https://kdp.amazon.com/

Library of Congress Cataloging-in-Publication Data

Schoeberl, Martin
Digital Design with Chisel
Martin Schoeberl

Includes bibliographical references and an index.
ISBN 9781689336031

Manufactured in the United States of America.
Typeset by Martin Schoeberl.

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
martin@jopdesign.com
https://github.com/schoeberl/chisel-book
https://kdp.amazon.com/

Contents

Foreword
Preface
1 Introduction
1.1 Installing Chisel and FPGA Tools
1.1.1 macOS e
1.1.2 Linux/Ubuntu
1.1.3° Windows e
1.1.4 FPGATools
1.2 HelloWorld
1.3 Chisel HelloWorld
1.4 AnIDEforChisel
1.5 Source Access and eBook Features
1.6 FurtherReading
1.7 EXEICISES . . . v v v i v i e e e e e e e e e e e
2 Basic Components

2.1
2.2

23

24

2.5

2.6
2.7

Chisel Types and Constants
Combinational Circuits
2.2.1 Multiplexer o

Registers

23.1 Counting e
Structure with Bundleand Vec
241 Bundle

242 Vec

Wire, Reg,and IO
Chisel Generates Hardware

Exercises

XV

Xvii

11
11
13
16
16
18
18
18
19
25
26
26

CONTENTS

3

Build Process and Testing

3.1 Building your Project withsbt
3.1.1 Source Organization
3.1.2 Runningsbt.
3.1.3 Generating Verilog
314 ToolFlow
3.1.5 Chisel Versions
3.1.6 Using a GitHub Template
3.2 Testingwith Chisel
32.1 ScalaTest
322 ChiselTest.
323 Waveforms
324 printf Debugging
33 Exercises
3.3.1 A Minimal Project
332 ATestingExercise
Components
4.1 Components in Chisel are Modules
4.2 Nested Components
4.3 An Arithmetic Logic Unit.
4.4 Bulk Connections

Combinational Building Blocks

5.1 Combinational Circuits
52 Decoder
53 Encoder
54 Arbiter.
5.5 PriorityEncoder.00
5.6 Comparator
57 EXercise

Sequential Building Blocks

6.1 Registers
6.2 Counters i
6.2.1 Counting Upand Down

6.2.2 Generating Timing with Counters

6.2.3 TheNerd Counter

Index

Contents

CONTENTS

624 ATimer. 83

6.2.5 Pulse-Width Modulation 83

6.3 ShiftRegisters 87
6.3.1 Shift Register with Parallel Output 87

6.3.2 Shift Register with Parallel Load 88

6.4 Memory 89

6.5 EXercises 94

7 Input Processing 97
7.1 AsynchronousInput., 97
7.2 Debouncing 98

7.3 Filtering of the Input Signal 100
7.4 Combining the Input Processing with Functions 102

7.5 SynchronizingReset 104
7.6 EXxercise 105

8 Finite-State Machines 107
8.1 Basic Finite-State Machine 107

8.2 Faster Output withaMealy FSM 111

83 MooreversusMealy 115

84 EXercise e 117

9 Communicating State Machines 119
9.1 AlLightFlasher Example 119

9.2 State Machine with Datapath 124

9.3 Ready/ValidInterface 130

10 Hardware Generators 135
10.1 ALittleBitof Scala 135
10.2 Lightweight Components with Functions 137
10.3 Generate Combinational Logic 139
103.1 FileReading 140

10.3.2 Type Conversion 142

10.4 Configuration with Parameters 143
10.4.1 Simple Parameters 143

1042 CaseClasseso v v v v i it 144

10.4.3 Functions with Type Parameters 145

10.4.4 Modules with Type Parameters 146

Contents Index 111

CONTENTS

10.4.5 ParameterizedBundles 147
10.4.6 Optional Ports 148

10.5 UseInheritance 150
10.6 Hardware Generation with Functional Programming 152
10.6.1 Minimum Search Example 154
10.6.2 An Arbitration Tree 156

11 Example Designs 161
11.1 FIFOBuffer 161
11.2 ASerial Port 164
11.3 FIFO Design Variations 169
11.3.1 Parameterizing FIFOs 169
11.3.2 Redesigning the Bubble FIFO 172
11.3.3 Double Buffer FIFO 174
11.3.4 FIFO with Register Memory 176
11.3.5 FIFO with On-ChipMemory 180

11.4 A Multi-clock Memory 183
11.5 EXercises . . . v v v v vttt e e 184
11.5.1 Explorethe Bubble FIFO 184
1152 The UART 185
11.5.3 FIFO Exploration 186

12 Interconnect 187
12.1 A Classic Microprocessor Bus 187
122 AnOn-ChipBus 188
12.2.1 Combinational Handshake 190
12.2.2 Pipelined Handshake 191
12.2.3 Example [ODevice 192
12.2.4 Memory Mapped Devices 194

12.3 Bus and Interface Standards 196
123.1 Wishbone 196
1232 AXT . . o o 198
12.3.3 Open Core Protocol 199
12.3.4 Further Bus Specifications 199

124 EXEICiSe . . .« « v v v v e e e e 200
13 Debugging, Testing, and Verification 201
13.1 Debugging 201

Index

Contents

CONTENTS

13.2 TestinginChisel 202
13.2.1 UseFunctions 203

13.2.2 Selecting Tests it 206

13.2.3 Accessing Internal Signals 206

13.2.4 Multithreaded Testing 208

13.2.5 Simulator Backends 210

13.3 Assertions and Formal Verification 211
13.4 EXErciSe v v v v i e e 213

14 Design of a Processor 215
14.1 The Instruction Set Architecture 215
142 The Datapath 219
143 Startwithan ALU o 219
14.4 Decoding Instructions e 224
14.5 Assembling Instructions 227
14.6 The Instruction Memoryo 229
14.7 A State Machine with Data Path Implementation 229
14.8 Implementation Variations 234
149 EXEICISe . . « v v v v v e e e e e e 234

15 A RISC-V Pipeline 237
15.1 The RISC-V Instruction Set Architecture 237
15.2 Pipeline Stage Definition 239
15.3 Number of Pipeline Stages 239
15.4 The Wildcat Pipeline 240
154.1 TopLevel 240

15.4.2 InstructionFetch 242

15.4.3 Instruction Decode and Register File Read 243

1544 Executeand MemoryRead 245

15.5 Summary and Exercise 250

16 Contributing to Chisel 251
16.1 Publishing a Chisel Library 251
16.1.1 UsingalLibrary 252

16.1.2 Prerequisiteo 252

16.1.3 Library Setup 253

16.1.4 Regular Publishing 254
Contents Index v

CONTENTS

16.2 Contributingto Chisel
16.2.1 Setup the Development Environment
16.2.2 Testing i
16.2.3 Contribute with a Pull Request

163 Exercise

17 Summary

A VHDL and Verilog

A.l1 CodeExamples
A.l.l1 Components
A.1.2 UsingaComponent
A.l3 Registero
A.1.4 Combinational Blocks
A.1.5 Advanced Chisel Features

A.2 External Modules and Integration of Legacy Code

A3 EXercise

B Reserved Keywords
C Chisel Projects

D Acronyms
Bibliography

Index

\%! Index

273

275

277

281

285

Contents

List of Figures

2.1

2.2
23
24
25

3.1
32

4.1
4.2
4.3
4.4
4.5

5.1
52
53
54
5.5
5.6
5.7

6.1
6.2
6.3
6.4
6.5

Logic for the expression (a & b)| c. The wires can be a single bit
or multiple bits. The Chisel expression, and the schematics are the

SAME. © v v v v v e e e e e e e e e e e e 13
Abasic 2:1 multiplexer. oL 16
A D flip-flop based register with a synchronous resetto 0. 17
A vector wrapped in a Wire is just a multiplexer. 20
A vector of registers.o 22
Source tree of a Chisel project (usingsbt) 30
Tool flow of the Chisel ecosystem. 34
Anaddercomponent. 50
A register components. 50
A counter built out of components. 51
A design consisting of a hierarchy of components. 54
An arithmetic logic unit, or ALU for short. 57
A chain of multiplexers. 62
A 2-bitto4-bitdecoder. 64
A 4-bitto 2-bitencoder.o 66
A symbol for a4-bitarbiter. 0oL 68
Ad-bitarbiter. 69
With an arbiter and an encoder, we can build a priority encoder. . . . 70
A simple comparator.o o 71
A D flip-flop-based register. 73
A D flip-flop based register with a synchronous reset. 75
A waveform diagram for a register withareset. 75
A D flip-flop-based register with an enable signal. 76
A waveform diagram for a register with an enable signal. 77

VII

L1ST OF FIGURES

VIII

6.6 An adder and a register resultin counter. 78
6.7 Countingevents. 79
6.8 A waveform diagram for generating a slow frequency tick. 81
6.9 Using the slow frequency tick. 82
6.10 Aone-shottimer. 84
6.11 Pulse-width modulation. 84
6.12 A 4-stage shiftregister. L. 86
6.13 A 4-bit shift register with parallel output. 88
6.14 A 4-bit shift register with parallel load. 88
6.15 A synchronous memory. 89
6.16 A synchronous memory with forwarding for a defined read-during-

write behavior.o o 91
7.1 Inputsynchronizer. 98
7.2 Debouncing an inputsignal. 99
7.3 Majority voting on the sampled input signal. 101
8.1 A finite-state machine (Moore type). 107
8.2 The state diagram of analarm FSM. 108
8.3 Arising edge detector (Mealy type FSM). 112
8.4 A Mealy type finite-state machine. 112
8.5 The state diagram of the rising edge detector as Mealy FSM. 113
8.6 The state diagram of the rising edge detector as Moore FSM. 115
8.7 Mealy and a Moore FSM waveform for rising edge detection. 115
9.1 The light flasher split into a Master FSM and a Timer FSM. 120
9.2 The light flasher split into a Master FSM, a Timer FSM, and a

Counter FSM. 122
9.3 A state machine with adatapath. 125
9.4 State diagram for the popcount FSM. 126
9.5 Datapath for the popcount circuit. 126
9.6 Theready/valid flow control. 130
9.7 Data transfer with a ready/valid interface, early ready. 131
9.8 Data transfer with a ready/valid interface, late ready. 131
9.9 Single cycle ready/valid and back-to-back transfers. 132
11.1 A writer, a FIFO buffer,andareader. 161
11.2 One byte transmittedby a UART. 165

Index Contents

L1ST OF FIGURES

12.1

12.2
12.3
12.4

14.1

15.1

Contents

A classic computer consisting of a processor (CPU), memory, and

1/0; connected via address, data, and control buses. 188
The translation of the off-chip bus concept to an on-chip “bus”. . . . 189
A read transaction with a combinational acknowledge. 190
Read transaction with a pipelined acknowledgement. 191
The Leros datapath. 220

The 3-stage Wildcat processor pipeline (simplified, omitting control
and decoded signals). Lo 241

Index 1X

List of Tables

2.1
2.2

3.1

5.1
52

8.1

12.1
12.2
12.3

14.1

B.1
B.2

Chisel defined hardware operators. 15
Chisel defined hardware functions, invokedonv. 15
Chisel and highest supported Scala and Java versions. 37
Truth table fora2to4 decoder. 64
Truth table fora4to2encoder. 66
State table for the alarm FSM. 110
An example address mapping. 194
Address mapping forthe UART. 195
Status flags. 195
Leros instructionset. 216
Reserved keywords from the Scala language. 273
Reserved keywords from the Chisel language. 273

Listings

1.1 A hardware Hello World in Chisel 5
4.1 The adder component in Chisel. 50
4.2 The register componentin Chisel. 51
4.3 A counter built out of components., 52
4.4 Definition of components CompA and CompB 54
45 Component CompC v v v vt e e e e e 55
4.6 Component CompDt 56
477 Top-level component, 57
6.1 Aone-shottimer 84
6.2 1KiB of synchronousmemory. 90
6.3 A memory with a forwarding circuit. 92
6.4 Memory initialization.o 93
7.1 Summarizing input processing with functions. 103
8.1 The Chisel code for the alarm FSM. 109
8.2 Rising edge detection withaMealy FSM. 114
8.3 Rising edge detection withaMoore FSM. 116
9.1 Master FSM of the light flasher. 121
9.2 Thedowncounter FSM. 123
9.3 The master FSM of the double refactored light flasher. 123
9.4 The top level of the popcount circuit. 127
9.5 Datapath of the popcount circuit. 128
9.6 The FSM of the popcount circuit. 129
9.7 A register as a buffer with a ready/valid interface 134
10.1 Binary to binary-coded decimal conversion. 140
10.2 Reading a text file to generate a logic table. 141

XI

LISTINGS

XII

10.3 A register file with an optional debug port. 149
10.4 Base class for our ticker implementations. 150
10.5 Tick generation withacounter. 150
10.6 A tester for different versions of the ticker. 151
10.7 Tick generation withadown counter. 152
10.8 Tick generation by counting downto-1. 153
10.9 ChiselTest for the ticker tests. 153
10.10Minimum search including the index. 155
10.1TA simple2to 1 arbiter. 158
10.12A fair 2-to-l arbiter. oL, 159
11.1 A single stage of the bubble FIFO. 163
11.2 A FIFO comprises an array of FIFO bubble stages. 164
11.3 A transmitter foraserial port. 166
11.4 A single-byte buffer with a ready/valid interface. 168
11.5 A transmitter with an additional buffer. 169
11.6 Areceiver foraserialport. 170
11.7 Sending “Hello World!” via the serial port. 171
11.8 Echoing dataon the serial port. 171
11.9 Abstract class for FIFO veriations. 172
11.10A bubble FIFO with a ready/valid interface. 172
11.11A FIFO with double bufferelements. 175
11.12A FIFO with a register based memory. 178
11.13A FIFO with aon-chipmemory. 181
11.14Combining a memory based FIFO with double-buffer stage. 182
11.15A multi-clock memory generator. 183
12.1 An IO device consisting of four loadable counters. 193
12.2 An IO device for aready/valid device. 197
13.1 Testing the counterdevice. 204
13.2 Testing the counter device with fuctions. 205
13.3 The tick generateras DUT. 207
13.4 A top-level wrapper forour DUT. 208
13.5 Testing the DUT with access to internal signals. 209
13.6 Usingassertionsin Chisel. 212
13.7 Formally verifying the circuit. 212

Index Contents

LISTINGS

14.1 Leros instruction encoding. 218
14.2 The Leros ALU with the accumulator register. 220
14.3 The Leros ALU function written in Scala. 223
14.4 The main part of the Leros assembler. 230
14.5 The instruction memory of Leros. 231
14.6 The Leros state machine. 231
14.7 The data memory module of Leros. 233
15.1 Top level module of Wildcat. 241
15.2 PC generation and instruction fetch. 242
15.3 A ROM as a simple instruction memory. 243
154 Decode stage. v v vt e e e 243
15.5 The core of the register file function. 244
15.6 The core of the register file function. 246
15.7 Address computation, including forwarding if needed. 247
15.8 Memory accessindecode. 247
15.9 ALU operation in the execution stage. 248
15.10The ALU operation enumeration. 248
15.11The ALU function. 249
15.12Branchexecution e 250
15.13Memory load. e 250
A.1 Asimple componentin Chisel. 260
A.2 Asimple componentin VHDL. 260
A.3 A simple componentin Verilog. 261
A.4 Using the ChiselAdder component in Chisel. 262
A.5 Using the adder componentin VHDL. 262
A.6 Using the adder component in Verilog. 262
A.7 A register with reset and enable in Chisel. 263
A.8 A register with reset and enablein VHDL. 263
A.9 A register with reset and enable in Verilog. 264
A.10 A switch statementin Chisel. 265
A.11 A casestatementin VHDL. 265
A.12 A case statement in Verilog. 266
A.13 An “if...else if...else” statement in Chisel. 267
A.14 An “if...else if...else” statementin VHDL. 267
A.15 An “if...else if...else” statement in Verilog. 268

Contents Index X111

Foreword

It is an exciting time to be in the world of digital design. With the end of Dennard
Scaling and the slowing of Moore’s Law, there has perhaps never been a greater
need for innovation in the field. Semiconductor companies continue to squeeze out
every drop of performance they can, but the cost of these improvements has been
rising drastically. Chisel reduces this cost by improving productivity. If designers
can build more in less time, while amortizing the cost of verification through reuse,
companies can spend less on Non-Recurring Engineering (NRE). In addition, both
students and individual contributors can innovate more easily on their own.

Chisel is unlike most languages in that it is embedded in another programming
language, Scala. Fundamentally, Chisel is a library of classes and functions repre-
senting the primitives necessary to express synchronous, digital circuits. A Chisel
design is really a Scala program that generates a circuit as it executes. To many, this
may seem counterintuitive: “Why not just make Chisel a stand-alone language like
VHDL or SystemVerilog?” My answer to this question is as follows: the software
world has seen a substantial amount of innovation in design methodology in the
past couple of decades. Rather than attempting to adapt these techniques to a new
hardware language, we can simply use a modern programming language and gain
those benefits for free.

A longstanding criticism of Chisel is that it is “difficult to learn.” Much of this
perception is due to the prevalence of large, complex designs created by experts to
solve their own research or commercial needs. When learning a popular language
like C++, one does not start by reading the source code of GCC. Rather, there are a
plethora of courses, textbooks, and other learning materials that cater toward new-
comers. In Digital Design with Chisel, Martin has created an important resource for
anyone who wishes to learn Chisel.

Martin is an experienced educator, and it shows in the organization of this book.
Starting with installation and primitives, he builds the reader’s understanding like a
building, brick-by-brick. The included exercises are the mortar that solidifies under-
standing, ensuring that each concept sets in the reader’s mind. The book culminates
with hardware generators like a roof giving the rest of the structure purpose. At

XV

FOREWORD

the end, the reader is left with the knowledge to build a simple, yet useful design: a
RISC processor.

In Digital Design with Chisel, Martin has laid a strong foundation for productive
digital design. What you build with it is up to you.

Jack Koenig
Chisel and FIRRTL Maintainer
Staff Engineer, SiFive

XVI Index Contents

Preface

This book is an introduction to digital design with a focus on using the hardware
construction language Chisel. Chisel brings advances from software engineering,
such as object-orientated and functional languages, into digital design.

This book addresses hardware designers and software engineers. Hardware de-
signers with knowledge of Verilog or VHDL can upgrade their productivity with
a modern language for their next ASIC or FPGA design. Software engineers with
knowledge of object-oriented and functional programming can leverage their knowl-
edge to program hardware, for example, FPGA accelerators executing in the cloud.

The approach of this book is to present small to medium-sized typical hardware
components to explore digital design with Chisel.

Foreword for the Second Edition

As Chisel allows agile hardware design, so does open access and on-demand print-
ing, which allow agile textbook publishing. Less than 6 months after the first edition
of this book I can provide an improved and extended second edition.

Besides minor fixes, the main changes in the second edition are as follows. The
testing section has been extended. The sequential building blocks chapter contains
more example circuits. A new chapter on input processing explains input synchro-
nization, shows how to design a debouncing circuit, and how to filter a noisy input
signal. The example designs chapter has been extended to show different imple-
mentations of a FIFO. The FIFO variations also show how to use type parameters
and inheritance in digital design.

Foreword for the Third Edition

Chisel has been moving forward in the last year, so it is time for a new edition of the
Chisel book. We changed all examples to the latest version of Chisel (3.5.3), and
the recommended Scala version (2.12.13).

XVII

PREFACE

With Chisel 3.5 the testing environment PeekPokeTester as part of the iotesters
package has been deprecated. Therefore, we have changed the testing description to
the new ChiselTest framework. As there are still many Chisel designs available that
use the PeekPokeTester, we have moved the description for it into the appendix.

One of the fascinating aspects of the Chisel/Scala/Java environment is that we can
piggyback on the available infrastructure to distribute open-source libraries. We can
publish hardware components on Maven as simply as any other open-source Java
library. Publishing on Maven means that a 3rd party component can be integrated
into the compile flow with a single reference in the build.sbt configuration. This
is the same process as how you include the chisel library for your design. We have
added a section on how to publish a Chisel design on Maven Central.

We have improved the explanation of components with a simpler example.

Hardware generators are written in Scala. Therefore, we have added a short
section on Scala. We have extended the hardware generator chapter with a section
on using functional programming to write generators.

The appendix has been extended with a list of reserved keywords and a list of
acronyms.

Hans Jakob Damsgaard has contributed the description of how to use external
components through Chisel’s BlackBox and how to use memories for clock domain
crossing (multi-clock memories).

Foreword for the Fourth Edition

For the fourth edition, we have switched to the actual Chisel version 3.5.4. We
have added arbiter, priority encoder, and comparator to the chapter of combina-
tional building blocks. We have extended the hardware generation chapter with
more functional examples, including building a fair arbitration tree out of a simple
2 to 1 arbitration circuits. We have added a new chapter on interconnect, bus in-
terfaces, and how to connect an IO device as a memory-mapped device. We have
started a new chapter on debugging, testing, and verification. The plan is to extend
the chapter on this important topic in the next edition. We have extended the proces-
sor chapter with a more gentle introduction to a microprocessor, including a figure
of the datapath.

XVIII Index Contents

https://github.com/ucb-bar/chiseltest

Foreword for the Fifth Edition

For the fifth edition, we have upgraded to the actual Chisel version 3.5.6 and Scala
2.13. To make room for more advanced topics, I have removed the two appendicitis
on Chisel 2 and the PeekPokeTester. All projects that are actively maintained have
finally moved to Chisel 3, at least with the compatibility layer. The PeekPokeTester
has been deprecated with Chisel 3.5, and it is recommended to switch to ChiselTest.
If needed, those two chapters are available in the older versions of the Chisel book,
available as PDF at the web page for this book.

The fifth edition does not include major changes; it is a consolidation version. We
did considerable proofreading for more clarity in writing. Chisel has added small
convenience features (e.g., ChiselEnum) that we cover in this edition. We extended
the processor chapter and updated the Leros code snippets to the actual version of
Leros.

Foreword for the Sixth Edition

Chisel has recently gone through some major changes. Up to Chisel 3.x, Chisel is
mainly based on Scala, which means it runs on the Java virtual machine and is plat-
form independent. After 3.x Chisel the architecture of the Chisel compile pipeline
has changed. To indicate that change, the version numbering system has change
to increment that major version number more often. Version 4.0 is skipped and
the next Chisel version is 5.0. From version 5.0 the compiler backend is based on
CIRCT, a circuit compiler, which is part of the LLVM project. The main difference
for the Chisel user is that CIRCT (and LLVM) are written in C++ and therefore need
a different executable for each operating system (processor architecture).

We tested the book with Chisel Versions: 3.5.6, 3.6.1, 5.3.0, and 6.5.0. Chisel 3.6
is the last that uses the Scala-based backend to generate Verilog files. Chisel 5 is
using CIRCT and needs firtool installed manually. The latest version of Chisel 6
includes the firtool binaries. Testing with ChiselTest is still supported until Chisel
6. Therefore, we recommend that Chisel 5 be skipped and Chisel 6 used. Chisel 6
might switch to a different simulation and testing library. We used Scala 2.13 and
tested it with Java 17 and Java 21. Chisel 3.5.6 does not support Java 21. Therefore,
we recommend using Chisel 3.6.1, if one wants to work with Chisel 3.

We extended the testing chapter with a description how to access internal signals
and how to use assertions. Furthermore, we started to explore formal verification in
Chisel.

Contents Index XIX

https://www.imm.dtu.dk/~masca/chisel-book.html
https://circt.llvm.org/
https://llvm.org/

PREFACE

Organizing digital circuits as pipelines to increase performance is in between
digital design and computer architecture. We added a chapter on pipelining where
we use a 3-stage RISC-V pipeline as a running example.

We are aware that Chisel is still a niche language in hardware design and one
needs to at least be able to read VHDL and/or Verilog. However, we think that with
a good knowledge of digital design switching to a different hardware description
language should be a matter of days. To simplify this transition, we have added an
appendix showing and comparing basic constructs in Chisel, VHDL, and Verilog.

This book was written without any help from artificial intelligence and large lan-
guage models to write or rewrite text. We used Grammarly' for grammar checking
and improvement of the writing style.

Translations

This book has been translated into Chinese, Japanese, and Vietnamese. All trans-
lations are available as free PDF from the books web page. I would like to thank
Yuda Wang, Qiwei Sun, and Yun Chen for the Chinese translation; Seiji Munetoh,
Masatoshi Tanabata, and Takaaki Hagino for the Japanese translation; and VieLe
Duc Hung for the Vietnamese translation. If you are interested to translate this book
into another language, feel free to do it and publish it under the same license. Please
contact me then, so I can point to your translation.

Acknowledgements

I want to thank everyone who has worked on Chisel for creating such a cool hard-
ware construction language. Chisel is so joyful to use and therefore worth writing a
book about. I am thankful to the whole Chisel community, which is so welcoming
and friendly and never tired of answering questions on Chisel.

I would also like to thank my students in the last years of an advanced computer
architecture course where most of them picked up Chisel for the final project. Thank
you for moving out of your comfort zone and taking up the journey of learning and
using a bleeding-edge hardware description language. Many of your questions have
helped to shape this book.

It was a pleasure to use Chisel in teaching digital electronics at the Technical
University of Denmark since 2020. I know it is a challenge to pickup Chisel and

"https://app.grammarly.com/

XX Index Contents

https://www.imm.dtu.dk/~masca/chisel-book.html
https://app.grammarly.com/

Java in parallel in the second semester. Thank you to all students from this course,
who had on open mind to pickup a modern programming language for hardware
description.

For the third edition, I would like to acknowledge Hans Jakob Damsgaard (@hanse-
mandse) for rewriting all test code of this book to ChiselTest, adding ChiselTest to
the testing chapter, adding the black box description, and an example of a multi-
clock memory.

Contents Index XXI

https://github.com/hansemandse
https://github.com/hansemandse

1 Introduction

This book is an introduction to digital system design using a modern hardware con-
struction language, Chisel [5]. In this book, we focus on a higher abstraction level
than usual in digital design books, to enable you to build more complex, interacting
digital systems in a shorter time.

This book and Chisel are targeting two groups of developers: (1) hardware de-
signers and (2) software programmers. Hardware designers who are fluent in VHDL
or Verilog and use other languages, such as Python, Java, or Tcl to generate hard-
ware can move to a single hardware construction language where hardware gen-
eration is part of the language. Software programmers may become interested in
hardware design, e.g., as future chips from Intel will include programmable hard-
ware to speed up programs. It is perfectly fine to use Chisel as your first hardware
description language.

Chisel brings advances in software engineering, such as object-orientated and
functional programming in the digital design domain. Chisel does not only allow
to express hardware at the register-transfer level but allows you to write hardware
generators.

Hardware is now commonly described with a hardware description language. The
time of drawing hardware components, even with CAD tools, is over. Some high-
level schematics can give an overview of the system but are not intended to describe
the system. The two most common hardware description languages are Verilog and
VHDL. Both languages are old, contain many legacies, and have a moving line
of what constructs of the language are synthesizable to hardware. Do not get me
wrong: VHDL and Verilog are perfectly able to describe a hardware block that can
be synthesized into an ASIC. For hardware design in Chisel, Verilog serves as an
intermediate language for testing and synthesis.

This book is not a general introduction to digital design and the fundamentals
of it. For an introduction to the basics of digital design, such as how to build a
gate out of CMOS transistors refer to other digital design books. However, this
book intends to teach digital design at an abstraction level that is current practice

https://www.chisel-lang.org/
https://en.wikipedia.org/wiki/Application-specific_integrated_circuit

1 INTRODUCTION

to describe ASICs or designs targeting FPGAs.! As prerequisites for this book, we
assume basic knowledge of Boolean algebra and the binary number system. Further-
more, some programming experience in any programming language is assumed. No
knowledge of Verilog or VHDL is needed. Chisel can be your first programming
language to describe digital hardware. As the build process of the examples is based
on sbt and make, basic knowledge of the command-line interface (CLI, also called
terminal or Unix shell) will be helpful.

Chisel itself is not a big language. The basic constructs fit on one page and
can be learned within a few days. Therefore, this book is not a big book, as well.
Chisel is for sure smaller than VHDL and Verilog, which carry many legacies. The
power of Chisel comes from the embedding of Chisel within Scala, which itself is
an expressive language. Chisel inherits the feature from Scala of being “a language
that grows on you” [29]. However, Scala is not the topic of this book. We provide a
short section on Scala for hardware designers. The textbook by Odersky et al. [29]
provides a general introduction to Scala. This book is a tutorial in digital design
and the Chisel language; it is not a Chisel language reference, nor is it a book on
complete chip design.

All code examples in this book are extracted from complete programs compiled
and tested in continuous integration at GitHub. Therefore, the code shall not contain
any syntax errors. The code examples are available from the GitHub repository of
this book. Besides showing Chisel code, we have also tried to show useful designs
and principles of good hardware description style.

This book is optimized for reading on a tablet (e.g., an iPad) or a laptop. We
include links to further reading in the running text, primarily to Wikipedia articles.

1.1 Installing Chisel and FPGA Tools

Chisel is a Scala library, and the easiest way to install Chisel and Scala is with sbt,
the Scala build tool. Scala itself depends on the installation of Java JDK 8 (or a later
version up to Java 21). As Oracle has changed the license for Java, it may be easier
to install OpenJDK from AdoptOpenJDK or use SDKMAN to manage your Java
installation.

More detailed setup instructions can be found in Setup.md from the chisel-lab.
The first lab explains how to open an existing Chisel project in IntelliJ.

!As the author is more familiar with FPGAs than ASICs as target technology, some design optimiza-
tions shown in this book are targeting FPGA technology.

2 Index Contents

https://en.wikipedia.org/wiki/Field-programmable_gate_array
https://en.wikipedia.org/wiki/Boolean_algebra
https://en.wikipedia.org/wiki/Binary_number
https://github.com/freechipsproject/chisel-cheatsheet/releases/latest/download/chisel_cheatsheet.pdf
https://www.scala-lang.org/
https://github.com/schoeberl/chisel-book
https://en.wikipedia.org/
https://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
https://adoptopenjdk.net/
https://sdkman.io/
https://github.com/schoeberl/chisel-lab/blob/master/Setup.md
https://github.com/schoeberl/chisel-lab
https://github.com/schoeberl/chisel-lab/tree/master/lab1

1.1 INSTALLING CHISEL AND FPGA TooOLS

1.1.1 macOS

Install the Java OpenJDK 8 (up to 21) from AdoptOpenJDK. On Mac OS X, with
the packet manager Homebrew, sbt and git can be installed with:

$ brew install sbt git

Install GTKWave and IntelliJ (the community edition). When importing a project,
select the JDK you installed before.

1.1.2 Linux/Ubuntu

Install Java and useful tools in Ubuntu with:
$ sudo apt install openjdk-8-jdk git make gtkwave

For Ubuntu, which is based on Debian, programs are usually installed from a
Debian file (.deb). However, as of the time of this writing, sbt is not available as
a ready to install package. Therefore, the installation process is a little bit more
involved. Follow the instructions from sbt download

1.1.3 Windows

Install the Java OpenJDK (8 or up to 21) from AdoptOpenJDK. Chisel and Scala
can also be installed and used under Windows. Install GTKWave and IntelliJ (the
community edition). When importing a project, select the JDK you installed before.
sbt can be installed with a Windows installer, see: Installing sbt on Windows. Install
a git client.

1.1.4 FPGA Tools

To build hardware for an FPGA, you need a synthesize tool. The two major FPGA
vendors, Altera, an Intel Company? and AMD,? provide free versions of their tools
that cover small to medium-sized FPGAs. Those medium-sized FPGAs are large
enough to build a multicore RISC style processors. Intel provides the Quartus Prime
Lite Edition and AMD the Vivado Design Suite, WebPACK Edition. Both tools are
available for Windows and Linux, but not for macOS.

With FAPGA it is now possible to use a fully open-source synthesis tool for se-
lected FPGAs.

2former Intel and former Altera
3former Xilinx

Contents Index 3

https://adoptopenjdk.net/
https://brew.sh/
http://gtkwave.sourceforge.net/
https://www.jetbrains.com/idea/download/
https://www.scala-sbt.org/download.html
https://adoptopenjdk.net/
http://gtkwave.sourceforge.net/
https://www.jetbrains.com/idea/download/
https://www.scala-sbt.org/1.x/docs/Installing-sbt-on-Windows.html
https://git-scm.com/download/win
https://www.intel.com/content/www/us/en/products/details/fpga/development-tools/quartus-prime/resource.html
https://www.intel.com/content/www/us/en/products/details/fpga/development-tools/quartus-prime/resource.html
https://www.xilinx.com/products/design-tools/vivado/vivado-webpack.html
https://f4pga.org/

1 INTRODUCTION

1.2 Hello World

Each book on a programming language shall start with a minimal example, called
the Hello World example. The following code is a first approach:

object HelloScala extends App {
println("Hello Chisel World!")
}

Compiling and executing this short program with sbt
$ sbt run
leads to the expected output of a Hello World program:

[info] Running HelloScala
Hello Chisel World!

However, is this Chisel? Is this hardware generated to print a string? No, this is plain
Scala code and not a representative Hello World program for a hardware design.

1.3 Chisel Hello World

What is then the equivalent of a Hello World program for a hardware design? The
minimal useful and visible design? A blinking LED is the hardware (or even em-
bedded software) version of Hello World. If a LED blinks, we are ready to solve
bigger problems!

Listing 1.1 shows a blinking LED, described in Chisel. It is not important that you
understand the details of this code example. We will cover those in the following
chapters. Just note that the circuit is usually clocked with a high frequency, e.g.,
50 MHz, and we need a counter to derive timing in the Hz range to achieve a visible
blinking. In the above example, we count from O up to 25000000-1 and then toggle
the blinking signal (blkReg := ~blkReg) and restart the counter (cntReg := 0.U).
That hardware then blinks the LED at 1 Hz.

1.4 An IDE for Chisel

This book makes no assumptions about your programming environment or editor
you use. Learning the basics should be easy with just using sbt at the command

4 Index Contents

1.4 AN IDE FOR CHISEL

class Hello extends Module {
val io = IO(new Bundle {
val led = Output(UInt(l.W))
b
val CNT_MAX = (50000000 / 2 - 1).U

val cntReg RegInit (0.U(32.W))
val blkReg = RegInit(0.U(l.W))

cntReg := cntReg + 1.U
when(cntReg === CNT_MAX) {
cntReg := 0.0
blkReg := "blkReg
3
io.led := blkReg

Listing 1.1: A hardware Hello World in Chisel

line and an editor of your choice. In the tradition of other books, all commands that
you shall type in a shell/terminal/CLI are preceded by a $ character, which you shall
not type in. As an example, here is the Unix 1s command, which lists files in the
current folder:

$ 1s

That said, an integrated development environment (IDE), where a compiler is run-
ning in the background, can speed up coding. As Chisel is a Scala library, all IDEs
that support Scala are also good IDEs for Chisel. It is possible in IntelliJ, Visual
Studio Code, and Eclipse to generate a project from the sbt project configuration in
build.sbt.

In IntelliJ you need to install the Scala plugin. Then you can create a new project
from existing sources with: File - New - Project from Existing Sources... and then
select the build.sbt file from the project.

In Eclipse you can create a project via

$ sbt eclipse

Contents Index 5

https://www.jetbrains.com/help/idea/discover-intellij-idea-for-scala.html
https://code.visualstudio.com/
https://code.visualstudio.com/
https://www.eclipse.org/

1 INTRODUCTION

and import that project into Eclipse.*

Visual Studio Code is another option for a Chisel IDE. The Scala Metals exten-
sion provides Scala support. On the left bar select Extensions and search for Metals
and install Scala (Metals). To import an sbt-based project, open the folder with File
- Open.

1.5 Source Access and eBook Features

This book is open source and hosted at GitHub: schoeberl/chisel-book. All Chisel
code examples, shown in this book, are included in the repository. All code shown
in the book passed the compiler and therefore should not contain any syntax errors.
Furthermore, most examples also include a test bench. The code is extracted auto-
matically from that source. We collect larger Chisel examples in the accompanying
repository chisel-examples and in ip-contributions.

If you find an error or typo in the book, a GitHub pull request is the most con-
venient way to incorporate your improvement. You can also provide feedback or
comments for improvements by filing an issue on GitHub or sending a plain, old
school email.

The repository of the book also contains slides in Latex that I use for a 13 week
course on Digital Electronics’ at the Technical University of Denmark. That course
also contains lab exercises in Chisel. If you are teaching digital design with Chisel,
feel free to adapt the slides and lab exercises to your needs. All material is open-
source. To build the book and slides you need a recent version of Latex and the
needed tools for Chisel (sbt and a Java JDK installation). All code is compiled,
tested, extracted, and the Latex compiled with a simple:

$ make

This book is freely available as a PDF eBook and in classical printed version
from Amazon. The eBook version features links to further resources and Wikipedia
entries. We use Wikipedia entries for background information (e.g., binary number
system) that does not directly fit into this book. We optimized the format of the
eBook for reading on a tablet, such as an iPad.

4This function needs the Eclipse plugin for sbt.
5The course page contains the PDF versions of the slides

6 Index Contents

https://code.visualstudio.com/
https://marketplace.visualstudio.com/items?itemName=scalameta.metals
https://github.com/schoeberl/chisel-book
https://github.com/schoeberl/chisel-examples
https://github.com/freechipsproject/ip-contributions
https://github.com/schoeberl/chisel-book/tree/master/slides
http://www2.imm.dtu.dk/courses/02139/
https://github.com/schoeberl/chisel-lab
https://www.amazon.com/dp/168933603X/
https://www.wikipedia.org/

1.6 FURTHER READING

1.6 Further Reading

Here a list of further reading for digital design and Chisel:

* Digital Design: A Systems Approach, by William J. Dally and R. Curtis Hart-
ing, is a textbook on digital design. It is available in two versions: using
Verilog or VHDL as a hardware description language.

The official Chisel documentation and further documents are available online:

* The Chisel home page is the official starting point to download and learn
Chisel.

» The website of the Digital Electronics 2 course at the Technical University
of Denmark contains the slides for a 13 weeks course, based on Chisel. The
source code for the slides is available as part of the source code for this book.
Feel free to adapt them for your teaching needs.

* The schoeberl/chisel-lab GitHub repo contains Chisel exercises for the course
Digital Electronics 2. The exercises also fit well for a selfstudy with this book.

* The empty Chisel project is a good starting point with a very minimal hard-
ware (an adder) and a test. That project is a GitHub template where you can
base your GitHub repository on.

* The Chisel3 Cheat Sheet summarizes the main constructs of Chisel on a single
page.

* Scott Beamer’s course Agile Hardware Design contains advanced Chisel ex-
amples. The lectures include executable source examples and are available as
Jupyter notebooks.

¢ ChiselTest is in its own repository.

* The Generator Bootcamp is a Chisel course focusing on hardware generators,
as a Jupyter notebook

* The Chisel Tutorial provides a ready setup project containing small exercises
with testers and solutions. However, it is a bit outdated.

* A Chisel Style Guide by Christopher Celio.

Contents Index 7

http://www.cambridge.org/es/academic/subjects/engineering/circuits-and-systems/digital-design-systems-approach
https://www.chisel-lang.org/
http://www2.imm.dtu.dk/courses/02139/
https://github.com/schoeberl/chisel-book/tree/master/slides
https://github.com/schoeberl/chisel-lab
http://www2.imm.dtu.dk/courses/02139/
https://github.com/schoeberl/chisel-empty
https://github.com/freechipsproject/chisel-cheatsheet/releases/latest/download/chisel_cheatsheet.pdf
https://classes.soe.ucsc.edu/cse228a/Winter24/
https://github.com/agile-hw/lectures
https://github.com/ucb-bar/chiseltest
https://github.com/freechipsproject/chisel-bootcamp
https://jupyter.org/
https://github.com/ucb-bar/chisel-tutorial
https://github.com/ccelio/chisel-style-guide

1 INTRODUCTION

1.7 Exercises

Each chapter ends with a hands-on exercises. For the introduction exercise, we will
use an FPGA board to get one LED blinking.® As a first step clone (or fork) the
chisel-examples repository from GitHub. The Hello World example is in the folder
hello-world, set up as a minimal project. You can explore the Chisel code of the
blinking LED in src/main/scala/Hello.scala. Compile the blinking LED with
the following steps:

$ git clone https://github.com/schoeberl/chisel-examples.git
$ cd chisel-examples/hello-world/
$ sbt run

After some initial downloading of Chisel components, this will produce the Ver-
ilog file Hello.v. Explore this Verilog file. You will see that it contains two inputs
clock and reset and one output io_led. When you compare this Verilog file with
the Chisel module, you will notice that the Chisel module does not contain clock
or reset. Those signals are implicitly generated, and in most designs, it is con-
venient not to need to deal with these low-level details. Chisel provides register
components, and those are connected automatically to clock and reset (if needed).

The next step is to set up an FPGA project file for the synthesize tool, assign the
pins, compile’ the Verilog code, and configure the FPGA with the resulting bitfile.
We cannot provide the details of these steps. Please consult the manual of your Intel
Quartus or AMD Vivado tool. However, the examples repository contains some
ready to use Quartus projects in folder quartus for several popular FPGA boards
(e.g., DE2-115). If the repository contains support for your board, start Quartus,
open the project, compile it by pressing the Play button, and configure the FPGA
board with the Programmer button and one of the LEDs should blink.

Congratulations! You managed to get your first design in Chisel running in
an FPGA!

If the LED is not blinking, check the status of reset. On the DE2-115 configura-
tion, the reset input is connected to SWO.

Now change the blinking frequency to a slower or a faster value and rerun the
build process. Blinking frequencies and also blinking patterns communicate differ-

SIf you at the moment have no FPGA board available, continue to read as we will show you a simulation
version at the end of the exercise.

"The real process is more elaborated with following steps: synthesizing the logic, performing place
and route, performing timing analysis, and generating a bitfile. However, for the purpose of this
introduction example we simply call it “compile” your code.

8 Index Contents

https://en.wikipedia.org/wiki/Light-emitting_diode
https://github.com/schoeberl/chisel-examples

1.7 EXERCISES

ent “emotions”. For example, a slow blinking LED signals that everything is ok, a
fast blinking LED signals an alarm state. Explore which frequencies express best
those two different emotions.

As a more challenging extension to the exercise, generate the following blinking
pattern: the LED shall be on for 200 ms every second. For this pattern, you might
decouple the change of the LED blinking from the counter reset. You will need a
second constant where you change the state of the blkReg register. What kind of
emotion does this pattern produce? Is it alarming or more like a sign-of-live signal?

If you do not (yet) have an FPGA board, you can still run the blinking LED
example. You will use the Chisel simulation. To avoid a too long simulation time
change the clock frequency in the Chisel code from 50000000 to 50000. Execute
following instruction to simulate the blinking LED:

$ sbt test

This will execute the tester that runs for one million clock cycles. The blinking
frequency depends on the simulation speed, which depends on the speed of your
computer. Therefore, you might need to experiment a little bit with the assumed
clock frequency to see the simulated blinking LED.

Contents Index 9

2 Basic Components

In this section, we introduce the basic components for digital design: combinational
circuits and flip-flops. These essential elements can be combined to build larger,
more interesting circuits.

Digital systems, in general, use binary signals, which means a single bit or signal
can only have one of two possible values. These values are often called 0 and 1.
However, we also use following terms: low/high, false/true, and deasserted/asserted.
These terms mean the same two possible values of a binary signal.

2.1 Chisel Types and Constants

Chisel provides three data types to describe connections, combinational logic, and
registers: Bits, UInt, and SInt. UInt and SInt extend Bits, and all three types
represent a vector of bits. UInt gives this vector of bits the meaning of an unsigned
integer and SInt of a signed integer.! Chisel uses two’s complement as signed
integer representation. Here is the definition for different types, an 8-bit Bits, an
8-bit unsigned integer, and a 10-bit signed integer:

Bits(8.W)
UInt (8.W)
SInt (10.W)

The width of a vector of bits is defined by a Chisel width type (Width). The fol-
lowing expression casts the Scala integer n to a Chisel width, which we use for the
definition of the Bits vector:

n.W
Bits(n.W)

Constants can be defined by using a Scala integer and converting it to a Chisel type:

I'The type Bits in the current version of Chisel is missing operations and therefore not very useful for
user code.

11

https://en.wikipedia.org/wiki/Two%27s_complement

2 BASIC COMPONENTS

0.U // defines a UInt constant of 0
-3.S // defines a SInt constant of -3

Constants can also be defined with a width, by using the Chisel width type:

3.0(4.W) // An 4-bit constant of 3

If you find the notation of 3.U and 4.W a little bit funny, consider it as a variant of an
integer constant with a type. For example, 3L, representing a long integer constant
in C, Java, and Scala.

Possible pitfall: One possible error when defining constants with a dedicated
width is missing the .W specifier for a width. E.g., 1.U(32) will not define a 32-
bit wide constant representing 1. Instead, the expression (32) is interpreted as bit
extraction from position 32, which results in a single bit constant of 0. Probably not
what the original intention of the programmer was.

Chisel benefits from Scala’s type inference, and in many places, type information
can be left out. The same is also valid for bit widths. In many cases, Chisel will
automatically infer the correct width. Therefore, a Chisel description of hardware
is more concise and better readable than VHDL or Verilog.

For constants defined in other bases than decimal, the constant is defined in a
string with a preceding h for hexadecimal (base 16), o for octal (base 8), and b
for binary (base 2). The following example shows the definition of constant 255 in
different bases. In this example we omit the bit width and Chisel infers the minimum
width to fit the constants in, in this case 8 bits.

"hff".U // hexadecimal representation of 255
"0377".U // octal representation of 255
"b1111_1111".U // binary representation of 255

The above code shows how to use an underscore to group digits in the string that
represents a constant. The underscore is ignored.

Characters to represent text (in ASCII encoding) can also be used as constants in
Chisel:

val aChar = ’A’.U

To represent logic values, Chisel defines the type Bool. Bool can represent a
true or false value. The following code shows the definition of type Bool and the
definition of Bool constants, by converting the Scala Boolean constants true and
false to Chisel Bool constants.

12 Index Contents

https://en.wikipedia.org/wiki/ASCII

2.2 COMBINATIONAL CIRCUITS

a —|
b |

loai
c » ogic

Figure 2.1: Logic for the expression (a & b)| c. The wires can be a single bit or
multiple bits. The Chisel expression, and the schematics are the same.

Bool ()
true.B
false.B

2.2 Combinational Circuits

Chisel uses Boolean algebra operators, as they are defined in C, Java, Scala, and
several other programming languages, to described combinational circuits: & is the
AND operator and | is the OR operator. Following line of code defines a circuit that
combines signals a and b with and gates and combines the result with signal ¢ with
or gates and names it logic.

val logic = (a & b) | ¢

Figure 2.1 shows the schematic of this combinatorial expression. Note that this
circuit may be for a vector of bits and not only single wires combined with the AND
and OR circuits.

In this example, we do not define the type nor the width of signal logic. Both are
inferred from the type and width of the expression. The standard logic operations in
Chisel are:

val and = a & b // bitwise and
val or = a | b // bitwise or
val xor = a " b // bitwise xor
val not = "a // bitwise negation

The arithmetic operations use the standard operators:

val add = a + b // addition
val sub = a - b // subtraction

Contents Index 13

https://en.wikipedia.org/wiki/Boolean_algebra

2 BASIC COMPONENTS

val neg = -a // negate

val mul = a * b // multiplication
val div = a / b // division

val mod = a % b // modulo operation

The resulting width of the operation is the maximum width of the operators for ad-
dition and subtraction, the sum of the two widths for the multiplication, and usually
the width of the numerator for divide and modulo operations.?

A signal can also first be defined as a Wire of some type. Afterward, we can
assign a value to the wire with the := update operator.

val w = Wire(UInt())
w:=ad&hb

A single bit can be extracted as follows:

val sign = x(31)

A subfield can be extracted from end to start position:

val lowByte = largeWord(7, ©)

Bit fields are concatenated with the ## operator.’

val word = highByte ## lowByte

Table 2.1 shows the full list of operators (see also builtin operators). The Chisel
operator precedence is determined by the evaluation order of the circuit, which fol-
lows the Scala operator precedence. If in doubt, it is always a good practice to use
parentheses.*

Table 2.2 shows various functions defined on and for Chisel data types.

2The exact details are available in the FIRRTL specification.

3Note that there is a Cat function available that performs the same operation with Cat (highByte,
lowByte).

4The operator precedence in Chisel is a side effect of the hardware elaboration when the tree of hard-
ware nodes is created by executing the Scala operators. The Scala operator precedence is similar but
not identical to Java/C. Verilog has the same operator precedence as C, but VHDL has a different
one. Verilog has precedence ordering for logic operations, but in VHDL those operators have the
same precedence and are evaluated from left to right.

14 Index Contents

https://www.chisel-lang.org/chisel3/docs/explanations/operators.html
https://docs.scala-lang.org/tour/operators.html
https://github.com/chipsalliance/firrtl-spec/releases/latest/download/spec.pdf

2.2 COMBINATIONAL CIRCUITS

Operator Description Data types

* /% multiplication, division, modulus Ulnt, SInt

+ - addition, subtraction Ulnt, SInt

=== =/= equal, not equal Ulnt, SInt, returns Bool
> >= < <= comparison Ulnt, SInt, returns Bool
<< >> shift left, shift right (sign extend on SInt) Ulnt, SInt

- NOT Ulnt, SInt, Bool

& | ° AND, OR, XOR Ulnt, SInt, Bool

! logical NOT Bool

&& || logical AND, OR Bool

Table 2.1: Chisel defined hardware operators.

Function Description Data types
v.andR v.orR v.xorR AND, OR, XOR reduction Ulnt, SInt, returns Bool
v(n) extraction of a single bit Ulnt, SInt
v(end, start) bitfield extraction Ulnt, SInt
Fill(n, v) bitstring replication, n times Ulnt, SInt
a## b bitfield concatenation Ulnt, SInt
Cat(a, b, ...) bitfield concatenation Ulnt, SInt

Table 2.2: Chisel defined hardware functions, invoked on v.

Contents Index 15

2 BASIC COMPONENTS

[es --

4_ .

—a—¥»T
y —»
—b—>F

Figure 2.2: A basic 2:1 multiplexer.

2.2.1 Multiplexer

A multiplexer is a circuit that selects between alternatives. In the most basic form,
it selects between two alternatives. Figure 2.2 shows such a 2:1 multiplexer, or mux
for short. Depending on the value of the select signal (sel) signal y will represent
signal a or signal b.

A multiplexer can be built from logic. However, as multiplexing is such a stan-
dard operation, Chisel provides a multiplexer,

val result = Mux(sel, a, b)

where a is selected when the sel is true.B, otherwise b is selected. The type of
sel is a Chisel Bool; the inputs a and b can be any Chisel base type or aggregate
(bundles or vectors) as long as they are the same type.

With logical and arithmetical operations and a multiplexer, every combinational
circuit can be described. However, Chisel provides further components and control
abstractions for a more elegant description of a combinational circuit, which are
described in Chapter 5.

The second basic component needed to describe a digital circuit is a state element,
also called register, which is described next.

2.3 Registers

Chisel provides a register, which is a collection of D flip-flops. The register is im-
plicitly connected to a global clock and is updated on the rising edge. When an ini-
tialization value is provided at the declaration of the register, it uses a synchronous
reset connected to a global reset signal. A register can be any Chisel type that can

16 Index Contents

https://en.wikipedia.org/wiki/Multiplexer
https://en.wikipedia.org/wiki/Flip-flop_(electronics)#D_flip-flop

2.3 REGISTERS

19591

0 —»

—d—

AN

— clock J

Figure 2.3: A D flip-flop based register with a synchronous reset to 0.

be represented as a collection of bits. Following code defines an 8-bit register, ini-
tialized with O at reset:

val reg = RegInit(0.U(8.W))

An input is connected to the register with the := update operator and the output of
the register can be used just with the name in an expression:

reg := d
val g = reg

A register can also be connected to its input at the definition:

val nextReg = RegNext(d)

Figure 2.3 shows the circuit of our register definition with a clock, a synchronous
reset to 0.U, input d, and output q. The global signals clock and reset are implicitly
connected to each register defined.

A register can also be connected to its input and a constant as initial value at the
definition:

val bothReg = RegNext(d, 0.U)

To distinguish between signals representing combinational logic and registers, a
common practice is to postfix register names with Reg. Another common practice,

Contents Index 17

2 BASIC COMPONENTS

coming from Java and Scala, is to use CamelCase for identifiers consisting of several
words. The convention is to start functions and variables with a lower case letter and
classes (types), e.g., a Module name, with an upper case letter.

In Chisel you are relative free to name your identifiers. However, use taste and
descriptive names. Furthermore, several words are reserved. They are listed in
Appendix B.

2.3.1 Counting

Counting is a fundamental operation in digital systems. One might count events.
However, more often counting is used to define a time interval. Counting the clock
cycles and triggering an action when the time interval has expired.

A simple approach is counting up to a value. However, in computer science, and
digital design, counting starts at 0. Therefore, if we want to count 10 clock cycles,
we count from 0 to 9. The following code shows such a counter that counts till 9
and wraps around to O when reaching 9.

val cntReg = RegInit(0.U(8.W))

cntReg := Mux(cntReg === 9.U, 0.U, cntReg + 1.U)

2.4 Structure with Bundle and Vec

Chisel provides two constructs to group related signals: (1) a Bundle and (2) a
Vec. A Bundle groups signals of different types as named fields. A Vec represents
an indexable collection of signals (elements) of the same type. Bundles and Vecs
create new, user-defined Chisel types and can be arbitrarily nested.

2.4.1 Bundle

A Chisel Bundle groups several signals. The entire bundle can be referenced as a
whole, or individual fields can be accessed by their name. A Bundle is similar to
a struct in C and SystemVerilog or a record in VHDL. We can define a bundle
(collection of signals) by defining a class that extends Bundle and list the fields as
vals within the constructor block.

class Channel () extends Bundle {

18 Index Contents

https://en.wikipedia.org/wiki/Camel_case

2.4 STRUCTURE WITH BUNDLE AND VEC

val data = UInt(32.W)
val valid = Bool(Q)
}

To use a bundle, we create it with new and wrap it into a Wire. The fields are accessed
with the dot notation:

val ch = Wire(new Channel())
ch.data := 123.U
ch.valid := true.B

val b = ch.valid

Dot notation is common in object-oriented languages, where x.y means x is a
reference to an object and y is a field of that object. As Chisel is object-oriented, we
use dot notation to access fields in a bundle. A bundle can also be referenced as a
whole:

val channel = ch

2.4.2 Vec

A Chisel Vec (a vector) represents a collection of Chisel types of the same type.
Each element can be accessed by an index. A Chisel Vec is similar to array data
structures in other programming languages.’

A Vec is used for three different purposes: (1) dynamic addressing in hardware,
which is a multiplexer; (2) a register file, which includes multiplexing the read and
generating the enable signal for the write; (3) parametrization of the number of
ports of a Module. For other collections of things, being it hardware elements or
other generator data, it is better to use the Scala collection Seq.

Combinational Vec

A Vec is created by calling the constructor with two parameters: the number of
elements and the type of the elements. A combinational Vec needs to be wrapped
into a Wire

val v = Wire(Vec(3, UInt(4.W)))

>The name Array is already used in Scala.

Contents Index 19

2 BASIC COMPONENTS

100[0S

— X —¥{0
—y —>1 muxOut —»

—z—»2

Figure 2.4: A vector wrapped in a Wire is just a multiplexer.

Individual elements are accessed with (index). A vector wrapped into a Wire is just
a multiplexer.

v(®) := 1.0
v(l) := 3.U
v(2) :=5.U

val index = 1.U(C2.W)
val a = v(index)

Here is another example of using Vec as a multiplexer. The three inputs are con-
nected to the three wires x, y, and z. The select wire selects which input is used
and connects it to muxOut.

val m = Wire(Vec(3, UInt(8.W)))
m(®) := x
m(l) :=vy
m(2) := z

val muxOut = m(select)

Figure 2.4 shows the resulting schematic of the above code snippet.

Similar to using a WireDefault, we can set default values of a Vec with VecInit.
The following code represents a 3:1 multiplexer with three constant defaults. Note
that we specify the size (3 bits) of the UInt data types with the first constant. With
the condition (cond) we can overwrite those default values. This overwrite hardware
itself consists of three 2:1 multiplexers. The last line selects one of the three inputs

20 Index Contents

2.4 STRUCTURE WITH BUNDLE AND VEC

of the defVec multiplexer. Note that VecInit already returns Chisel hardware, so
we do not need to wrap it in a Wire.°

val defVec = VecInit(1.U(C3.W), 2.U, 3.0U)
when (cond) {

defVec(®) := 4.U
defVec(l) := 5.U
defVec(2) := 6.U

}
val vecOut = defVec(sel)

It is not only possible to set initial constants (like in WireDefault) for the Vec
input, but we can also connect signals (wires) with VecInit to the inputs of the Vec.
The following example connects the wires d, e, and £ to the three inputs of the Vec.

val defVecSig VecInit(d, e, f)
val vecOutSig = defVecSig(sel)

Register Vec

We can also wrap a Vec into a register to define an array of registers. The following
code shows a vector of three registers.

val vReg = Reg(Vec(3, UInt(8.W)))

val dout = vReg(rdIdx)
vReg (wrIdx) := din

Figure 2.5 shows the schematic of that circuit. It contains three registers. The read
index (rdIdx) selects the multiplexer connected to the output of the three registers.
The output signal is dout The write index (wrIdx) selects which register will be
written with the data from din. wrIdx is driving a decoder that selects one of the
three enable signals of the registers.

Following example defines a register file for a processor; 32 registers each 32-
bits wide, as used in a classic 32-bit RISC processor such as the 32-bit version of
RISC-V.

val registerFile = Reg(Vec(32, UInt(32.W)))

OThis is different from a plain Vec that needs to be wrapped into a Wire. We could wrap the VecInit
into a WireDefault, but this uncommon coding style.

Contents Index 21

https://en.wikipedia.org/wiki/Reduced_instruction_set_computer
https://en.wikipedia.org/wiki/RISC-V

2 BASIC COMPONENTS

en

\

rdldx
— wrldx —{ decoder

en

— din

A4

dout —»

en

A4

A

Figure 2.5: A vector of registers.

An element of that register file is accessed with an index and used as a normal
register.

registerFile(index) := dIn
val dOut = registerFile(index)

A register of a vector can also be initialized. This is then the value that the register
is reset to. To initialize the register file, we use A VecInit with the constants for
reset, wrapped into a RegInit. The input of the three registers are then connected to
wires d, e, and f.

val initReg = RegInit(VecInit(0.U(3.W), 1.U, 2.0))
val resetVal = initReg(sel)

initReg(®) :=d
initReg (1) e
initReg(2) := f

22 Index Contents

2.4 STRUCTURE WITH BUNDLE AND VEC

If we want to reset all elements of a large register file to the same value (probably
0), we can use a Scala sequence Seq. VecInit can be constructed with a sequence
containing Chisel types. Seq contains a creation function fill to initialize a se-
quence with identical values. The following code constructs a register file contain-
ing 32 registers, each 32-bit wide and reset to 0:

val resetRegFile =
RegInit(VecInit(Seq.fill(32)(0.U(32.W))))
val rdRegFile = resetRegFile(sel)

Combining Bundle and Vec

We can freely mix bundles and vectors. When creating a vector with a bundle type,
we need to pass a prototype for the vector fields. Using our Channel, which we
defined above, we can create a vector of channels with:

val vecBundle = Wire(Vec(8, new Channel()))
A bundle may as well contain a vector:

class BundleVec extends Bundle {
val field = UInt(8.W)
val vector = Vec(4,UInt(8.W))
}

When we want a register of a bundle type that needs a reset value, we first create
a Wire of that bundle, set the individual fields as needed, and then pass this bundle
to a RegInit:

val initVal = Wire(new Channel())

initVal.data := 0.U
initVal.valid := false.B

val channelReg = RegInit(initVal)

With combinations of Bundles and Vecs we can define our own data structures,
which are powerful abstractions.

Possible pitfall: In Chisel 3, partial assignments are not allowed, although they
have been allowed in Chisel 2 and are possible in Verilog and VHDL. The following

Contents Index 23

2 BASIC COMPONENTS

code will generate an error during circuit elaboration:

val assignWord = Wire(UInt(16.W))

assignWord(7, 0) := lowByte
assignWord (15, 8) := highByte

The argument is that it would be better to use bundles for this use case. One possible
workaround for this issue is to create a (local) bundle, create a Wire from that bundle,
assign the individual fields, casting that bundle with asUInt to a UInt, and assign
this value to the target UInt. Note that we define here a Bundle as a local data
structure as we need it only locally.

val assignWord = Wire(UInt(16.W))

class Split extends Bundle {
val high = UInt(8.W)
val low = UInt(8.W)

}

val split = Wire(new Split())
split.low := lowByte
split.high := highByte

assignWord := split.asUInt
The small drawback of this solution is that one needs to know in which orders bundle

fields are merged to a single bit vector. Another option is to use a vector of Bool to
individually assign values and then convert it to a UInt.

val vecResult = Wire(Vec(4, Bool()))

// example assignments

vecResult (0) := data(0®)
vecResult(l) := data(l)
vecResult (2) := data(2)

vecResult (3) data(3)

val uintResult = vecResult.asUInt

24 Index Contents

2.5 WIRE, REG, AND IO

2.5 Wire, Reg, and IO

UInt, SInt, and Bits are Chisel types which by themselves do not represent hard-
ware. Only wrapping them into a Wire, Reg, or I0 generates hardware. A Wire rep-
resents combinational logic, a Reg represents a register (collection of D flip-flops),
and an IO represents ports for the connection of a module (like pins of a concrete
integrated circuit (IC)). Any Chisel type can be wrapped into a Wire, Reg, or I0.

You give a hardware component a name by assigning it to a Scala immutable
variable:’

val number = Wire(UInt())
val reg = Reg(SInt())

You can later assign (or reassign) a value or expression to a Wire, Reg, or I0 with
the Chisel operator :=

number := 10.U
reg := value - 3.U

Note the small difference between the Scala assignment operator “=" and the Chisel
operator “:=". You use Scala’s “=” operator when creating a hardware object (and
giving it a name) but you use Chisel’s “:="" operator when assigning or reassigning
a value to an existing hardware object.

Combinational values can be conditionally assigned, but they need to be assigned
in every branch of the condition. Otherwise, one would describe a latch, which
the Chisel compiler will reject. The best practice is to define a default value at the

creation of the Wire. Therefore, the former code is better rewritten as follows.

val number = WireDefault (10.U(4.W))

Although Chisel infers the needed bit width for signals and registers, it is also a good
practice to specify the intended bit width at the creation of the hardware object. In
most cases it is also good practice to set registers to known initial values on reset:®

val reg = RegInit(0.S(8.W))

7Scala also supports mutable variables with var, but those are useless when describing hardware in
Chisel.

8Leaving the register value undefined on reset may save some load on the reset wire. However, testing
and verification is simplified with known reset values.

Contents Index 25

2 BASIC COMPONENTS

2.6 Chisel Generates Hardware

After seeing some initial Chisel code, it might look similar to classic programming
languages such as Java or C. However, Chisel (or any other hardware description
language) does define hardware components. While in a software program one line
of code after the other is executed, in hardware all lines of code execute in parallel.

It is essential to keep in mind that Chisel code generates hardware. Try to imag-
ine, or draw on a sheet of paper, the individual blocks that are generated by your
Chisel circuit description. Each creation of a component adds hardware; each as-
signment statement generates gates and/or flip-flops.

More technically, when Chisel executes your code it runs as a Scala program, and
by executing the Chisel statements, it collects the hardware components and con-
nects those nodes. This network of hardware nodes is the hardware, which Chisel
can spill out as Verilog code for ASIC or FPGA synthesis or can be tested with a
Chisel tester. The network of hardware nodes is what is executed fully in parallel.

For a software engineer, imagine this immense parallelism that you can create
in hardware without needing to partition your application into threads and get the
locking correct for the communication.

2.7 Exercises

In the introduction you implemented a blinking LED on an FPGA board (from
chisel-examples), which is a reasonable hardware Hello World example. It used
only internal state, a single LED output, and no input. Copy that project into a
new folder and extend it by adding some inputs to the io Bundle with val sw =
Input (UInt(2.W)).

val io = IO(new Bundle {
val sw = Input(UInt(2.W))
val led = Output(UInt(1l.W))
b

For those switches, you also need to assign the pins for the FPGA board. You can
find examples of pin assignments in the Quartus project files of the ALU project
(e.g., for the DE2-115 FPGA board).

When you have defined those inputs and the pin assignment, start with a simple
test: drop all blinking logic from the design and connect one switch to the LED
output; compile and configure the FPGA device. Can you switch the LED on an

26 Index Contents

https://github.com/schoeberl/chisel-examples
https://github.com/schoeberl/chisel-examples/blob/master/quartus/altde2-115/alu.qsf

2.7 EXERCISES

off with the switch? If yes, you have now inputs available. If not, you need to
debug your FPGA configuration. The pin assignment can also be done with the
GUI version of the tool.

Now use two switches and implement one of the basic combinational functions,
e.g., AND two switches and show the result on the LED. Change the function. The
next step involves three input switches to implement a multiplexer: one acts as a
select signal, and the other two are the two inputs for the 2:1 multiplexer.

Now you have been able to implement simple combinational functions and test
them in real hardware in an FPGA. As a next step, we will take a first look at how the
build process works to generate an FPGA configuration. Furthermore, we will also
explore a simple testing framework from Chisel, which allows you to test circuits
without configuring an FPGA and toggle switches.

Contents Index 27

3 Build Process and Testing

To get started with more interesting Chisel code we first need to learn how to com-
pile Chisel programs, how to generate Verilog code for execution in an FPGA, and
how to write tests for debugging and to verify that our circuits are correct.

Chisel is written in Scala, so any build process that supports Scala is possible with
a Chisel project. One popular build tool for Scala is sbt, which stands for the Scala
interactive build tool. Besides driving the build and test process, sbt also downloads
the correct version of Scala and the Chisel libraries.

3.1 Building your Project with sbt

The Scala library that represents Chisel and the Chisel tester are automatically
downloaded during the build process from a Maven repository. The libraries are ref-
erenced by build.sbt. It is possible to configure build.sbt with latest.release
to always use the most recent version of Chisel. However, this means that on each
build, the version is looked up from the Maven repository. This lookup needs an
Internet connection for the build to succeed. It is better to use a dedicated version of
Chisel and all other Scala libraries in your build.sbt. Sometimes, it is good to be
able to write hardware code and test it without an Internet connection. For example,
it is cool to do hardware design on a plane.

3.1.1 Source Organization

sbt inherits source conventions from the Maven build automation tool. Maven also
organizes repositories of open-source Java libraries.!

Figure 3.1 shows the organization of the source tree of a typical Chisel project.
The root of the project is the project home, which contains build.sbt. It may also
include a Makefile for the build process, a README, and a LICENSE file. Folder
src contains all source code. From there it is split between main, which contains

I'That is also the place where you downloaded the Chisel library on your first build: https://
mvnrepository.com/artifact/edu.berkeley.cs/chisel3.

29

https://www.scala-sbt.org/
https://maven.apache.org/
https://mvnrepository.com/artifact/edu.berkeley.cs/chisel3
https://mvnrepository.com/artifact/edu.berkeley.cs/chisel3

3 BUILD PROCESS AND TESTING

project
| _src
main
| scala
L package
L sub-package
test
L scala
L package
| target
| _generated

Figure 3.1: Source tree of a Chisel project (using sbt)

containing the hardware sources and test containing testers. The next folder in both
cases is scala, as Chisel is based on Scala. If you want to include Java code, which
may be useful for hardware generators, you would add a java folder. Chisel inherits
from Scala, which itself inherits from Java, the organization of source in packages.
Packages organize your Chisel code into namespaces. Packages can also contain
sub-packages. The folder target contains the class files and other generated files.
I recommend to also use a folder for generated Verilog files, which is usually call
generated.

To use the facility of namespaces in Chisel, you need to declare that a class/mod-
ule is defined in a package, in this example in mypack:

package mypack
import chisel3._

class Abc extends Module {
val io = I0(new Bundle{})
}

Note that in this example we see the import of the chisel3 package to use Chisel
classes.

To use the module Abc in a different context (package name space), the compo-
nents of packet mypack need to be imported. The underscore (_) acts as wildcard,
meaning that all classes of mypack are imported.

30 Index Contents

https://en.wikipedia.org/wiki/Java_package

3.1 BUILDING YOUR PROJECT WITH SBT

import mypack._

class AbcUser extends Module {
val io = IO(new Bundle{})

val abc = new Abc(Q)

}

It is also possible to not import all types from mypack, but use the fully qualified
name mypack . Abc to refer to the module Abc in the package mypack.

class AbcUser2 extends Module {
val io = IO(new Bundle{})

val abc = new mypack.Abc()
}

It is also possible to import just a single class and create an instance of it:

import mypack.Abc

class AbcUser3 extends Module {
val io = IO(new Bundle{})

val abc = new Abc(Q)

3.1.2 Running sbt

A Chisel project can be compiled and executed with a simple sbt command:
$ sbt run

This command will compile all your Chisel code from the source tree and search
for classes that contain an object that either has a main method or extends App. If

there is more than one such object, all objects are listed and one can be selected.
You can also directly specify the object that shall be executed as a parameter to sbt:

Contents Index 31

3 BUILD PROCESS AND TESTING

$ sbt "runMain mypacket.MyObject"

By default, sbt searches only the main part of the source tree and not the test
part.” To execute tests based on ChiselTest you can simply run them with

$ sbt test

If you have a test that does not follow the ChiselTest convention and it contains
amain function, but is placed in the test part of the source tree you can execute it
with following sbt command:

$ sbt "test:runMain mypacket.MyMainTest"

3.1.3 Generating Verilog

To synthesize Chisel code for an FPGA or ASIC we need to translate Chisel into a
hardware description language that a synthesize tool understands. With Chisel, we
can generate a synthesizable Verilog description of the circuit.

To generate the Verilog description, we need an application. A Scala object that
extends App is an application that implicitly generates the main function where
the application starts. The only action of this application is to create a new Chisel
module, in that example Hello, and pass it to the Chisel function emitVerilog().
The following code will generate the Verilog file Hello.v.

object Hello extends App {
emitVerilog(new Hello())
b

Using the default version of emitVerilog() will put the generated files into the
root folder of our project (where we run the sbt command). To put the generated
files into a subfolder, we need to specify options to emitVerilog(). I recommend to
specify a folder generated, as shown in Figure 3.1. The build options can be set as
a second argument, which is an array of Strings. The following code will generate
the Verilog file Hello.v in the subfolder generated.

object HelloOption extends App {
emitVerilog(new Hello(), Array("--target-dir",
"generated"))

3

2It is a convention from Java/Scala that the test folder contains unit tests and not objects with a main.

32 Index Contents

3.1 BUILDING YOUR PROJECT WITH SBT

You can also request the Verilog code as a Scala String without writing a file.
You can simply print out the string for testing.

object HelloString extends App {
val s = getVerilogString(new Hello())
println(s)

}

This form of output is popular when showing small Chisel examples in Scastie, a
web-based Scala compiler and runtime. See Hello World on Scastie for an example.

3.1.4 Tool Flow

Figure 3.2 shows the tool flow of Chisel. The digital circuit is described in a Chisel
class shown as Hello.scala. The Scala compiler compiles this class, together with
the Chisel and Scala libraries, and generates the Java class file Hello.class that
can be executed by a standard Java virtual machine (JVM). Executing this class
with a Chisel driver generates the flexible intermediate representation for RTL (FIR-
RTL), an intermediate representation of digital circuits. In our example, the file is
Hello.fir. The FIRRTL compiler performs transformations on the circuit.

Treadle is a FIRRTL interpreter that can simulate the circuit. Together with the
Chisel tester, it can be used to debug and test Chisel circuits. With assertions, we can
provide test results. Treadle can also generate waveform files (Hello.vcd) that can
be viewed with a waveform viewer (e.g., the free viewer GTKWave or Modelsim).

One FIRRTL transformation, the Verilog emitter, generates Verilog code for syn-
thesis (Hello.v). A circuit synthesize tool (e.g., Intel Quartus, AMD/Xilinx Vivado,
or an ASIC tool) synthesizes the circuit. In an FPGA design flow, the tool generates
the FPGA bitstream that is used to configure the FPGA, e.g., Hello.bit.

Note that Figure 3.2 shows the Chisel tool flow until Chisel 3.6. Later versions
of Chisel use a different backend (see next section).

Now that we know the basic structure of a Chisel project and how to compile and
run it with sbt, we can continue with a simple testing framework.

3.1.5 Chisel Versions

Chisel changed the version scheme from version on 5.0.0 on to a semantic version-
ing in the form of MAJOR.MINOR.PATCH. Prior to Chisel 5.0.0 the scheme was
3.MAJOR.MINOR. Changes in the minor version of Chisel contain new function-
ality, but in a backwards compatible way. A change in the major version may intro-

Contents Index 33

https://scastie.scala-lang.org/
https://scastie.scala-lang.org/schoeberl/SN7rDb9iS027ORiWqXMGsQ/6
https://en.wikipedia.org/wiki/Java_virtual_machine

3 BUILD PROCESS AND TESTING

3 3
chisel3.lib Hello.scala scala.lib
scalac
Y
Hello.class
Chisel
JVM
| m
. FIRRTL
Hello.fir JVM
Chisel
Tester
JVM
\ Verilog
Treadle Emitter

JVM JVM

/ v .

good/bad Hello.ved Hello.v

i S

GTKWave Circuit
Synthesis

A4

Hello.bit
- —

Figure 3.2: Tool flow of the Chisel ecosystem.

34 Index Contents

3.1 BUILDING YOUR PROJECT WITH SBT

duce breaking changes. To emphasize this change in the versions, Chisel skipped
version 4.

Starting with Chisel 5, the backend of Chisel has change from the Scala-based
compiler for FIRRTL to using firtool to generate Verilog. firtool is part of a
larger project, the LLVM CIRCT project. The latest version of “Chisel 3” is 3.6 and
contains both backends, the Scala based compiler and firtool. The build.sbt for
3.6 is as follows:

scalaVersion := "2.13.14"

scalacOptions ++= Seq(

"-deprecation",
"-feature",
"-unchecked",
"-language:reflectiveCalls",
)
val chiselVersion = "3.6.1"

addCompilerPlugin("edu.berkeley.cs" % "chisel3-plugin" %
chiselVersion cross CrossVersion. full)

libraryDependencies += "edu.berkeley.cs" %% "chisel3" %
chiselVersion

libraryDependencies += "edu.berkeley.cs" %% "chiseltest" %
"0.6.1"

With Chisel version 5, the firtool binary needs to be installed manually. Chisel
6 includes firtool as part of the Chisel library and is therefore the recommended
latest version of Chisel.

The change to CIRCT has implications of the future testing infrastructure. Future
testing will be performed with a Scala API on top of Verilator, which makes in-
stallation of Verilator mandatory. However, there is development within the CIRCT
project to simulate within the CIRCT framework. This tool is called Arcilator. How-
ever, ChiselTest has been ported to Chisel 5 and Chisel 6. We expect a compatibility
layer in Chisel 7 for a smooth transition to a new testing framework.

From Chisel 5 on the libraries are published under org.chipsalliance. There-
fore, the build.sbt need to be changed as follows:

scalaVersion := "2.13.14"

scalacOptions ++= Seq(

Contents Index 35

https://circt.llvm.org/
https://www.veripool.org/verilator/

3 BUILD PROCESS AND TESTING

"-deprecation”,
"-feature",
"-unchecked",
"-language:reflectiveCalls",
)
val chiselVersion = "6.5.0"

addCompilerPlugin("org.chipsalliance" % "chisel-plugin" %
chiselVersion cross CrossVersion.full)

libraryDependencies += "org.chipsalliance" %% "chisel" %
chiselVersion

libraryDependencies += "edu.berkeley.cs" %% "chiseltest" %
"6.0.0"

This book covers, and has been tested with, Chisel 3.5, 3.6, 5, and 6.

Chisel, Scala, and Java Versions

Chisel is a Scala library and therefore is dependent on a Scala version. Scala itself
is built on top of Java (using the Java library and running on the JVM) and therefore
depends on a specific Java version. Changes in the Java version needs updates in
the Scala (patch) version. A safe baseline Java version is Java 8, where all Scala and
Chisel versions work.? Chisel itself has been maintained to work with Scala 2.12
and 2.13, up to version 5. Chisel 6 is based on Scala 2.13 only.* A safe selection is
to use Scala 2.13. However, as Chisel is using a Scala compiler plugin, the highest
supported patch version of Scala is restricted by the published compiler plugin.’
Table 3.1 shows Chisel versions with their support of the highest Scala and Java
versions.

3.1.6 Using a GitHub Template

The chisel-empty project is a minimal Chisel project that contains an adder circuit,
a tester, and a Makefile to generate Verilog code, test the circuit, and cleanup the
repository. That project is a GitHub template, which means you can simply start a
new GitHub repository using this template.

3see https://docs.scala-lang.org/overviews/jdk-compatibility/overview.html

4Getting Chisel to work on top of Scala 3 is work in progress.

Ssee https://mvnrepository.com/artifact/edu.berkeley.cs/chisel3-plugin and
https://mvnrepository.com/artifact/org.chipsalliance/chisel-plugin

36 Index Contents

https://github.com/schoeberl/chisel-empty
https://docs.scala-lang.org/overviews/jdk-compatibility/overview.html
https://mvnrepository.com/artifact/edu.berkeley.cs/chisel3-plugin
https://mvnrepository.com/artifact/org.chipsalliance/chisel-plugin

3.2 TESTING WITH CHISEL

Chisel Scala Java

356 2.13.10 17
3.6.1 2.13.14 22
53x 21314 22
6.5x 2.13.14 22

Table 3.1: Chisel and highest supported Scala and Java versions.

Navigate to that GitHub repository and press the button “Use this template” to
create your GitHub project. Then clone your new project locally and explore the
Makefile. Generate Verilog code with:

make

Test the adder with:

make test

Remove all generated files with:

make clean

You can also execute these tasks by running the sbt and git commands directly.

3.2 Testing with Chisel

Tests of hardware designs are usually called test benches. The test bench instantiates
the design under test (DUT), drives input ports, observes output ports, and compares
them with expected values. Chisel provides the ChiselTest in package chiseltest.

One strength of Chisel is that it can use the full power of Scala to write test
benches. One can, for example, code the expected functionality of the hardware
in a software simulator and compare the simulation of the hardware with the soft-
ware simulation. This method is very efficient when testing an implementation of a
processor [19].

Contents Index 37

https://en.wikipedia.org/wiki/Test_bench
https://www.chisel-lang.org/chiseltest/

3 BUILD PROCESS AND TESTING

3.2.1 ScalaTest

ScalaTest is a testing tool for Scala (and Java). ChiselTest is an extension of ScalaT-
est. Therefore, we first explore a simple ScalaTest example. To use it, include the
library in your build. sbt with the following line:

libraryDependencies += "org.scalatest" %% "scalatest" %
"3.1.4" % "test"

Tests are usually found in src/test/scala and the entire test suite can be run with:

$ sbt test

A minimal test (a testing hello world) to test a Scala integer addition and a multipli-
cation looks as follows:

import org.scalatest._
import org.scalatest.flatspec.AnyFlatSpec
import org.scalatest.matchers.should.Matchers

class ExampleTest extends AnyFlatSpec with Matchers {
"Integers" should "add" in {
val i = 2
val j = 3
i + j should be (5)
}

"Integers" should "multiply" in {
val a = 3
val b = 4
a * b should be (12)

ScalaTest enables simple unit tests that read like an executable specification. The
example above contains two tests and the output of the test run will repeat the spec-
ification and show that both tests passed:

[info] ExampleTest:
[info] Integers
[info] - should add
[info] Integers

38 Index Contents

http://www.scalatest.org/

3.2 TESTING WITH CHISEL

[info] - should multiply

[info] ScalaTest

[info] Run completed in 119 milliseconds.

[info] Total number of tests run: 2

[info] Suites: completed 1, aborted 0

[info] Tests: succeeded 2, failed ®, canceled 0, ignored 0, pending 0
[info] All tests passed.

[info] Passed: Total 2, Failed ®, Errors 0, Passed 2

sbt test executes all available tests, which is useful for regression tests.® How-
ever, if you want to run just a single test (suite) you can do this with:

$ sbt "testOnly ExampleTest"

If you misspell the class name, for example, ExampleTest, there will be a relatively
silent error message: No tests were executed.

3.2.2 ChiselTest

ChiselTest is the standard testing tool for Chisel modules based on the ScalaTest
tool for Scala and Java, which we can use to run Chisel tests. To use it, include the
chiseltest library in your build. sbt with the following line:

libraryDependencies += "edu.berkeley.cs" %% "chiseltest" %
"9.5.6"

Including ChiselTest this way automatically includes the necessary version of Sca-
laTest. Therefore, you do not need to include a line for the ScalaTest library. To use
ChiselTest, the following packages need to be imported:

import chisel3._
import chiseltest._
import org.scalatest.flatspec.AnyFlatSpec

Testing a circuit contains (at least) two components: the device under test (often
called DUT) and the testing logic, also called a test bench. Tests are started with
sbt test. No object with a main function is needed.

The following code shows our simple design under test. It contains two input
ports (2-bit width) and two output ports, a 2-bit width and a Bool. The circuit does

5Try sbt test in the repository of this book and you will see more than 90 tests passing.

Contents Index 39

https://www.chisel-lang.org/chiseltest/
http://www.scalatest.org/

3 BUILD PROCESS AND TESTING

a bit-wise AND to its inputs a and b and outputs the result on out and tests the two
signals for equality:

class DeviceUnderTest extends Module {
val io = I0(new Bundle {
val a = Input(UInt(2.W))
val b = Input(UInt(2.W))
val out = Output(UInt(2.W))
val equ = Output(Bool())

b
io.out := io.a & io.b
io.equ := io.a === io.b

The test bench for this DUT extends AnyFlatSpec with ChiselScalatestTester,
which provides ChiselTest functionality within ScalaTest. The method test() is
invoked with the DUT as parameter and the test code as a function literal.

class SimpleTest extends AnyFlatSpec with
ChiselScalatestTester {
"DUT" should "pass" in {
test(new DeviceUnderTest) { dut =>
dut.io.a.poke(0.U)
dut.io.b.poke(1.U)
dut.clock.step()
println("Result is:
dut.io.a.poke(3.U)
dut.io.b.poke(2.0)
dut.clock.step()
println("Result is:

+ dut.io.out.peekInt())

+ dut.io.out.peekInt())

The input and output ports of the DUT are accessed with dut.io. You can set val-
ues via a poke on a port, which takes the value as a Chisel type of the input port as a
parameter. An output port can be read by invoking peekInt () or peekBoolean() on
the port, which will return the value as a Scala type. The tester advances the simu-
lation by one clock cycle with dut.clock.step(). For advancing the simulation by
several clock cycles, we can provide a parameter to step(). We can print the values

40 Index Contents

3.2 TESTING WITH CHISEL

of the outputs with println().
When you run the test

$ sbt "testOnly SimpleTest"

you will see the results printed to the terminal (besides other information):

Result is: 0

Result is: 2

[info] SimpleTest:
[info] DUT

[info] - should pass

We see that 0 AND 1 results in 0; 3 AND 2 results in 2. Besides manually inspect-
ing printouts, which is a good starting point, we can also express our expectations in
the test bench itself by invoking expect (value) on the output port and the expected
value as a parameter. The following example shows testing with expectations:

class SimpleTestExpect extends AnyFlatSpec with
ChiselScalatestTester {
"DUT" should "pass" in {

test(new DeviceUnderTest) { dut =>
dut.io.a.poke(0.U)
dut.io.b.poke(1.0U)
dut.clock.step (O
dut.io.out.expect(0.0U)
dut.io.a.poke(3.0)
dut.io.b.poke(2.0)
dut.clock.step()
dut.io.out.expect(2.U)

Executing this test does not print out any values from the hardware, but that all
tests passed as all expect values are correct.

[info] SimpleTestExpect:

[info] DUT
[info] - should pass

Contents Index 41

3 BUILD PROCESS AND TESTING

[info] ScalaTest

[info] Run completed in 1 second, 85 milliseconds.

[info] Total number of tests run: 1

[info] Suites: completed 1, aborted 0

[info] Tests: succeeded 1, failed ®, canceled 0, ignored 0, pending ®
[info] All tests passed.

[info] Passed: Total 1, Failed 0, Errors 0, Passed 1

A failed test, when either the DUT or the test bench contains an error, produces
an error message describing the difference between the expected and actual value.
In the following, we changed the test bench to expect a 4, which is an error:

[info] SimpleTestExpect:
[info] DUT
[info] - should pass *** FAILED ***
[info] io_out=2 (0x2) did not equal expected=4 (0x4)
(lines in testing.scala: 27) (testing.scala:35)
[info] ScalaTest
[info] Run completed in 1 second, 214 milliseconds.
[info] Total number of tests run: 1
[info] Suites: completed 1, aborted ®
[info] Tests: succeeded 0, failed 1, canceled 0, ignored 0, pending 0
[info] *** 1 TEST FAILED ***
[error] Failed: Total 1, Failed 1, Errors 0, Passed 0
[error] Failed tests:
[error] SimpleTestExpect

The peek() function returns a Chisel type, which would need conversion to be
used as Scala type. To simplify using test values in Scala land, ChiselTest supports
peekInt() and peekBoolean(). The following test example reads the output with
peekInt (), which returns a Scala integer’ that is used in the assert() statement.
Similar we can read the equ output into a Scala Boolean, directly used in the assert
statement.

class SimpleTestPeek extends AnyFlatSpec with
ChiselScalatestTester {
"DUT" should "pass" in {
test(new DeviceUnderTest) { dut =>
dut.io.a.poke(0.U)

"To support arbitrarily wide integer values, the return value is a Scala BigInt instead of a Scala Int.

42 Index Contents

3.2 TESTING WITH CHISEL

dut.io.b.poke(1.U)
dut.clock.step()
dut.io.out.expect(0.U)

val res = dut.io.out.peekInt()
assert(res == 0)

val equ = dut.io.equ.peekBoolean()
assert(!equ)

This example is a bit too simple to see the benefit of reading values from the DUT
into Scala types. However, with more complex tests, e.g., looping till some value is
true, these functions become useful.

In this section, we described the basic testing facility with Chisel for simple tests.
However, keep in mind that the full power of Scala is available to write testers. This
includes, for example, writing a reference model of your hardware in Scala to test
the DUT against.

3.2.3 Waveforms

Testers, as described above, work well for small designs and for unit testing, as
it is common in software development. A collection of unit tests can also serve
regression testing. However, for debugging more complex designs, one would like
to investigate several signals at once. A classic approach to debug digital designs is
displaying the signals in a waveform. In a waveform the signals are displayed over
time.

Chisel testers can generate a waveform that includes all registers and all IO signals.
In the following examples, we show waveform testers for the DeviceUnderTest from
the former example (the 2-bit AND function). To generate a waveform for a test pass
a definition of writeVcd=1 to the test, as shown in the following sbt command:

sbt "testOnly SimpleTest -- -DwriteVcd=1"

You can view the waveform with the free viewer GTKWave or with ModelSim.
Start GTKWave and select File — Open New Window and navigate to the folder
where the Chisel tester put the .ved file. By default, the generated files are in
test_run_dir within a subfolder named after the test description. Within this folder,
you should be able to find DeviceUnderTest.vcd. You can select the signals from

Contents Index 43

https://en.wikipedia.org/wiki/Unit_testing
https://en.wikipedia.org/wiki/Regression_testing
http://gtkwave.sourceforge.net/

3 BUILD PROCESS AND TESTING

the left side and drag them into the main window. If you want to save a configura-
tion of signals you can do so with File — Write Save File and load it later with File —
Read Save File.

The generation of waveforms can also be initiated by passing the
WriteVcdAnnotation annotation to the test() function.® We start with a simple
tester that pokes values to the inputs and advances the clock with step. We do not
read any output or compare it with expect. Instead, we will inspect the generated
waveform in the .vcd file.

class WaveformTest extends AnyFlatSpec with
ChiselScalatestTester {
"Waveform" should "pass" in {

test(new DeviceUnderTest)
.withAnnotations(Seq(WriteVcdAnnotation)) { dut =>
dut.io.a.poke(0.U)
dut.io.b.poke(0.0U)
dut.clock.step ()
dut.io.a.poke(1l.U)
dut.io.b.poke(0.0U)
dut.clock.step (O
dut.io.a.poke(0.U)
dut.io.b.poke(1.0U)
dut.clock.step ()
dut.io.a.poke(1.U)
dut.io.b.poke(1.0U)
dut.clock.step()

Explicitly enumerating all possible input values does not scale. Therefore, we
will use some Scala code to drive the DUT. The following tester enumerates all
possible values for the two 2-bit input signals.

class WaveformCounterTest extends AnyFlatSpec with
ChiselScalatestTester {
"WaveformCounter" should "pass" in {
test(new DeviceUnderTest)
.withAnnotations(Seq(WriteVcdAnnotation)) { dut =>

8This is an alternative to using the command line options.

44 Index Contents

3.2 TESTING WITH CHISEL

for (a <- O until 4) {
for (b <- O until 4) {
dut.io.a.poke(a.lU)
dut.io.b.poke(b.U)
dut.clock.step(Q)

and execute it with

$ sbt "testOnly WaveformCounterTest

3.2.4 printf Debugging

Another form of debugging is “printf debugging”. The name of this debugging
method comes from simply putting printf statements in C code to print variables of
interest during the execution of the program. This printf debugging is also available
during testing of Chisel circuits. The printing happens at the rising edge of the
clock. A printf statement can be inserted just anywhere in the module definition,
as shown in the printf debugging version of the DUT.

class DeviceUnderTestPrintf extends Module {
val io = IO(new Bundle {
val a = Input(UInt(2.W))
val b = Input(UInt(2.W))
val out = Output(UInt(2.W))

b
io.out := io.a & io.b
printf("dut: %d %d %d\n", io.a, io.b, io.out)

}

When testing this module with the counter-based tester, which iterates over all pos-
sible values, we get the following output, verifying that the AND function is correct:

Elaborating design...

Done elaborating.
dut: ® 0O O

Contents Index 45

3 BUILD PROCESS AND TESTING

dut: 0 1 ©
dut: 0 2 0
dut: 0 3 0
dut: 1 0 ©
dut: 1 1 1
dut: 1 2 0
dut: 1 3 1
dut: 2 0 0
dut: 2 1 0
dut: 2 2 2
dut: 2 3 2
dut: 3 0 0
dut: 3 1 1
dut: 3 2 2
dut: 3 3 3

dut: 0 0 O
test DeviceUnderTestPrintf Success: 0 tests passed in 18 cycles
in 0,031521 seconds 571,04 Hz

Chisel printf supports C and Scala style formatting.

3.3 Exercises

For this exercise, we will revisit the blinking LED from chisel-examples and explore
Chisel testing.

3.3.1 A Minimal Project

First, let us find out what a minimal Chisel project is. Explore the files in the Hello
World example. The Hello.scala is the single hardware source file. It contains the
hardware description of the blinking LED (class Hello) and an App that generates
the Verilog code.

Each file starts with the import of Chisel and related packages:

import chisel3._

Then follows the hardware description, as shown in Listing 1.1. To generate the
Verilog description, we need an application. The only action of this application is
to create a new Hello object and pass it to the emitVerilog() function.

46 Index Contents

https://www.chisel-lang.org/chisel3/docs/explanations/printing.html
https://github.com/schoeberl/chisel-examples
https://github.com/schoeberl/chisel-examples/tree/master/hello-world
https://github.com/schoeberl/chisel-examples/tree/master/hello-world

3.3 EXERCISES

object Hello extends App {
emitVerilog(new Hello())
}

Run the generation of the example manually with

$ sbt run

and explore the generated Hello.v with an editor. The generated Verilog code
may not be very readable, but we can find out some details. The file starts with
a module Hello, which is the same name as our Chisel module. We can identify
our LED port as output io_led. Pin names are the Chisel names with a prepended
io_. Besides our LED pin, the module also contains clock and reset input signals.
Those two signals are added automatically by Chisel.

Furthermore, we can identify the definition of our two registers cntReg and blkReg.
We may also find the reset and update of those registers at the end of the module
definition. Note that Chisel generates a synchronous reset.

For sbt to be able to fetch the correct Scala compiler and the Chisel library, we
need a build. sbt:

scalaVersion := "2.13.10"

scalacOptions ++= Seq(
"-feature",
"-language:reflectiveCalls",

)

val chiselVersion = "3.5.6"

addCompilerPlugin("edu.berkeley.cs" %% "chisel3-plugin" %
chiselVersion cross CrossVersion.full)

libraryDependencies += "edu.berkeley.cs" %% "chisel3" %
chiselVersion

libraryDependencies += "edu.berkeley.cs" %% "chiseltest" %
"0.5.6"

Note that in this example, we have a concrete Chisel version number to avoid check-
ing on each run for a new version (which will fail if we are not connected to the
Internet, e.g., when doing hardware design during a flight). Additionally, we have
added the Chisel3 compiler plugin which is needed since Chisel 3.5. Change the
build.sbt configuration to use the latest Chisel version by changing the library

Contents Index 47

3 BUILD PROCESS AND TESTING

dependency to

libraryDependencies += "edu.berkeley.cs" %% "chisel3" %
"latest.release"

and rerun the build with sbt. Is there a newer version of Chisel available and will it
be automatically downloaded?

For convenience, the project also contains a Makefile. It just contains the sbt
command, so we do not need to remember it and can generate the Verilog code
with:

make

Besides a README file, the example project also contains project files for different
FPGA boards. E.g., in quartus/altde2-115 you can find the two project files to define
a Quartus project for the DE2-115 board. The main definitions (source files, device,
pin assignments) can be found in a plain text file hello.qsf. Explore the file and find
out which pins are connected to which signals. If you need to adapt the project to a
different board, this is where the changes are applied. If you have Quartus installed,
open that project, compile with the green Play button, and then configure the FPGA.

Note that the Hello World is a minimal Chisel project. More realistic projects
have their source files organized in packages and contain testers.

3.3.2 A Testing Exercise

In the last chapter’s exercise, you have extended the blinking LED example with
some input to build an AND gate and a multiplexer and run this hardware in an
FPGA. We will now use this example and test the functionality with a Chisel tester
to automate testing and also to be independent of an FPGA board. Use your designs
from the previous chapter and add a Chisel tester to test the functionality. Try to
enumerate all possible inputs and test the output with expect().

Testing within Chisel can speed up the debugging of your design. However, it is
always a good idea to synthesize your design for an FPGA and run tests with the
FPGA. There you can perform a reality check on the size of your design (usually
in LUTs and flip-flops) and your performance of your design in maximum clocking
frequency. As a reference point, a textbook style pipelined RISC processor may
consume about 3000 4-bit LUTs and may run around 100 MHz in a low-cost FPGA
(Intel Cyclone or Xilinx Spartan).

48 Index Contents

https://github.com/schoeberl/chisel-examples/tree/master/hello-world/quartus/altde2-115
https://github.com/schoeberl/chisel-examples/blob/master/hello-world/quartus/altde2-115/hello.qsf

4 Components

A larger digital design is structured into a set of components, often in a hierarchical
way. Each component has an interface with input and output wires, sometimes
called ports. These are similar to input and output pins on an integrated circuit (IC).
Components are connected by wiring up the inputs and outputs. Components may
contain subcomponents to build the hierarchy. The outermost component, which is
connected to physical pins on a chip, is called the top-level component.

In this chapter, we will explain how components are described in Chisel and
provide several simple examples of components. Note that the components in this
section are very small (e.g., just an adder), just to show the principles: how to
define, instantiate, and connect components. Real-world examples shall contain
more “meat” than just a single line for an adder.

4.1 Components in Chisel are Modules

Hardware components are called modules in Chisel. Each module extends the class
Module and contains a field io for the interface. The interface is defined by a Bundle
that is wrapped into a call to I0(). The Bundle contains fields to represent input and
output ports of the module. The direction is given by wrapping a field into either an
Input () or an Output (). The direction is from the view of the component itself.

We show an example design where we build a counter out of two components: an
adder and a register. Figure 4.1 shows the schematic of the adder component. It has
two inputs (a and b) and one output (y). Listing 4.1 shows the Chisel definition of
the adder. The input and output signals are accessed with the dot notation, such as
io.a, as they are part of the io Bundle.

Figure 4.2 shows another simple component, an 8-bit register. The Chisel code
for this component is shown in Listing 4.2.

Now we build a counter with those two components that counts from 0 to 9 and
repeats. Figure 4.3 shows the schematic of the counter. We use an adder to add 1
to the value of count. A multiplexer selects between this sum and 0. That result,

49

4 COMPONENTS

Adder
—a—»
y —>

— b —»

Figure 4.1: An adder component.

class Adder extends Module {
val io = I0(new Bundle {
val a = Input(UInt(8.W))

val b = Input(UInt(8.W))
val y = Output(UInt(8.W))
b
io.y := io.a + io.b

Listing 4.1: The adder component in Chisel.

Register

— d —» — q —

A

Figure 4.2: A register components.

50 Index Contents

4.1 COMPONENTS IN CHISEL ARE MODULES

class Register extends Module {
val io = IO(new Bundle {
val d = Input(UInt(8.W))
val g = Output(UInt(8.W))

b
val reg = RegInit(0.U)
reg := io.d
io.q := reg
3
Listing 4.2: The register component in Chisel.
Count10
|
Adder ! Register
0—»
1—pla
next —»| d q dout —»
ol b Y — result —
count

Figure 4.3: A counter built out of components.

Contents Index 51

4 COMPONENTS

class Countl® extends Module {
val io = IO(new Bundle {
val dout = Output(UInt(8.W))
b

val add = Module(new Adder())
val reg Module (new Register())

// the register output

val count = reg.io.q

// connect the adder

add.io.a := 1.U

add.io.b := count

val result = add.io.y

// connect the Mux and the register input

val next = Mux(count === 9.U, 0.U, result)
reg.io.d := next
io.dout := count

Listing 4.3: A counter built out of components.

52 Index Contents

4.2 NESTED COMPONENTS

called next is the input for the register component. The output of the register is the
count value and also the output of the Count18 component (dout).

Listing 4.3 shows the Chisel code for the Count1® component. The two compo-
nents are instantiated by creating them with new, wrapping them into a Module(),
and assigning them the names add and reg. In this example, we give the output of
the register (reg.io.q) the name count.

We connect 1.U and count to the two inputs of the adder component. We give the
output of the adder component the name result. The multiplexer selects between
0.U and result depending on the current counter value count. We name the out-
put of the multiplexer next and connect it to the input of the register components.
Finally, we connect the counter value count to the single output of the Count10
component, io.dout.

4.2 Nested Components

A medium- to high-complexity hardware design is built out of a hierarchy of nested
components. Figure 4.4 shows the structure of such an example design. Component
CompC has three input ports and two output ports. The component itself is assembled
out of two subcomponents: CompA and CompB, which are connected to the inputs and
outputs of CompC. One output of CompA is connected to an input of CompB. Com-
ponent CompD is at the same hierarchy level as component CompC and connected to
it.

Listing 4.4 shows the definition of the two example components CompA and CompB
from Figure 4.4. Component CompA has two inputs, named a and b, and two outputs,
named x and y. For the ports of component CompB we chose the names inl, in2, and
out. All ports use an unsigned integer (UInt) with a bit width of 8. As this example
code is about connecting components and building a hierarchy, we do not show any
implementation within the components. The implementation of the component is
written at the place where the comments states “function of X”. As we have no
function associated with those example components, we used generic port names.
For a real design, use descriptive port names such as data, valid, or ready.

Component CompC, shown in Listing 4.5, has three input and two output ports. It
is built out of components CompA and CompB. We show how CompA and CompB are
connected to the ports of CompC and also the connection between an output port of
CompA and an input port of CompB.

Components are created with new, e.g., new CompA(), and need to be wrapped
into a Module(). The reference to that module is stored in a local variable, in this

Contents Index 53

4 COMPONENTS

\4
A4
Y
\/

CompA

\ 4
\ 4

\ 4
\ 4

CompB CompD —

vy

\

CompC

Figure 4.4: A design consisting of a hierarchy of components.

class CompA extends Module {
val io = I0(new Bundle {

val a = Input(UInt(8.W))
val b = Input(UInt(8.W))
val x = Output (UInt(8.W))
val y = Output(UInt(8.W))

»

// function of A
}

class CompB extends Module {
val io = IO(new Bundle {
val inl = Input(UInt(8.W))
val in2 = Input(UInt(8.W))
val out = Output(UInt(8.W))
b

// function of B
}

Listing 4.4: Definition of components CompA and CompB

54 Index Contents

4.2 NESTED COMPONENTS

class CompC extends Module {

val io = IO(new Bundle {
val inA = Input(UInt(8.W))
val inB = Input(UInt(8.W))
val inC = Input(UInt(8.W))
val outX = Output(UInt(8.W))

val outY

D)

Output (UInt (8.W))

// create
val compA
val compB

components A and B
Module (new CompA())
Module (new CompB())

// connect A

compA.io.a io.inA
compA.io.b io.inB
io.outX := compA.io.x

// connect B

compB.io.inl compA.io.y
compB.io.in2 io.inC
io.outY compB.io.out

Contents

Listing 4.5: Component CompC

Index

55

4 COMPONENTS

class CompD extends Module {
val io = IO(new Bundle {
val in = Input(UInt(8.W))
val out = Output(UInt(8.W))
b

// function of D
}

Listing 4.6: Component CompD

example val compA = Module(new CompA()).

With this reference, we can access the 10O ports by dereferencing the io field of
the module and then the individual fields of the IO Bundle.

The simplest component (CompD) in our design, shown in Listing 4.6, has just
an input port, named in, and an output port named out. The final missing piece
of our example design is the top-level component, which itself is assembled out of
components CompC and CompD, shown in Listing 4.7.

Good component design is similar to the good design of functions or methods in
software design. One of the main questions is how much functionality shall we put
into a component and how large should a component be. The two extremes are tiny
components, such an adder, and huge components, such as a full microprocessor,

Beginners in hardware design often start with tiny components. The problem is
that digital design books use tiny components to show the principles. The sizes of
the examples (in those books, and also in this book) are small to fit onto a page and
to avoid distracting details.

The interface to a component is a little bit verbose (with types, names, directions,
IO construction). As a rule of thumb, I propose that the core of the component, the
function, should be at least as long as the interface of the component.

For tiny components, such as a counter, Chisel provides a more lightweight way
to describe them as functions that return hardware.

4.3 An Arithmetic Logic Unit

One of the central components for circuits that compute, e.g., a microprocessor, is
an arithmetic-logic unit, or ALU for short. Figure 4.5 shows the symbol of an ALU.

56 Index Contents

https://en.wikipedia.org/wiki/Arithmetic_logic_unit

4.3 AN ARITHMETIC LOGIC UNIT

class TopLevel extends Module {

val io

val
val
val
val
val

b

= I0(new Bundle {

inA = Input(UInt(8.W))
inB = Input(UInt(8.W))
inC = Input(UInt(8.W))
outM = Output(UInt(8.W))

outN = Output(UInt(8.W))

// create C and D

val c

val d

= Module (new CompC())
= Module (new CompD())

// connect C

c.io.inA := io.inA
c.io.inB := io.inB
c.io.inC := io.inC
io.outM := c.io.outX
// connect D
d.io.in := c.io.outY
io.outN := d.io.out
}
Listing 4.7: Top-level component

|

fn

]

I

|

y

—a—>»
ALU y —»
— b —»
Figure 4.5: An arithmetic logic unit, or ALU for short.
Contents Index 57

4 COMPONENTS

The ALU has two data inputs, labeled a and b in the figure, one function input fn,
and an output, labeled y. The ALU operates on a and b and provides the result at the
output y. The input £n selects the operation on a and b. The operations are usually
some arithmetic, such as addition and subtraction, and some logical functions such
as and, or, xor. That’s why it is called an ALU.

The ALU is usually a combinational circuit without any state elements. An ALU
might also have additional outputs to signal properties of the result, such as zero or
the sign.

The following code shows an ALU with 16-bit inputs and a 16-bit output that
supports addition, subtraction, or, and and. operation, selected by a 2-bit fn signal.

class Alu extends Module {
val io = IO(new Bundle {
val a = Input(UInt(1l6.W))
val b = Input(UInt(16.W))
val fn = Input(UInt(2.W))
val y = Output (UInt(16.W))
b

// some default value is needed
io.y = 0.U

// The ALU selection
switch(io.fn) {

is(0.U) { io.y := io.a + io.b }
is(1.U) { io.y := io.a - io.b }
is(2.U) { io.y := io.a | io.b }
is(3.U0) { io.y := io.a & io.b }

}
}

In this example, we use a new Chisel construct, the switch/is construct to describe
the table that selects the output of our ALU. To use this utility function, we need to
import another Chisel package:

import chisel3.util._

58 Index Contents

4.4 BULK CONNECTIONS

4.4 Bulk Connections

For connecting components with multiple IO ports, Chisel provides the bulk con-
nection operator <>. This operator connects parts of bundles in both directions.
Chisel uses the names of the leaf fields for the connection. If a name is missing, it
is not connected.

As an example, let us assume we build a pipelined processor. The fetch stage has
the following interface:

class Fetch extends Module {
val io = IO(new Bundle {
val instr = Output(UInt(32.W))
val pc = Output(UInt(32.W))
b
// ... Implementation of fetch
}

The next stage is the decode stage.

class Decode extends Module {
val io = I0(new Bundle {
val instr = Input(UInt(32.W))
val pc = Input(UInt(32.W))
val aluOp = Output(UInt(5.W))
val regA = Output(UInt(32.W))
val regB = Output(UInt(32.W))
b
// ... Implementation of decode
}

The final stage of our simple processor is the execute stage.

class Execute extends Module {

val io = I0(new Bundle {
val aluOp = Input(UInt(5.W))
val regA = Input(UInt(32.W))
val regB = Input(UInt(32.W))
val result = Output(UInt(32.W))

b

// ... Implementation of execute

}

Contents Index 59

4 COMPONENTS

To connect all three stages we need just two <> operators. We can also connect
the port of a submodule with the parent module.

val fetch = Module(new Fetch())
val decode = Module(new Decode())
val execute = Module(new Execute)

fetch.io <> decode.io

decode.io <> execute.io
io <> execute.io

60 Index Contents

5 Combinational Building Blocks

In this chapter, we explore various combinational circuits, basic building blocks that
we can use to construct more complex systems. In principle, all combinational cir-
cuits can be described with Boolean equations. However, more often, a description
in the form of a table is more efficient. We let the synthesize tool extract and mini-
mize the Boolean equations. Two basic circuits, best described in a table form, are
a decoder and an encoder.

5.1 Combinational Circuits

Before describing some standard combinational building blocks, we will explore
how combinational circuits can be expressed in Chisel. The simplest form is a
Boolean expression, which can be assigned a name:

val e = (a & b) | ¢

The Boolean expression is given a name (e) by assigning it to a Scala value. The
expression can be reused in other expressions:

val £ = "e

Such an expression is considered fixed. A reassignment to e with = would result
in a Scala compiler error: reassignment to val. A try with the Chisel operator :=,
as shown below,

e :=c&b

results in a runtime exception: Cannot reassign to read-only.

Chisel also supports describing combinational circuits with conditional updates.
Such a circuit is declared as a Wire. Then you use conditional operations, such as
when, to describe the logic of the circuit. The following code declares a Wire w of
type UInt and assigns it a default value of 8. The when block takes a Chisel Bool
and reassigns 3 to w if cond is true.B.

61

5 COMBINATIONAL BUILDING BLOCKS

- Zpuoo -
- puoo -

2 —» w —

3 —>

Figure 5.1: A chain of multiplexers.

val w = Wire(UInt(Q))

w := 0.U

when (cond) {
w := 3.U

}

The logic of the circuit is a multiplexer, where the two inputs are the constants 0
and 3 and the select signal is the condition cond. Keep in mind that we describe
hardware circuits and not a software program with conditional execution.

The Chisel condition construct when also has a form of else, it is called .otherwise.
With assigning a value under any condition we can omit the default value assign-

ment:

val w = Wire(UInt(Q))

when (cond) {

w :=1.U
} .otherwise {
w = 2.U

}

Chisel also supports a chain of conditionals (like a if/elseif/else chain) with
.elsewhen:

val w = Wire(UInt())

when (cond) {

62 Index Contents

5.2 DECODER

w = 1.U

} .elsewhen (cond2) {
w = 2.U

} .otherwise {
w := 3.U

}

This chain of when, .elsewhen, and .otherwise constructs a chain of multiplexers.
Figure 5.1 shows this chain of multiplexers. That chain introduces a priority, i.e.,
when cond is true, the other conditions are not evaluated.

Note the ‘. in .elsewhen needed to chain methods in Scala. Those .elsewhen
branches can be arbitrarily long. However, if the chain of conditions depends on
a single signal, it is better to use the switch statement, which is introduced in the
following subsection with a decoder circuit.

For more complex combinational circuits, it might be practical to assign a default
value to a Wire. A default assignment can be combined with the wire declaration
with WireDefault.

val w = WireDefault (0.U)

when (cond) {
w := 3.U
}

// ... and some more complex conditional assignments

One might ask, why do we use when, .elsewhen, and .otherwise when Scala
has if, else if, and else? Those Scala statements are for conditional execution of
Scala code, not generating Chisel (multiplexer) hardware. Those Scala conditionals
have their use in Chisel when we write circuit generators, which take parameters to
conditionally generate different hardware instances.

5.2 Decoder

A decoder converts a binary number of # bits to an m-bit signal, where m < 2". The
output is one-hot encoded (where exactly one bit is one). Figure 5.2 shows a 2-bit to
4-bit decoder. We can describe the function of the decoder with a truth table, such
as Table 5.1.

A Chisel switch statement describes the logic as a truth table. To use the switch
statement, we need to include the package chisel.util.

Contents Index 63

https://en.wikipedia.org/wiki/Binary_decoder

5 COMBINATIONAL BUILDING BLOCKS

— b0 —»

— a0 —»| F— b1 —»
Decoder

— al —» — b2 —»

— b3 —»

Figure 5.2: A 2-bit to 4-bit decoder.

a b

00 0001
01 0010
10 0100

11 1000

Table 5.1: Truth table for a 2 to 4 decoder.

import chisel3.util._

The following code uses the switch statement of Chisel to describe a decoder:

result := 0.U

switch(sel) {
is (0.U) { result 1.0}
is (1.U) { result := 2.U}
is (2.U) { result 4.03%
is (3.U) { result 8.U}
}

The above switch statement lists all possible values of the sel signal and assigns the
decoded value to the result signal. Note that even if we enumerate all possible input
values, Chisel still needs us to assign a default value, as we do by assigning an initial
0 to result. This assignment will never be active and therefore optimized away by
the synthesize tool. It is intended to avoid situations with incomplete assignments
for combinational circuits (in Chisel a Wire) that will result in unintended latches in

64 Index Contents

5.3 ENCODER

hardware description languages such as VHDL and Verilog. Chisel does not allow
incomplete assignments.

In the example before, we used unsigned integers for the signals. Maybe a clearer
representation of an encode circuit uses binary notation:

switch (sel) {

is ("b00".U) { result := "bOOO1".U}
is ("b01".U) { result := "b0O10".U}
is ("b10".U) { result := "b0100".U}
is ("b11".U) { result := "bl1000".U}

}

A table gives a very readable representation of the decoder function but is also
a little bit verbose. When examining the table, we see a regular structure: a 1 is
shifted left by the number represented by sel. Therefore, we can express a decoder
with the Chisel shift operation <<.

result := 1.U << sel

Decoders are used as a building block for a multiplexer by using the output as
an enable with an AND gate for the multiplexer data input. However, in Chisel, we
do not need to construct a multiplexer because a Mux is available in the core library.
Decoders can also be used for address decoding of some bits of an address bus of a
microprocessor. The outputs are used as select signals for memories and different
IO devices connected to the microprocessor (see Section 12.1).

5.3 Encoder

An encoder converts a one-hot encoded input signal into a binary encoded output
signal. The encoder does the inverse operation of a decoder.

Figure 5.3 shows a 4-bit one-hot input to a 2-bit binary output encoder, and Ta-
ble 5.2 shows the truth table of the encode function. However, an encoder works
only as expected when the input signal is one-hot coded. For all other input values,
the output is undefined. As we cannot describe a function with undefined outputs,
we use a default assignment that catches all undefined input patterns.

The following Chisel code assigns a default value of 0 and then uses the switch
statement for the legal input values.

b := "b00".U

Contents Index 65

https://en.wikipedia.org/wiki/Encoder_(digital)

5 COMBINATIONAL BUILDING BLOCKS

— a0 —»|

— al —»| F— b0 —»
Encoder

— a2 —> — bl —»

— a3 —p|

Figure 5.3: A 4-bit to 2-bit encoder.

a b
0001 00
0010 01
0100 10
1000 11

77 N

Table 5.2: Truth table for a 4 to 2 encoder.

switch (a) {

is ("b0001".U) { b := "b0O".U}
is ("b0010".U) { b := "bO1".U}
is ("b0100".U) { b := "b10".U}
is ("b1000".U) { b := "b11".U}

3

For the decoder, we found an elegant single-line statement to express the logic.
This also enables us to describe a wide decoder. However, we are not aware of such
an expression for the encoder.

We need to write a (simple) hardware generator to express larger encoders. There-
fore, we need to introduce the Scala loop construct. The following two lines of Scala
code express a loop, counting from @ to 9.

// Loops i from 0 to 9
for (i <- O until 10) {
// use i to index into a Wire or Vec

}

66 Index Contents

5.4 ARBITER

The loop variable i can be used to index individual bits from a Wire or Reg; or
an element in a Vec. This Scala generator loop is the simplest form of describing
a hardware generator. Chapter 10 describes how to write hardware generators in
more detail. Note that the loop is executed at circuit generation time. This is not a
hardware counter.

For the encoder generator, we will use a Vec, where each element represents one
column of the encoder table. The following code shows a 16-bit encoder, where the
output is 4 bits wide:

val v = Wire(Vec(16, UInt(4.W)))
v(0®) 0.0
for (i <- 1 until 16) {
v(i) := Mux(ChotIn(i), i.U, 0.U) | v(i - 1)
}
val encOut = v(15)

The input of the encoder is hotIn and the output is encOut. Vec element 0 is the
default case (0), and also represents the output value when the least significant bit
(LSB) is set in hotIn.

Vec elements 1 till 15 are connected to a multiplexer. If the bit at position i is
set in hotIn, the multiplexer output is the index, otherwise it is 0. For the correct
behavior of our encoder, we assume that the input signal is one-hot encoded. Finally
we need to merge all vector elements for a single output. As the vector elements are
® when the corresponding bit in the input is 8, we can simply combine all elements
with an OR function. In the loop, we OR the current element with one vector ele-
ment before (... | v(i-1)). When several elements are combined with a function,
we call this operation also reduce. Therefore, here we perform an OR reduction.

5.4 Arbiter

We use an arbiter to arbitrate requests from several clients to a shared resource. An
example would be several processor cores sharing a single serial port (UART).

Figure 5.4 shows the schematic of a 4-bit arbiter. It consists of four request lines
(r0-r3) and four grant lines (g8—g3). The arbiter grants only a single request. For
example, a request input of 0101 will result in a grant output of 8001. The arbiter
prioritizes the lower inputs. Therefore, we call it a priority arbiter. The lower the bit
number, the higher the priority.

To build a fair arbiter, we need to add state to remember the last arbitration. We

Contents Index 67

5 COMBINATIONAL BUILDING BLOCKS

— 10 —»| — g0 —»
—r1 —» — gl —»
Arbiter
— r2 —»| — g2 —»
— 3 —» — g3 —»

Figure 5.4: A symbol for a 4-bit arbiter.

will present a fair arbiter in Section 10.6.2.

Figure 5.5 shows the schematic of a 4-bit arbiter. The individual grant requests
must check if a lower bit has already won the arbitration. For the first request,
the grant g0 depends only on the request r®. The second grant can only win the
arbitration when request r1 is asserted and request r® is deasserted. For the next
requests, the lookup is further chained.

The following code shows an arbiter for 3 clients.

val grant = VecInit(false.B, false.B, false.B)
val notGranted = VecInit(false.B, false.B)

grant (0) := request(0)

notGranted(0) := !grant(0)

grant (1) := request(l) && notGranted(0)
notGranted(l) := !grant(l) && notGranted(0)
grant (2) := request(2) && notGranted(l)

The code is the same as the schematic in Figure 5.5 (except we show the code only
for a 3-bit arbiter). We use vectors of Bool to represent the request, grant, and not-
granted chain. We can see that grant (9) depends only on request(0). notGranted
is used to chain the information that no lower-bit requests have been granted.

Small arbiters can also be directly described with a logic table. The following
code shows the table for a 3-bit arbiter.

val grant = WireDefault("b0OOO".U(3.W))
switch (request) {

is ("b000".U) { grant := "b0OO".U}
is ("bOO1".U) { grant := "bOOL".U}
is ("b010".U) { grant := "b010".U}

68 Index Contents

5.4 ARBITER

—1r0 g0 —

—r
-

| 92_

g
g3 —

Figure 5.5: A 4-bit arbiter.

Contents Index 69

5 COMBINATIONAL BUILDING BLOCKS

— 10 —» — g0 —»

— r1 —» — g1 —» — d0 —»
Arbiter Encoder

— r2 —» — g2 —>| — di —»

— 13 —» — g3 — ¥

Figure 5.6: With an arbiter and an encoder, we can build a priority encoder.

is ("b0O11".U) { grant := "b0OO1".U}
is ("b100".U) { grant := "b100".U}
is ("b101".U) { grant := "b0OO1".U}
is ("b110".U) { grant := "b010".U}
is ("b111".U) { grant := "b001".U}

However, for larger arbitration circuits, we will use our newly learned trick of a
for loop as a generator loop. The following code shows a parameterized arbiter for
n requests and grants. Here we use again Vec of Bool.

val grant = VecInit.fill(n)(false.B)
val notGranted = VecInit.fill(n)(false.B)

grant (0) := request(0)
notGranted(0) := !grant(0)
for (i <- 1 until n) {
grant(i) := request(i) && notGranted(i-1)
notGranted(i) := !grant(i) && notGranted(i-1)
}

The code shown above is the loop version of the initial arbiter version. It generates
the arbitration circuit for n requests. The small difference to the manual version
(unrolled loop) is that we generate a notGranted wire also for the last request (n -
1). That wire is not used and the synthesize tool will optimize it away.

70 Index Contents

5.5 PRIORITY ENCODER

— a —¥ a== — equ —»
Comparator
— b —» a>b —gt—»

Figure 5.7: A simple comparator.

5.5 Priority Encoder

With our original encoder design, we had to assume that the input was one-hot
encoded, meaning only one bit is allowed to be 1. Inputs with several bits set are
illegal and lead to undefined behavior.

We can solve this problem by combining the encoder with an arbitration circuit,
which selects only the highest-priority bit set. When we feed the output of the arbiter
into an encoder, we create a priority encoder. Figure 5.6 shows the schematic.

5.6 Comparator

As the last circuit for the chapter on combinational building blocks, we present the
comparator. Figure 5.7 shows the schematic of a comparator. It has two multi-bit
inputs and compares those two values. It has two outputs: (1) signaling that a and
b are equal (equ) and (2) that a is greater than b. These two outputs are enough for
all possible comparisons. For example, if equ or gt are asserted, we know that the
condition a >= b is true. For the condition a <= b, we test for not gt.

The following code snippet shows the comparator. As you can see, these are just
two lines of Chisel code. Therefore, compare functions are usually directly used in
other components and not wrapped into a module.

val equ = a ===
val gt = a > b

Contents Index 71

5 COMBINATIONAL BUILDING BLOCKS

5.7 Exercise

Describe a combinational circuit to convert a 4-bit binary input to the encoding of
a 7-segment display. You can either define the codes for the decimal digits, which
was the initial usage of a 7-segment display, or additionally, define encodings for
the remaining bit pattern to be able to display all 16 values of a single digit in
hexadecimal. When you have an FPGA board with a 7-segment display, connect
four switches or buttons to the input of your circuit and the output to the 7-segment
display.

72 Index Contents

https://en.wikipedia.org/wiki/Seven-segment_display
https://en.wikipedia.org/wiki/Hexadecimal

6 Sequential Building Blocks

Sequential circuits are circuits where the output depends on the input and previous
values. As we are interested in synchronous design (clocked designs), we mean
synchronous sequential circuits when we talk about sequential circuits.! To build
sequential circuits, we need elements that can store state: the so-called registers.

6.1 Registers

The fundamental elements for building sequential circuits are registers. A register is
a collection of D flip-flops. A D flip-flop captures the value of its input at the rising
edge of the clock and stores it at its output. In other words, the register updates its
output with the value of the input on the rising edge of the clock.

Figure 6.1 shows the schematic symbol of a register. It contains an input D and
an output Q. Each register also contains an input for a clock signal. This global
clock signal is connected to all registers in a synchronous circuit, so it is usually not
drawn in the schematics. The little triangle on the bottom of the box symbolizes the
clock input and tells us this is a register. We omit the clock signal in the following

"We can also build sequential circuits with asynchronous logic and feedback, but this is a niche topic
and cannot be easily expressed in Chisel.

A

— clock —‘

Figure 6.1: A D flip-flop-based register.

73

https://en.wikipedia.org/wiki/Flip-flop_(electronics)#D_flip-flop

6 SEQUENTIAL BUILDING BLOCKS

schematics. The omission of the global clock signal is also reflected by Chisel,
where no explicit connection of a signal to the register’s clock input is needed. In
Chisel a register with input d and output q is defined with:

val g = RegNext(d)

Note that we do not need to connect a clock to the register; Chisel implicitly does
this. A register’s input and output can be arbitrarily complex types made from a
combination of vectors and bundles.

A register can also be defined and used in two steps:

val delayReg = Reg(UInt(4.W))
delayReg := delaylIn

First, we define the register and give it a name. Second, we connect the signal
delayIn to the input of the register. Note also that the name of the register contains
the string Reg. To easily distinguish between combinational and sequential circuits,
it is common practice to have the marker Reg as part of the name.

A register can be initialized on reset. The reset signal is, like the clock signal,
implicit in Chisel. We supply the reset value, for example, zero, as a parameter
to the register constructor RegInit. The input for the register is connected with a
Chisel assignment statement.

val valReg = RegInit(0.U(4.W))
valReg := inVal

The default reset implementation in Chisel is a synchronous reset.> For a syn-
chronous reset, no change is needed in the D flip-flop itself; instead, a multiplexer
must be added to the input that selects between the initialization value under reset
and the data value. Figure 6.2 shows the schematic of a register with a synchronous
reset where the reset drives the multiplexer. However, because synchronous reset
is used quite often, modern FPGA flip-flops contain a synchronous reset (and set)
input to the flip-flop to avoid wasting LUT resources for the multiplexer.

Sequential circuits change their value over time. Therefore, their behavior can be
described by a diagram showing the signals over time. Such a diagram is called a
waveform or timing diagram.

2Support for asynchronous reset is available.

74 Index Contents

https://en.wikipedia.org/wiki/Digital_timing_diagram

6.1 REGISTERS

/@— 19581

— init —»

- data —»

A

Figure 6.2: A D flip-flop based register with a synchronous reset.

cock T LI LI LI LILILIL
| | |

reset 1 : :
| |

I
]
invVal h3 ks X
I I I I
valReg : o ks X 2 A7
1 2 3 4 5 6 7

Figure 6.3: A waveform diagram for a register with a reset.

Contents Index 75

6 SEQUENTIAL BUILDING BLOCKS

o|qeus —

- data

Figure 6.4: A D flip-flop-based register with an enable signal.

Figure 6.3 shows a waveform for the register with a reset and some input data
applied to it. Time advances from left to right. On top of the figure, we see the clock
that drives our circuit. In the first clock cycle (1), the register content is undefined
before a reset. in the second clock cycle, reset is asserted high, and on the rising
edge of this clock cycle, the register takes the initial value 8. Input inVal is ignored.
In the next clock cycle, reset is 8, and the value of inVal is captured on the next
rising edge. From then on, reset stays 0, as it should be, and the register output
follows the input signal with one clock cycle delay.

Waveforms are an excellent tool to specify the behavior of a circuit graphically.
Timing diagrams are convenient, especially in more complex circuits where many
operations happen in parallel and data moves pipelined through the circuit. Chisel
testers can also produce waveforms during testing that can be displayed with a wave-
form viewer and used for debugging.

A common design pattern is a register with an enable signal. When the enable
signal is true (high) the register captures the input; otherwise, it keeps its old value.
The enable can be implemented, similar to the synchronous reset, with a multiplexer
at the input of the register. One input to the multiplexer is the feedback of the output
of the register.

Figure 6.4 shows the schematic of a register with an enable signal. As this is also
a common design pattern, modern FPGA flip-flops contain a dedicated enable input,
and no additional (LUT) resources are needed to implement the register enable.

Figure 6.5 shows an example waveform for a register with enable. Most of the
time, enable is high (true) and the register follows the input with one clock cycle
delay. Only in the fourth clock cycle enable is low, and the register keeps its value

76 Index Contents

6.1 REGISTERS

clock ﬁw
enable i i i_il
ival 23 s e)z)7)4

enableReg A2 h 3 > A W

Figure 6.5: A waveform diagram for a register with an enable signal.

(5) in clock cycle 5.

A register with an enable can be described in a few lines of Chisel code with a
conditional update:

val enableReg = Reg(UInt(4.W))

when (enable) {
enableReg := inVal
}

Using an enable signal for a register is so common that Chisel defines RegEnable
where the second parameter is the enable signal:

val enableReg2 = RegEnable(inVal, enable)

A register with enable can also be reset:

val resetEnableReg = RegInit(0.U(4.W))

when (enable) {
resetEnableReg := inVal

}

The functionality of register initialization at reset and enable can be combined when
using the three-parameter version of RegEnable. The first parameter is the input
signal, the second parameter is the initialization value, and the third parameter is
the enable signal:

Contents Index 77

6 SEQUENTIAL BUILDING BLOCKS

\

Figure 6.6: An adder and a register result in counter.

val resetEnableReg2 = RegEnable(inVal, 0.U(4.W), enable)

A register can also be part of an expression without giving it a name. The follow-
ing circuit detects the rising edge of a signal by comparing its current value with the
one from the last clock cycle (the delayed value).

val risingEdge = din & !RegNext(din)

Now that we have explored all the basic register uses, we put those registers to
good use and build more interesting sequential circuits. For the next schematics, we
will further simplify the register symbol and omit the D for the input and the Q for
the output.

6.2 Counters

One of the most basic sequential circuits is a counter. In its simplest form, a counter
is a register where the output is connected to an adder, and the adder’s output is
connected to the input of the register. Figure 6.6 shows such a free-running counter.

A free-running counter with a 4-bit register counts from O to 15 and then wraps
around to 0 again. A counter shall also be reset to a known value.

val cntReg = RegInit(0.U(4.W))
cntReg := cntReg + 1.U

When we want to count events, we use a condition to increment the counter, as
shown in Figure 6.7 and in the following code.

78 Index Contents

6.2 COUNTERS

Juane

1T—»

\
\

\4

Figure 6.7: Counting events.

val cntEventsReg = RegInit(0.U(4.W))
when(event) {

cntEventsReg := cntEventsReg + 1.0

}

6.2.1 Counting Up and Down

To count up to a value and then restart with 8, we need to compare the counter value

with a maximum constant (N in the following examples), for example, with a when
conditional statement.

val cntReg = RegInit(0.U(8.W))

cntReg := cntReg + 1.U

when(cntReg === N) {
cntReg := 0.0

}

We can also use a multiplexer for our counter:
val cntReg = RegInit(0.U(8.W))

cntReg := Mux(cntReg === N, 0.U, cntReg + 1.U)

If we are in the mood of counting down, we start by resetting the counter register
Contents

Index 79

6 SEQUENTIAL BUILDING BLOCKS

with the maximum value and reset the counter to that value when reaching 0.

val cntReg = RegInit(N)

cntReg := cntReg - 1.U

when(cntReg === 0.0) {
cntReg := N

}

As we are coding and using more counters, we can define a function with a param-
eter to generate a counter for us.

// This function returns a counter

def genCounter(n: Int) = {
val cntReg = RegInit(0.U(8.W))
cntReg := Mux(cntReg === n.U, 0.U, cntReg + 1.0U)
cntReg

}

// now we can easily create many counters
val countl® = genCounter (10)
val count99 = genCounter (99)

The last statement of the function genCounter is the return value of the function, in
this example, the output of the counting register cntReg.

Note that in all the examples, our counter had values between 0 and N, including
N. To count 10 clock cycles, we need to set N to 9. Setting N to 10 would be a classic
example of an off-by-one error.

6.2.2 Generating Timing with Counters

Besides counting events, counters are often used to generate a notion of time (time
as wall clock time). A synchronous circuit runs with a clock with a fixed fre-
quency. The circuit proceeds in those clock ticks. There is no notion of time in a
digital circuit other than counting clock ticks. If we know the clock frequency, we
can generate circuits that generate timed events, such as blinking an LED at some
frequency, as shown in the Chisel “Hello World” example.

A common practice is to generate single-cycle ticks with a frequency f;q« that
we need in our circuit. That tick occurs every n clock cycle, where n = fijock/ frick
and the tick is precisely one clock cycle long. This tick is not used as a derived

80 Index Contents

https://en.wikipedia.org/wiki/Off-by-one_error

6.2 COUNTERS

cock T LT LT LT LTLT LT LT LT LT L
|
reset 1 |

1
1
tick I \

counter

/—\§
2z Y o

<
=

1

Figure 6.8: A waveform diagram for generating a slow frequency tick.

clock, but as an enable signal for registers in the circuit that shall logically operate
at frequency f;. Figure 6.8 shows an example of a tick generated every 3 clock
cycles.

In the following circuit, we describe a counter that counts from 0 to the maximum
value of N - 1. When the maximum value is reached, the tick is true for a single
cycle, and the counter is reset to 8. When we count from 8 to N - 1, we generate
one logical tick every N clock cycles.

val tickCounterReg = RegInit(0.U(32.W))

val tick = tickCounterReg === (N-1).U
tickCounterReg := tickCounterReg + 1.U
when (tick) {

tickCounterReg := 0.U
3

This logical timing of one tick every n clock cycles can then be used to advance
other parts of our circuit with this slower, logical clock. In the following code, we
use just another counter that increments by 1 every n clock cycles.

val lowFrequCntReg = RegInit(0.U(4.W))
when (tick) {

lowFrequCntReg := lowFrequCntReg + 1.U
}

Figure 6.9 shows the waveform of the tick and the slow counter that increments
every tick (n clock cycles).
Examples of the usage of this slower logical clock are: blinking an LED, gen-

Contents Index 81

6 SEQUENTIAL BUILDING BLOCKS

Figure 6.9: Using the slow frequency tick.

erating the baud rate for a serial bus,> generating signals for 7-segment display
multiplexing, and subsampling input values for debouncing buttons and switches.

Although width inference should size the registers, it is better to explicitly specify
the width with the type at the register definition or with the initialization value.
Explicit width definition can avoid surprises when a reset value of 0.U results in a
counter with a width of a single bit.

6.2.3 The Nerd Counter

Sometimes, some of us feel like being a nerd. For example, we want to design a
highly optimized version of our counter/tick generation. A standard counter needs
the following resources: one register, one adder (or subtractor), and a comparator.
We cannot do much about the register or the adder. If we count up, we need to
compare against a number, which is a bit string. The comparator can be built from
inverters for the zeros in the bit string and a large AND gate. When counting down
to zero, the comparator is a large NOR gate, which might be slightly cheaper than
the comparator against a constant in an ASIC. In an FPGA, where logic is built
out of lookup tables, there is no difference between comparing against O or 1. The
resource requirement is the same for the up and down counter.

However, there is still one more trick a clever hardware designer can pull off.
Counting up or down needed a comparison against all counting bits so far. What if
we count from N-2 down to -1? A negative number has the most significant bit set
to 1, and a positive number has this to 0. We must only check this bit to detect that
our counter reached -1. Here it is, the counter created by a nerd:

3Baud rate is a measure of information transmission speed, often in bits per second. It must be equiva-
lent to the transmitter and receiver.

82 Index Contents

https://en.wikipedia.org/wiki/Nerd

6.2 COUNTERS

val MAX = (N - 2).S(8.W)
val cntReg = RegInit (MAX)
io.tick := false.B

cntReg := cntReg - 1.S

when(cntReg (7)) {
cntReg := MAX
io.tick := true.B

6.2.4 A Timer

Another form of timer we can design is a one-shot timer. A one-shot timer is like
a kitchen timer: you set the number of minutes and press start. When the specified
amount of time has elapsed, the alarm sounds. The digital timer is loaded with the
time in clock cycles. Then it counts down until reaching zero. At zero, the timer
asserts done.

Figure 6.10 shows the block diagram of a timer. The register can be loaded with
the value of din by asserting load. When the load signal is deasserted, counting
down is selected (by selecting cntReg - 1 as the input for the register). When the
counter reaches 0, the signal done is asserted, and the counter stops counting by
selecting the ® input of the multiplexer.

Listing 6.1 shows the Chisel code for the timer. We use an 8-bit register cntReg
that is reset to 8. The boolean value done is the result of comparing cntReg with
0. For the input multiplexer, we introduce the wire next with a default value of 0.
The when/elsewhen block introduces the other two inputs with the select function.
The signal load has priority over the decrement selection. The last line connects the
multiplexer, represented by next, to the input of the register cntReg.

If we aim for a bit more concise code, we can directly assign the multiplexer
values to the register reg, instead of using the intermediate wire next.

6.2.5 Pulse-Width Modulation

Pulse-width modulation (PWM) is a signal with a constant period and a modulation
of the time the signal is high within that period.

Figure 6.11 shows a PWM signal. The arrows point to the start of the periods of
the signal. The percentage of time the signal is high is called the duty cycle. In the

Contents Index 83

https://en.wikipedia.org/wiki/Pulse-width_modulation

6 SEQUENTIAL BUILDING BLOCKS

\/

—> next — cntReg =0 ¢ done —»

Select

Figure 6.10: A one-shot timer.

val cntReg = RegInit(0.U(8.W))
val done = cntReg === 0.U

val next = WireDefault(0.U)
when (load) {

next := din
} .elsewhen (!done) {
next := cntReg - 1.U
}
cntReg := next
Listing 6.1: A one-shot timer
PWM

gyl
Prrrrt

Figure 6.11: Pulse-width modulation.

84 Index Contents

6.2 COUNTERS

first two periods, the duty cycle is 25 %; in the next two, 50 %, and in the last two
cycles, it is 75 %. The pulse width is modulated between 25 % and 75 %.

Adding a low-pass filter to a PWM signal results in a simple digital-to-analog
converter. The low-pass filter can be as simple as a resistor and a capacitor.

The following code example will generate a waveform with 3 clock cycles high
every 10 clock cycles.

def pwm(nrCycles: Int, din: UInt) = {
val cntReg =
RegInit (0.U(unsignedBitLength(nrCycles-1).W))

cntReg := Mux(cntReg === (nrCycles-1).U, 0.U, cntReg +
1.0)
din > cntReg

}

val din = 3.U
val dout = pwm(10, din)

We use a function for the PWM generator to provide a reusable, lightweight com-
ponent. The function has two parameters: a Scala integer configuring the PWM
with the number of clock cycles (nrCycles) and a Chisel wire (din) that gives the
duty cycle (pulse width) for the PWM output signal. We use a multiplexer in this
example to express the counter. The last line of the function compares the counter
value with the input value din to return the PWM signal. The last expression in a
Chisel function is the return value, the wire connected to the compare function.

We use the function unsignedBitLength(n) to specify the number of bits for
the counter cntReg needed to represent unsigned numbers up to (and including) n.*
Chisel also has a function signedBitLength to provide the number of bits for a
signed representation of a number.

One application of a PWM signal is to dim an LED. In that case, the eye serves
as a low-pass filter. We expand the above example to drive the PWM generation by
a triangular function. The result is an LED with continuously changing intensity.

val FREQ = 100000000 // a 100 MHz clock input
val MAX = FREQ/1000 // 1 kHz

val modulationReg = RegInit(0.U(32.W))

4The number of bits to represent an unsigned number 7 in binary is |logz(n) |+ 1.

Contents Index 85

https://en.wikipedia.org/wiki/Low-pass_filter
https://en.wikipedia.org/wiki/Digital-to-analog_converter
https://en.wikipedia.org/wiki/Digital-to-analog_converter

6 SEQUENTIAL BUILDING BLOCKS

— din —»

~ dout »

\
\
\ 4

A A A A

Figure 6.12: A 4-stage shift register.

val upReg = RegInit(true.B)

when (modulationReg < FREQ.U && upReg) {

modulationReg := modulationReg + 1.U

} .elsewhen (modulationReg === FREQ.U && upReg) {
upReg := false.B

} .elsewhen (modulationReg > 0.U && !upReg) {
modulationReg := modulationReg - 1.U

} .otherwise { // 0
upReg := true.B

3

// divide modReg by 1024 (about the 1 kHz)
val sig = pwm(MAX, modulationReg >> 10)

We use two registers for the modulation: (1) modulationReg for counting up and
down and (2) upReg as a flag to determine if we shall count up or down. We count
up to the frequency of our clock input (100 MHz in our example), which results in a
signal of 0.5 Hz. The lengthy when/.elsewhen/.otherwise expression handles the
up- or down-counting and the direction switch.

As our PWM counts only up to the 1000th of the frequency to generate a 1 kHz
signal, we need to divide the modulation signal by 1000. As real division is very
expensive in hardware, we simply shift by 10 to the right, which equates to a division
by 2!% = 1024. As we have defined the PWM circuit as a function, we can simply
instantiate that circuit with a function call. Wire sig represents the modulated PWM
signal.

86 Index Contents

6.3 SHIFT REGISTERS

6.3 Shift Registers

A shift register is a collection of flip-flops connected in a sequence. Each output of
a flip-flop is connected to the input of the next flip-flop. Figure 6.12 shows a 4-stage
shift register. The circuit shifts the data from left to right on each clock tick. In this
simple form the circuit implements a 4 cycle delay from din to dout.

The Chisel code for this simple shift register (1) creates a 4-bit register shiftReg;
(2) concatenates the lower 3 bits of the shift register with the input din for the next
input to the register; and (3) uses the most significant bit (MSB) of the register as
the output dout.

val shiftReg = Reg(UInt(4.W))
shiftReg := shiftReg(2, 0) ## din
val dout = shiftReg(3)

Shift registers are often used to convert from serial data to parallel data or from
parallel data to serial data. Section 11.2 shows a serial port that uses shift registers
for the receive and send functions.

6.3.1 Shift Register with Parallel Output

A serial-in parallel-out configuration of a shift register transforms a serial input
stream into parallel words. This may be used in a serial port (UART) for the receive
function. Figure 6.13 shows a 4-bit shift register, where each flip-flop output is
connected to one output bit. After four clock cycles, this circuit converts a 4-bit
serial data word to a 4-bit parallel data word available in q. In this example, we
assume that bit 0 (the least significant bit) is sent first and therefore arrives in the
last stage when we want to read the full word.

In the following Chisel code, we initialize the shift register outReg with 0. Then
we shift in from the MSB, which means a right shift. The parallel result, g, is just
the reading of the register outReg.

val outReg = RegInit(0.U(4.W))
outReg := serIn ## outReg(3, 1)
val g = outReg

Figure 6.13 shows a 4-bit shift register with a parallel output function.

Contents Index 87

https://en.wikipedia.org/wiki/Shift_register

6 SEQUENTIAL BUILDING BLOCKS

q3

q2

ql

Y

— serln —»

AN

AN

\4

\4

AN

A

Figure 6.13: A 4-bit shift register with parallel output.

|
d2

L]
0> L

A

d3

/a— pEO| |
/a— pEO| |

Figure 6.14: A 4-bit shift register with parallel load.

A

|
di

L]
1.

/a— pEO| |

6.3.2 Shift Register with Parallel Load

|
do

A

N
IN

/4— PEO| —

q0

— serOut —»

A parallel-in serial-out configuration of a shift register transforms a parallel input
stream of words (bytes) into a serial output stream. This may be used in a serial port

(UART) for the transmit function.
Figure 6.14 shows a 4-bit shift register with a parallel load function. The Chisel

description of that function is relatively straightforward:

val loadReg = RegInit(0.U(4.W))

when (load) {
loadReg := d
} otherwise {
loadReg := 0.

}

val serOut = loadReg(0)

U ## loadReg(3, 1)

Note that we are now shifting to the right, filling in zeros at the MSB.

88

Index

Contents

6.4 MEMORY

— rdAddr —| — rdData

— wrAddr —»|

— wrData —»|

— wrEna —»|

Memory

Figure 6.15: A synchronous memory.

6.4 Memory

A memory can be built out of a collection of registers, in Chisel a Reg of a Vec.
However, this is expensive in hardware, and larger memory structures are built as
SRAM. For an ASIC, a memory compiler constructs memories. FPGAs contain on-
chip memory blocks, also called block RAMs. Those on-chip memory blocks can
be combined for larger memories. Memories in an FPGA usually have one read and
one write port or two ports that can be switched between read and write at runtime.

FPGAs (and also ASICs) usually support synchronous memories. Synchronous
memories have registers on their inputs (read and write address, write data, and
write enable). That means the read data is available one clock cycle after setting the
address.

Figure 6.15 shows the schematics of such a synchronous memory. The memory
is dual-ported with one read port and one write port. The read port has a single
input, the read address (rdAddr), and one output, the read data (rdData). The write
port has three inputs: the address (wrAddr), the data to be written (wrData), and a

Contents Index 89

https://en.wikipedia.org/wiki/Static_random-access_memory

6 SEQUENTIAL BUILDING BLOCKS

class Memory () extends Module {

val io = IO(new Bundle {
val rdAddr = Input(UInt(10.W))
val rdData = Output(UInt(8.W))
val wrAddr = Input(UInt(10.W))
val wrData = Input(UInt(8.W))
val wrEna = Input(Bool())

b

val mem = SyncReadMem (1024, UInt(8.W))
io.rdData := mem.read(io.rdAddr)
when(io.wrEna) {

mem.write(io.wrAddr, io.wrData)

}

Listing 6.2: 1 KiB of synchronous memory.

write enable (wrEna). Note that for all inputs, there is a register within the memory
showing the synchronous behavior.

To support on-chip memory, Chisel provides the memory constructor SyncReadMem.
Listing 6.2 shows a component Memory that implements 1 KiB of memory with byte-
wide input and output data and a write enable.

An interesting question is which value is returned from a read when in the same
clock cycle, a new value is written to the same address that is read out. We are inter-
ested in the read-during-write behavior of the memory. There are three possibilities:
the newly written value, the old value, or undefined (which might be a mix of some
bits from the old value and some of the newly written data). Which possibility is
available in an FPGA depends on the FPGA type and sometimes can be specified.
Chisel documents that the read data is undefined.

If we want to read out the newly written value, we can build a forwarding circuit
that detects that the addresses are equal and forwards the write data. Figure 6.16
shows the memory with the forwarding circuit. Read and write addresses are com-
pared and gated with the write enable to select between the forwarding path of the
write data or the memory read data. The write data is delayed by one clock cycle

90 Index Contents

6.4 MEMORY

Yy

rdData —»

»
>

- | I—
AND
rdAddr >
A
wrAddr —»|
A
wrData >
A
wrEna »
A Memory
L
JAN

dout —»

Figure 6.16: A synchronous memory with forwarding for a defined read-during-

write behavior.

Contents

Index

91

6 SEQUENTIAL BUILDING BLOCKS

class ForwardingMemory () extends Module {
val io = IO(new Bundle {
val rdAddr = Input(UInt(10.W))
val rdData = Output(UInt(8.W))
val wrAddr = Input(UInt(10.W))
val wrData = Input(UInt(8.W))
val wrEna = Input(Bool())
b

val mem = SyncReadMem (1024, UInt(8.W))
val wrDataReg = RegNext(io.wrData)
val doForwardReg = RegNext(io.wrAddr === io.rdAddr &&
io.wrEna)
val memData = mem.read(io.rdAddr)
when(io.wrEna) {
mem.write(io.wrAddr, io.wrData)

}

io.rdData := Mux(doForwardReg, wrDataReg, memData)

Listing 6.3: A memory with a forwarding circuit.

with a register.

Listing 6.3 shows the Chisel code for a synchronous memory including the for-
warding circuit. We need to store the written data in a register (wrDataReg) to be
available in the next clock cycle to fit the synchronous memory that also provides
the read value in the next clock cycle. We compare the two input addresses (wrAddr
and rdAddr) and check if wrEna is true for the forwarding condition. That condition
is also delayed by one clock cycle. A multiplexer selects between the forwarding
(write) data or the read data from memory.

As this pattern is common, Chisel provides an optional parameter in SyncReadMem
to define the read-during-write behavior. WriteFirst generates Verilog code that in-
cludes the forwarding if needed. The other two options are ReadFirst and Undefined.

92 Index Contents

6.4 MEMORY

val hello = "Hello, World!"

val helloHex =
hello.map(_.toInt.toHexString).mkString("\n")

val file = new java.io.PrintWriter("hello.hex")

file.write(helloHex)

file.close()

val mem = SyncReadMem (1024, UInt(8.W))
loadMemoryFromFileInline (mem, "hello.hex",
firrtl.annotations.MemoryLoadFileType.Hex)

Listing 6.4: Memory initialization.

val mem = SyncReadMem (1024, UInt(8.W),
SyncReadMem.WriteFirst)

Memories in FPGAs can be initialized with either binary or hexadecimal initial-
ization files. The files are simple ASCII text files with the same number of lines as
there are entries in the corresponding memory. Each character represents either a
single bit or four bits. Traditionally, binary files use the .bin file extension, while
hexadecimal files use .hex. Using loadMemoryFromFile will result in the emission
of a separate Verilog file and works in ChiselTest. Initializations are based on calls
to readmemb or readmemh.

To initialize on-chip memory from Scala during generation time, we need to first
write the content into a file and then use loadMemoryFromFile. Listing 6.4 shows an
example of initializing a memory with a string.

Chisel also provides Mem, representing a memory with synchronous write and an
asynchronous read. As this memory type is usually not directly available in an
FPGA, the synthesize tool will build it out of flip-flops. Therefore, we recommend
using SyncReadMem. If asynchronous read behavior is needed and the resources
are available in the FPGA you are using (e.g., as a LUT RAM on Xilinx FPGAs),
you can manually implement this as a BlackBox. Vendors typically provide code
templates that can be used directly for this.

Contents Index 93

6 SEQUENTIAL BUILDING BLOCKS

6.5 Exercises

Use the 7-segment encoder from the last exercise and add a 4-bit counter as input to
switch the display from ® to F. When you directly connect this counter to the clock
of the FPGA board, you will see all 16 numbers overlapped (all 7 segments will
light up). Therefore, you need to slow down the counting. Create another counter
that can generate a single-cycle tick signal every 500 milliseconds. Use that signal
as enable signal for the 4-bit counter.

Construct a PWM waveform with a generator function and set the threshold with
a function (triangular or a sine function). A triangular function can be created by
counting up and down. A sine function can be created with a lookup table that you
can generate with a few lines of Scala code (see Section 10.3). Drive an LED on an
FPGA board with that modulated PWM function. What frequency shall your PWM
signal be? What frequency is the driver running?

Digital designs are often sketched as a circuit on paper. Not all details need to be
shown. We use block diagrams, like in the figures in this book. It is an important
skill to be able to fluently translate between a schematic representation of the circuit
and a Chisel description. Sketch the block diagram for the following circuits:

val dout = WireDefault(0.U)

switch(sel) {
is(0.U) { dout := 0.U }

is(1.U) { dout := 11.U }
is(2.U0) { dout := 22.U }
is(3.U) { dout := 33.U }
is(4.U) { dout := 44.U }
is(5.U0) { dout := 55.U }

}

Here is a slightly more complex circuit containing a register:

val regAcc = RegInit(0.U(8.W))

switch(sel) {
is(0.U) { regAcc regAcc}
is(1.U) { regAcc := 0.U}
is(2.U0) { regAcc regAcc + din}
is(3.U) { regAcc regAcc - din}
}

94 Index Contents

6.5 EXERCISES

As an advanced exercise, try using an on-chip memory. Instantiate a SyncReadMem
and create two communicating state machines. The first state machine writes a
string into the memory. When done, it starts the second state machine that reads
back the string from the memory. Test with simple printf statements in the reading
state machine. Be careful in the reading that the read value comes one clock cycle
later than applying the address to the memory. You can extend that example by
writing a Chisel test to test the memory.

Sometimes, one would like to download the content of a memory from a laptop,
e.g., when building a processor to load a program. Assume you have a serial port
(see Section 11.2) that connects your FPGA board to your laptop. Can you envision
a protocol on the serial port with a state machine in the FPGA to download memory
content into the FPGA after configuring it? Downloading at runtime also avoids
synthesizing for the FPGA again after the memory content changes.

Contents Index 95

7 Input Processing

Input signals from the external world into our synchronous circuit are usually not
synchronous to the clock; they are asynchronous. An input signal may come from a
source that does not have a clean transition from O to 1 or 1 to 0. An example is a
bouncing button or switch. Input signals may be noisy with spikes that could trigger
a transition in our synchronous circuit. This chapter describes circuits that deal with
such input conditions.

The latter two issues, debouncing switches and filtering noise, can also be solved
with external, analog components. However, it is more cost-efficient to deal with
those issues in the digital domain.

7.1 Asynchronous Input

Input signals that are not synchronous to the system clock are called asynchronous
signals. Those signals may violate the setup and hold time of the input of a flip-flop.
This violation may result in metastability of the flip-flop. The metastability may
result in an output value between 0 and 1, or it may result in oscillation. However,
after some time, the flip-flop will stabilize at O or 1.

Another common issue with external, asynchronous input signals is when that
signal changes close to the rising clock edge and is used in more than one place of
the circuit. Due to different delay times, those different usages of that input may be
registered at different clock cycles, which might violate some assumptions.!

We cannot avoid metastability, but we can contain its effects. A classic solution
is to use two flip-flops at the input. The assumption is that when the first flip-flop
becomes metastable, it will resolve to a stable state within the clock period so that
the setup and hold times of the second flip-flop will not be violated.

Figure 7.1 shows the border between the external world and the synchronous
circuit. The input synchronizer consists of two flip-flops. The Chisel code for the
input synchronizer is a one-liner that instantiates two registers.

1T experienced this issue once, and it took me quite some time to find the error.

97

https://en.wikipedia.org/wiki/Metastability_(electronics)

7 INPUT PROCESSING

Synchronous circuit

— btn »

\4
\4

~ btnSync —»

External world

Figure 7.1: Input synchronizer.

val btnSync = RegNext(RegNext(btn))

All asynchronous external signals need an input synchronizer.” We also need to
synchronize an external reset signal, also called the global reset. The reset signal
shall pass through the two flip-flops before it is used as the reset signal for other flip-
flops in the circuit. Concretely, the deassertion of the reset needs to be synchronous
to the clock.

7.2 Debouncing

Switches and buttons may need some time to transition between on and off. During
the transition, the switch may bounce between those two states. If we use such
a signal without further processing, we might detect more transition events than
we want to. One solution is to use time to filter out this bouncing. Assuming a
maximum bouncing time of #4,,,.. We will sample the input signals with a period
T > thounce- We will only use the sampled signal further downstream.

When sampling the input with this long period, we know that on a transition from
0 to 1, only one sample may fall into the bouncing region. The sample before will
safely read a 0, and the sample after the bouncing region will safely read a 1. The
sample in the bouncing region will either be 0 or 1. However, this does not matter

2The exception is when the input signal is dependent on a synchronous output signal, and we know the
maximum propagation delay. A classic example is the interfacing of an asynchronous SRAM to a
synchronous circuit, e.g., by a microprocessor.

98 Index Contents

7.2 DEBOUNCING

bouncing in

bt

debounced A

debounced B

Figure 7.2: Debouncing an input signal.

as it then belongs either to the still 0 samples or to the already 1 sample. The critical
point is that we have only one transition from O to 1.

Figure 7.2 shows the sampling for the debouncing in action. The top signal shows
the bouncing input, and the arrows below show the sampling points. The distance
between those sampling points must be longer than the maximum bouncing time.
The first sample safely samples a 0, and the last sample in the figure samples a
1. The middle sample falls into the bouncing time. It may either be O or 1. The
two possible outcomes are shown as debounced A and debounced B. Both have a
single transition from O to 1. The only difference between these two outcomes is
that the transition in version A is one sample period later. However, this is usually a
non-issue.

The Chisel code for the debouncing is a little bit more evolved than the code
for the synchronizer. We generate the sample timing with a counter that delivers a
single cycle tick signal, as we have done in Section 6.2.2.

val fac = 100000000/100

val btnDebReg = Reg(Bool())

val cntReg = RegInit(0.U(32.W))
val tick = cntReg === (fac-1).U

Contents Index 99

7 INPUT PROCESSING

cntReg := cntReg + 1.U
when (tick) {
cntReg := 0.U
btnDebReg := btnSync
}

First, we need to decide on the sampling frequency. The above example assumes
a 100 MHz clock and results in a sampling frequency of 100 Hz (assuming that the
bouncing time is below 10 ms). The maximum counter value is fac, the division
factor. We define a register btnDebReg for the debounced signal without a reset
value. The register cntReg serves as a counter, and the tick signal is true when the
counter has reached the maximum value. In that case, the when condition is true:
(1) the counter is reset to 0 and (2) the debounce register stores the input sample.
In our example, the input signal is named btnSync as the output from the input
synchronizer shown in the previous section.

The debouncing circuit comes after the synchronizer circuit. First, we need to
synchronize the asynchronous signal, and then we can further process it in the digital
domain.

7.3 Filtering of the Input Signal

Sometimes our input signal may be noisy, maybe containing spikes that we might
sample unintentionally with the input synchronizer and debouncing unit. One option
to filter those input spikes is to use a majority voting circuit. In the simplest case,
we take three samples and perform the majority vote. The majority function, which
is related to the median function, results in the value of the majority. In our case,
where we use sampling for the debouncing, we perform the majority voting on the
sampled signal. Majority voting ensures that the signal is stable for longer than the
sampling period.

Figure 7.3 shows the majority voting circuit. It consists of a 3-bit shift register
enabled by the tick signal we used for the debouncing sampling. The output of the
three registers is fed into the majority voting circuit. The majority voting function
filters any signal change shorter than the sample period.

The following Chisel code shows the 3-bit shift register, enabled by the tick
signal and the voting function, resulting in the signal btnClean.

Note that majority voting is very seldom needed.

100 Index Contents

https://en.wikipedia.org/wiki/Majority_function

7.3 FILTERING OF THE INPUT SIGNAL

- tick

en en en
A b A c

' '

Majority voting

- din

\/

«— » —

dout=(a&b)l(a&c)l(b&c)

dout

\

Figure 7.3: Majority voting on the sampled input signal.

Contents Index 101

7 INPUT PROCESSING

val shiftReg = RegInit(0.U(3.W))
when (tick) {
// shift left and input in LSB
shiftReg := shiftReg(l, 0) ## btnDebReg
}
// Majority voting
val btnClean = (shiftReg(2) & shiftReg(l)) | (shiftReg(2)
& shiftReg(®)) | (shiftReg(l) & shiftReg(0))

To use the output of our carefully processed input signal, we first detect the rising
edge with a RegNext delay element and then compare this signal with the current
value of btnClean. In this example, we use the single-cycle risingEdge signal to
increment a counter.

val risingEdge = btnClean & !RegNext(btnClean)

// Use the rising edge of the debounced and
// filtered button to count up
val reg = RegInit(0.U(8.W))
when (risingEdge) {
reg := reg + 1.U

3

7.4 Combining the Input Processing with Functions

To summarize the input processing, we show some more Chisel code. Because
the presented circuits are tiny but reusable building blocks, we encapsulate them
in functions. Section 10.2 shows how we can abstract small building blocks in
lightweight Chisel functions instead of full modules. Those Chisel functions create
hardware instances, e.g., the function sync creates two flip-flops connected to the
input and to each other. The function returns the output of the second flip-flop.
Listing 7.1 shows all input processing circuits as functions. If useful, those functions
can be elevated to some utility class object.

102 Index Contents

7.4 COMBINING THE INPUT PROCESSING WITH FUNCTIONS

def sync(v: Bool) = RegNext(RegNext(v))
def rising(v: Bool) = v & !RegNext(v)

def tickGen() = {
val reg = RegInit(0.U(log2Up(fac).W))

val tick = reg === (fac-1).U
reg := Mux(tick, 0.U, reg + 1.U)
tick

3

def filter(v: Bool, t: Bool) = {
val reg = RegInit(0.U(3.W))
when (t) {
reg := reg(l, 0) ## v
}
(reg(2) & reg(1)) | (reg(2) & reg(®)) | (reg(l) & reg(0))
}

val btnSync = sync(io.btnU)

val tick = tickGen()
val btnDeb = Reg(Bool())
when (tick) {
btnDeb := btnSync
3

val btnClean = filter(btnDeb, tick)
val risingEdge = rising(btnClean)

// Use the rising edge of the debounced
// and filtered button for the counter
val reg = RegInit(0.U(8.W))
when (risingEdge) {

reg := reg + 1.0

}

Listing 7.1: Summarizing input processing with functions.

Contents Index 103

7 INPUT PROCESSING

7.5 Synchronizing Reset

Any digital circuit needs a reset signal to reset registers to a defined state. The
reset state is set in Chisel with the RegInit constructor. A reset signal is usually an
asynchronous input to the circuit. That means when directly connected to the reset
of a flip-flop, it may violate timing constraints. In case of a synchronous reset it may
violate setup and hold times of the flip-flop. Also when used as an asynchronous
reset input, it still needs to be synchronized to the clock. Specifically, the release
of the reset signal needs to be synchronized to the clock. Another failure with an
asynchronous reset can be that different parts of the circuit may be reset in two
different clock cycles and therefore be inconsistent.

The solution for this issue is to synchronize the reset signal in the very same way
as any other asynchronous input with two flip-flops.

The reset and clock signals are usually hidden from the Chisel design. However,
it is possible to access and set those signals. Each module has an implicit field
reset. The solution is to have a top-level module that performs the synchronizing
of the external reset signals and connects that synchronized signal to the reset input
of the contained module.

class SyncReset extends Module {
val io = IO(new Bundle() {
val value = Output(UInt())
b

val syncReset = RegNext(RegNext(reset))
val cnt = Module(new WhenCounter (5))
cnt.reset := syncReset

io.value := cnt.io.cnt

In the above example, SyncReset is the top-level module that contains a counter
(WhenCounter). The reset signal of the top-level module is called reset and is
connected to the input synchronizer (RegNext (RegNext(reset))). The output of
that input synchronizer (syncReset) is connected to the reset input of the counter
(cnt.reset := syncReset).

104 Index Contents

7.6 EXERCISE

7.6 Exercise

Build a counter that is incremented by an input button. Display the counter value
in binary with the LEDs on an FPGA board. First, observe if there are issues with
a bouncing input button. Then resolve that issue by building the complete input
processing chain with: (1) an input synchronizer, (2) a debouncing circuit, (3) a
majority voting circuit to suppress noise, and (4) an edge detection circuit to trigger
the increment of the counter.

As there is no guarantee that a modern button will always bounce, you can simu-
late the bouncing and the spikes by pressing the button manually in fast succession
and using a low sample frequency. Select, e.g., one second as sample frequency, i.e.,
if the input clock runs at 100 MHz, divide it by 100,000,000. Simulate a bouncing
button several times in fast succession before settling to a stable press. Test your
circuit without and with the debouncing circuit sampling at 1 Hz. With the majority
voting, you need to press between one and two seconds for a reliable counter incre-
ment. Also, the release of the button is majority voted. Therefore, the circuit only
recognizes the release when it is longer than 1-2 seconds.

Contents Index 105

8 Finite-State Machines

A finite-state machine (FSM) is a basic building block in digital design. An FSM can
be described as a set of states and conditional (guarded) state transitions between
states. An FSM has an initial state, which is set on reset. FSMs are also called
synchronous sequential circuits.

An implementation of an FSM consists of three parts: (1) a register that holds the
current state, (2) combinational logic that computes the next state that depends on
the current state and the input, and (3) combinational logic that computes the output
of the FSM.

In principle, every digital circuit that contains a register or other memory elements
to store state can be described as a single FSM. However, this might not be practical.
For example, try to describe your laptop as a single FSM. In the next chapter, we
describe how to build larger systems out of smaller FSMs by combining them into
communicating FSMs.

8.1 Basic Finite-State Machine

Figure 8.1 shows the schematics of an FSM. The register contains the current state.
The next state logic computes the next state value (nextState) from the current
state and the input (in). On the next clock tick, state becomes nextState. The

state
Next Ouput
state |— nextState —» > p - out
loai logic
ogic
— in
A

Figure 8.1: A finite-state machine (Moore type).

107

8 FINITE-STATE MACHINES

bad event bad event

orange

Figure 8.2: The state diagram of an alarm FSM.

reset
— >

red/
ring bell

output logic computes the output (out). As the output depends on the current state
only, this state machine is called a Moore machine.

A state diagram describes the behavior of such an FSM visually. In a state dia-
gram, individual states are depicted as circles labeled with the state names. State
transitions are shown with arrows between states. The guard (or condition) when
this transition is taken is drawn as a label for the arrow.

Figure 8.2 shows the state diagram of a simple example FSM. The FSM has three
states: green, orange, and red, indicating a level of alarm. The FSM starts at the
green level. When a bad event happens, the alarm level is switched to orange. On
a second bad event, the alarm level is switched to red. In that case, we want to ring
a bell; ring bell is the only output of this FSM. We add the output to the red state.
The alarm can be reset with a clear signal.

Although a state diagram may be visually pleasing and the function of an FSM
can be grasped quickly, a state table may be quicker to write down. Table 8.1 shows
the state table for our alarm FSM. We list the current state, the input values, the
resulting next state, and the output value for the current state. In principle, we need
to specify all possible inputs for all possible states. This table would have 3 x4 =12
rows. We simplify the table by indicating that the clear input is a don’t care when
a bad event happens. That means bad event has priority over clear. The output
column has some repetition. If we have a larger FSM and/or more outputs, we can
split the table into two, one for the next state logic and one for the output logic.

Finally, after the design of our warning level FSM, we shall code it in Chisel.
Listing 8.1 shows the Chisel code for the alarm FSM. Note that we use the Chisel
type Bool for the inputs and the output of the FSM. To use the switch control in-
struction, we need to import chisel3.util._.

The complete Chisel code for this simple FSM fits into one page. Let us step

108 Index Contents

https://en.wikipedia.org/wiki/Moore_machine
https://en.wikipedia.org/wiki/State_diagram

8.1 BASIC FINITE-STATE MACHINE

import chisel3._
import chisel3.util._

class SimpleFsm extends Module {
val io = IO0O(new Bundle{
val badEvent = Input(Bool())
val clear = Input(Bool())
val ringBell = Output(Bool(Q))
b

// The three states

object State extends ChiselEnum {
val green, orange, red = Value

}

import State._

// The state register

val stateReg = RegInit(green)

// Next state logic
switch (stateReg) {
is (green) {
when(io.badEvent) {
stateReg := orange
3
}
is (orange) {
when(io.badEvent) {

stateReg := red
} .elsewhen(io.clear) {
stateReg := green
}
}
is (red) {
when (io.clear) {
stateReg := green
}
}
3
// Output logic
io.ringBell := stateReg === red

}

Listing 8.1: The Chisel code for the alarm FSM.

Contents Index

109

8 FINITE-STATE MACHINES

Table 8.1: State table for the alarm FSM.

Input

State Badevent Clear Nextstate Ring bell

green 0 0 green 0
green 1 - orange 0
orange 0 0 orange 0
orange 1 - red 0
orange 0 1 green 0
red - 0 red 1
red 0 1 green 1

through the individual parts. The FSM has two input signals and a single output
signal, captured in a Chisel Bundle:

val io = IO(new Bundle{
val badEvent = Input(Bool())
val clear = Input(Bool())
val ringBell = Output(Bool())
b

At this place, we could spend some discussion on optimal state encoding. Two
common options are binary or one-hot encoding. However, we leave those low-
level optimizations to the synthesize tool and aim for readable code.! Therefore, we
use the enumeration type ChiselEnum with symbolic names for the states:

object State extends ChiselEnum {
val green, orange, red = Value

3

import State._

The individual state values are enumerated in a comma-separated list, followed by
an assignment of Value. The register holding the state is defined with the green state
as the reset value:

val stateReg = RegInit(green)

UIn the current version of Chisel, the ChiselEnum type represents states in binary encoding. If we want
a different encoding, e.g., one-hot encoding, we can define Chisel constants for the state names.

110 Index Contents

8.2 FASTER OUTPUT WITH A MEALY FSM

The meat of the FSM is in the next state logic. We use a Chisel switch on the state
register to cover all states. Within each is branch we code the next state logic, which
depends on the inputs, by assigning a new value to the state register:

switch (stateReg) {

is (green) {

when(io.badEvent) {
stateReg := orange

}

}

is (orange) {
when(io.badEvent) {

stateReg := red
} .elsewhen(io.clear) {
stateReg := green
}
}
is (red) {
when (io.clear) {
stateReg := green
}
}

}
Last, but not least, we code our ringing bell output to be true when the state is red.
io.ringBell := stateReg === red

Note that we did not introduce a nextState signal for the register input, as it is
common practice in Verilog or VHDL. Registers in Verilog and VHDL are described
in a special syntax and cannot be assigned (and reassigned) within a combinational
block. Therefore, the additional signal, computed in a combinational block, is in-
troduced and connected to the register input. In Chisel a register is a base type and
can be freely used and assigned within a combinational block.

8.2 Faster Output with a Mealy FSM

On a Moore FSM, the output depends only on the current state. That means that a
change of an input can be seen as a change of the output no earlier than in the next
clock cycle. If we want to observe an immediate change, we need a combinational

Contents Index 111

8 FINITE-STATE MACHINES

AND risingEdge —»
bo g=ad

Figure 8.3: A rising edge detector (Mealy type FSM).

\4

— din

A

state
Next
state |— nextState —»| >
logic Output | out

—in logic
T /\

Figure 8.4: A Mealy type finite-state machine.

\ 4

path from the input to the output. Let us consider a minimal example, an edge
detection circuit. We have seen this Chisel one-liner before:

val risingEdge = din & !RegNext(din)

Figure 8.3 shows the schematic of the rising edge detector. The output becomes
1 for one clock cycle when the current input is 1 and the input in the last clock cycle
was 0. The state register is just a single D flip-flop where the next state is just the
input. We can also consider this as a delay element of one clock cycle. The output
logic compares the current input with the current state.

When the output depends also on the input, i.e., there is a combinational path
between the input of the FSM and the output, this is called a Mealy machine.

Figure 8.4 shows the schematic of a Mealy type FSM. Similar to the Moore FSM,
the register contains the current state, and the next state logic computes the next
state value (nextState) from the current state and the input (in). On the next clock
tick, state becomes nextState. The output logic computes the output (out) from

112 Index Contents

https://en.wikipedia.org/wiki/Mealy_machine

8.2 FASTER OUTPUT WITH A MEALY FSM

0/0 1/0
11

reset

0/0

Figure 8.5: The state diagram of the rising edge detector as Mealy FSM.

the current state and the input to the FSM.

Figure 8.5 shows the state diagram of the Mealy FSM for the edge detector. As
the state register consists just of a single D flip-flop, only two states are possible,
which we name zero and one in this example. As the output of a Mealy FSM does
not only depend on the state, but also on the input, we cannot describe the output as
part of the state circle. Instead, the transitions between the states are labeled with
the input value (condition) and the output (after the slash). Note also that we now
need to draw self transitions, e.g., in state zero when the input is ® the FSM stays
in state zero, and the output is 0. The rising edge FSM generates the 1 output only
on the transition from state zero to state one. In state one, which represents that the
input is now 1, the output is 0. We only want a single (cycle) pulse for each rising
edge of the input.

Listing 8.2 shows the Chisel code for the rising edge detection with a Mealy
machine. As in the previous example, we use the Chisel type Bool for the single-
bit input and output. The output logic is now part of the next state logic; on the
transition from zero to one, the output is set to true.B. Otherwise, the default
assignment to the output (false.B) counts.

One can ask if a full-blown FSM is the best solution for the edge detection cir-
cuit, especially, as we have seen a Chisel one-liner for the same functionality. The
hardware consumptions are similar. Both solutions need a single D flip-flop for the
state. The combinational logic for the FSM is probably a bit more complicated, as
the state change depends on the current state and the input value. For this func-
tion, the one-liner is easier to write and easier to read, which is more important.
Therefore, the one-liner is the preferred solution.

We have used this example to show one of the smallest possible Mealy FSMs.
FSMs shall be used for more complex circuits with three or more states.

Contents Index 113

8 FINITE-STATE MACHINES

import chisel3._
import chisel3.util._

class RisingFsm extends Module {
val io = IO(new Bundle{
val din = Input(Bool())
val risingEdge = Output(Bool())
b

// The two states

object State extends ChiselEnum {
val zero, one = Value

}

import State._

// The state register
val stateReg = RegInit(zero)

// default value for output
io.risingEdge := false.B

// Next state and output logic
switch (stateReg) {
is(zero) {
when(io.din) {
stateReg := one
io.risingEdge := true.B
}
3
is(one) {
when(!io.din) {
stateReg := zero

}

Listing 8.2: Rising edge detection with a Mealy FSM.

114 Index

Contents

8.3 MOORE VERSUS MEALY

reset

Figure 8.6: The state diagram of the rising edge detector as Moore FSM.

clock

din / \

—
[

Figure 8.7: Mealy and a Moore FSM waveform for rising edge detection.

risingEdge Mealy

risingEdge Moore

8.3 Moore versus Mealy

To show the difference between a Moore and Mealy FSM, we redo the edge detec-
tion with a Moore FSM.

Figure 8.6 shows the state diagram for the rising edge detection with a Moore
FSM. The first thing to notice is that the Moore FSM needs three states, compared
to the two states in the Mealy version. The state pulse is needed to produce the
single-cycle pulse. The FSM stays in state pulse for just one clock cycle and then
proceeds either back to the start state zero or to the one state, waiting for the input
to become 0 again. We show the input condition on the state transition arrows and
the FSM output within the state representing circles.

Listing 8.3 shows the Moore version of the rising edge detection circuit. It uses
double the number of D flip-flops than the Mealy or directly coded version. The
resulting next state logic is, therefore, also larger than the Mealy or directly coded
version.

Figure 8.7 shows the waveform of a Mealy and a Moore version of the rising edge

Contents Index 115

8 FINITE-STATE MACHINES

import chisel3._
import chisel3.util._

class RisingMooreFsm extends Module {
val io = IO(new Bundle{
val din = Input(Bool())
val risingEdge = Output(Bool())
b

// The three states

object State extends ChiselEnum {
val zero, puls, one = Value

}

import State._

// The state register

val stateReg = RegInit(zero)

// Next state logic
switch (stateReg) {
is(zero) {
when(io.din) {

stateReg := puls
}
3
is(puls) {
when(io.din) {
stateReg := one
} .otherwise {
stateReg := zero
}
3

is(one) {
when(!io.din) {
stateReg := zero

}
}
// Output logic

io.risingEdge := stateReg === puls

}

Listing 8.3: Rising edge detection with a Moore FSM.

116 Index Contents

8.4 EXERCISE

detection FSM. We can see that the Mealy output closely follows the input rising
edge, while the Moore output rises after the clock tick. We can also see that the
Moore output is one clock cycle wide, whereas the Mealy output is usually less than
a clock cycle.

From the above example, one is tempted to find Mealy FSMs the better FSMs
as they need less state (and therefore logic) and react faster than a Moore FSM.
However, the combinational path within a Mealy machine can cause troubles in
larger designs. First, with a chain of communicating FSM (see next chapter), this
combinational path can become lengthy. Second, if the communicating FSMs build
a circle, the result is a combinational loop, which is an error in synchronous design.
Due to a cut in the combinational path with the state register in a Moore FSM, all
the above issues do not exist for communicating Moore FSMs.

In summary, Moore FSMs combine better for communicating state machines;
they are more robust than Mealy FSMs. Use Mealy FSMs only when the reaction
within the same clock cycle is of utmost importance. Small circuits such as the
rising edge detection, which are practically Mealy machines, are fine as well.

8.4 Exercise

In this chapter, you have seen many examples of very small FSMs. Now it is time to
write some real FSM code. Pick a little bit more complex example and implement
the FSM and write a test bench for it.

A classic example of an FSM is a traffic light controller (see [6, Section 14.3]).
A traffic light controller has to ensure that on a switch from red to green, there is a
phase in between where both roads in the intersection have a no-go light (red and
orange). Consider a priority road to make this example a bit more interesting. The
minor road has two car detectors (on both entries into the intersection). Switch to
green for the minor road only when a car is detected, and then switch back to green
for the priority road.

Contents Index 117

9 Communicating State Machines

A problem is often too complex to describe it with a single FSM. In that case,
the problem can be divided into two or more smaller and simpler FSMs. Those
FSMs then communicate with signals. One FSM’s output is another FSM’s input;
one FSM watches the output of the other FSM. When we split a large FSM into
simpler ones, this is called factoring FSMs. Communicating FSMs are often directly
designed from the specification of the design. A single FSM for the design would
be too large in the first place.

9.1 A Light Flasher Example

To discuss communicating FSMs, we use an example from [6, Chapter 17], the
light flasher. The light flasher has one input start and one output light. The
specifications of the light flasher are as follows:

* when start is high for one clock cycle, the flashing sequence starts;
* the sequence is to flash three times;

» where the 1ight goes on for six clock cycles, and the 1ight goes off for four
clock cycles between flashes;

* after the sequence, the FSM switches the 1ight off and waits for the next
start.

The FSM for a direct implementation! has 27 states: one initial state that is wait-
ing for the input, 3 X 6 states for the three on states and 2 x 4 states for the off states.
We do not show the code for this simple-minded implementation of the light flasher.

The problem can be solved more elegantly by factoring this large FSM into two
smaller FSMs: the master FSM implements the flashing logic and the timer FSM
implements the waiting. Figure 9.1 shows the composition of the two FSMs.

IThe state diagram is shown in [6, p. 376].

119

9 COMMUNICATING STATE MACHINES

start light

———— | Master FSM
- A

B 8| 2

5| 5

E| E| £

\ A s

Timer FSM

Figure 9.1: The light flasher split into a Master FSM and a Timer FSM.

The timer FSM counts down for 6 or 4 clock cycles to produce the desired timing.
The timer specification is as follows:

¢ when timerLoad is asserted, the timer loads a value into the down counter,
independent of the state;

e timerSelect selects between 5 and 3 for the load;

* timerDone is asserted when the counter completes the countdown and remains
asserted;

L]

otherwise, the timer counts down.

The following code shows the timer FSM of the light flasher:

val timerReg = RegInit(0.U)
timerDone := timerReg === 0.U

// Timer FSM (down counter)
when (! timerDone) {

timerReg := timerReg - 1.U
}
when (timerLoad) {

when (timerSelect) {

timerReg := 5.U
} .otherwise {

120 Index Contents

9.1 A LIGHT FLASHER EXAMPLE

timerReg := 3.U
}

Listing 9.1 shows the master FSM. It has a starting state off and states for the
complete blinking sequence. In each state, it waits for the time being done. The
timer is loaded whenever it is done and in the initial off state. Signal timerSelect
selects the value for the next state down counter.

object State extends ChiselEnum {
val off, flashl, spacel, flash2, space2, flash3 = Value

}

import State._

val stateReg = RegInit(off)

val light = WireDefault(false.B) // FSM output

// Timer connection

val timerLoad = WireDefault(false.B) // start timer
val timerSelect = WireDefault(true.B) // 6 or 4 cycles
val timerDone = Wire(Bool())

timerLoad := timerDone

// Master FSM
switch(stateReg) {

is(off) {

timerLoad := true.B

timerSelect := true.B

when (start) { stateReg := flashl }
}
is (flashl) {

timerSelect := false.B

light := true.B

when (timerDone) { stateReg := spacel }
}
is (spacel) {

when (timerDone) { stateReg := flash2 }
}

is (flash2) {

Contents Index 121

9 COMMUNICATING STATE MACHINES

start light
Master FSM
- A A
gl 2| & EE
2| 4| 8 S| al 8
g © © =l Bl 2
=| E| E °l °f &
vy 'v~© Y V
Timer Counter

Figure 9.2: The light flasher split into a Master FSM, a Timer FSM, and a Counter
FSM.

timerSelect := false.B

light := true.B

when (timerDone) { stateReg := space2 }
3
is (space2) {

when (timerDone) { stateReg := flash3 }
3
is (flash3) {

timerSelect := false.B

light := true.B

when (timerDone) { stateReg := off }
3

Listing 9.1: Master FSM of the light flasher.

This solution with a master FSM and a timer has still redundancy in the code of
the master FSM. States flashl, flash2, and flash3 are performing the same func-
tion, states spacel and space2 as well. We can factor out the number of remaining
flashes into a second counter. Then the master FSM is reduced to three states: off,
flash, and space.

Figure 9.2 shows the design with a master FSM and two FSMs that count: one
FSM to count clock cycles for the interval length of on and off; the second FSM to
count the remaining flashes. Listing 9.2 code shows the down counter FSM:

122 Index Contents

9.1 A LIGHT FLASHER EXAMPLE

val cntReg
cntDone := cntReg

0.

// Down counter FSM

RegInit (0.U)

U

when(cntLoad) { cntReg := 2.U }
when(cntDecr) { cntReg := cntReg - 1.U }
Listing 9.2: The down counter FSM.

Note that the counter is loaded with 2 for 3 flashes, as it counts the remaining flashes
and is decremented in the state space when the timer is done. Listing 9.3 shows the
master FSM for the double-refactored flasher.

object State extends ChiselEnum {

val off, flash,
}

import State._

space

val stateReg

val light
// Timer connection
val timerLoad
load
timerSelect
cycles
val timerDone
// Counter connection
val cntLoad
val cntDecr
val cntDone

val

timerLoad timerDone

switch(stateReg) {

is(off) {
timerLoad := true.B
timerSelect := true.
cntlLoad := true.B

Contents

= Value

RegInit (off)

WireDefault(false.B) // FSM output

WireDefault(false.B) // start timer with a
WireDefault(true.B) // select 6 or 4
Wire(Bool (D)

WireDefault(false.B)

WireDefault(false.B)
Wire(Bool())

B

Index 123

9 COMMUNICATING STATE MACHINES

when (start) { stateReg := flash }
}
is (flash) {
timerSelect := false.B
light := true.B
when (timerDone & !cntDone) { stateReg := space }
when (timerDone & cntDone) { stateReg := off }
}
is (space) {
cntDecr := timerDone
when (timerDone) { stateReg := flash }
}

Listing 9.3: The master FSM of the double refactored light flasher.

Besides having a master FSM that is reduced to just three states, our current
solution is also better configurable. No FSM needs to be changed if we want to
change the length of the on or off intervals or the number of flashes.

In this section, we have explored communicating circuits, especially FSMs, that
only exchange control signals. To perform computation, we can combine a FSM
with a datapath, as discussed in the next section.

9.2 State Machine with Datapath

One typical example of communicating state machines is a state machine combined
with a datapath. This combination is often called a finite-state machine with a datap-
ath (FSMD). The state machine controls the datapath, and the datapath performs the
computation. The FSM inputs are the inputs from the environment and the outputs
from the datapath. Some data from the environment is also fed into the datapath,
and the data output comes from the datapath.

The FSMD shown in Figure 9.3 serves as an example that computes the popcount,
also called the Hamming weight. The Hamming weight is the number of symbols
different from the zero symbol. For a binary string, this is the number of ‘1’s.

The popcount unit contains the data input din and the result output popCount,
both connected to the datapath. For the input and the output, we use a ready/valid
handshake. When data is available, valid is asserted. When a receiver can accept
data it asserts ready. When both signals are asserted, the transfer takes place. The

124 Index Contents

https://en.wikipedia.org/wiki/Hamming_weight

9.2 STATE MACHINE WITH DATAPATH

dinValid popCntValid
—_—> —

dinReady FSM popCntReady
- ——

A A
\ A /
din opCnt

e Datapath L»

Figure 9.3: A state machine with a datapath.

handshake signals are connected to the FSM. The FSM is connected with the dat-
apath with control signals towards the datapath and with status signals from the
datapath.

We will co-design the FSM and the datapath. Figure 9.4 shows the state diagram
of the FSM and Figure 9.5 shows the datapath for the popcount circuit. The FSM
starts in state Idle, where the FSM waits for input. When data arrives, as signaled
with an asserted dinvalid, the FSM loads the shift register and advances to state
Count. The data is loaded into the shf register. On the load also the cnt register is
reset to 0.

In state Count, the number of ‘1’s is counted sequentially. We use a shift register,
an adder, an accumulator register, and a down counter (not shown in the datapath)
to perform the computation. To count the number of ‘1’s, the shf register is shifted
right, and the least significant bit is added to cnt each clock cycle. A counter, not
shown in the figure, counts down until all bits have been shifted through the least
significant bit. When the counter reaches zero, the popcount has finished. The FSM
switches to state Done and signals the result by asserting popCntReady. When the
result is read, signaled by asserting popCntValid, the FSM switches back to Idle,
ready to compute the next popcount.

The top-level component, shown in Listing 9.4, instantiates the FSM and the
datapath components and connects them. Listing 9.5 shows the Chisel code for the
datapath of the popcount circuit. On a load signal, the regData register is loaded
with the input, the regPopCount register reset to 0, and the counter register regCount
set to the number of shifts to be performed. Otherwise, the regData register is

Contents Index 125

9 COMMUNICATING STATE MACHINES

Result read

Finished

Valid

Figure 9.4: State diagram for the popcount FSM.

o0 —P

. shf
din /

\

-

count
»

-

cnt

y

Figure 9.5: Datapath for the popcount circuit.

126 Index

Contents

9.2 STATE MACHINE WITH DATAPATH

class PopulationCount extends Module {

val io = IO(new Bundle {
val dinValid = Input(Bool())
val dinReady = Output(Bool())
val din = Input(UInt(8.W))
val popCntValid = Output(Bool())
val popCntReady = Input(Bool())
val popCnt = Output(UInt(4.W))

b

val fsm = Module(new PopCountFSM)
val data = Module(new PopCountDataPath)

fsm.io.dinValid := io.dinValid
io.dinReady := fsm.io.dinReady
io.popCntValid := fsm.io.popCntValid
fsm.io.popCntReady := io.popCntReady

data.io.din := io.din

io.popCnt := data.io.popCnt
data.io.load := fsm.io.load
fsm.io.done := data.io.done

Listing 9.4: The top level of the popcount circuit.

Contents Index 127

9 COMMUNICATING STATE MACHINES

shifted to the right, the least significant bit of the regData register added to the
regPopCount register, and the counter decremented until it is 0. When the counter
is 0, the output contains the popcount.

class PopCountDataPath extends Module {
val io = IO(new Bundle {
val din = Input(UInt(8.W))
val load = Input(Bool())
val popCnt = Output(UInt(4.W))
val done = Output(Bool())
b

val dataReg = RegInit(0.U(8.W))
val popCntReg = RegInit(0.U(8.W))
val counterReg= RegInit(0.U(4.W))

dataReg := 0.U ## dataReg(7, 1)
popCntReg := popCntReg + dataReg(0)
val done = counterReg === 0.U
when (!done) {

counterReg := counterReg - 1.U
}
when(io.load) {

dataReg := io.din

popCntReg := 0.U

counterReg := 8.U

}

// debug output
printf("%x %d\n", dataReg, popCntReg)

io.popCnt := popCntReg
io.done := done

Listing 9.5: Datapath of the popcount circuit.

128 Index Contents

9.2 STATE MACHINE WITH DATAPATH

class PopCountFSM extends Module {

val io I0O(new Bundle {
val dinValid Input (Bool())
val dinReady Output (Bool ())
val popCntValid
val popCntReady
val load Output (Bool (D)
val done Input (Bool (D)

b

Output (Bool ())
Input (Bool())

object State extends ChiselEnum {

val idle, done Value
3

import State._

val stateReg RegInit(idle)
io.load false.B

io.dinReady false.B

io.popCntValid false.B

count ,

switch(stateReg) {
is(idle) {
io.dinReady := true.B
when(io.dinValid) {
io.load := true.B
stateReg count

}

}
is(count) {
when(io.done) {
stateReg done

}

}
is(done) {
io.popCntValid true.B
when(io.popCntReady) {
stateReg idle

}
} 1l

Listing 9.6: The FSM of the popcount circuit.

Contents Index

129

9 COMMUNICATING STATE MACHINES

— valid —»»|

4— ready — .
Sender Receiver

— data —p»|

Figure 9.6: The ready/valid flow control.

Listing 9.6 shows the code of the FSM. The FSM starts in state idle. On a valid
signal for the input data (dinValid) it switches to the count state and waits till the
datapath has finished counting. When the popcount is done, the FSM switches to
state done and waits till the popcount is read (signaled by popCntReady).

The popcount example consumed data (a word) and produced data (the pop-
count). For the coordinated exchange of data, we use handshake signals. The next
section describes the ready/valid interface for flow control of unidirectional data
exchange.

9.3 Ready/Valid Interface

Communication of subsystems can be generalized to the movement of data and
handshaking for flow control. In the popcount example, we have seen a handshaking
interface for the input and for the output data using valid and ready signals.

The ready/valid interface [6, p. 480] is a simple flow control interface consisting
of data and a valid signal at the sender side (also called producer or source) and a
ready signal at the receiver side (also called consumer or destination). Figure 9.6
shows the ready/valid connection. The sender asserts valid when data is available,
and the receiver asserts ready when it is ready to receive one word of data. The
transmission of the data happens when both signals, valid and ready, are asserted.
If either of the two signals is not asserted, no transfer takes place.

Figure 9.7 shows a timing diagram of the ready/valid transaction where the re-
ceiver signals ready (from clock cycle 2 on) before the sender has data. The data
transfer happens in clock cycle 4. From clock cycle 5 on neither the sender has
data, nor the receiver is ready for the next transfer. When the receiver can receive
data in every clock cycle, it is called an “always ready” interface and ready can be
hardcoded to true.

Figure 9.8 shows a timing diagram of the ready/valid transaction where the sender

130 Index Contents

9.3 READY/VALID INTERFACE

cock T LT LT LT LT LT LT L
I
ready 4
I
I
1
I
I
1

valid

data

Figure 9.7: Data transfer with a ready/valid interface, early ready.

cock T LT LT LT LT LT LT L

]]]]]

d : : | | |

reay 1 1 1 1 1 1

1 1 1 1 1 1

valid o | I | :

]]]]]]

e T T
1 I 2 I 3 I 4 I 5 I 6 I 7

Figure 9.8: Data transfer with a ready/valid interface, late ready.

Contents Index 131

9 COMMUNICATING STATE MACHINES

| o |

ready S e S B

valid :/—i\ : :m
data o N e o3)

Figure 9.9: Single cycle ready/valid and back-to-back transfers.

signals valid (from clock cycle 2 on) before the receiver is ready. The data transfer
happens in clock cycle 4. From clock cycle 5 on neither the sender has data, nor the
receiver is ready for the next transfer. Similar to the “always ready” interface, we
can envision an always valid interface. However, in that case, the data will probably
not change on signaling ready, and we would simply drop the handshake signals.

Figure 9.9 shows further variations of using the ready/valid interface. In clock
cycle 2 it happens that both signals (ready and valid) become asserted just for a
single clock cycle, and the data transfer of D1 happens. Data can be transferred back-
to-back (in every clock cycle) as shown in clock cycles 5 and 6 with the transfer of
D2 and D3

To make this interface composable, neither ready nor valid is allowed to depend
combinationally on the other signal. As this interface is so common, Chisel defines
the DecoupledIO bundle, similar to the following:

class DecoupledIO[T <: Data](gen: T) extends Bundle {
val ready = Input(Bool())
val valid = Output(Bool())
val bits Output (gen)

}

The DecoupledIO bundle is parameterized with the type for the data. The interface
defined by Chisel uses the field bits for the data. DecoupledIO is part of the package
chisel3.util.

One question remains if the ready or valid may be de-asserted after being as-
serted and no data transfer has happened. For example, a receiver might be ready
for some time and not receive data, but due to some other events may become not

132 Index Contents

9.3 READY/VALID INTERFACE

ready. The same can be envisioned with the sender, having data valid only some
clock cycles and becoming non-valid without a data transfer happening. If this be-
havior is allowed or not is not part of the ready/valid interface, but needs to be
defined by the concrete usage of the interface.

Chisel places no requirements on the signaling of ready and valid when using the
class DecoupledI0. However, the class IrrevocableIO places following restrictions
on the sender:

A concrete subclass of ReadyValidIO that promises to not change the
value of bits after a cycle where valid is high and ready is low. Addi-
tionally, once valid is raised it will never be lowered until after ready
has also been raised.

Note that this is just a convention that cannot be enforced just by using the class
IrrevocableIO.

The AXI bus [3] uses one ready/valid interface for each of the following parts
of the bus: read address, read data, write address, and write data. AXI restricts
the interface so that once the sender assets valid, it is not allowed to deassert it
until the data transfer happens. This is the same restriction as just described in the
comment of the IrrevocableIO interface. Furthermore, the sender is not allowed
to wait for a receivers ready to assert valid. The receiver side is more relaxed. If
ready is asserted, it is allowed to deassert it before valid is asserted. Furthermore,
the receiver can wait for an asserted valid before asserting ready.

Listing 9.7 shows an example of using the ready/valid interface. The circuit
represents a buffer built out of a register. The buffer has a ready/valid interface
(DecoupledIO) at the input and one at the output. The DecoupledIO bundle is de-
fined from the sender’s viewpoint. Therefore, the input of the buffer (in) needs to
change the direction with Flipped.

The module contains a register for the data (dataReg) and a single-bit register
(emptyReg) signaling if the buffer is empty or full. This single bit represents a two-
state Moore FSM with states empty and full. The input ready signal and the output
valid signal depend only on the state of emptyReg. There is no combinational path
between the buffer’s input and output.

When the buffer is empty, and valid data is at the input, the data is registered and
the state is changed to full. When the buffer is full, and the consumer side signals
to be ready, the data is considered read, and the buffer is empty again.

Contents Index 133

9 COMMUNICATING STATE MACHINES

class ReadyValidBuffer extends Module {
val io = IO(new Bundle{
val in = Flipped(new DecoupledIO(UInt(8.W)))
val out = new DecoupledIO(UInt(8.W))
b

val dataReg = Reg(UInt(8.W))
val emptyReg = RegInit(true.B)

io.in.ready := emptyReg
io.out.valid := !emptyReg
io.out.bits := dataReg

when (emptyReg & io.in.valid) {
dataReg := io.in.bits
emptyReg := false.B

}

when (!emptyReg & io.out.ready) {
emptyReg := true.B
}

Listing 9.7: A register as a buffer with a ready/valid interface

134 Index Contents

10 Hardware Generators

The strength of Chisel is that it allows us to write hardware generators. With older
hardware description languages, such as VHDL and Verilog, we usually use another
language, Java or Python, to generate hardware. Before using Chisel, I often wrote
small Java programs to generate VHDL tables. In Chisel, the full power of Scala
and Java, with its many open-source libraries, are available at hardware construction
time. Therefore, we can write our hardware generators in the same language and
execute them as part of the Chisel circuit generation. You can find further generator
examples in [24].

10.1 A Little Bit of Scala

This subsection gives a very brief introduction to Scala. It should be enough to
write simple hardware generators for Chisel. For an in-depth introduction to Scala,
I recommend the textbook by Odersky et al. [29]. The Scala website also contains
an online Scala book.!

Scala has two types of variables: vals and vars. A val gives an expression a name
and cannot be reassigned to a value. The following snippet shows the definition of
an integer value called zero. If we try reassigning a value to zero, we get a compile
error.

// A value is a constant

val zero = 0

// No new assignment is possible
// The following will not compile
zero = 3

In Chisel, we use vals to name hardware components. Note that the := operator is
a Chisel operator and not a Scala operator.

Scala also provides the more classic version of a mutable variable as var. The
following code defines an integer variable and reassigns it a new value:

I'The link points to the Scala 2 version of the book, as Chisel is still based on Scala 2.

135

https://www.scala-lang.org/
https://docs.scala-lang.org/overviews/scala-book/introduction.html

10 HARDWARE GENERATORS

// We can change the value of a var variable
var x = 2
X =3

We will need Scala vars to write hardware generators, but never need vars to name
a hardware component.

You may have wondered what type those variables have. As we assigned an
integer constant in the above example, the variable type is inferred; it is a Scala Int
type. In most cases, the Scala compiler can infer the type. However, if we are in the
mood of being more explicit, we can explicitly state the type as follows:

val number: Int = 42

Simple loops are written as follows:

// Loops from ® to 9
// Automatically creates loop value i
for (i <- O until 10) {
println(i)
}

We use a loop for circuit generators. The following loop connects individual bits
of a shift register.

val regVec = Reg(Vec(8, UInt(l.W)))

regVec(®) := io.din

for (i <- 1 until 8) {
regVec(i) := regVec(i-1)

}

Note that this is not the most concise expression of a shift register. It is better to
use a plain UInt with the right size and assign the new value for the register with an
expression using the ## operator and proper indexing. This code snippet shows how
a Scala for loop can be used for circuit generation.

Conditions are expressed with if and else. Note that this condition is evalu-
ated at Scala runtime during circuit generation. This construct does not create a
multiplexer, but allow writing configurable hardware generators.

for (i <- 0 until 10) {
print (i)

136 Index Contents

10.2 LIGHTWEIGHT COMPONENTS WITH FUNCTIONS

if (i%2 == 0) {
println(" is even")
} else {
println(" is odd")
}
}

Scala has the notion of a tuple. A tuple can hold a sequence of different types.
The tuple is built by placing the individual fields within parentheses. The fields are
then accessed with . _n, starting with 1 for the first field. The following code creates
a tuple representing a city with the zip code and the name.

val city = (2000, "Frederiksberg")
val zipCode = city._1
val name = city._2

Tuples are useful when we want to return more than one value from a function.
Tuples allow us to represent Chisel components with more than one output as a
lightweight function instead of a full-blown module.

Scala has a powerful collection library. One of the simpler collection types is Seq,
an ordered collection of elements (also called a sequence). The default implemen-
tation is immutable. We index into a Seq with (), with zero-based indexing. Seq is
a base class with several different implementations. However, for most Chisel hard-
ware generators, direct use of Seq is the preferred choice. The following code shows
how to create a Seq that holds four Scala Int values. The second line accesses the
second element, and second will be 15.

val numbers = Seq(l, 15, -2, 0)
val second = numbers(l)

10.2 Lightweight Components with Functions

Modules are the standard way to structure your hardware description. However,
there is some boilerplate code when declaring a module and when instantiating and
connecting it. A lightweight way to structure your hardware is to use functions.
Scala functions can take Chisel (and Scala) parameters and return generated hard-
ware. As a simple example, we generate an adder:

def adder (x: UInt, y: UInt) = {

Contents Index 137

https://en.wikibooks.org/wiki/Scala/Tuples
https://docs.scala-lang.org/overviews/collections-2.13/overview.html

10 HARDWARE GENERATORS

X +y

}

The return value of a function in Scala is the result of the last expression.> We can
then create two adders by simply calling the function adder.

val x = adder(a, b)
// another adder
val y = adder(c, d)

Note that this is a hardware generator. That code does not execute any add operation
during elaboration but creates two adders (hardware instances). In other words,
it returns a wire to the output of the adder. We have written our first hardware
generator!

The adder is an artificial example to keep it simple. Chisel has already an adder
generator function, like +(that: UInt).

As lightweight hardware generators, functions can also contain state (using a reg-
ister). The following example returns a one-clock cycle delay element (a register).
If a function has a single statement, we can write it in one line and omit the curly
braces ({}).

def delay(x: UInt) = RegNext(x)

By calling the function with the function itself as parameter, this generated a two
clock cycle delay.

val delOut = delay(delay(delIn))

Again, this is too short an example to be useful, as RegNext () is already that function
that creates the register for the delay.

Functions return only one value. To provide more than one output, we can wrap
several output wires into a Scala tuple. The following code generates hardware that
compares two inputs and has two outputs.

def compare(a: UInt, b: UInt) = {
val equ = a ===
val gt = a > b
(equ, gt)

}

2Scala also contains a return statement. The code could have been written a bit more verbose as
return x + y.

138 Index Contents

10.3 GENERATE COMBINATIONAL LOGIC

With the parenthesis, we wrap the two wires that are connected to the outputs of the
comparator circuit into a Scala tuple.

Creating a comparator component with the compare function returns a tuple of
two wires. We can access the two wires with the . _n syntax.

val cmp = compare(inA, inB)
val equResult = cmp._1
val gtResult = cmp._2

However, we can directly decompose the tuple into two wires, in this case equ and
gt, with following syntax.

val (equ, gt) = compare(inA, inB)

Functions can be declared as part of a Module. However, functions that will be
used in different modules are better placed into a Scala object that collects utility
functions.

10.3 Generate Combinational Logic

A logic table (truth table) is combinational logic. It is also called read-only mem-
ory (ROM), we can see, the input to the table is an address into such a ROM. We
generate a logic table with VecInit. The following snippet of code creates a table
to compute the square of a number n.

val squareROM = VecInit(6.U, 1.U, 4.U, 9.U, 16.U, 25.U)
val square = squareROM(n)

We can use the full power of Scala to generate our logic (tables). For example,
we can generate a table of fixpoint constants to represent a trigonometric function,
compute constants for digital filters, or write an assembler in Scala to generate code
for a microprocessor written in Chisel. All those functions are in the same code base
(same language) and can be executed during hardware generation.

A classic example of a table generation is the conversion of a binary number into a
binary-coded decimal (BCD) representation. BCD represents a number in a decimal
format using 4 bits for each decimal digit. For example, decimal 13 is in binary 1101
and BCD encoded as 1 and 3 in binary: 80018011. BCD allows displaying numbers
in decimal, a more user-friendly number representation than hexadecimal.

When using a classic hardware description language, such as Verilog or VHDL,

Contents Index 139

https://en.wikipedia.org/wiki/Binary-coded_decimal

10 HARDWARE GENERATORS

import chisel3._

class BcdTable extends Module {
val io = I0(new Bundle {
val address = Input(UInt(8.W))
val data = Output(UInt(8.W))
b

val table = Wire(Vec (100, UInt(8.W)))
// Convert binary to BCD
for (i <- ® until 100) {

table(i) := (((i/10)<<4) + i%160).U
}

io.data := table(io.address)

Listing 10.1: Binary to binary-coded decimal conversion.

we would use another scripting or programming language to generate such a table.
We can write a Java program that computes the table to convert binary to BCD.
That Java program prints out VHDL code that can be included in a project. The
Java program is about 100 lines of code; most of the code generating VHDL strings.
However, the key part of the conversion is just two lines of code. With Chisel, we
can compute this table directly as part of the hardware generation. Listing 10.1
shows the table generation for the binary to BCD conversion.

10.3.1 File Reading

We can also generate a logic table from a Scala Array. We may have data in a file
that we want to read in during hardware generation time for the logic table. List-
ing 10.2 shows how to use the Scala Source class form the Scala standard library to
read the file data. txt, which contains integer constants in a textual representation.’

3Scala is based on Java, and therefore, all Java file reading and writing libraries can be used, e.g., to
read binary files.

140 Index Contents

10.3 GENERATE COMBINATIONAL LOGIC

import chisel3._
import scala.io.Source

class FileReader extends Module {
val io = I0(new Bundle {
val address = Input(UInt(8.W))
val data = Output(UInt(8.W))
b

val array = new Array[Int](256)
var idx = 0

// read the data into a Scala array

val source = Source.fromFile("data.txt")
for (line <- source.getlLines()) {
array(idx) = line.tolInt
idx += 1
}

// convert the Scala integer array to a Seq
// and then into a vector of Chisel Ulnt
val table = VecInit(array.toIndexedSeq.map(_.U(8.W)))

// use the table
io.data := table(io.address)

Listing 10.2: Reading a text file to generate a logic table.

Contents Index 141

10 HARDWARE GENERATORS

A few words on the maybe a bit intimidating expression:

val table = VecInit(array.toIndexedSeq.map(_.U(8.W)))

The method toIndexedSeq converts a Scala Array to a Scala sequence (Seq), which
supports the mapping function map. map invokes a function on each element of the
sequence and returns a sequence of the return value of the function. Our function
_.U(8.W) represents each Int value from the Scala array as a _ and performs the
conversion from a Scala Int value to a Chisel UInt literal, with a size of 8 bits. The
Chisel object VecInit creates a Chisel Vec from a sequence Seq of Chisel types.
We can use the initialization of a Chisel Vec from a Scala sequence to represent a
message that we may send out to a serial port. A Scala/Java String is a Scala Seq.
Therefore, the map method is available to map each Scala Char to a Chisel UInt. The
following code converts the standard greeting from the msg string to a Chisel Vec:

val msg = "Hello World!"
val text = VecInit(msg.map(_.U))
val len = msg.length.U

This code is extracted from the serial port example, which is used later in this text
to send a welcome message.

10.3.2 Type Conversion

Sometimes converting from one Chisel type to a different type is convenient. All
types represent a collection of bits. Therefore, we can easily perform this mapping.
As a first example, let us assume we receive bytes of data and would like to repack-
age 4 bytes into a 32-bit UInt. The following code maps the vector of bytes to an
UInt. The bytes are mapped in the following order to the UInt: the first byte into
the lower 8 bits, the next byte into the next, and so on.

val vec = Wire(Vec(4, UInt(8.W)))
val word = vec.asUInt

Given a UInt word, we can convert it back to a vector of four bytes.

val vec2 = word.asTypeOf(Vec(4, UInt(8.W)))

We can also convert a Bundle to a UInt. The bundle fields are ordered so that
the last field (in this example, field b) is in the lower bits of the UInt (here 15 to 0),

142 Index Contents

10.4 CONFIGURATION WITH PARAMETERS

followed by the second last, and so on. Note that this order is opposite to the order
of mapping a Vec.

class MyBundle extends Bundle {
val a = UInt(8.W)
val b = UInt(16.W)

}

val bundle = Wire(new MyBundle)
val word2 = bundle.asUInt

A UInt can be converted (back) to a bundle as follows:
val bundle2 = word2.asTypeOf(new MyBundle)
That conversion can also be used to initialize all fields of a bundle to 0.

val bundle3 = 0.U.asTypeOf(new MyBundle)

10.4 Configuration with Parameters

Chisel components and functions can be configured with parameters. Parameters
can be as simple as an integer constant, but can also be a Chisel hardware type.

10.4.1 Simple Parameters

The simplest way to parameterize a circuit is to define a bit width as a parameter.
Parameters can be passed as arguments to the constructor of the Chisel module. The
following is a toy example of a module that implements an adder with a configurable
bit width. The bit width n is a parameter (of Scala type Int) of the component passed
into the constructor that can be used in the 10 bundle.

class ParamAdder(n: Int) extends Module {
val io = IO0O(new Bundle{

val a = Input(UInt(n.W))

val b = Input(UInt(n.W))

val ¢ = Output(UInt(n.W))
b

Contents Index 143

10 HARDWARE GENERATORS

io.c := io.a + io.b

Parameterized versions of the adder can be created as follows:

val add8 = Module(new ParamAdder (8))
val addl6 = Module(new ParamAdder (16))

10.4.2 Case Classes

If we need more parameters, we can add additional parameters to the constructor
of the Chisel module. However, if we pass those parameters through several con-
structors, it might become tedious to use them. Furthermore, we need to edit several
places when changing the number or type of parameters.

Scala has a very light-weight construct to package several fields into a class: a
case classes. Case classes are like regular Scala classes but with a very light-weight
definition. The following code defines a case class to represent three parameters. It
might be used for a device with a transmit (tx) buffer and a receive buffer(rx) of a
certain width.

case class Config(txDepth: Int, rxDepth: Int, width: Int)

An object of that case class is created by simply calling the constructor. The fields
are immutable and can be read by accessing them:

val param = Config(4, 2, 16)

println("The width is " + param.width)
We can also add code to the case class to check that the parameters are valid.
case class SaveConf(txDepth: Int, rxDepth: Int, width: Int) {

assert (txDepth > 0 && rxDepth > 0 && width > 0,
"parameters must be larger than 0")

144 Index Contents

https://docs.scala-lang.org/tour/case-classes.html

10.4 CONFIGURATION WITH PARAMETERS

10.4.3 Functions with Type Parameters

Having the bit width as a configuration parameter is just the starting point for hard-
ware generators. Chisel type-parameters enable very flexible configurations. That
feature allows Chisel to provide a multiplexer (Mux) that can accept any type of mul-
tiplexing. We build a multiplexer that accepts arbitrary types to show how to use
Chisel types for the configuration. The following function defines the multiplexer:

def myMux[T <: Data](sel: Bool, tPath: T, fPath: T): T = {

val ret = WireDefault(fPath)
when (sel) {

ret := tPath
}

ret

}

Chisel allows parameterizing functions with types, in our case with Chisel types.
The expression in the square brackets [T <: Data] defines a type parameter T that
is Data or a subclass of Data. Data is the root of the Chisel type system.

Our multiplexer function has three parameters: the boolean condition, one param-
eter for the true path, and one for the false path. Both path parameters are of type
T, provided at the function call. The function itself is straightforward: we define a
wire with the default value of fPath and change the value if the condition is true to
the tPath. This condition is a classic multiplexer function. At the end of the func-
tion, we return the multiplexer hardware (the output). We can use our multiplexer
function with simple types such as UInt:

val resA = myMux(selA, 5.0, 10.U)

The types of the two multiplexer paths need to be the same. The following wrong
usage of the multiplexer results in a runtime error:

val resErr = myMux(selA, 5.0, 10.S)

To show a more complex multiplexer, we define a new type as a Bundle with two
fields:

class ComplexIO extends Bundle {
val d = UInt(10.W)
val b = Bool()

Contents Index 145

10 HARDWARE GENERATORS

}

We can define Bundle constants by first creating a Wire of the Bundle and then set-
ting the subfields. Then we can use our parameterized multiplexer with this complex

type.

val tVal = Wire(new ComplexIO)
tVal.b := true.B

tVal.d := 42.U

val fVal = Wire(new ComplexIO)
fVal.b := false.B

fval.d := 13.U

// The multiplexer with a complex type
val resB = myMux(selB, tVal, fVal)

In our initial design of the function, we used WireDefault to create a wire with
the type T with a default value. If we need to create a wire just of the Chisel type
without using a default value, we can use fPath.cloneType to get the Chisel type.
The following function shows the alternative way to code the multiplexer.

def myMuxAlt[T <: Data](sel: Bool, tPath: T, fPath: T): T
= {

val ret = Wire(fPath.cloneType)
ret := fPath
when (sel) {
ret := tPath
}

ret

10.4.4 Modules with Type Parameters

We can also parameterize modules with Chisel types. We assume we want to design
a network-on-chip to move data between different processing cores. However, we
do not want to hardcode the data format in the router interface; we want to param-
eterize it. Similar to the type parameter for a function, we add a type parameter T
to the Module constructor. Furthermore, we need to have one constructor parameter
of that type. In this example, we also make the number of router ports configurable.

146 Index Contents

10.4 CONFIGURATION WITH PARAMETERS

class NocRouter[T <: Data](dt: T, n: Int) extends Module {
val io =I0(new Bundle {
val inPort = Input(Vec(n, dt))
val address = Input(Vec(n, UInt(8.W)))
val outPort = Output(Vec(n, dt))
b

// Route the payload according to the address
//

To use our router, we first need to define the data type we want to route, e.g., as a
Chisel Bundle:

class Payload extends Bundle {
val data = UInt(1l6.W)
val flag = Bool()

3

We create a router by passing an instance of the user-defined Bundle and the number
of ports to the constructor of the router:

val router = Module(new NocRouter(new Payload, 2))

10.4.5 Parameterized Bundles

In the router example, we used two different vectors of fields for the input of the
router: one for the address and one for the data, which was parameterized. A more
elegant solution would be to have a Bundle that itself is parametrized. Something
like:

class Port[T <: Data](dt: T) extends Bundle {
val address = UInt(8.W)
val data = dt.cloneType

The Bundle has a parameter of type T, which is a subtype of Chisel’s Data type.
Within the bundle, we define a field data by invoking cloneType on the parameter.
However, when we use a constructor parameter, this parameter becomes a public
field of the class. When Chisel needs to clone the type of the Bundle, e.g., when
used in a Vec, this public field is in the way. A solution (workaround) to this issue

Contents Index 147

10 HARDWARE GENERATORS

is to make the parameter field private:

class Port[T <: Data](private val dt: T) extends Bundle {
val address = UInt(8.W)
val data = dt.cloneType

h

With that new Bundle, we can define our router ports

class NocRouter2[T <: Data](dt: T, n: Int) extends Module {
val io =IO0O(new Bundle {
val inPort = Input(Vec(n, dt))
val outPort = Output(Vec(n, dt))
b

// Route the payload according to the address
/) ..

and instantiate that router with a Port that takes a Payload as a parameter:

val router = Module(new NocRouter2(new Port(new Payload),

2))

10.4.6 Optional Ports

Some hardware generators might have 10 ports that are dependent on a configura-
tion. As an example, we implement a register file for a typical 32-bit RISC proces-
sor. For debugging, we want to be able to access all registers. Therefore, we want
to have an additional port where we can read all registers in the tester. However, at
Verilog generation, we do not want this expensive extra port.

Listing 10.3 shows such a register file. It has as parameter debug as a Scala
Boolean. In the definition of the IO bundle we use that parameter to either generate
that port or not. In Scala, this is represented as an Option. An option can return a
value wrapped into Some or represent the missing value as a None. In the main body
of the module, we extract the value of the option with get.

Similar to the tester, we need to use the get method to get a reference of that 10
port:

dut.io.dbgPort.get(4).expect(123.U)

148 Index Contents

10.4 CONFIGURATION WITH PARAMETERS

class RegisterFile(debug: Boolean) extends Module {
val io = IO(new Bundle {
val rsl = Input(UInt(5.W))
val rs2 = Input(UInt(5.W))
val rd = Input(UInt(5.W))
val wrData = Input(UInt(32.W))
val wrEna = Input(Bool())
val rslVal = Output(UInt(32.W))
val rs2Val = Output(UInt(32.W))
val dbgPort = if (debug)
Some (Qutput (Vec (32, UInt(32.W)))) else None

b
val regfile = RegInit(VecInit(Seq.fill(32)(0.U(32.W))))
io.rslVal := regfile(io.rsl)
io.rs2Val := regfile(io.rs2)
when(io.wrEna) {
regfile(io.rd) := io.wrData
}
if (debug) {
io.dbgPort.get := regfile
}

Listing 10.3: A register file with an optional debug port.

Contents Index 149

10 HARDWARE GENERATORS

abstract class Ticker(n: Int) extends Module {
val io = IO(new Bundle{
val tick = Output(Bool())
b

Listing 10.4: Base class for our ticker implementations.

class UpTicker(n: Int) extends Ticker(n) {
val N = (n-1).U
val cntReg = RegInit(0.U(8.W))
cntReg := cntReg + 1.U
val tick = cntReg ===
when(tick) {
cntReg := 0.U
}

io.tick := tick

Listing 10.5: Tick generation with a counter.

10.5 Use Inheritance

Chisel is an object-oriented language. A hardware component, the Chisel Module, is
a Scala class. Therefore, we can use inheritance to factor a common behavior into a
parent class. We explore how to use inheritance with an example.

In Section 6.2, we have explored different forms of counters which may be used
for low-frequency tick generation. Let us assume we want to explore those different
versions, for example, to compare their resource requirement. We start with an
abstract class to define the ticking interface, shown in Listing 10.4.

Listing 10.5 shows a first implementation of that abstract class with a counter, count-
ing up, for the tick generation.

We can test all different versions of our ficker logic with a single test bench. We

150 Index Contents

10.5 USE INHERITANCE

import chisel3._
import chiseltest._
import org.scalatest.flatspec.AnyFlatSpec

trait TickerTestFunc {
def testFn[T <: Ticker](dut: T, n: Int) = {
// -1 means that no ticks have been seen yet
var count = -1
for (_ <- ® ton * 3) {
// Check for correct output
if (count > 0)
dut.io.tick.expect(false.B)
else if (count == 0)
dut.io.tick.expect(true.B)

// Reset the counter on a tick
if (dut.io.tick.peekBoolean())

count = n-1
else

count -=1
dut.clock.step()

Listing 10.6: A tester for different versions of the ticker.

Jjust need to define the test bench to accept subtypes of Ticker. Listing 10.6 shows
the Chisel code for the tester. The TickerTester has several parameters: (1) the type
parameter [T <: Ticker] to accept a Ticker or any class that inherits from Ticker,
(2) the design under test, being of type T or a subtype thereof, and (3) the number
of clock cycles we expect for each tick. The tester waits for the first occurrence of a
tick (the start might be different for different implementations) and then checks that
tick repeats every n clock cycles.

With a first, easy implementation of the ticker, we can test the tester itself, prob-
ably with some println debugging. When we are confident that the simple ticker
and the tester are correct, we can proceed and explore two more versions of the
ticker. Listing 10.7 shows the tick generation with a counter counting down to O.

Contents Index 151

10 HARDWARE GENERATORS

class DownTicker(n: Int) extends Ticker(n) {
val N = (n-1).U

val cntReg = RegInit(N)

cntReg := cntReg - 1.U

when(cntReg === 0.U) {
cntReg := N

}

io.tick := cntReg ===

Listing 10.7: Tick generation with a down counter.

Listing 10.8 shows the nerd version of counting down to -1 to use less hardware by
avoiding the comparator.

We can test all three versions of the ticker by using ScalaTest specifications, cre-
ating instances of the different versions of the ticker, and passing them to the generic
test bench. Listing 10.9 shows the test specification. We run only the ticker tests
with:

sbt "testOnly TickerTest"

10.6 Hardware Generation with Functional
Programming

Scala supports functional programming, so Chisel does as well. We can use func-
tions to represent hardware and combine those hardware components with func-
tional programming by using a “higher-order function”. Let us start with a simple
example, the sum of a vector:

def add(a: UInt, b:UInt) = a + b

val sum = vec.reduce(add)

152 Index Contents

10.6 HARDWARE GENERATION WITH FUNCTIONAL PROGRAMMING

class NerdTicker(n: Int) extends Ticker(n) {
val N = n

val MAX = (N - 2).S(8.W)
val cntReg = RegInit (MAX)
io.tick := false.B

cntReg := cntReg - 1.S

when(cntReg (7)) {
cntReg := MAX
io.tick := true.B

Listing 10.8: Tick generation by counting down to -1.

class TickerTest extends AnyFlatSpec with
ChiselScalatestTester with TickerTestFunc {
"UpTicker 5" should "pass" in {
test(new UpTicker(5)) { dut => testFn(dut, 5) }
}

"DownTicker 7" should "pass" in {
test(new DownTicker (7)) { dut => testFn(dut, 7) }
}

"NerdTicker 11" should "pass" in {
test(new NerdTicker(11)) { dut => testFn(dut, 11) }
3

Listing 10.9: ChiselTest for the ticker tests.

Contents Index 153

10 HARDWARE GENERATORS

First, we define the hardware for the adder in function add. The vector (Chisel
type Vec) is located in vec. The Scala method reduce() combines all collection
elements with a binary operation, producing a single value. The reduce() method
reduces the sequence starting from the first element. It takes the first two elements
and operates. The result is combined with the next element until a single result is
left.

The function to combine two elements is provided as a parameter to reduce, in
our case add, which returns an adder. The resulting hardware is a chain of adders
computing the sum of vector vec elements. Instead of defining the (simple) add
function, we can provide the addition as anonymous function and use the Scala
wildcard “_” to represent the two operands.

val sum = vec.reduce(_ + _)

With this one-liner, we have generated the chain of adders. For the sum function a
chain is not ideal; a tree will have a shorter combinational delay. If we do not trust
the synthesize tool to rearrange our adder chain, we can use Chisel’s reduceTree
method to generate a tree of adders:

val sum = vec.reduceTree(_ + _)

10.6.1 Minimum Search Example

As a more elaborate example, we will build a circuit to find the minimum value in
a Vec. To express this circuit, we use an anonymous function, called function literal
in Scala. The syntax for a function literal is parameters in parentheses, followed by
a =>, followed by the function body:

(param) => function body

The function literal for the minimum function uses two parameters x and y and
returns a multiplexer (Mux) that compares the two parameters and returns the smaller
value.

val min = vec.reduceTree((x, y) => Mux(x <y, X, y))

Let us extend this circuit to return not only the minimal value from the vec, but
also the position (index) of that minimal value in the vec. To return two values we
define the Bundle Two to hold the value and the index. We declare the vecTwo Vec

154 Index Contents

10.6 HARDWARE GENERATION WITH FUNCTIONAL PROGRAMMING

class Two extends Bundle {
val v = UInt(w.W)
val idx = UInt(8.W)

}

val vecTwo = Wire(Vec(n, new Two()))
for (i <- 0 until n) {
vecTwo(i).v := vec(i)
vecTwo(i).idx := i.U

}

val res = vecTwo.reduceTree((x, y) => Mux(x.v < y.v, X, y))

Listing 10.10: Minimum search including the index.

that can hold these bundles and connect them in a loop to the original input and the
index within the Vec, as shown in Listing 10.10.

As before, we use a function literal in the reduceTree method of the vecTwo,
comparing the value field within the bundle and returning the multiplexer for the
complete bundle. Value res points to the bundle containing the minimum value and
the position.

As a more advanced variation of the minimum search circuit, we will use more
Scala features to avoid creating the bundle to return the value and index. We will
use a tuple to represent both values. The following code shows the application of a
chain of functions to the original sequence. Chaining functions is a typical pattern in
functional programming. This pattern can also be seen as a pipeline of operations.

val resFun = vec.zipWithIndex
.map((x) => (x._1, x._2.0U0))
.reduce((x, y) => (Mux(x._1 <vy._1, x._1, y._1),
Mux(x._1 < vy._1, x._2, y._2)))

The first function (zipWithIndex) transforms the original sequence of UInts to a
sequence of tuples, where the first element is the unchanged UInt and the second
element is the index value within the vec as Scala Int. In general, a zip function
merges two sequences (zips them) into a single one containing the two elements as
tuples.

The next function maps our tuple of a Chisel UInt and a Scala Int to two Chisel

Contents Index 155

10 HARDWARE GENERATORS

UInts. The reduce function provides the generation of the minimum finding. We
compare the first element of the tuple in two multiplexers and return a tuple con-
taining the minimum value and the position as Chisel UInt types.

Note that the whole functional expression uses a Scala Vector to hold intermedi-
ate results, but returns hardware (connected multiplexers) consisting of Chisel types
only. As we use a Scala Vector here, we cannot use reduceTree, which is available
on Chisel’s Vec only.

To keep using reduceTree the following solution uses a Chisel MixedVec instead
of a Scala tuple. A Chisel MixedVec is similar to a Scala tuple as it can have dif-
ferent types at different positions. Therefore, it cannot function as, for example,
a multiplexer. However, we can use it as an indexable collection during hardware
generation.

val scalaVector = vec.zipWithIndex
.map((x) => MixedVecInit(x._1, x._.2.U0(8.W)))
val resFun2 = VecInit(scalaVector)
.reduceTree((x, y) => Mux(x(®) < y(®), x, y))

val minVal = resFun2(0)
val minIdx = resFun2 (1)

In the above example, we create a Scala Vector of the values with their index,
but now using Chisel’s “tuple”. We then convert the Scala Vector into a Chisel Vec.
Then we can again perform a tree-based reduction. Another benefit of this version
is that we have only one multiplexer, which selects between two Chisel “tuples”
that are actually MixedVecs. The result in resFun2 is a MixedVec with two elements,
accessed with an index, like a “normal” Vec.

10.6.2 An Arbitration Tree

With our tree reduction function, we can build an arbitration tree out of just 2:1
arbiters. We can generate the arbitration circuit as follows:

class Arbiter[T <: Data: Manifest](n: Int, private val gen:
T) extends Module {
val io = IO(new Bundle {
val in = Flipped(Vec(n, new DecoupledIO(gen)))
val out = new DecoupledIO(gen)

»

156 Index Contents

10.6 HARDWARE GENERATION WITH FUNCTIONAL PROGRAMMING

io.out <> jo.in.reduceTree((a, b) => arbitrateSimp(a, b))

}

The input is a Vec of ready/valid interfaces and the output a single ready/valid inter-
face. We just need a function that provides arbitration between two requests.

Simple Arbitration

As a first solution, we will build a priority-based arbitration, similar to the arbiter
shown in Section 10.6.2. That arbiter in Section 10.6.2 was a purely combinational
circuit. However, with the ready/valid interface, we are not allowed to have a com-
binational flow between a ready and a valid signal. Therefore, we need to introduce
a state for those signals and register the incoming data.

Listing 10.11 shows the 2-to-1 arbitration function. This function assumes that a
requester who has asserted valid will only deassert it when it is read by the receiver
(signaled with a ready). Furthermore, we can set ready in the next clock cycle
depending on valid in the current clock cycle. This is one specific interpretation of
the ready/valid protocol, also used in AXI.

We need the following registers: regData to hold the data for the output, regEmpty
as a flag to signal that the data register is empty, and two flags for the ready signals
of the two inputs (regReadyA and regReadyB). The return value of the function (out)
is a wire of type DecoupledIO.

When the data register is empty, and one of the two inputs signals a valid input,
we signal a ready in the next clock cycle (via the ready register). Note that we can
signal only one of the two inputs that the arbiter is ready, as we have only one data
register. When we have a registered ready, we assume that the input is still valid,
register the data, deassert regEmpty, and reset the ready flag.

The output is valid when the data register is not empty. When the receiver is
ready, the data is transmitted, and the data register is empty again. As the last
statement, the function returns out, the reference to the DecoupledIO wire.

Fair Arbitration

In Section 10.6.2, we presented a combinational version of an arbitration circuit.
The combinational version is a priority arbiter, so one high-priority requester can
dominate the arbitration. To avoid this domination, we must introduce some state
to remember who won the arbitration last time. Our assumption is that if the 2:1
arbiter is fair, this results in a fair arbitration on a balanced arbitration tree.

Contents Index 157

10 HARDWARE GENERATORS

def arbitrateSimp(a: DecoupledIO[T], b: DecoupledIO[T]) = {

val regData = Reg(gen)

val regEmpty = RegInit(true.B)
val regReadyA = RegInit(false.B)
val regReadyB = RegInit(false.B)

val out = Wire(new DecoupledIO(gen))

when (a.valid & regEmpty & !regReadyB) {
regReadyA := true.B

} .elsewhen (b.valid & regEmpty & !regReadyA) {
regReadyB := true.B

}

a.ready := regReadyA

b.ready := regReadyB

when (regReadyA) {

regData := a.bits
regEmpty := false.B
regReadyA := false.B

}

when (regReadyB) {
regData := b.bits
regEmpty := false.B
regReadyB := false.B

3

out.valid := !regEmpty

when (out.ready) {
regEmpty := true.B

3

out.bits := regData

out

Listing 10.11: A simple 2 to 1 arbiter.

158 Index Contents

10.6 HARDWARE GENERATION WITH FUNCTIONAL PROGRAMMING

def arbitrateFair(a: DecoupledIO[T], b: DecoupledIO[T]) = {
object State extends ChiselEnum {

val

}

idleA, idleB, hasA, hasB = Value

import State._

val regData = Reg(gen)

val regState = RegInit(idleA)

val out = Wire(new DecoupledIO(gen))

a.ready := regState === idleA
b.ready := regState === idleB
out.valid := (regState === hasA || regState === hasB)

switch(regState) {
is (idleA) {
when (a.valid) {

}

3
3

regData := a.bits
regState := hasA
otherwise {

regState := idleB

is (idleB) {
when (b.valid) {

regData := b.bits
regState := hasB
} otherwise {
regState := idleA
}
}
is (hasA) {
when (out.ready) {
regState := idleB
}
3
is (hasB) {
when (out.ready) {
regState := idleA
}
3
}
out.bits := regData
out

Contents

Listing 10.12: A fair 2-to-1 arbiter.
Index 159

10 HARDWARE GENERATORS

Listing 10.12 shows that fair 2:1 arbitration circuit. The arbiter contains one
register for the data to store and one state register. To be fair, the arbiter switches
between two idle states (idleA and idleB) when there is no request. Each of the
two idle states accepts only one of the inputs. Note that with just a single register
for storage, the arbiter can only be ready for one of the two inputs. To allow being
ready for both inputs and switching priority, we would need a second data register
to handle the case when both inputs are valid in the same clock cycle.

When a request is accepted, it stores the data and switches to one of the full
states (hasA or hasB). When the consumer of the output accepts the data, the arbiter
switches back to an idle state. It switches to the idle state that will accept a pending
request from the other input in the next clock cycle.

160 Index Contents

11 Example Designs

In this section, we explore some small digital designs, such as a FIFO buffer, which
is used as a building block for a larger design. As another example, we design a
serial interface (also called UART), which may use the FIFO buffer. Furthermore,
we will generalize the FIFO interface and show different possible implementations.

11.1 FIFO Buffer

We can decouple a writer (sender) and a reader (receiver) by a buffer between the
writer and the reader. A common buffer is a first-in, first-out (FIFO) buffer. Fig-
ure 11.1 shows a writer, the FIFO, and a reader. The writer puts Data into the FIFO
on din with an active write signal. Data is read from the FIFO by the reader on
dout with an active read signal.

A FIFO is initially empty, singled by the empty signal. Reading from an empty
FIFO is usually undefined. When data is written and never read, a FIFO will become
full. Writing to a full FIFO is usually ignored and the data are lost. In other words,
the signals empty and full serve as handshake signals

Several different implementations of a FIFO are possible: For example, using on-
chip memory and read and write pointers or simply a chain of registers with a tiny
state machine. For small buffers (up to tens of elements), a FIFO organized with
individual registers connected into a chain of buffers is a simple implementation

— write —p»] <¢— read —

i — full — — empty —p»]
Writer FIFO Py Reader

F— din —p»| — dout —p»

Figure 11.1: A writer, a FIFO buffer, and a reader.

161

https://en.wikipedia.org/wiki/FIFO_%28computing_and_electronics%29

11 EXAMPLE DESIGNS

with a low resource requirement. The code of the bubble FIFO is available in the
chisel-examples repository.!

We start by defining the IO signals for the writer and the reader side. The size of
the data is configurable with size. The write data are din and a write is signaled by
write. The signal full performs the flow control at the writer’s side.

class WriterIO(size: Int) extends Bundle {
val write = Input(Bool())
val full = Output(Bool())
val din = Input(UInt(size.W))

The reader side provides data with dout, and the read is initiated with read. The
empty signal is responsible for the flow control at the reader side.

class ReaderIO(size: Int) extends Bundle {
val read = Input(Bool())
val empty = Output(Bool())
val dout = Output(UInt(size.W))

Listing 11.1 shows a single buffer. The buffer has an enqueueing port eng of type
WriterIO and a dequeueing port deq of type ReaderIO. The state elements of the
buffer are one register that holds the data (dataReg) and one state register for the
simple FSM (stateReg). The FSM has only two states: either the buffer is empty
or full. If the buffer is empty, a write will register the input data and change to
the full state. If the buffer is full, a read will consume the data and change to the
empty state. The IO ports full and empty represent the buffer state for the writer
and the reader.

Listing 11.2 shows the complete FIFO. The complete FIFO has the same IO in-
terface as the individual FIFO buffers. BubbleFifo has as parameters the size of the
data word and depth for the number of buffer stages. We can build a depth stages
bubble FIFO out of depth FifoRegisters. We create the stages by filling them into
a Scala Array. The Scala array has no hardware meaning; it just serves as a con-
tainer to have references to the created buffers. In a Scala for loop, we connect the
individual buffers. The first buffer’s enqueueing side is connected to the enqueueing
IO of the complete FIFO, and the last buffer’s dequeueing side to the dequeueing
side of the complete FIFO.

!For completeness, the Chisel book repository also contains a copy of the FIFO code.

162 Index Contents

https://github.com/schoeberl/chisel-examples
https://en.wikipedia.org/wiki/Flow_control_(data)

11.1 FIFO BUFFER

class FifoRegister(size: Int) extends Module {
val io = I0(new Bundle {
val enq = new WriterIO(size)
val deq = new ReaderIO(size)

B

object State extends ChiselEnum {
val empty, full = Value
3

import State._

val stateReg = RegInit(empty)
val dataReg = RegInit(0.U(size.W))

when(stateReg === empty) {
when(io.enq.write) {
stateReg := full
dataReg := io.enqg.din
}
}.elsewhen(stateReg === full) {
when(io.deq.read) {
stateReg := empty
dataReg := 0.U // just to better see empty slots in

the waveform
}
}.otherwise {
// There should not be an otherwise state

}

io.enq.full := (stateReg === full)
io.deq.empty := (stateReg === empty)
io.deq.dout := dataReg

Listing 11.1: A single stage of the bubble FIFO.

Contents Index 163

11 EXAMPLE DESIGNS

class BubbleFifo(size: Int, depth: Int) extends Module {
val io = IO(new Bundle {
val enqg = new WriterIO(size)
val deq = new ReaderIO(size)

1))

val buffers = Array.fill(depth) { Module(new
FifoRegister(size)) }
for (i <- O until depth - 1) {

buffers(i + 1).io.enqg.din := buffers(i).io.deq.dout
buffers(i + 1).io.enq.write := “buffers(i).io.deq.empty
buffers(i).io.deq.read := “buffers(i + 1).io.enqg.full

}
io.enqg <> buffers(0).io.enq
io.deq <> buffers(depth - 1).io.deq

Listing 11.2: A FIFO comprises an array of FIFO bubble stages.

The presented idea of connecting individual buffers to implement a FIFO queue
is called a bubble FIFO, as the data bubbles through the queue. This is a simple,
and good solution when the data rate is considerably slower then the clock rate,
for example, as a decoupling buffer for a serial port, which is presented in the next
section.

However, when the data rate approaches the clock frequency, the bubble FIFO
has two limitations: (1) As each buffer’s state has to toggle between empty and full,
which means the maximum throughput of the FIFO is two clock cycles per word.
(2) The data needs to bubble through the complete FIFO, therefore, the latency from
the input to the output is at least the number of buffers. I will present other possible
implementations of FIFOs in Section 11.3.

11.2 A Serial Port

A serial port (also called UART or RS-232) is one of the easiest options to com-
municate between your laptop and an FPGA board. As the name implies, data is
transmitted serially. An 8-bit byte is transmitted as follows: one start bit (0), the
8-bit data, the least significant bit first, and then one or two stop bits (1). When

164 Index Contents

https://en.wikipedia.org/wiki/Universal_asynchronous_receiver-transmitter
https://en.wikipedia.org/wiki/RS-232

11.2 A SERIAL PORT

\ (bo f b1) b2 Y b3 | ba J b5) b6 | b7 f

Figure 11.2: One byte transmitted by a UART.

no data is transmitted, the output is 1. Figure 11.2 shows the transmitted timing
diagram of one byte.

We design our UART in a modular way with minimal functionality per module.
We present a transmitter (TX), a receiver (RX), a buffer, and then usage of those
base components.

First, we need an interface and a port definition. For the UART design, we use a
ready/valid handshake interface (extending DecoupledIO), with a data size of 8 bits.

class UartIO extends DecoupledIO(UInt(8.W)) {
}

The convention of a ready/valid interface is that the data is transferred when both
ready and valid are asserted.

Listing 11.3 shows a bare-bone serial transmitter (Tx). The IO ports are the txd
port, where the serial data is sent, and a channel, where the transmitter can receive
the characters to serialize and send. To generate the timing, we compute a constant
for the time in clock cycles for one serial bit.

We use three registers: (1) register to shift the data (serialize them) (shiftReg),
(2) a counter to generate the correct baud rate (cntReg), and (3) a counter for the
number of bits that still need to be shifted out (bitsReg). No additional state register
or FSM is needed; all state is encoded in those three registers.

Counter cntReg is continuously running (counting down to 0 and reloaded with
the start value when 0). All action is only done when cntReg is 0. As we build a
minimal transmitter, we have only the shift register to store the data. Therefore, the
channel is only ready when cntReg is O and no bits are left to shift out. The IO port
txd is directly connected to the least significant bit of the shift register.

When there are more bits to shift out (bitsReg =/= 0.U), we shift the bits to the
right and fill with 1 (the idle level of a transmitter). If no more bits need to be shifted
out, we check if the channel contains data (signaled with the io.channel.valid
input). If so, the bit string to be shifted out is constructed with one start bit (0), the
8-bit data, and two stop bits (1). Therefore, the bit count is set to 11.

This very minimal transmitter has no additional buffer and can accept a new char-
acter only when the shift register is empty and at the clock cycle when cntReg is 0.

Contents Index 165

11 EXAMPLE DESIGNS

class Tx(frequency: Int, baudRate: Int) extends Module {
val io = IO(new Bundle {
val txd = Output(UInt(l.W))
val channel = Flipped(new UartIO())
b

val BIT_CNT = ((frequency + baudRate / 2) / baudRate -
1) .asUInt

val shiftReg = RegInit (0x7£ff.U)
val cntReg = RegInit(0.U(20.W))
val bitsReg = RegInit(0.U(4.W))

io.channel.ready := (cntReg === 0.U) && (bitsReg === 0.0)
io.txd := shiftReg(0)

when(cntReg === 0.0U) {

cntReg := BIT_CNT
when(bitsReg =/= 0.U0) {
val shift = shiftReg >> 1
shiftReg := 1.U ## shift(9, 0)
bitsReg := bitsReg - 1.U
} .otherwise {
when(io.channel.valid) {
// two stop bits, data, one start bit

shiftReg := 3.U ## io.channel.bits ## 0.U
bitsReg := 11.0

} .otherwise {
shiftReg := 0x7ff.U

}
}

} .otherwise {
cntReg := cntReg - 1.U
}

Listing 11.3: A transmitter for a serial port.

166 Index Contents

11.2 A SERIAL PORT

Accepting new data only when cntReg is zero means that the ready flag is also de-
asserted when there is space in the shift register. However, we do not want to add
this “complexity” to the transmitter but delegate it to a buffer.

Listing 11.4 shows a single-byte buffer, similar to the FIFO register for the bub-
ble FIFO. The input and the output are UartIOs. The buffer contains the mini-
mal state machine to indicate empty or full. The buffer-driven handshake signals
(io.in.ready and io.out.valid) depend on the state register.

When the state is empty, and data on the input is valid, we register the data and
switch to state full. When the state is full, and the downstream receiver is ready,
the downstream data transfer happens, and we switch back to state empty.

With that buffer, we can extend our bare-bone transmitter. Listing 11.5 shows
the combination of the transmitter Tx with a single-buffer in front. This buffer now
relaxes the issue that Tx was ready only for single clock cycles. We delegated the
solution of this issue to the buffer module. An extension of the single-word buffer
to a real FIFO can easily be done and needs no change in the transmitter or the
single-byte buffer.

Listing 11.6 shows the code for the receiver (Rx). A receiver is a bit tricky, as it
needs to reconstruct the timing of the serial data. The receiver waits for the falling
edge of the start bit. From that event, the receiver waits 1.5-bit times to position
itself into the middle of bit 0. Then, it samples and shifts in the bits every bit of
time. You can observe these two waiting times as BIT_CNT and START_CNT. The
same counter (cntReg) is used for both sample times. After 8 bits are shifted in,
validReg signals an available byte.

Listing 11.7 shows the usage of the serial port transmitter by sending out a friendly
message. We define the message as a Scala string (msg) and convert it to a Chisel
Vec of UInt. A Scala string is a sequence that supports the map method. The map
method takes as argument a function literal, applies this function to each element,
and builds a sequence of the function’s return values. If the function literal has only
one argument, as in this case, the argument can be represented by _. Our function
literal calls the Chisel method .U to convert the Scala Char to a Chisel UInt. The
sequence is then passed to VecInit to construct a Chisel Vec. We index into the vec-
tor text with the counter cntReg to provide the individual characters to the buffered
transmitter. With each ready signal, we increase the counter until the full string is
sent out. The sender keeps valid asserted until the last character has been sent out.

Listing 11.8 shows the receiver and transmitter usage by connecting them. This
connection generates an Echo circuit where each received character is sent back
(echoed).

Contents Index 167

11 EXAMPLE DESIGNS

class Buffer extends Module {
val io = IO(new Bundle {
val in = Flipped(new UartIO(Q))
val out = new UartIO(Q)
b

object State extends ChiselEnum {
val empty, full = Value
}

import State._

val stateReg = RegInit(empty)
val dataReg = RegInit(0.U(8.W))

io.in.ready := stateReg === empty
io.out.valid := stateReg === full
when(stateReg === empty) {
when(io.in.valid) {
dataReg := io.in.bits
stateReg := full
3

} .otherwise { // full
when(io.out.ready) {
stateReg := empty
}
}

io.out.bits := dataReg

Listing 11.4: A single-byte buffer with a ready/valid interface.

168 Index Contents

11.3 FIFO DESIGN VARIATIONS

class BufferedTx(frequency: Int, baudRate: Int) extends

Module {

val io = IO(new Bundle {
val txd = Output(UInt(1l.W))
val channel = Flipped(new UartIO())

b

val tx = Module(new Tx(frequency, baudRate))

val buf = Module(new Buffer())

buf.io.in <> io.channel
tx.io.channel <> buf.io.out
io.txd <> tx.io.txd

Listing 11.5: A transmitter with an additional buffer.

11.3 FIFO Design Variations

At the beginning of this Chapter we introduced the design of a simple bubble FIFO.
In this section we will generalize the FIFO and implement different variations of the
queue. To make these implementations interchangeable, we will use inheritance, as
introduced in Section 10.5.

11.3.1 Parameterizing FIFOs

We define an abstract FIFO class as a generic class with a Chisel type T as a
parameter to be able to buffer any Chisel data type (see Listing 11.9). In the abstract
class we also test that the parameter depth has a useful value.

In Section 11.1 we defined our own types for the interface with common names
for signals, such as write, full, din, read, empty, and dout. The input and the out-
put of such a buffer consists of data and two signals for handshaking (for example,
we write into the FIFO when it is not full).

Here we can generalize this handshaking to the ready/valid interface. We can
enqueue an element (write into the FIFO) when the FIFO is ready. We signal this
at the writer side with valid. As this ready/valid interface is so common, Chisel
provides a definition of this interface in DecoupledI0 as follows:?

2This is a simplification, as DecoupledI0 actually extends an abstract class.

Contents Index 169

https://docs.scala-lang.org/tour/generic-classes.html

11 EXAMPLE DESIGNS

class Rx(frequency: Int, baudRate: Int) extends Module {
val io = IO(new Bundle {
val rxd = Input(UInt(l.W))
val channel = new UartIO(Q)

1))

val BIT_CNT = ((frequency + baudRate / 2) / baudRate - 1)
val START_CNT = ((3 * frequency / 2 + baudRate / 2) /
baudRate - 2) // -2 for the falling delay

// Sync in the asynchronous RX data
val rxReg = RegNext(RegNext(io.rxd, 0.U), 0.U)
val falling = !rxReg && (RegNext(rxReg) === 1.U)

val shiftReg = RegInit(0.U(8.W))

val cntReg = RegInit(BIT_CNT.U(20.W)) // have some idle
time before listening

val bitsReg = RegInit(0.U(4.W))

val valReg = RegInit(false.B)

when(cntReg =/= 0.U) {

cntReg := cntReg - 1.U
}.elsewhen(bitsReg =/= 0.U0) {
cntReg := BIT_CNT.U
shiftReg := Cat(rxReg, shiftReg >> 1)
bitsReg := bitsReg - 1.U
// the last shifted in
when(bitsReg === 1.U) {
valReg := true.B
}
}.elsewhen(falling) { // wait 1.5 bits after falling edge
of start
cntReg := START_CNT.U
bitsReg := 8.U
}
when(valReg && io.channel.ready) {
valReg := false.B
}
io.channel.bits := shiftReg
io.channel.valid := valReg

170 Listing 11.6: A reoedezr for a serial port. Contents

11.3 FIFO DESIGN VARIATIONS

class Sender(frequency: Int, baudRate: Int) extends Module {
val io = IO(new Bundle {
val txd = Output(UInt(l.W))
b

val tx = Module(new BufferedTx(frequency, baudRate))
io.txd := tx.io.txd

val msg = "Hello World!"

val text = VecInit(msg.map(_.U))

val len = msg.length.U

val cntReg = RegInit(0.U(8.W))

tx.io.channel.bits := text(cntReg)
tx.io.channel.valid := cntReg =/= len

when(tx.io.channel.ready && cntReg =/= len) {
cntReg := cntReg + 1.U
3

Listing 11.7: Sending “Hello World!” via the serial port.

class Echo(frequency: Int, baudRate: Int) extends Module {
val io = IO(new Bundle {
val txd = Output(UInt(1l.W))
val rxd = Input(UInt(l.W))
b
val tx = Module(new BufferedTx(frequency, baudRate))
val rx Module (new Rx(frequency, baudRate))
io.txd := tx.io.txd
rx.io.rxd := io.rxd
tx.io.channel <> rx.io.channel

Listing 11.8: Echoing data on the serial port.

Contents Index 171

11 EXAMPLE DESIGNS

abstract class Fifo[T <: Data](gen: T, val depth: Int)
extends Module {
val io = IO(new FifoIO(gen))

assert(depth > 0, "Number of buffer elements needs to be
larger than 0")

Listing 11.9: Abstract class for FIFO veriations.

class DecoupledIO[T <: Data](gen: T) extends Bundle {
val ready = Input(Bool())
val valid = Output(Bool())
val bits = Output(gen)

}

With the DecoupledIO interface we define the interface for our FIFOs: a FifoIO with
an enqueue (enq) and a dequeue (deq) port consisting of read/valid interfaces. The
DecoupledIO interface is defined from the writer’s (producer’s) viewpoint. There-
fore, the enqueue port of the FIFO needs to flip the signal directions.

class FifoIO[T <: Data](private val gen: T) extends Bundle {
val enq = Flipped(new DecoupledIO(gen))
val deq = new DecoupledIO(gen)

}

With the abstract base class and an interface, we can specialize in different FIFO
implementations optimized for different parameters (speed, area, power, or just sim-

plicity).
11.3.2 Redesigning the Bubble FIFO

We can redefine our bubble FIFO from Section 11.1 using standard ready/valid in-
terfaces and being parametrizable with a Chisel data type.

class BubbleFifo[T <: Data](gen: T, depth: Int) extends
Fifo(gen: T, depth: Int) {

private class Buffer() extends Module {

172 Index Contents

11.3 FIFO DESIGN VARIATIONS

val io

val fullReg
val dataReg

when (fullReg) {

IO(new FifoIO(gen))

RegInit(false.B)
Reg(gen)

when(io.deq.ready) {

fullReg
}

}.otherwise {

false.B

when(io.enq.valid) {

fullReg := true.B
dataReg := io.enq.bits
}
}
io.enqg.ready := !fullReg
io.deq.valid := fullReg
io.deq.bits := dataReg

}

private val buffers
Buffer()) }

for (i <- O until depth

buffers(i + 1).io.enq

}

io.enqg <> buffers(0).io
io.deq <> buffers(depth

Array.fill(depth) { Module(new

D {
<> buffers(i).io.deq

.enq
1) .io0.deq

Listing 11.10: A bubble FIFO with a ready/valid interface.

Listing 11.10 shows the refactored bubble FIFO with a ready/valid interface. Note
what we put the Buffer component inside BubbleFifo as a private class. This helper
class is only needed for this component, and therefore, we hide it and avoid polluting
the namespace. The buffer class has also been simplified. Instead of an FSM, we
use only a single bit (fullReg) for the state of the buffer: full or empty.

The bubble FIFO is simple, easy to understand, and uses minimal resources.
However, as each buffer stage has to toggle between empty and full, the maximum

bandwidth of this FIFO is one word every two clock cycles.

Contents

Index

11 EXAMPLE DESIGNS

One could consider looking at both interface sides in the buffer to be able to
accept a new word when the producer valid and the consumer is ready. However,
this introduces a combinational path from the consumer handshake to the producer
handshake, which violates the semantics of the ready/valid protocol.

11.3.3 Double Buffer FIFO

One solution is to stay ready even when the buffer register is full. To accept a
data word from the producer when the consumer is not ready, we need a second
buffer, we call it the shadow register. When the buffer is full, new data is stored
in the shadow register and ready is deasserted. When the consumer becomes ready
again, data is transferred from the data register to the consumer and from the shadow
register into the data register.

174 Index Contents

11.3 FIFO DESIGN VARIATIONS

class DoubleBufferFifo[T <: Datal(gen: T, depth: Int)
extends Fifo(gen: T, depth: Int) {

private class DoubleBuffer[T <: Data](gen: T) extends
Module {
val io = IO(new FifoIO(gen))

object State extends ChiselEnum {
val empty, one, two = Value

}

import State._

val stateReg = RegInit(empty)
val dataReg = Reg(gen)
val shadowReg = Reg(gen)

switch(stateReg) {
is(empty) {
when(io.enq.valid) {
stateReg := one
dataReg := io.enqg.bits
}
}
is(one) {
when(io.deq.ready && !io.enqg.valid) {

stateReg := empty
}
when(io.deq.ready && io.enqg.valid) {
stateReg := one
dataReg := io.enq.bits
}
when(!io.deq.ready && io.enq.valid) {
stateReg := two
shadowReg := io.enqg.bits
}
3
is(two) {
when(io.deq.ready) {
dataReg := shadowReg
stateReg := one

Contents Index 175

11 EXAMPLE DESIGNS

3
}
3
io.enqg.ready := (stateReg === empty || stateReg === one)
io.deq.valid := (stateReg === one || stateReg === two)
io.deq.bits := dataReg

}

private val buffers = Array.fill((depth + 1) / 2) {
Module (new DoubleBuffer(gen)) }

for (i <- O until (depth + 1) / 2 - 1) {
buffers(i + 1).io.enq <> buffers(i).io.deq

}

io.enqg <> buffers(0).io.enqg

io.deq <> buffers((depth + 1) / 2 - 1).io.deg

Listing 11.11: A FIFO with double buffer elements.

Listing 11.11 shows the double buffer FIFO. As each buffer element can store
two entries, we need only half of the buffer elements (depth/2). The DoubleBuffer
contains two registers, dataReg and shadowReg. The consumer is served always
from dataReg. The double buffer has three states: empty, one, and two, which signal
the fill level of the double buffer. The buffer is ready to accept new data when is it
in state empty or one. The buffer has valid data when it is in state one or two.

If we run the FIFO at full speed, and the consumer is always ready, the steady
state of the double buffers are one. Only when the consumer deasserts ready, the
queue fills up, and the buffers enter state two. However, compared to a single bubble
FIFO, a restart of the queue takes only half the number of clock cycles for the same
buffer capacity. Similar the fall through latency is half of the bubble FIFO.

11.3.4 FIFO with Register Memory

When you come with a software engineering background,, you may have been won-
dering that we built hardware queues out of many small buffer elements, executing
in parallel and handshaking with upstream and downstream elements. For small
buffers, this is probably the most efficient implementation.

176 Index Contents

11.3 FIFO DESIGN VARIATIONS

A queue in software is usually used by sequential code in two threads. We use a
queue to decouple a producer and consumer thread. In this setting, a fixed size FIFO
queue is usually implemented as a circular buffer. Two pointers point into read and
write positions in a memory set aside for the queue. When the pointers reach the end
of the memory, they are set back to the beginning of that memory. The difference
between the two pointers is the number of elements in the queue. When the two
pointers point to the same address, the queue is either empty or full. To distinguish
between empty and full, we need another flag.

We can implement such a memory-based FIFO queue in hardware as well. For
small queues, we can use a register file (i.e., a Reg(Vec())). Listing 11.12 shows a
FIFO queue implemented with memory and read and write pointers.

Contents Index 177

https://en.wikipedia.org/wiki/Circular_buffer

11 EXAMPLE DESIGNS

class RegFifo[T <: Data](gen: T, depth: Int) extends

Fifo(gen: T, depth: Int) {

def counter(depth: Int, incr: Bool): (Ulnt,
val cntReg = RegInit(0.U(log2Ceil (depth).W))

val nextVal = Mux(cntReg === (depth -
+ 1.0)
when(incr) {
cntReg := nextVal
3
(cntReg, nextVal)
}

// the register based memory
val memReg = Reg(Vec(depth, gen))

val incrRead = WireDefault(false.B)
val incrWrite = WireDefault(false.B)
val (readPtr, nextRead) = counter(depth,

val (writePtr, nextWrite) = counter (depth,

val emptyReg = RegInit(true.B)
val fullReg = RegInit(false.B)

val op = io.enq.valid ## io.deq.ready
val doWrite = WireDefault(false.B)

switch(op) {
is("b00".U) {}
is("b01".U) { // read
when (! emptyReg) {
fullReg := false.B
emptyReg := nextRead === writePtr
incrRead := true.B
}
3
is("b10".U) { // write
when (! fullReg) {
doWrite := true.B
emptyReg := false.B

178 Index

1.0,

incrRead)
incrWrite)

UInt)

0.0,

{

cntReg

Contents

11.3 FIFO DESIGN VARIATIONS

fullReg := nextWrite === readPtr
incrWirite := true.B
}
}
is("b11".U) { // write and read
when (! fullReg) {
doWrite := true.B
emptyReg := false.B
when(emptyReg) {
fullReg := false.B
}.otherwise {
fullReg := nextWrite === nextRead
}
incrWirite := true.B
}
when (! emptyReg) {
fullReg := false.B
when (fullReg) {
emptyReg false.B
}.otherwise
emptyReg

o~

nextRead === nextWrite

}

incrRead := true.B

}

when (doWrite) {
memReg(writePtr) := io.enq.bits

}

io.deq.bits := memReg(readPtr)
io.enqg.ready := !fullReg
io.deqg.valid := !emptyReg

Listing 11.12: A FIFO with a register based memory.

As there are two pointers that are incremented on an action and wrap around at
the end of the buffer, we define a function counter() that implements those wrap-
ping counters. With log2Ceil (depth) .W, we compute the bit length for the counter.

Contents Index 179

11 EXAMPLE DESIGNS

The next value is either an increment by 1 or a wrap-around to 0. The counter is
incremented only when the input incr is true.B.

Furthermore, as we need also the possible next value (increment or 0 on wrap-
around), we return this value from the counter function as well. In Scala we can
return a tuple, which is simply a container to hold more than one value. The syntax
to create a tuple is simply wrapping the comma-separated values in parentheses:

val t = (vl, v2)

We can deconstruct such a tuple by using the parenthesis notation on the left-hand
side of the assignment:

val (x1, x2) =t

For the memory we us a register of a vector (Reg(Vec(depth, gen)) of Chisel
data type gen. We define two signals to increment the read and write pointer and
create the read and write pointers with the function counter. When both pointers
are equal, the buffer is either empty or full. We define two flags to for the notion of
empty and full.

When the producer asserts valid and the FIFO is not full we: (1) write into the
buffer, (2) ensure emptyReg is deasserted, (3) mark the buffer full if the write pointer
will catch up with the read pointer in the next clock cycle (compare the current read
pointer with the next write pointer), and (4) signal the write counter to increment.

When the consumer is ready and the FIFO is not empty we: (1) ensure that the
fullReg is deasserted, (2) mark the buffer empty if the read pointer will catch up
with the write pointer in the next clock cycle, and (3) signal the read counter to
increment.

A concurrent read and write is also possible. This case summarizes the two for-
mer cases.

The output of the FIFO is the memory element at the read pointer address. The
ready and valid flags are simply derived from the full and empty flags.

11.3.5 FIFO with On-Chip Memory

The last version of the FIFO used a register file to represent the memory, which is a
good solution for a small FIFO. For larger FIFOs, it is better to use on-chip memory.
Listing 11.13 shows a FIFO using a synchronous memory for storage.

180 Index Contents

11.3 FIFO DESIGN VARIATIONS

class MemFifo[T <: Data](gen: T, depth: Int) extends
Fifo(gen: T, depth: Int) {

def counter(depth: Int, incr: Bool): (UInt, UInt) = {
val cntReg = RegInit(0.U(log2Ceil (depth).W))

val nextVal = Mux(cntReg === (depth - 1).U, 0.U, cntReg
+ 1.0)
when(incr) {
cntReg := nextVal
}

(cntReg, nextVal)
}

val mem = SyncReadMem(depth, gen, SyncReadMem.WriteFirst)

val incrRead = WireDefault(false.B)

val incrWrite = WireDefault(false.B)

val (readPtr, nextRead) = counter(depth, incrRead)
val (writePtr, nextWrite) = counter(depth, incrWrite)

val emptyReg = RegInit(true.B)
val fullReg = RegInit(false.B)

val outputReg = Reg(gen)
val outputValidReg = RegInit(false.B)
val read = WireDefault(false.B)

io.deq.valid
io.enq.ready

outputValidReg
! fullReg

val doWrite = WireDefault(false.B)

val data = Wire(gen)

data := mem.read(readPtr)

io.deq.bits := data

when (doWrite) {
mem.write(writePtr, io.enq.bits)

}

val readCond =
loutputValidReg && ((readPtr =/= writePtr) || fullReg)

Contents Index 181

11 EXAMPLE DESIGNS

// should add optimization when downstream is ready
for pipielining
when(readCond) {

read := true.B
incrRead := true.B
outputReg := data
outputValidReg := true.B
emptyReg := nextRead === writePtr
fullReg := false.B // no concurrent read when full (at
the moment)
}
when(io.deq.fire) {
outputValidReg := false.B
}
io.deg.bits := outputReg

when(io.enq.fire) {

emptyReg := false.B

fullReg := (nextWrite === readPtr) & !read
incrWirite := true.B

doWrite := true.B

Listing 11.13: A FIFO with a on-chip memory.

The handling of read and write pointer is identical to the register memory FIFO.
However, a synchronous on-chip memory delivers the result of a read in the next
clock cycle, where the read of the register file was available in the same clock cycle.
Therefore, we need an additional register to handle this latency.

class CombFifo[T <: Data](gen: T, depth: Int) extends
Fifo(gen: T, depth: Int) {

val memFifo = Module(new MemFifo(gen, depth))

val bufferFIFO = Module(new DoubleBufferFifo(gen, 2))
io.enqg <> memFifo.io.enqg

memFifo.io.deq <> bufferFIFO.io.enq
bufferFIFO.io.deq <> io.deq

182 Index Contents

11.4 A MULTI-CLOCK MEMORY

Listing 11.14: Combining a memory based FIFO with double-buffer stage.

11.4 A Multi-clock Memory

In large designs with multiple clock domains, you may need a way to safely pass
data from one domain to another. We have previously seen synchronization as one
solution to this issue. An alternative is to use a multi-clock memory as a buffer
between the two (or more) domains.

Chisel supports multi-clock designs with the withClock and withClockAndReset
constructs. All storage elements defined within a withClock(clk) block are clocked
by clk. For multi-clock memories, the memory module should be defined outside
all withClock blocks, while each port should have its own withClock block. A
parameterized multi-clock memory is shown in Listing 11.15.

class MemoryIO(val n: Int, val w: Int) extends Bundle {
val clk = Input(Bool())
val addr = Input(UInt(log2Up(n).W))
val datai = Input(UInt(w.W))
val datao = Output(UInt(w.W))
val en = Input(Bool())
val we = Input(Bool())
3

class MultiClockMemory(ports: Int, n: Int = 1024, w: Int =
32) extends Module {
val io = IO(new Bundle {
val ps = Vec(ports, new MemoryIO(n, w))

b
val ram = SyncReadMem(n, UInt(w.W))

/* does not work in Chisel 3.5.6
for (i <- 0 until ports) {
val p = io.ps(i)
p.datao := ram.readWrite(p.addr, p.datai, p.en, p.we,
p.clk.asClock)

Contents Index 183

11 EXAMPLE DESIGNS

*/

Listing 11.15: A multi-clock memory generator.

Naturally, using these multi-clock memories introduces some constraints to the
operations that can be performed simultaneously. Two (or more) ports cannot write
to the same address at the same time as this may cause metastability. Similarly,
one must make sure to define the wanted read-during-write behavior. The memory
should be configured to either write first, in which the input data is forwarded to the
read port, or read first, in which the old memory value is presented on the read port.

Beware, though, that multi-clock support in ChiselTest is still at a very early
stage. You need to manually toggle clock signals to force transitions.

11.5 Exercises

This exercise section is a little bit longer as it contains two exercises: (1) exploring
the bubble FIFO and implementing a different FIFO design; and (2) exploring the
UART and extending it. The source code for both exercises is included in the chisel-
examples repository.

11.5.1 Explore the Bubble FIFO

The FIFO source also includes a tester that provokes different read and write behav-
ior and generates a waveform in the value change dump (VCD) format. The VCD
file can be viewed with a waveform viewer, such as GTKWave. Explore the FifoS-
pec in the repository. The repository contains a Makefile to run the examples; for
the FIFO example just type:

$ make fifo

This make command will compile the FIFO, run the test, and start GTKWave for
waveform viewing.? Explore the tester and the generated waveform.

In the first cycle, the tester writes a single word. We can observe in the waveform
how that word bubbles through the FIFO, therefore the name bubble FIFO. This
bubbling also means that the latency of a data word through the FIFO is equal to the
depth of the FIFO.

3Depending on your operating system, you might need to start GKTWave manually

184 Index Contents

https://github.com/schoeberl/chisel-examples
https://github.com/schoeberl/chisel-examples
https://en.wikipedia.org/wiki/Value_change_dump
http://gtkwave.sourceforge.net/
https://github.com/schoeberl/chisel-examples/blob/master/src/test/scala/fifo/FifoSpec.scala
https://github.com/schoeberl/chisel-examples/blob/master/src/test/scala/fifo/FifoSpec.scala

11.5 EXERCISES

The next test fills the FIFO until it is full. A single read follows. Notice how
the empty word bubbles from the reader side of the FIFO to the writer side. When
a bubble FIFO is full, it takes a latency of the buffer depth for a read to affect the
writer’s side.

The end of the test contains a loop that tries to write and read at maximum speed.
We can see the bubble FIFO running at maximum bandwidth, which is two clock
cycles per word. A buffer stage has always to toggle between empty and full for a
single-word transfer.

A bubble FIFO is simple and, for small buffers, has a low resource requirement.
The main drawbacks of an n stage bubble FIFO are: (1) maximum throughput is
one word every two clock cycles, (2) a data word has to travel n clock cycles from
the writer’s end to the reader’s end, and (3) a full FIFO needs n clock cycles for the
restart.

These drawbacks can be solved by a FIFO implementation with a circular buffer.
The circular buffer can be implemented with a memory and read and write pointers.
Rerun/rewrite the test with the other FIFO implementation and compare the band-
width and latency. Synthesize the different FIFO versions and compare the resource
requirements.

11.5.2 The UART

For the UART example, you need an FPGA board with a serial port and a serial port
for your laptop (usually with a USB connection). Connect the serial cable between
the FPGA board and the serial port on your laptop. Start a terminal program, e.g.,
Hyperterm on Windows or gtkterm on Linux:

$ gtkterm &

Configure your port to use the correct device; with a USB UART this is often some-
thing like /dev/ttyUSBO. Set the baud rate to 115200 and no parity or flow control
(handshake). With the following command, you can create the Verilog code for the
UART:

$ make uart

Then use your synthesize tool to synthesize the design. The repository contains a
Quartus project for the DE2-115 FPGA board. With Quartus, use the play button to
synthesize the design and configure the FPGA. After configuration, you should see
a greeting message in the terminal.

Contents Index 185

https://en.wikipedia.org/wiki/Circular_buffer

11 EXAMPLE DESIGNS

Extend the blinking LED example with a UART and write O and 1 to the serial
line when the LED is off and on. Use the BufferedTx, as in the Sender example.

With the slow output of characters (two per second), you can write the data to
the UART transmit register and can ignore the ready/valid handshake. Extend the
example by writing repeated numbers 0-9 as fast as the baud rate allows. In this
case, you must extend your state machine to poll the UART status to check if the
transmit buffer is free.

The example code contains only a single buffer for the Tx. Feel free to add the
FIFO that you have implemented to add buffering to the transmitter and receiver.

11.5.3 FIFO Exploration

Write a simple FIFO with four buffer elements in dedicated registers. Use 2-bit read
and write counters, which can just overflow. As a further simplification, consider the
situation when the read and write pointers are equal to empty FIFO. This means you
can maximally store 3 elements. This simplification avoids the counter function
from the example in Listing 11.12 and the handling of the empty or full with the
same pointer values. We do not need empty or full flags, as this can be derived from
the pointer values alone. How much simpler is this design?

The presented different FIFO designs have different design tradeoffs relative to
the following properties: (1) maximum throughput, (2) fall through latency, (3) re-
source requirement, and (4) maximum clock frequency. Explore all FIFO variations
in different sizes by synthesizing them for an FPGA; the source is available at ip-
contributions. Where are the sweet spots for FIFOs of 4 words, 16 words, and 256
words?

186 Index Contents

https://github.com/freechipsproject/ip-contributions
https://github.com/freechipsproject/ip-contributions

12 Interconnect

We combine different components to build larger systems. To simplify the compo-
sition of components, interconnect standards such as Wishbone or AXI exists. This
chapter explores different forms of interconnect.

Interconnects can be used between chips (external) or within a chip, often then
called a system-on-chip (SoC).

12.1 A Classic Microprocessor Bus

Figure 12.1 shows the schematic of a simple, classic computer. The central process-
ing unit (CPU) is connected via a system bus to external memory and input/output
(I/0) devices. This type of bus interconnection was common with early micropro-
cessors such as Z80 or 6502.

The bus is split into an address bus, a data bus, and control signals such as read
and write. The CPU drives the address and control signals. The data bus is bidirec-
tional. The CPU is the master in the system, and issues read or write commands.
Both commands include an address (addr in the schematic) to select a data word
from memory or a register from an I/O device. Not all address lines are connected
to all peripheral devices. To select between different devices, the upper bits of the
address bus are the input of a decoder. The outputs of the decoder are connected to
the chip select (CS) inputs of the peripheral devices.

On a read command, the selected device will provide the data after some access
time on the data bus. The peripheral device drives the data bus. On a write com-
mand, the processor provides the data, and the peripheral has to accept that data
(often on a rising edge of a signal). The CPU drives the data bus. As the data
bus is bi-directional and the data lines are shared between all devices, the outputs
must contain a tri-state driver. In a tri-state configuration, both output transistors are
disabled and the output pin is practically disconnected from logic.

Note that the bus does not have a clock in the simplest form. The timing is defined
by read and write access times of the peripheral devices.

187

https://en.wikipedia.org/wiki/Wishbone_(computer_bus)
https://en.wikipedia.org/wiki/System_bus
https://en.wikipedia.org/wiki/Zilog_Z80
https://en.wikipedia.org/wiki/MOS_Technology_6502
https://en.wikipedia.org/wiki/Three-state_logic

12 INTERCONNECT

| Address
"| decoder | |
CSm CSio
v v
Input and
CPU Memory Output

T F] I L

addr data rd/wr addr data rd/wr addr data rd/wr
l y | |
\ 4 \ 4

Figure 12.1: A classic computer consisting of a processor (CPU), memory, and I/O;
connected via address, data, and control buses.

Modern computers have different buses for different peripheral devices, for ex-
ample, a dedicated memory bus for external memory and I/O buses for peripheral
devices. Furthermore, modern I/O buses, such as PCI Express, are serial buses and
use point-to-point connections.

Nevertheless, the classic processor bus with an address bus, a data bus, and chip
select signals is still the mainstream mindset for core interconnections. We will
adapt this concept for on-chip interconnect in the next section.

12.2 An On-Chip Bus

We can translate the concept of such an external bus to an on-chip bus. However, we
need to adapt some aspects. Shared buses requiring tri-state drivers are not practical
within a chip. Furthermore, wires in a chip are cheaper than wires on a PCB or at a
connector. Therefore, we split the data bus into two collections of wires: one for the
read and one for the write signals. Furthermore, on-chip connections use a clock to
define the timing.

Figure 12.2 shows the implementation of the bus concept within a chip. The

188 Index Contents

https://en.wikipedia.org/wiki/PCI_Express

12.2 AN ON-CHIP BUs

| Address
"| decoder |
csm Cilo
CPU Memory In&tﬁp&:ﬂd

B

addr din dout rd/wr

ClE

e S

addr din dout rd/wr addr din dout rd/wr

A

A

Figure 12.2: The translation of the off-chip bus concept to an on-chip “bus”.

Contents Index 189

12 INTERCONNECT

| |
address))address X
]]]]
|]] 1
rd | | :_

| | '
[} [}
[} [}

data

Figure 12.3: A read transaction with a combinational acknowledge.

address, data output, and control signals are connected from the CPU to all periph-
erals. We use a multiplexer (instead of a tri-state bus) for the data input. Besides
generating the chip select signals, the address decoder drives the selection of the
data input multiplexer.

With that simple setup, we assume that each operation (read or write) can be ex-
ecuted in a single clock cycle. This is only possible for very small systems. We can
extend this by defining that we expect the read result in the next clock cycle follow-
ing the read request. This fits well for on-chip memories with synchronous reads
with one clock cycle latency. For IO devices, this additional clock cycle latency
also relaxes the timing constraints. We still assume that a write is performed in one
clock cycle.

If we want to communicate with devices with different or varying latency, we
must introduce handshaking. The processor signals the start of a transaction with
a read or write request, and the memory or peripheral device signals the end of a
transaction with an acknowledgment signal.

12.2.1 Combinational Handshake

Figure 12.3 shows a read request with an acknowledgment. The processor drives
the address bus (address) and the read signal (rd) in clock cycle 2. The signal ack
needs to react within that first clock cycle. In our example, the read data is not
available within one clock cycle but two clock cycles later, as seen in clock cycle 4.
Data and the acknowledgment are valid for a single clock cycle. The benefit of that

190 Index Contents

12.2 AN ON-CHIP BUs

clock T_MW

|
address)AL X
| 1
d L T L

I
. |
ack : :)\
[} [}
I I

data

Figure 12.4: Read transaction with a pipelined acknowledgement.

protocol specification is that it allows for a single-cycle transaction. However, the
price is that the handshake process, including decoding, is a combinational circuit,
which can lead to issues with the maximum frequency. The standard Wishbone [16]
protocol uses same-cycle acknowledgement. The newer version of Wishbone added
a pipelined protocol.

Same-cycle acknowledgment (or ready signal) has been criticized in [17]. A
single-cycle transaction is usually not realistic in a larger system. Therefore, we
can define a specification where the acknowledge (or busy or ready) signal does not
need to be valid in the request cycle. That paper proposes SimpCon, a protocol
that enables pipelined transactions and avoids the combinational path between the
processor, the address decoding, and the peripheral device.

12.2.2 Pipelined Handshake

Here, we define a simple pipelined handshake bus protocol that avoids the single-
cycle combinational loop and is better suited to modern SoC designs. A read or
write command is signaled by an assertion of rd or wr for a single clock cycle.
The address and write data (if it is a write) need to be valid during the command.
Commands are only valid for a single cycle. Each command must be acknowledged
by an active ack, the earliest one cycle after the command. It can also insert wait
states by delaying ack. Read data is available with the ack signal for one clock
cycle.

Figure 12.4 shows a bus protocol that does not need a combinational reaction

Contents Index 191

12 INTERCONNECT

of the peripheral device. The request from the processor is only a single clock
cycle long. The address bus and the read signal do not need to be driven until the
acknowledgment. Compared to the former protocol, the ack signal needs to be valid
(low or high) no earlier than one clock cycle after the rd command in clock cycle 3.
In this example, the first read sequence has two clock cycles of latency. It has the
same latency as in the former example. However, as the request needs to be valid
for only one clock cycle, we can pipeline requests. Read of addresses A2 and A3 can
be requested back to back, allowing a throughput of 1 data word per clock cycle.

We call this interconnect PipeCon to emphasize the pipelined nature of the inter-
face. The interface is defined as follows:

class PipeCon(private val addrWidth: Int) extends Bundle {
val address = Input(UInt(addrWidth.W))
val rd = Input(Bool())
val wr = Input(Bool())
val rdData = Output(UInt(32.W))
val wrData = Input(UInt(32.W))
val wrMask = Input(UInt(4.W))
val ack = Output(Bool())

The Patmos processor [27] uses an OCP version with exactly this protocol for ac-
cessing 10 devices. Memory is connected via a burst interface. The Patmos Hand-
book [22] gives a detailed description of the used OCP interfaces. Furthermore, we
have started a Chisel repository with multicore devices, such as a network-on-chip,
that implement the described pipelined interface.

The on-chip version of an interconnect definition can be generalized to a point-
to-point connection. The processor and peripheral devices are connected with such
a point-to-point interface to a switching fabric. If the system contains more than
one processor (or master) we need arbitration within the switching fabric to decide
which master can issue read and write commands.

12.2.3 Example 10 Device

Listing 12.1 shows an IO device that implements the specification of the pipelined
interconnect. The IO device contains four loadable counters. To address those four
counters, we need four address bits, as the addresses count in bytes, but the counters
are 32-bit wide. We read the value from the counter with a read transaction (rd is
asserted) and get the result in the next clock cycle (in dout). We write to a counter

192 Index Contents

https://github.com/t-crest/soc-comm

12.2 AN ON-CHIP BUs

class CounterDevice extends Module {
val io = IO(new PipeCon(4))

val ackReg = RegInit(false.B)
val addrReg = RegInit(0.U(2.W))
val cntRegs = RegInit(VecInit(Seq.fill(4) (0.U(32.W))))

ackReg := io.rd || io.wr
when(io.rd) {

addrReg := io.address(3, 2)
}
io.rdData := cntRegs(addrReg)

for (i <- 0 until 4) {

cntRegs (i) := cntRegs(i) + 1.U
3
when (io.wr) {
cntRegs(io.address (3, 2)) := io.wrData
3
io.ack := ackReg

Listing 12.1: An IO device consisting of four loadable counters.

Contents Index 193

12 INTERCONNECT

Address Device

0x0000-0x0fff ROM
0x1000-0x1fff RAM

0xf000 UART
0xf010 LEDs
0xf020 Keys

Table 12.1: An example address mapping.

with wr asserted and the value set in din.

To implement the delayed acknowledge, we use a single bit register (ackReg) to
delay any asserted rd or wr. As we provide the read result in the clock cycle that
follows the read command and the address is only valid during this command cycle,
we need to store the address in addrReg.

The counters themselves consist of a small register file of 4 elements (a Reg of a
Vec). The counters are initialized to zero by using a Scala Seq, created with £ill
containing the reset values as Chisel constants. That Seq is the input to the VecInit.
The counters are freely running and increment by one each clock cycle, except when
a new value is written.

12.2.4 Memory Mapped Devices

Our example system connects all memory or IO devices to shared address lines.
Therefore, they appear in the shared address space. To select individual devices, we
use address decoding of some upper bits. These are called memory-mapped devices,
and as part of the system design, we need to decide on the address mapping.

Table 12.1 shows an example address map for a (16-bit) microcontroller. We
assume 16-bit addresses; therefore, the range of the addresses is between 0x0000
and Oxffff. At the lowest address (the start of the program to be executed), we map
a read-only memory (ROM) that contains the program. In the next memory area,
we map a writable memory (RAM) for the data. We decided to map all IO devices
into the upper area of the address space (above 0xf000) so they are out of the way in
case we want to extend the memory. In this example, we reserve 16 bytes of address
for each IO device. Note that this is a made-up example and that we have all the
flexibility when deciding on an address map.

Some IO devices do not have memory-mapped registers, as the counter device,

194 Index Contents

12.2 AN ON-CHIP BUs

Address I/0 Device read write
0xf000 UART status control
0xf001 UART receive buffer transmit buffer

Table 12.2: Address mapping for the UART.

Bit Status

0 TDRE Transmit (TX) data register empty
1 RDRF Receive (RX) data register full

Table 12.3: Status flags.

but a ready/valid interface, as explained in Section 9.3. The UART, as presented in
Section 11.2, for example, has two ready/valid interfaces: one for writing and one
for reading a value. A common solution is to map the write and read channel to one
address and drive the corresponding signals on the write or read command. We map
those two signals into a status register at a different address to signal if the write
channel is ready to receive a new data word or if the read channel has valid data.

Table 12.2 shows an address mapping for the UART. At the base address (0xf000)
we access a status register on a read and an optional control register on a write. At
the next address (0xfO01), we read from a read buffer and write into a transmit
buffer.

Table 12.3 shows the mapping of two flags into the status register. Both bits
signal that we can perform a write or a read transaction. When the transmit data
register is empty (TDRE), we can write (send) new data to the transmitter (TX).
When the receive data register is full, we can read data from the receiver (RX). The
terminology might sound a bit like using old terms. And this is true for our interface.
This is precisely the mapping of the first serial port for the IBM PC built with the
8250 chip, and it is still valid.

Note that to use ready and valid in a status register for polling, the ready signal
from the transmitter and the valid signal from the receiver are not allowed to be
deasserted once they have been asserted. If this cannot be guaranteed, two single-
word buffers, as shown in Listing 9.7, can be inserted between the 10 interface and
device with the read/valid interface.

For our memory-mapped devices, we define a bundle:

Contents Index 195

https://en.wikipedia.org/wiki/8250_UART

12 INTERCONNECT

class MemoryMappedIO extends Bundle {
val address = Input(UInt(4.W))
val rd = Input(Bool())
val wr = Input(Bool())
val rdData = Output(UInt(32.W))
val wrData = Input(UInt(32.W))
val ack = Output(Bool())

Listing 12.2 shows the memory-mapped interface to a streaming device, like a
serial port. The streaming device is connected to tx for the output and to rx for the
input. The mem port is connected to a processor bus, using the pipelined handshake.

The device can be accessed with one clock cycle latency, as defined being the
minimal access latency in the pipelined handshake. Therefore, we generate the ack
signal when it was either a read or write one clock cycle later (ackReg).

The status register statusReg contains two flags: one for transmit channel ready
(there is space in the send buffer) and receive channel valid (there is at least one
byte in the receive buffer).

On read command, we store the read address in a register (addrReg) for use in the
next clock cycle when we return the read value. Depending on the address we either
return the value of the status register or the receive data. The write data is directly
connected to the transmit channel, and the write signal (wr) signals a valid input.

To simplify the code example, we return from a read also if there is no data in the
receive channel. An alternative would be to wait with the ack till data is available.
Also in the send part, we ignore if there is room in the send buffer. We could as well
block the write by not asserting ack until space is available in the send buffer. We
delegate this check into software that reads the status register before trying to read
or write a value.

12.3 Bus and Interface Standards

Several point-to-point and bus standards have been proposed over the years. The
following sections give a brief overview of common SoC interconnection standards.

12.3.1 Wishbone

The Wishbone [16] specification defines a point-to-point communication and not
a bus in the classic sense. Wishbone is a public domain standard used by several

196 Index Contents

12.3 BUS AND INTERFACE STANDARDS

class MemMappedRV[T <: Data](gen: T, block: Boolean = false)
extends Module {
val io = IO0O(new Bundle() {
val mem = new MemoryMappedIO()
val tx = Decoupled(gen)
val rx = Flipped(Decoupled(gen))
b

val statusReg = RegInit(0.U(2.W))
val ackReg = RegInit(false.B)

val addrReg = RegInit(0.U(C1.W))
val rdDlyReg = RegInit(false.B)

statusReg := io.rx.valid ## io.tx.ready
// ack

ackReg := io.mem.rd || io.mem.wr
io.mem.ack := ackReg

// read from status or rx
when (io.mem.rd) {

addrReg := io.mem.address
3
rdDlyReg := io.mem.rd
io.rx.ready := false.B
when (addrReg === 1.U && rdDlyReg) {
io.rx.ready := true.B
3
io.mem.rdData := Mux(addrReg === 0.U, statusReg,

io.rx.bits)

// write to tx
io.tx.bits := io.mem.wrData
io.tx.valid := io.mem.wr

Listing 12.2: An IO device for a ready/valid device.

Contents Index 197

12 INTERCONNECT

open-source IP cores. The Wishbone interface specification is still in the tradition
of microcomputers or backplane buses. However, for an SoC interconnect, which
is usually point-to-point', this is not the best approach. The master is requested
to hold the address and data valid through the whole read or write cycle. This
complicates the connection to a master with data valid only for one cycle. In this
case, the address and data must be registered before the Wishbone connect, or an
expensive (in terms of time and resources) multiplexer must be used. A register
results in one additional cycle of latency. A better approach would be to register
the address and data in the slave. In that case, the address decoding in the slave
can be performed in the same cycle as when the address is registered. A similar
issue concerning the master exists for the output data from the slave: As it is only
valid for a single cycle, the data has to be registered by the master when the master
does not read it immediately. Therefore, the slave should keep the last valid data at
its output even when the Wishbone strobe signal (wb.stb) is not assigned anymore.
Holding the data in the slave is usually free in terms of hardware complexity—it is
Jjust a specification issue. In the classic Wishbone specification, there is no way to
perform a pipelined read or write. However, the latest Wishbone specification (B4)
also contains a pipelined definition. Note that the specification now includes two
different, not necessarily compatible, specifications.

12.3.2 AXI

The Advanced Microcontroller Bus Architecture (AMBA) [2] is an interconnection
definition from ARM. The specification defines three different buses: Advanced
High-performance Bus (AHB), Advanced System Bus (ASB) and Advanced Periph-
eral Bus (APB). The AHB connects on-chip memory, cache, and external memory
to the processor. Peripheral devices are connected to the APB. A bridge connects
the AHB to the lower-bandwidth APB. An AHB bus transfer can be one cycle with
burst operation. With the APB, a bus transfer requires two cycles, and no burst
mode is available. Peripheral bus cycles with wait states are added in version 3 of
the APB specification. ASB is the predecessor of AHB and is not recommended for
new designs (ASB uses both clock phases for the bus signals — very uncommon for
today’s synchronous designs).

Amba AXI (Advanced eXtensible Interface) and ACE version 4 [3] is the latest
extension to AMBA. AXI introduces out-of-order transaction completion with the
help of a 4-bit transaction ID tag. A ready signal acknowledges the transaction’s

"Multiplexers are used instead of buses to connect several slaves and masters.

198 Index Contents

12.3 BUS AND INTERFACE STANDARDS

start. The master has to hold the transaction information (e.g., address) till the inter-
connect signals are ready. This enhancement ruins the elegant single-cycle address
phase from the original AHB specification.

The AXI bus uses ready/valid handshaking for all signals (read address, read data,
write address, write data, and write response). The decoupling of the write address
and the write data needs a more complex slave that can accept any order of arriving
address and data.

12.3.3 Open Core Protocol

Sonics Inc. defined the Open Core Protocol (OCP) [13] as an open, freely avail-
able standard. The standard is now handled by the OCP International Partnership
(www.ocpip.org). The Patmos processor [27] and the T-CREST [21] multicore plat-
form uses the OCP standard. The Patmos repository” contains several memory con-
trollers, many peripherals devices, and a network-on-chip with an OCP interface.

12.3.4 Further Bus Specifications

The Avalon [1] interface specification is provided by Intel for a system-on-a-programmable-
chip interconnection. Avalon defines an extensive range of interconnection devices,

from a simple asynchronous interface for direct static RAM connection to sophis-
ticated pipeline transfers with variable latencies. This flexibility provides an easy

path to connect a peripheral device to Avalon. How is this flexibility possible? The
Avalon Switch Fabric translates between all those different interconnection types.

The switch fabric is generated by Intel’s SOPC Builder tool. However, it seems that

this switch fabric is Intel proprietary, thus tying this specification to Intel FPGAs.

The On-Chip Peripheral Bus (OPB) [11] is an open standard provided by IBM
and has been used by Xilinx several years ago. The OPB specifies a bus for mul-
tiple masters and slaves. The implementation of the bus is not directly defined
in the specification. A distributed ring, a centralized multiplexer, or a centralized
AND/OR network are suggested. Xilinx used the AND/OR approach, and all mas-
ters and slaves had to drive the data buses to zero when inactive. Xilinx switched to
AXI for all their interconnects.

2https ://github.com/t-crest/patmos

Contents Index 199

https://github.com/t-crest/patmos

12 INTERCONNECT

12.4 Exercise

Use the code shown in Listing 12.2 and a streaming device to the rx and tx. Or
write a ChiselTest simulation of such a device. Write a testbench to test the memory
interface. Explore what happens if the test ignores the status flags, i.e., reading
invalid data or dropping write data when the transmit channel is not ready. Update
the MemeoryMappedRV module so that the ack signal is delayed until the streaming
device is ready or valid. Can your testbench handle the delayed ack? I you are
simulating both the streaming device and the memory interface does the Scala code
become a bit awkward, you need two software state machines to handle two devices
in parallel? You can solve this issue elegant with multithreaded testing, as described
in the testing chapter.

200 Index Contents

13 Debugging, Testing, and
Verification

In Chapter 3, we gave a quick introduction to how to test Chisel designs. In this
chapter, we will dig deeper into testing and verification.

Testing and verification have slightly different meanings in software development
than in digital design. In software development, testing means running tests on com-
ponents, whereas verification is usually short for formal verification (mathematical
proofs or exhaustive testing with model checking). In digital design, we use the
term testing similar to software when writing test benches that stimulate and check
adevice under test (DUT). However, the term testing is also used in the actual test of
the physical chip (on a tester using built-in self-tests). Therefore, the digital design
community is slowly moving toward using the term verification to test hardware de-
scriptions. If we want to apply formal methods to verify hardware components, we
call it formal verification. In this book, we will stick to the term testing when we
write tests for our hardware description.

13.1 Debugging

During your design and coding phase, you often debug your design. Debugging is
the process of finding defects in your code. Those defects are called bugs. Debug-
ging is often performed in parallel with writing new code.

One can debug a program by using a debugger or simply by printing interesting
values to the terminal, called printf debugging. In hardware, elements are executing
in parallel. Therefore, a common form of hardware debugging is generating wave-
forms and watching how signals of interest evolve over time. We call this waveform
debugging.!

A Chisel tester can generate waveforms, which can be viewed, for example, with
GTKWave. However, it is also possible to print signal values during circuit simula-

IThere is no entry in Wikipedia for this; we should create one.

201

https://en.wikipedia.org/wiki/Debugging
https://en.wikipedia.org/wiki/Software_bug
https://en.wikipedia.org/wiki/Debugging#printf_debugging
http://gtkwave.sourceforge.net/

13 DEBUGGING, TESTING, AND VERIFICATION

tion for quick checks. Values are printed at the rising edge of the clock.

13.2 Testing in Chisel

ChiselTest is based on ScalaTest. Therefore, we can run all tests with a simple sbt
test. ScalaTest also supports multithreaded testing out of the box, so if you have
multiple test classes in your project, they can run in parallel. Additionally, you can
use the FlatSpec syntax to write clear test descriptions and make debugging easier.

You define Chisel tests as classes that extend AnyFlatSpec with the
ChiselScalatestTester trait. ChiselTest uses peek, poke, expect, and step meth-
ods that operate on the DUT’s 10 ports. The ChiselTest methods operate on Chisel
types (i.e., UInts, SInts, and Bools). However, when peeking a value, we usually
want Scala types for the test written in Scala. Therefore, two additional methods
exist: (1) peekInt() returns a Scala Int and (2) peekBoolean() returns a Scala
Boolean. To advance the simulation by one clock cycle, we call step() on the
DUT’s implicit clock port.

You can define a test within the test () function, which takes the module to test
as a parameter. As an example, the following tester tests a few inputs to a BCD
table:

class BcdTableTest extends AnyFlatSpec with
ChiselScalatestTester {
"BCD table" should "output BCD encoded numbers" in {

test(new BcdTable) { dut =>
dut.io.address.poke (0.U)
dut.io.data.expect("h00".U)
dut.io.address.poke(1.U)
dut.io.data.expect("h01".U)
dut.io.address.poke(13.U)
dut.io.data.expect("h13".U)
dut.io.address.poke (99.U)
dut.io.data.expect("h99".U)

Alternatively, you can use the behavior of ‘‘module name’’ syntax to refer to
the module with it. This is useful when you have several tests for a single module.

202 Index Contents

13.2 TESTING IN CHISEL

class BcdTableTest extends FlatSpec with
ChiselScalatestTester {
behavior of "BCD table"

it should "output BCD encoded numbers" in {
test(new BcdTable) { dut =>

}

Simple tests start by writing test vectors with poke to the DUT, advancing the
clock, and testing the outputs with an expect. For debugging purposes, we can also
peek values and print them out for manual inspection. The code in Listing 13.1 tests
the counter device we introduced in Chapter 12 as an example IO device.

13.2.1 Use Functions

As you can see, the test covers only a few cases but is already very long to read.
All those pokes and expects are cumbersome. As a first step, we shall introduce
functions to represent a read and a write request. Those functions abstract away the
manual “bit banging” at the interface pins in the testing code. Listing 13.2 shows a
test with those functions. For a shortcut, we also define the function step to advance
the clock.

The read function takes an address as a parameter and returns the read value.
After poking the address and the read signal, the function advances the clock by
one clock cycle and deasserts the read function. In our example device, the read
value should be available after one clock cycle. However, we generalize the read
function also for devices with longer latencies, and the read function waits in an
endless loop that ack will become true. Note that we use peekBoolean to read a
Scala Boolean. However, if a device fails to never assert ack after a request, the test
will hang in an endless loop. A more robust read function shall contain a timeout
for the ack polling. Finally, we read the data from rdData with peekInt() to read a
Scala integer value (concrete a BigInt to express integers of any size).

The write function takes an address and the data parameters as Scala Int. Similar
to the read function, the values are poked into the device, the clock is advanced by
one clock cycle, and the write signal deasserted. We also wait in an endless loop for
ack to become true.

With those three functions available, we can write more readable tests with fewer

Contents Index 203

13 DEBUGGING, TESTING, AND VERIFICATION

"CounterDevice" should "work" in {
test(new CounterDevice()) { dut =>

dut.io.ack.expect(false.B)
dut.clock.step()
dut.io.address.poke(0.U)
dut.io.rd.poke(true.B)
dut.io.ack.expect(false.B)
dut.clock.step()
dut.io.rd.poke(false.B)
dut.io.ack.expect(true.B)
dut.clock.step(100)
dut.io.rd.poke(true.B)
dut.io.address.poke(4.U)
dut.clock.step()
assert(dut.io.rdData.peekInt() > 100)
dut.io.wr.poke(true.B)
dut.io.wrData.poke(0.U)
dut.clock.step()
dut.io.wr.poke(false.B)
dut.io.rd.poke(true.B)
dut.clock.step()
dut.io.rdData.expect(1l.U)
dut.io.address.poke(0.U)
dut.clock.step()
assert(dut.io.rdData.peekInt() > 100)

Listing 13.1: Testing the counter device.

204 Index Contents

13.2 TESTING IN CHISEL

"CounterDevice" should "work with functions" in {

test(new CounterDevice()) { dut =>

def step(n: Int = 1) = {
dut.clock.step(n)

3

def read(addr: Int) = {
dut.io.address.poke(addr.U)
dut.io.rd.poke(true.B)
step)
dut.io.rd.poke(false.B)
while (!dut.io.ack.peekBoolean()) {

step()

}
dut.io.rdData.peekInt ()

3

def write(addr: Int, data: Int) = {
dut.io.address.poke(addr.U)
dut.io.wrData.poke(data.U)
dut.io.wr.poke(true.B)
step ()
dut.io.wr.poke(false.B)
while (!dut.io.ack.peekBoolean()) {

step)

}

3

for (i <- O until 4) {

assert(read(i*4) < 10, s"Counter $i should have just

started")
}
step (100)
for (i <- ® until 4) {

assert(read(i*4) > 100, s"Counter $i should advance")

}

write(2*4, 0)

write(3*4, 1000)

assert(read(2*4) < 5, "Counter should reset")

assert(read(3*4) > 1000, "Counter should load")

Listing 13.2: Testing the counter device with fuctions.

Contents Index

205

13 DEBUGGING, TESTING, AND VERIFICATION

lines of code. This testing code already covers more cases than the original bit-
banging tester.”

13.2.2 Selecting Tests

If you have a large test suite, you may wish to run only a subset of your tests as part
of a continuous integration run. The easiest way to achieve this and still have to run
only a single SBT command is by tagging your tests.

object Unnecessary extends Tag("Unnecessary")

class TagTest extends AnyFlatSpec with Matchers {
"Integers" should "add" taggedAs(Unnecessary) in {
17 + 25 should be (42)
}
}

By default, all tests are run using sbt test or sbt testOnly *. To leave out tests
tagged with, for example, Unnecessary, you can run:

$ sbt "testOnly * -- -1 Unnecessary"
When you run the command, the test will show up as ignored in the terminal:

[info] TagTest:
[info] Integers

[info] No tests were executed.

If your tests (and tags) are part of a package, remember to provide the full refer-
ence path to both.

13.2.3 Accessing Internal Signals

When testing a circuit, the test code usually has access only to the ports of the DUT.
This abstraction is generally good practice, as access to internal signals and state is
considered bad practice (in hardware and software testing).

21t happened that I had an off-by-one error (until 3 instead of until 4)in the counter device that
I found only with the second, more comprehensive test.

206 Index Contents

https://en.wikipedia.org/wiki/Continuous_integration

13.2 TESTING IN CHISEL

class TickGen extends Module {
val io = IO(new Bundle {
val tick = Output(Bool())

b
val cntReg = RegInit(0.U(8.W))
cntReg := cntReg + 1.U
io.tick := cntReg === 9.U
when(io.tick) {

cntReg := 0.0
}

Listing 13.3: The tick generater as DUT.

However, it is sometimes beneficial to access the internal state. For example, test-
ing a microprocessor with small assembler test programs. In that case, one would
usually compare the state of the hardware implementation of the processor against
a software-based simulator of the same processor. For a RISC-style processor com-
paring the content of the register file of the two implementations would be enough
for this kind of testing, as all data that is computed, loaded, or stored passes the
register file at some time. Another use case is to explore and test a state machine
(with or without datapath) with access to the internal state.

To show the access to internal signals in action, we use a very minimal example:
A tick generator with an internal counter. Listing 13.3 shows the code. Only the
necessary signal tick is connected to an output port. The counter is not exposed,
which is good design practice. For example, we want to access this internal counter
in our test code. We could add a port to expose the counter. We could even use
a Scala Boolean flag to conditionally have this port when we debug and disable
it when generating hardware. However, mixing debugging code into the hardware
description is not good practice.

To get access to internal signals, we can use the BoringUtils. BoringUtils al-
lows us to bore a connection through a module hierarchy. Behind the scenes, it adds
the additional needed ports throughout the hierarchy. It does exactly what we could
do manually but avoids cluttering the original code.

At the time of this writing, BoringUtils is still considered experimental. There-
fore, we need to include the following package when using it:

Contents Index 207

13 DEBUGGING, TESTING, AND VERIFICATION

class TickGenTestTop extends Module {
val io = IO(new Bundle {
val tick = Output(Bool())
val counter = Output(UInt(8.W))

b

val tickGen = Module(new TickGen)
io.tick := tickGen.io.tick
io.counter := DontCare

BoringUtils.bore(tickGen.cntReg, Seq(io.counter))

Listing 13.4: A top-level wrapper for our DUT.

import chisel3.util.experimental.BoringUtils

To support additional ports, we wrap our DUT into another top-level module for
testing. Listing 13.4 shows that top-level module with the additional port counter.
Within the TickGenTestTop, we instantiate our original DUT and connect the tick
port. For the counter output, first, we must assign a value to make the Chisel com-
piler happy. As we connect it to the inner module later, we connect it to DontCare.
The next line connects the io.counter to the count register in tickGen. We need
to wrap io.counter into a Scala Seq, as boring() supports connecting to several
signals.

Finally, Listing 13.5 shows the testing code for our DUT. Note that we instantiate
the top-level wrapper to use the additional output port.

13.2.4 Multithreaded Testing

Digital hardware is inherently parallel. It is also helpful to represent parallelism in
the testing code to test such a parallel circuit. For example, one thread fills data into
a circuit while another thread checks the outputs from that circuit. We could do this
in a single thread, but then we need to mix code for different tasks into one function
that shares the advancement of the clock. With multithreaded tests, each thread can
independently advance the clock. The threads are synchronized internally at the call
of clockQ).

ChiselTest supports multithreaded testing by using fork and join calls. fork

208 Index Contents

13.2 TESTING IN CHISEL

test(new TickGenTestTop()) { dut =>
dut.io.tick.expect(false.B)
dut.io.counter.expect(0.U)

dut.clock.step (O
dut.io.tick.expect(false.B)
dut.io.counter.expect (1.0U)

dut.clock.step(8)
dut.io.tick.expect(true.B)
dut.io.counter.expect(9.0U)

dut.clock.step ()
dut.io.tick.expect(false.B)
dut.io.counter.expect(0.U)

Listing 13.5: Testing the DUT with access to internal signals.

spawns a new tester thread with a block of test code as its parameter, while join
may be called on a tester thread variable (returned by a fork call) to wait for it to
join the main thread.

Running multiple threads does present some new limitations to peeks and pokes
in that no two threads can peek (respectively, poke) the same signal at the same
time. Similarly, the threads are synchronized on calls to step to guarantee correct
operation. The following snippet is a small test of a FIFO that enqueues an element
in one thread and dequeues it in the main thread:

it should "work with multiple threads" in {
test(new BubbleFifo(8, 4)) { dut =>
val enq = fork {
while (dut.io.enq.full.peekBoolean())
dut.clock.step()

dut.io.enqg.din.poke (42.U)
dut.io.enq.write.poke(true.B)
dut.clock.step()
dut.io.enq.write.poke(false.B)

Contents Index 209

13 DEBUGGING, TESTING, AND VERIFICATION

while (dut.io.deq.empty.peekBoolean())

dut.clock.step()
dut.io.deq.dout.expect(42.0U)
dut.io.deq.read.poke(true.B)
dut.clock.step()
dut.io.deq.empty.expect(true.B)
enqg.join()

}

Multiple threads are spawned with stacked calls to fork. The spawned threads
represent a hierarchy in which the first thread should not finish before any of the
subsequent threads.

13.2.5 Simulator Backends

By default, tests written with ChiselTest are run by the Treadle simulation backend.
The benefits of Treadle are its quick startup time and the fact that it does not require
any additional tools to be installed.

However, large system tests may either require another backend to support, for
example, latches or may benefit in terms of simulation time. To enable this, Chisel-
Test supports two other backends: Verilator and Synopsys VCS. Because Verilator
is open-source, we will use it for the examples presented in this section. Note that
VCS can be an alternative to Verilator in all shown cases.

Switching to a different backend adds another annotation to the withAnnotations
call, as shown in the Waveforms section. To use Verilator, add the following anno-
tation:

test(new
Dut()) .withAnnotations(Seq(VerilatorBackendAnnotation))
{

Additional flexibility arises from supplying your switches to the simulator com-
mand that starts the backend. This is done by using VerilatorFlags to add switches
to the Verilator simulation command, or VerilatorCFlags to add switches to GCC.
They should be in the list of annotations along with the backend annotation. You
need to refer to the tool’s user manual to find a detailed list of command line argu-
ments. Note that VerilatorFlags and VerilatorCFlags annotations are advanced
features that should generally not be needed. Furthermore, the flags are not guaran-

210 Index Contents

https://www.veripool.org/wiki/verilator
https://www.synopsys.com/verification/simulation/vcs.html

13.3 ASSERTIONS AND FORMAL VERIFICATION

teed to remain stable.

Note that ChiselTest 0.3.4 and later support code coverage measures directly in
simulation. To support this, install version 4.028 or a newer version of Verilator.

Also, beware that different simulators work in different ways. Verilator is a syn-
chronous simulator, meaning it runs updates only at the rising edge of the clock and
thus does not support latches. It also does not officially support multiple clocks.
VCS, on the other hand, is an event-based simulator, which is significantly more
detailed in its simulations and supports all synthesizable Verilog constructs. Gen-
erally, for single-clock circuits, Verilator is the fastest and most widely available
tool.

13.3 Assertions and Formal Verification

An assertion statement in a programming language allows one to state assumptions
about a program. If the assertion condition evaluates to false, the program usually
stops with an exception. Chisel also supports assertions to state assumptions in the
hardware. Those assertions are tested when simulating the digital design. The sim-
ulation stops with an error message if the condition evaluates to false. Assertions
are ignored when generating hardware, as there is no (easy) way that hardware can
communicate a failing assertion.

Listing 13.6 shows an example of using assertions. These are trivial assertions to
show how to use them. If we would make an error and use subtraction instead off
addition or reassigning sum later a different value, we would catch that error during
testing and get a similar error message as below:

Assertion failed
at Assert.scala:20 assert(sum <= a + b)

However, as you can read in the comments, the first two assertions are not always
true, so we cannot use them. We found this out by using formal verification. I
would propose to place all assertions at the end of a module, so they do not clutter
the reading of the intended design.

The assertions are executed during simulation; we must write the test cases for
them. However, writing tests to trigger all possibilities is hard (impossible). To catch
errors in overlooked corner cases, we can use formal verification. Kevin Laeufer has
added formal verification to ChiselTest [12]. The very same assertions are used for
formal verification.

Contents Index 211

13 DEBUGGING, TESTING, AND VERIFICATION

class Assert extends Module {
val io = IO(new Bundle {
val a Input (UInt (8.W))
val b = Input(UInt(8.W))
val sum = Output(UInt(8.W))
b

io.sum := io.a + io.b

/* the following will not be true when
the addition overflows

assert(io.sum >= 1io.a)

assert(io.sum >= io.b)

:'-‘/

assert(io.sum === io.a + io.b)

Listing 13.6: Using assertions in Chisel.

"AssertTest" should "pass" in {
verify(new Assert(), Seq(BoundedCheck(5),
WriteVcdAnnotation))

Listing 13.7: Formally verifying the circuit.

To explore formal verification with Chisel, install the open Z3 theorem prover.
To use formal verification you substitute test(..) by verify(..). Listing 13.7
shows how to run formal verification on our simple adder circuit with the (naive)
assertions.

It surprised the author that Chisel formal immediately found an error in the circuit
or the assertions. To investigate the issue, we can look into the waveform to find the
input data that leads to an assertion violation. It uses Oxdb and 0x65 as inputs, which
results in a sum of 0x40. The input values led to an overflow of the 8-bit addition.
With our simple test case, we missed testing overflowing values. This verification
showed that the assertions that the sum is larger or equal to the inputs are wrong due
to possible overflow.

212 Index Contents

https://github.com/Z3Prover/z3

13.4 EXERCISE

13.4 Exercise

Extreme programming is an agile software development style, focusing on quick
turnaround times and a strong dependency on unit tests. In its pure form, one writes
the tests first before implementing a feature. This style is not used so often in real
life. However, exploring it may help to focus on testing as an important part of
developing artifacts.

Therefore, the proposed exercise is to write test benches for designs you have
not yet implemented. Pick one of the small projects from Chapter 7, e.g., the de-
bouncing circuit or the majority-based filtering design, and write tests for it. Then,
implement the hardware design itself.

Explore the experience of this little experiment. Did you implement tests that
found errors in your design? If all tests pass, are you sure you have tests that cover
a reasonable design space? How do you test your tests? Add a fault into your DUT
and see if your tests will catch it.

As you work through this exercise, you may experience an unpleasant feeling that
testing is hard and it is probably impossible to catch all errors.> However, there is
hope in recent developments in formal verification to complement testing. The topic
of formal verification with Chisel will be extended in a future edition of this book.

3 A famous quote by Dijkstra is, “Program testing can be used to show the presence of bugs, but never
to show their absence!”

Contents Index 213

https://en.wikipedia.org/wiki/Extreme_programming

14 Design of a Processor

As one of the last chapters in this book, we present a medium-sized project: The de-
sign, simulation, and testing of a microprocessor. To keep this project manageable,
we design a simple accumulator machine. The processor is called Leros [25] and is
available in open source at https://github.com/leros-dev/leros. We would
like to mention that this is an advanced example, and some computer architecture
knowledge is needed to follow the presented code examples.

14.1 The Instruction Set Architecture

The definition of an instruction set is also called instruction set architecture (ISA).
The ISA is the most important abstraction in computer architecture. The ISA is the
contract between the compiler (or assembler programmer) and the concrete proces-
sor implementation. The ISA is independent of the actual implementation. Different
implementations of a microprocessor (also called microarchitecture) can execute the
same ISA.

Leros is designed to be simple but still a good target for a C compiler. The
description of the instructions fits on one page; see Table 14.1.

Leros is an accumulator machine. This means that all operations have the ac-
cumulator as one of the source inputs, and the result is usually written into the
accumulator. The second operand of an arithmetic or logic operation can either be
an immediate (a constant) or from one of the 256 on-chip registers. Access to mem-
ory (load or store) is also performed via the accumulator: on a load, the value from
memory is stored in the accumulator, and for a store, the value is taken from the
accumulator. The address for the memory access is stored in the address register
(AR).

The program counter (PC) is pointing to the current instruction in the instruction
memory. The PC is usually incremented to the following instructions. To implement
control flow, the PC can be manipulated by a branch or jump instruction. Leros has
unconditional and conditional branch instructions. Conditional branches depend on
the content of the accumulator. E.g., brz branches only when the content of the ac-

215

https://leros-dev.github.io/
https://github.com/leros-dev/leros

14 DESIGN OF A PROCESSOR

Opcode Function Description

add A=A+Rn Add register Rn to A

addi A=A+i Add immediate value i to A

sub A=A-Rn Subtract register Rn from A

subi A=A-i Subtract immediate value i from A
shr A=A>>>1 Shift A logically right

load A =Rn Load register Rn into A

loadi A=i Load immediate value i into A
and A=A and Rn And register Rn with A

andi A=Aandi And immediate value i with A

or A=AorRn Or register Rn with A

ori A=Aori Or immediate value i with A

Xor A =AxorRn Xor register Rn with A

xori A =Axori Xor immediate value i with A
loadhi Ajs_g=1 Load immediate into second byte
loadh2i Axz_1g=1 Load immediate into third byte
loadh3i Azi_xy =1 Load immediate into fourth byte
store Rn=A Store A into register Rn

jal PC=A,Rn=PC+2 Jump to A and store return address
Idaddr AR=A Load address register AR with A
loadind A =mem[AR+(i << 2)] Load a word from memory into A
loadindb A = mem[AR+i]7_¢ Load a byte from memory into A
loadindh A = mem[AR+({ << 1)];5_0 Load a half word from memory into A
storeind mem[AR+(i << 2)]=A Store A into memory

storeindb mem[AR+i] = A7_g Store a byte into memory
storeindh mem[AR+(i << 1)] =A5_¢9 Store a half word into memory

br PC=PC+o Branch

brz ifA==0PC=PC+o0 Branch if A is zero

brnz ifA!l=0PC=PC+o0 Branch if A is not zero

brp ifA>=0PC=PC+o Branch if A is positive

brn ifA<OPC=PC+o Branch if A is negative

scall System call (simulation hook)

Table 14.1: Leros instruction set.

216 Index Contents

14.1 THE INSTRUCTION SET ARCHITECTURE

cumulator is 0. Leros branches are relative to the current instruction and can branch
forward and backward around 2000 instructions. For larger control flow changes
and function calls and returns, Leros has a jump-and-link (jal) instruction. That
instruction jumps to the address that is in the accumulator and stores the address of
the following instruction into a register. That value can then be used to return from
a function with jal.

The accumulator and the register file are in our current implementation 32-bit
wide.!

Table ?? shows the instruction set of Leros. A represents the accumulator, PC is
the program counter, i is an immediate value (O to 255), Rn a register n (0 to 255), o
a branch offset relative to the PC, and AR an address register for memory access.

The following code snippet show examples of Leros’ instructions in assembly:

loadi 1
addi 2

ori 0x50
andi Ox1f
subi 0x13
loadi Oxab
addi 0x01
subi 0xac

scall ®

We can see that each instruction consists of the instruction name (also called opcode
mnemonic) and a constant. The constant can be written in decimal or hexadecimal
notion. The code shows immediate versions of load, arithmetic, and logic instruc-
tions. The last instruction (scall @) is a system call and ends the execution (or
simulation). This short program is part of the Leros test suit. The convention of the
test is that at the end of the program, the accumulator shall contain 0.

Instructions are 16 bits wide. The higher byte is used to encode the instruc-
tion, and the lower byte contains either an immediate value, a register number, or
a branch offset (part of the branch offset also uses bits in the upper byte). For
example, 60001001.00000010 is an add immediate instruction that adds 2 to the ac-
cumulator, whereas 00001000.00000011 adds the content of R3 to the accumulator.
For branches, we use 3 of the instruction bits for larger offsets.

Listing 14.1 shows the encoding of the instructions in the upper 8 bits of each
instruction. Not all instruction bits are currently used (unused are marked with -)

'We try to keep it configurable also to implement 16-bit or 64-bit versions of Leros.

Contents Index 217

14 DESIGN OF A PROCESSOR

®0000---	nop
900010-0	add
000010-1	addi
900011-0	sub
900011-1	subi
®0010---	sra
00011---	-
00100000	load
00100001	loadi
00100010	and
00100011	andi
00100100	or
00100101	ori
100100110	=xor
00100111	=xori
00101001	loadhi
00101010	loadh2i
00101011	loadh3i
®0110---	store
001110-?	out
000001-?	in

|01000---| jal
|01001---]| -
|01010---| ldaddr

|91100-00| 1dind
|91100-01| 1ldindb
|91100-10| 1ldindh
|91110-00| stind
|91110-01| stindb
|91110-10| stindh
|1000nnnn| br
|1001nnnn| brz
|1010nnnn| brnz
|1011nnnn| brp
|1100nnnn| brn
|11111111| scall
B o - +

Listing 14.1: Leros instruction encoding.

218 Index Contents

14.2 THE DATAPATH

14.2 The Datapath

Section 9.2 describes how to implement an algorithm in hardware with a state ma-
chine and datapath. We will use the same approach for the initial implementation of
Leros.

We need a datapath that allows the data flow for all instructions, possible in sev-
eral clock cycles. We aim for a executing each instruction in two clock cycles.
Therefore, the base state machine has two states: fetch and execute.

Figure 14.1 shows the datapath for implementing Leros. The figure is slightly
simplified. The data flows from left to right. The PC points to the instruction to
be fetched. On-chip memories usually have input registers that cannot be read.’
Therefore, we feed to the PC and the input register of the instruction memory the
same value as the next PC. The next PC is for non-branching instructions the PC
plus 1.3 For a relative branch, the decode component sign extends the immediate
value and adds it to the PC. For the jal instruction, the PC can also be loaded from
A.

In the first state, an instruction is fetched from the instruction memory and de-
coded. The decode component decides what will happen in the next state, the ex-
ecute state. The decode also includes the generation of an operand for instructions
with an immediate operand (e.g., addi, or loadhi). As this operand is consumed in
the execution state, we must store it in a register.

The second memory serves as general data memory but also stores the values for
the 255 registers. The address is part of the instruction for a read or write of one of
the registers. We use the address register AR for memory load or store instructions.
AR itself is loaded from A. The result of a load is placed into A. On a store, A delivers
the data to be written into memory.

Finally, arithmetic and logic operations are performed with the ALU. One operand
comes from A, the other is either an immediate value (from the instruction) or a reg-
ister value (from the memory).

14.3 Start with an ALU

A central component of a processor is the arithmetic logic unit, or ALU for short.
Therefore, we start with the coding of the ALU and a test bench. First, we define
constants to represent the different operations of the ALU:

2 At least this is true for FPGA on-chip memories
3We count in this simple organization in 16-bit instruction words and not in bytes

Contents Index 219

https://en.wikipedia.org/wiki/Arithmetic_logic_unit

14 DESIGN OF A PROCESSOR

]
. A D» address —|
! Instr. Memon
- y wrData —b|

[wrEna 5|

Decod
ecode Data Memory

— rdData ~‘

10 —»|

il

Figure 14.1: The Leros datapath.

// Alu ops
val nop = 0
val add =1
val sub = 2
val and = 3
val or = 4
val xor =5
val 1d = 6
val shr = 7

t

An ALU usually has two operand inputs (call them a and b), an operation op (or
opcode) input to select the function and an output y. Listing 14.2 shows the ALU.
We first define shorter names for the three inputs. The switch statement defines
the logic for the computation of res. Therefore, it gets a default assignment of 0.
The switch statement enumerates all operations and assigns the expression accord-
ingly. All operations map directly to a Chisel expression. In the end, we assign the

result res to the ALU output y

class AluAccu(size: Int) extends Module {
val io = IO(new Bundle {
val op = Input(UInt(3.W))
val din = Input(UInt(size.W))
val enaMask = Input(UInt(4.W))
val enaByte = Input(Bool())
val enaHalf = Input(Bool())

220 Index

Contents

14.3 START WITH AN ALU

val off

= Input(UInt(2.W))

val accu = Output(UInt(size.W))

B

val accuReg = RegInit(0.U(size.W))

val op =

io.op

val a = accuReg
val b = io.din

val res =

WireDefault(a)

switch(op) {

is(nop.U) {
res := a
}
is(add.U) {
res := a + b
}
is(sub.U) {
res :=a - b
}
is(and.U) {
res := a &b
}
is(or.U) {
res :=a | b
}
is(xor.U) {
res :=a "~ b
}
is(shr.U) {
res := a > 1
}
is(1d.U) {
res := b
}
}
val byte = WireDefault(res(7, 0))
val half = WireDefault(res(1l5, 0))
when(io.off === 1.0U) {

Contents

Index

221

14 DESIGN OF A PROCESSOR

byte := res(1l5, 8)
}.elsewhen(io.off === 2.U) {
byte := res(23, 16)
half := res(31, 16)
}.elsewhen(io.off === 3.U) {
byte := res(31, 24)
}
val signExt = Wire(SInt(32.W))
when (io.enaByte) {

signExt := byte.asSInt
} .otherwise {
signExt := half.asSInt

}

// Workaround for missing subword assignments
val split = Wire(Vec(4, UInt(8.W)))
for (i <- O until 4) {

split(i) := Mux(io.enaMask(i), res(8 * i + 7, 8 *
accuReg(8 * i + 7, 8 * 1))

}

when((io.enaByte || io.enaHalf) & io.enaMask.andR) {
accuReg := signExt.asUInt

} .otherwise {
accuReg := split.asUInt

}

io.accu := accuReg

i),

Listing 14.2: The Leros ALU with the accumulator register.

For the testing, we write the ALU function in plain Scala, as shown in List-

ing 14.3.

While this duplication of hardware written in Chisel and Scala implementation does
not detect errors in the specification; it is at least some sanity check. We use some

corner case values as the test vector:

222 Index

Contents

14.3 START WITH AN ALU

def alu(a: Int, b: Int, op: Int): Int = {

op match {
case 0 => a
case 1 => a + b
case 2 =>a - b
case 3 => a &b
case 4 => a | b
case 5 =>a " b
case 6 => b
case 7 => a >>> 1
case _ => -123 // This shall not happen
}

Listing 14.3: The Leros ALU function written in Scala.

// Some interesting corner cases
val interesting = Seq(l, 2, 4, 123, 0, -1, -2,
0x80000000, Ox7fffffff)

We define a function (testOne()) to test one pair of inputs.

def testOne(a: Int, b: Int, fun: Int): Unit = {
dut.io.op.poke(1ld.U)
dut.io.enaMask.poke("b1111".U)
dut.io.din.poke((a.tolLong & O0xQ0ffffffffl).U)
dut.clock.step (1)
dut.io.op.poke(fun.U)
dut.io.din.poke((b.toLong & O0xQ00ffffffffl).U)
dut.clock.step (1)
dut.io.accu.expect((alu(a, b, fun.toInt).tolong &

0x00ffffff£fL).U)
}

Then we test all functions with those values on both inputs:

def test(values: Seq[Int]) = {
for (fun <- 0 to 7) {
for (a <- values) {

Contents Index 223

14 DESIGN OF A PROCESSOR

for (b <- values) {
testOne(a, b, fun)
}
}

}

Full, exhaustive testing for 32-bit arguments is not possible, which was why we
selected some corner cases as input values. Besides testing against corner cases, it
is also useful to test against random inputs:

val randArgs =
Seq.fill(10) (scala.util.Random.nextInt())
test(randArgs)

You can run the tests within the Leros project with
$ sbt "testOnly leros.AluAccuTest"
The test shall produce a success message similar to:

[info] AluAccuTest:

[info] AluAccu

[info] - should pass

[info] Run completed in 1 second, 794 milliseconds.

[info] Total number of tests run: 1

[info] Suites: completed 1, aborted 0

[info] Tests: succeeded 1, failed ®, canceled 0, ignored 0, pending 0
[info] All tests passed.

14.4 Decoding Instructions

From the ALU, we work backward and implement the instruction decoder. Instruc-
tion decoding is generating the signals to drive the multiplexers and the ALU in the
next stage/state. However, first, we define the instruction encoding in its own Scala
class and a shared package. We want to share the encoding constants between the
hardware implementation of Leros, an assembler for Leros, and an instruction set
simulator.

object Constants {

224 Index Contents

14.4 DECODING INSTRUCTIONS

val NOP 0x00
val ADD = 0x08
val ADDI = 0x09
val SUB = 0x0c
val SUBI = 0x0d
val SHR = 0x10
val LD = 0x20
val LDI 0x21
val AND = 0x22
val ANDI = 0x23
val OR = 0x24
val ORI 0x25
val XOR = 0x26
val XORI = 0x27
val LDHI = 0x29
val LDH2I = 0x2a
val LDH3I = 0x2b
val ST = 0x30

//

For the decode component, we define a Bundle for the output, which is later used in
the execution state and fed partially into the ALU. The DecodeOut Bundle contains
more fields, not showing here. See the original Leros code base for the details.

class DecodeOut extends Bundle {
val operand = UInt(32.W)
val enaMask = UInt(4.W)
val op = UInt(Q)
val off = SInt(10.W)
val isRegOpd = Bool()
val useDecOpd = Bool()
val isStore = Bool()
// ... and more fields

We also define a companion object for the DecodeOut class that includes a function
default() to create a DecodeOut object and sets all fields to default values.

object DecodeOut {

val MaskNone = "b00OO".U
val MaskAll = "b1111".U

Contents Index 225

14 DESIGN OF A PROCESSOR

def default: DecodeOut = {
val v = Wire(new DecodeOut)

v.operand := 0.U
v.enaMask := MaskNone
v.op := nop.U

v.off := 0.S
v.isRegOpd := false.B
v.useDecOpd := false.B
v.isStore := false.B
// ... and more fields

Decode takes as input an 8-bit opcode and delivers the decoded signals as output.
Those driving signals are assigned a default value by using the default function to
create that object.

class Decode() extends Module {
val io = IO(new Bundle {
val din = Input(UInt(16.W))
val dout = Output(new DecodeOut)
b

import DecodeOut._

val d = DecodeOut.default

The decoding itself is just a large switch statement on the part of the instruction that
represents the opcode (in Leros for most instructions the upper 8 bits.)

switch(instr (15, 8)) {
is(ADD.U) {
d.op := add.U
d.enaMask := MaskAll
d.isRegOpd := true.B
3
is(ADDI.U) {
d.op := add.U
d.enaMask := MaskAll
d.useDecOpd := true.B
}
is(SUB.U) {

226 Index Contents

14.5 ASSEMBLING INSTRUCTIONS

d.op := sub.U
d.enaMask := MaskAll
d.isRegOpd := true.B
}
is(SUBI.U) {
d.op := sub.U
d.enaMask := MaskAll
d.useDecOpd := true.B
}
is(SHR.U) {
d.op := shr.U
d.enaMask := MaskAll
}
//

Additionally, the decode module also generates sign extended version of the con-
stant in the instruction and computes the offset for the indirect load and store in-
structions.

14.5 Assembling Instructions

To write programs for Leros, we need an assembler. However, for the very first test,
we can hard code a few instructions and put them into a Scala array, which we use
to initialize the instruction memory.

val prog = Array[Int](
0x0903, // addi 0x3
0x09ff, // -1
0x0d02, // subi 2
0x21ab, // 1di Oxab
0x230f, // and 0x0f
0x25c3, // or 0xc3
0x0000

)

def getProgramFix() = prog

However, this is a very inefficient approach to testing a processor. Writing an as-
sembler with an expressive language like Scala is not a big project. Therefore, we
write a simple assembler for Leros, which is possible within about 100 lines of code.

Contents Index 227

14 DESIGN OF A PROCESSOR

We define a function getProgram that calls the assembler. We need a symbol table
for branch destinations, which we collect in a Map. A classic assembler runs in two
passes: (1) collects the values for the symbol table and (2) assembles the program
with the symbols collected in the first pass. Therefore, we call assemble twice with
a parameter to indicate which pass it is.

def getProgram(prog: String) = {
assemble (prog)

}

// collect destination addresses in first pass
val symbols = collection.mutable.Map[String, Int](Q)

def assemble(prog: String): Array[Int] = {
assemble(prog, false)
assemble (prog, true)

}

The assemble function starts with opening the source file and defining two helper
functions to parse the two possible operands: (1) an integer constant (allowing dec-
imal or hexadecimal notation) and (2) to read a register number.

def assemble(prog: String, pass2: Boolean): Array[Int] = {

val source = Source.fromFile(prog)
var program = List[Int](Q)
var pc = 0

def toInt(s: String): Int = {
if (s.startsWith("0x")) {
Integer.parselInt(s.substring(2), 16)
} else {
Integer.parselInt(s)
}
3

def regNumber(s: String): Int = {
assert(s.startsWith("r"), "Register numbers shall
start with \’'r\’")
s.substring(1l).toInt
3

228 Index Contents

14.6 THE INSTRUCTION MEMORY

Listing 14.4 shows the core of the assembler for Leros. A Scala match expression
covers the core of the assembly function.

14.6 The Instruction Memory

Listing 14.5 shows the instruction memory module for Leros. The memory is con-
figured with the size as the number of address bits (memAddrWidth) and a path to
the program (prog). The constructor of the instruction memory calls the assembler,
shown in the previous section, to assemble the program. This is an example of a
hardware generator that assembles code for an embedded processor during hardware
generation. The Scala array that contains the Leros program is converted to a Scala
Seq and than mapped to a Chisel Vec with the anonymous function _.asUInt(16.W).
The instruction memory contains a register for the address (memReg) to enable the
implementation of the instruction memory as an on-chip memory in an FPGA.*

14.7 A State Machine with Data Path Implementation

As stated at the beginning of the chapter, the Leros ISA definition does not define
a concrete implementation. Throughout the chapter, we made implicit design deci-
sions. Here, we will discuss one design option.

In the presented implementation, we share the data memory with the register file.
The 256 registers are just an array in the data memory. A different implementation
might have dedicated on-chip memories for data and the registers.

We implemented Leros in the idea of a state machine with a datapath. This also

means that each instruction takes more than one clock cycle. We use two states:
fetch and execute, as shown in Listing 14.6.
The state machine switches between the two states. In the fetch state, we fetch an
instruction from the instruction memory and also decode that instruction. We also
start a read operation from the data memory in the fetch state, as the data memory
is synchronous and needs one clock cycle to deliver the read result.

In the execute state, we compute a new value for the accumulator or store the read
result from the data memory into the accumulator. We also perform a write in the
execute state.

“In the current version of Chisel, the generated code contains a large priority Mux that the FPGA
synthesize tools cannot map to an on-chip memory. Using the MLIR backend shall fix this issue.
Another workaround for this issue, as done in the Patmos project for the bootloader is to generate
Verilog code that fits the synthesized tools and include it as a black box.

Contents Index 229

14 DESIGN OF A PROCESSOR

for (line <- source.getlLines()) {

if (!pass2) println(line)

val tokens = line.trim.split(" ")

val Pattern = "(.*:)".r

val instr = tokens(®) match {
case "//" => // comment
case Pattern(l) => if (!pass2) symbols +=

(1l.substring(®, l.length - 1) -> pc)

case "add" => (ADD << 8) + regNumber (tokens (1))
case "sub" => (SUB << 8) + regNumber (tokens (1))
case "and" => (AND << 8) + regNumber (tokens(l))
case "or" => (OR << 8) + regNumber(tokens (1))
case "xor" => (XOR << 8) + regNumber (tokens(1l))
case "load" => (LD << 8) + regNumber (tokens(l))
case "addi" => (ADDI << 8) + toInt(tokens(1l))
case "subi" => (SUBI << 8) + toInt(tokens(1l))
case "andi" => (ANDI << 8) + toInt(tokens(l))
case "ori" => (ORI << 8) + toInt(tokens(1))
case "xori" => (XORI << 8) + toInt(tokens(1l))

case "shr" => (SHR << 8)

/7

case "" => // println("Empty line")

case t: String => throw new Exception("Assembler
error: unknown instruction: " + t)

case _ => throw new Exception("Assembler error")

Listing 14.4: The main part of the Leros assembler.

230 Index Contents

14.7 A STATE MACHINE WITH DATA PATH IMPLEMENTATION

class InstrMem(memAddrWidth: Int, prog: String) extends
Module {
val io = IO(new Bundle {
val addr = Input(UInt(memAddrWidth.W))
val instr = Output(UInt(16.W))
b
val code = Assembler.getProgram(prog)
assert(scala.math.pow(2, memAddrWidth) >= code.length,
"Program too large")
val proglMem =
VecInit(code.toIndexedSeq.map(_.asUInt(16.W)))
val memReg = RegInit (0.U(memAddrWidth.W))
memReg := io.addr
io.instr := progMem(memReg)

Listing 14.5: The instruction memory of Leros.

object State extends ChiselEnum {
val fetch, execute = Value

3
import State._

val stateReg = RegInit(fetch)

switch(stateReg) {
is(fetch) {

stateReg := execute
}
is(execute) {
stateReg := fetch
}

Listing 14.6: The Leros state machine.

Contents Index 231

14 DESIGN OF A PROCESSOR

The following code shows the instantiation of the ALU, including the accumula-
tor and the two main state registers: the program counter (pcReg) and the address
register (addrReg).

val alu = Module(new AluAccu(size))
val accu = alu.io.accu

// The main architectural state
val pcReg = RegInit(0.U(memAddrWidth.W))
val addrReg = RegInit(0.U(memAddrWidth.W))

val pcNext = WireDefault(pcReg + 1.0)

The following code shows the instantiation of the instruction memory. Note that
the instruction memory has as a parameter the file name of the program.

val mem = Module(new InstrMem(memAddrWidth, prog))
mem.io.addr := pcNext
val instr = mem.io.instr

The following code shows the instantiation of the decode module. The input of
the decode module is the instruction from the fetch module, and the outputs are the
decode signals. As we need those signals in the execute state, they are registered in
decReg.

val dec = Module(new Decode())
dec.io.din := instr
val decout = dec.io.dout

val decReg = RegInit(DecodeOut.default)
when (stateReg === fetch) {

decReg := decout
}

Listing 14.7 shows the data memory of Leros. The memory is organized in 32-
bit words. To enable byte access to those 32-bit words, the word is split into a
Vec of four 8-bit bytes. A read() operation returns a vector of four bytes that we
concatenate to a 32-bit word with the ## operator. For the write, we split the written
word into those four bytes and use the write mask (wrMask) to select which bytes
are written. The SyncReadMem components contain a write() function that takes a
vector and a write mask as parameters.

232 Index Contents

14.7 A STATE MACHINE WITH DATA PATH IMPLEMENTATION

class DataMem(memAddrWidth: Int) extends Module {
val io = IO(new Bundle {
val rdAddr = Input(UInt(memAddrWidth.W))
val rdData = Output(UInt(32.W))
val wrAddr Input (UInt (memAddrWidth.W))
val wrData = Input(UInt(32.W))
val wr = Input(Bool())
val wrMask = Input(UInt(4.W))
b

val mem = SyncReadMem(l << memAddrWidth, Vec(4, UInt(8.W)))

val rdVec = mem.read(io.rdAddr)
io.rdData := rdVec(3) ## rdVec(2) ## rdVec(l) ## rdVec(0)
val wrVec = Wire(Vec(4, UInt(8.W)))
val wrMask = Wire(Vec(4, Bool()))
for (i <- 0 until 4) {
wrVec(i) := io.wrData(i * 8 + 7, i * 8)
wrMask(i) := io.wrMask(i)
}
when (io.wr) {
mem.write(io.wrAddr, wrVec, wrMask)

}

Listing 14.7: The data memory module of Leros.

Contents Index 233

14 DESIGN OF A PROCESSOR

The following code shows the instantiation of the data memory and the connec-
tions of the ports.

val dataMem = Module(new DataMem((memAddrWidth)))

val memAddr = Mux(decout.isDataAccess, effAddrWord,
instr (7, 0))

val memAddrReg = RegNext (memAddr)

val effAddrOffReg = RegNext(effAddrOff)

dataMem.io.rdAddr := memAddr

val dataRead = datalMem.io.rdData
dataMem.io.wrAddr := memAddrReg
dataMem.io.wrData := accu
dataMem.io.wr := false.B
dataMem.io.wrMask := "b1111".U

14.8 Implementation Variations

Actual processors perform instruction pipelining. In an instruction pipeline, more
than one instruction is on the fly. For example, with Leros, we could implement
three pipeline stages: instruction fetch, instruction decode, and execute. In that case,
three instructions would be in the pipeline, and we can execute one instruction each
clock cycle. Compared to the presented implementation, pipelining could about
double the performance of Leros. In the next chapter, we will present a pipelined
processor implementing the RISC-V instruction set.

14.9 Exercise

This exercise assignment in one of the last chapters is in a very free form. You are
at the end of your learning tour through Chisel and ready to tackle design problems
that you find interesting.

One option is to reread the chapter and read along with all the source code in the
Leros repository, run the test cases, fiddle with the code by breaking it, and see that
tests fail.

Another option is to write your implementation of Leros. The implementation in
the repository is just one possible organization. You could write a Chisel simulation

234 Index Contents

https://en.wikipedia.org/wiki/Instruction_pipelining
https://github.com/leros-dev/leros

14.9 EXERCISE

version of Leros with a single pipeline stage or go crazy and superpipeline Leros for
the highest possible clocking frequency.

A third option is to design your processor from scratch. Maybe the demonstration
of how to build the Leros processor and the needed tools have convinced you that
processor design and implementation are no magic art, but the engineering can be
very joyful.

Contents Index 235

15 A RISC-V Pipeline

Pipelining is a technique to improve throughput of some processing. For example,
in an assembly line of a car factory, each stage performs a specialized task, such as
engine installation. When that task is done, the car moves to the next stage. This
pipelining enables the execution of different tasks in parallel at different stages of a
car manufacturing line.

We can also use pipelining in digital design to speed up data stream processing. A
prominent example of pipelining in digital design is building a pipelined micropro-
cessor. In that case, instructions flow through the pipeline, performing one operation
at each stage by a different processor unit. In contrast to the processor presented in
Chapter 14, where each instruction took several clock cycles, in a pipelined proces-
sor, instructions run in parallel in different stages. The resulting (ideal) throughput
is one instruction per clock cycle.

In this chapter, we present Wildcat, a simple pipelined RISC-V processor [20].
RISC-V is an open instruction set architecture originally developed at the University
of California, Berkeley. Wildcat focuses on providing readable Chisel code that can
be used in education. This chapter contains the most important source snippets for
building a RISC-V pipeline. More details and tests are available in the Wildcat
GitHub repository. The repository also contains a RISC-V instruction set simulator,
written in Scala, and a single-cycle version in Chisel for demonstration.

15.1 The RISC-V Instruction Set Architecture

Andrew Waterman defined the RISC-V instruction set architecture (ISA) in his PhD
thesis [30] at the University of California, Berkeley. Krste Asanovic and Dave Pat-
terson supervised him. Waterman explored RISC architectures from the last three
decades, including MIPS, SPARC, and Alpha, to distill the essence of RISC into the
RISC-V ISA definition. The RISC-V ISA is available as an open source. Therefore,
many microcontrollers providers have switched to RISC-V in the last few years.
RISC-V is an ISA definition; it does not define an implementation. The “V”
stands for the fifth RISC project at the University of California, Berkeley, and also

237

https://en.wikipedia.org/wiki/RISC-V
https://github.com/schoeberl/wildcat
https://github.com/schoeberl/wildcat

15 A RISC-V PIPELINE

indicates that vector instructions are a part of the standard.

The RISC-V ISA definition defines two base versions, RV32I and RV641, for the
integer instruction set for 32-bit and 64-bit architectures. Optional extensions, such
as M, extend ISA for multiply and divide, F and D for floating point, and many more
extend the base ISA. In this section, we show the implementation of base RV32I.

The RV32I ISA defines a processor containing 32 registers of 32-bit size (also
called the register file), where register X0 is always zero. Furthermore, a program
counter (PC) that points to the instruction executed as part of the state of the proces-
sor. An instruction is 32-bit wide. Instructions and data reside in a byte-addressable
memory. The processor state is 31 registers and the PC.

A RISC architecture is also called a load-store architecture, as all operands first
need to be loaded from memory and, after an operation (e.g., an addition) need to
be stored back to memory. The base instruction set consists of the following types
of operations:

 Arithmetic and logic operations between registers, where the result is written
into a register. As an example: add x1, x2, x3 adds the content of registers
x2 and x3 and puts the result into register x1.

» Arithmetic and logic operations between a register and an immediate value
(constant), where the result is written into a register. As an example: add
x1, x2, 42 adds 42 to the content of register x2 and puts the result into reg-
ister x1.

* A load instruction loads a value from memory into a register. The instruction
uses the content of a register as the base address and adds an offset to compute
the effective address. An example of a load instruction is: 1w x3, 4(x1),
where the base address is in x1 and the offset is 4 bytes. The result is placed
into register x3. Load instructions for byte, half-word, and word sizes are
available as unsigned and signed extension versions.

» Store instructions store a value from a register into memory. The address
computation is the same as for load instructions. An example is: sw x2,
4(x1) , where the content of register x2 is stored into memory at address x1 +
4. Store instructions are available for byte, half-word, and word sizes.

 Control instructions can change the program flow by changing the PC. Con-
ditional branches evaluate a condition (comparison between registers) and
branch if the condition is met. The branch offset is relative to the current PC.

238 Index Contents

15.2 PIPELINE STAGE DEFINITION

An example branch instruction is: bne x2, x3, fail. The jump instruction
changes the PC unconditionally. A variant of the jump instruction stores the
next instruction address into a register to enable the return from a function
call. An example of such an instruction is: jal x1, foo, where the processor
jumps unconditionally to function foo and stores the return address in register
x1.

For a detailed description of the RISC-V ISA, read the classic textbook from
Patterson and Hennessy [14] or consult the official RISC-V Instruction Set Manual.

15.2 Pipeline Stage Definition

A pipeline stage performs a specific function within one clock cycle. That function
is a combinational function. Registers are used between pipeline stages to store
intermediate results.

As registers are between those stages, we should define which register belongs to
that stage: Either the input register or the output register. For practical reasons, with
available on-chip memories, we will consider the input register as part of a pipeline
stage.

15.3 Number of Pipeline Stages

The architecture defines the number of pipeline stages. Longer pipelines may allow
for clocking of the design at a higher frequency. However, with each additional
pipeline stage, the overhead due to the registers increases, and the design becomes
more complex.

The classic organization of a reduced instruction set computer (RISC) is as a
5-stage pipeline:

1. Instruction fetch

2. Instruction decode and register file read
3. Execute

4. Memory access

5. Write-back

Contents Index 239

https://github.com/riscv/riscv-isa-manual
https://en.wikipedia.org/wiki/Reduced_instruction_set_computer

15 A RISC-V PIPELINE

This organization is used in many computer architecture textbooks, e.g., [14].
However, RISC-V pipeline designs exist from two up to several more stages.

One aspect that determines the number of pipeline stages is the available on-chip
memory for instruction and data scratchpad memory or instruction and data caches.
Current on-chip memories have registers at their inputs (address and write data); see
Section 6.4. That input register is part of the pipeline; it is the pipeline register. A
memory read has one clock cycle latency. To simplify the design, we present a three
stages RISC-V pipeline:

1. Instruction fetch
2. Instruction decode, register file read, and address computation

3. Execute and memory access

15.4 The Wildcat Pipeline

Figure 15.1 shows our 3-stages Wildcat pipeline. For simplicity, we assume on-
chip memories are used for the instruction memory (IM), the register file (RF), and
the data memory (DM). Those three on-chip memories set the lower bound on the
number of stages to three. !

Instructions flow from the left to the right. The result of the instruction is written
back from right to left, either in the register file (RF) or the data memory (DM).

15.4.1 Top Level

Listing 15.1 shows the abstract superclass for the top-level module for wildcat im-
plementations.” The interface consists only of connections to instruction memory
and data memory. We are flexible about which memories we can use, e.g., scratch-
pad memories for small implementations or caches. 10 devices are multiplexed with
the data memory. The definitions of the memories and IO shall be made at the top
level of a system-on-chip (SoC).

'If we build the RF out of concrete flip-flops, we can reduce the number of stages to two, as we can
read asynchronously from such an RF.
2We share this interface with several implementation variants, e.g., different pipeline organizations.

240 Index Contents

15.4 THE WILDCAT PIPELINE

}

H% - -

b
!

DM

L&

g

=
ﬁvjw

Figure 15.1: The 3-stage Wildcat processor pipeline (simplified, omitting control

and decoded signals).

abstract class Wildcat() extends Module {
val io = I0(new Bundle {
val imem = new InstrIO()
val dmem = new MemIO()
b
}

Listing 15.1: Top level module of Wildcat.

Contents Index

241

15 A RISC-V PIPELINE

// PC generation

// val pcReg = RegInit(-4.S(32.W).asUInt)

val pcReg = RegInit(0.S(32.W).asUInt)

val pcNext = WireDefault (Mux(doBranch, branchTarget, pcReg
+ 4.0))

pcReg := pcNext

io.imem.address := pcNext

// Fetch
val instr = WireDefault(io.imem.data)
when (io.imem.stall) {
instr := 0x00000013.U
pcNext := pcReg
}

Listing 15.2: PC generation and instruction fetch.

15.4.2 Instruction Fetch

The program counter (PC) points to the next instruction that shall be executed.
RISC-V has 32-bit wide instructions, so the PC is incremented by 4 for each se-
quential instruction. The PC is set accordingly for a branch instruction, shown by
the multiplexer before the adder.

As we can see in the figure, IM contains an input register, which is part of the
fetch stage’s pipeline register. However, the PC is also part of the pipeline register.
Therefore, we cannot feed the output of the PC register to the IM, but the next value
of the PC. The IM and the PC’s address input always contain the same data.

Listing 15.2 shows the code of the fetch stage. The PC (pcReg) is initialized to -4
so that the value of pcNext is O after reset. The signal doBranch selects between a
branch target of the current PC plus 4. The pcNext signal is connected to the input
of the instruction memory. The output of the instruction memory is connected to
instr. In case that the pipeline needs to be stalled (e.g., for a cache miss) a NOP
substitutes the instruction, and pcNext will not be incremented.

For simulation and small experiments in an FPGA, we use a read-only memory
(ROM) preloaded at hardware generation time. Listing 15.3 shows that memory. It
uses a Vec that is initialized with the content of a Scala Array. The ROM contains a
register for the address, which is part of the pipeline register.

242 Index Contents

15.4 THE WILDCAT PIPELINE

class InstructionROM(code: Array[Int]) extends Module {
val io = IO(Flipped(new InstrIO()))

val addrReg = RegInit(0.U(32.W))

addrReg := io.address

val instructions =
VecInit(code.toIndexedSeq.map(_.S(32.W).asUInt))

io.data := instructions(addrReg(31, 2))

io.stall := false.B

Listing 15.3: A ROM as a simple instruction memory.

val instrReg = RegInit (0x00000033.U) // nop on reset

instrReg := Mux(doBranch, 0x00000033.U, instr)

val rsl = instr(19, 15)

val rs2 = instr (24, 20)

val rd = instr(l1l, 7)

val (rslVal, rs2Val, debugRegs) = registerFile(rsl, rs2,
wbDest, wbData, wrEna, true)

val decOut = decode(instrReg)

Listing 15.4: Decode stage.

15.4.3 Instruction Decode and Register File Read

The second pipeline stage performs the decoding of instructions, register file read,
and address calculation for a memory operation. The pipeline register consists of
the instruction register and the address register for the register file. In the RISC-V
ISA encoding, the fields containing register addresses are always in the same place
in the instruction. Therefore, we can read the register file, even when the instruction
is not yet decoded. If those values are not needed, they are just ignored.

Listing 15.4 shows the pipeline register for the decode stage (instrReg) and the
signals rs1 and rs2 that are the inputs for the register file. The register file itself and
the decode hardware are implemented as a function, a more lightweight form, then
a module.

Contents Index 243

15 A RISC-V PIPELINE

val regs = SyncReadMem (32, UInt(32.W),
SyncReadMem.WriteFirst)

val rslVal = Mux(RegNext(rsl) === 0.U, 0.U,
regs.read(rsl))
val rs2Val = Mux(RegNext(rs2) === 0.U, 0.U,

regs.read(rs2))
when(wrEna && rd =/= 0.U) {
regs.write(rd, wrData)

}
(rslvVal, rs2Val, debugRegs)

Listing 15.5: The core of the register file function.

The core of the register file implementation is shown in Listing 15.5. If possible,
we use SyncReadMem to implement the register file in an on-chip memory.> Note that
we use the parameter SyncReadMem.WriteFirst to enable forwarding when the same
register is written and read in the same clock cycle instead of doing it explicitly, as
shown in Section 6.4.

In an FPGA, on-chip memories are initialized to zero during configuration time.
However, in an ASIC, the content of the memory is undefined. Therefore, we need
to handle the special case when reading from register O to return a zero and not the
random content of the on-chip memory. Note that the read() function returns the
result with one clock cycle latency. Therefore, the multiplexer at the memory output
needs to be compared against the register address delayed by one clock cycle. (This
is similar to the manual forwarding on a read during write, as shown in Section 6.4.)
The function returns a Scala tuple returning the two read register values.*

The register file has two read ports, which is uncommon in an FPGA. Therefore,
the practical implementation will use two on-chip memories written with the same
data, each providing one read port.

Listing 15.6 shows part of the decode function. To decode a RISC-V instruction,
we need to read the opcode field of the instruction and the func3 field. decOut is the
output of the decoding. As an initial step, we assign default values to all fields. That
is followed by a large switch statement comparing the opcode against the constants
representing the instruction type. The constants are defined as Scala integers so

31f synthesizing the memory for an ASIC, e.g., with the open-source OpenLane flow, without using a
memory compiler, the memory will be implemented as dedicated flip-flops.
“It also returns debugging registers, which are ignored at synthesis.

244 Index Contents

15.4 THE WILDCAT PIPELINE

that we can share them between the hardware implementation of Wildcat and an
instruction set simulator written in Scala. Therefore, the constants are converted to
Chisel constants with the .U method.

A similar function decodes the ALU operation from the instruction. Furthermore,
a possible immediate value is extracted from the instruction. All those values are
part of the decoded output.

Listing 15.7 shows the address computation for memory load or store instruc-
tions. The address (memAdress) is computed by using the value of register rs1 and
adding the immediate field (dec.Out.imm). However, the code is slightly more com-
plicated, as we need to implement forwarding. Forwarding is needed if we use a
register for the address that was just written in the preceding instructions. In that
case, the value is not yet written back into the register file, and we forward from the
execution stage. The code snippet also shows where the write data comes from for
a memory store operation. The value of register rs2 is used, or a value is forwarded
from the execution stage.

Listing 15.8 shows the memory access part in decode. As the input registers of the
memory are part of the execution stage, the memory address and the store operation
are computed in the decode stage.

15.4.4 Execute and Memory Read

The third pipeline stage is responsible for either executing either an ALU opera-
tion, execute a control instruction (branch or jump), or perform a memory load.
Listing 15.9 shows part of the execution stage. Depending on the instruction type,
either the value of a register v2 or the immediate value decOut.imm is used as the
second operand for an ALU instruction. The ALU is defined in a Scala function,
similar to the decode function. The code snippet also shows the implementation of
loading the upper immediate and adding the upper immediate to the PC.

We use a Scala Enumeration to define as ALU operations, as shown in List-
ing 15.10. As with the other constants, they are shared between the ISA simulator
and the pipeline implementation. Therefore, they need to be converted to Chisel
constants.

Listing 15.11 shows the function that implements the ALU operations.

Listing 15.12 shows the logic for branch execution. The branch target is com-
puted by adding the immediate value of the branch instruction to the PC of that
instruction or using the register value for an indirect branch. Similar to the ALU,
we use a function (compare()) for the compare operation that is needed to imple-
ment conditional branches.

Contents Index 245

15 A RISC-V PIPELINE

def decode(instruction: UInt) = {

val opcode = instruction(6, 0)

val func3 = instruction(14, 12)

val decOut = Wire(new DecodedInstr())
decOut.instrType := R.id.U

decOut.isImm := false.B
decOut.isLui := false.B
decOut.isAuiPc := false.B
decOut.isLoad := false.B
decOut.isStore := false.B
decOut.isBranch := false.B
decOut.isJal := false.B
decOut.isJalr := false.B
decOut.rflirite := false.B
decOut.isECall := false.B
decOut.isCssrw := false.B
decOut.rslValid := false.B
decOut.rs2Valid := false.B

switch(opcode) {
is(AluImm.U) {

decOut.instrType := I.id.U
decOut.isImm := true.B
decOut.rflirite := true.B
decOut.rslValid := true.B
}
is(Alu.U) {
decOut.instrType := R.id.U
decOut.rfWirite := true.B
decOut.rslValid := true.B
decOut.rs2Valid := true.B
}

// and more cases

Listing 15.6: The core of the register file function.

246 Index

Contents

15.4 THE WILDCAT PIPELINE

// Forwarding to memory

val address = Mux(wrEna && (wbDest =/= 0.U) && wbDest ===
decEx.rsl, wbData, rsilVal)

val data = Mux(wrEna && (wbDest =/= 0.U) && wbDest ===
decEx.rs2, wbData, rs2Val)

val memAddress = (address.asSInt + decOut.imm).asUInt
decEx.memLow := memAddress(l, 0)

Listing 15.7: Address computation, including forwarding if needed.

io.dmem.rdAddress := memAddress

io.dmem.rdEnable := false.B

io.dmem.wrAddress := memAddress

io.dmem.wrData := data

io.dmem.wrEnable := VecInit(Seq.fill(4) (false.B))

when (decOut.isLoad && !doBranch) {
io.dmem.rdEnable := true.B

}

when (decOut.isStore && !doBranch) {
val (wrd, wre) = getWriteData(data, decEx.func3,
memAddress (1, 0))
io.dmem.wrData := wrd
io.dmem.wrEnable := wre

Listing 15.8: Memory access in decode.

Contents Index 247

15 A RISC-V PIPELINE

val res = Wire(UInt(32.W))
val val2 = Mux(decExReg.decOut.isImm,
decExReg.decOut.imm.asUInt, v2)

res := alu(decExReg.decOut.aluOp, v1, val2)
when (decExReg.decOut.isLui) {
res := decExReg.decOut.imm.asUInt
}
when (decExReg.decOut.isAuiPc) {
res := (decExReg.pc.asSInt + decExReg.decOut.imm).asUInt
}

Listing 15.9: ALU operation in the execution stage.

object AluType extends Enumeration {
type AluType = Value
val ADD, SUB, SLL, SLT, SLTU, XOR, SRL, SRA, OR, AND =
Value

Listing 15.10: The ALU operation enumeration.

248 Index Contents

15.4 THE WILDCAT PIPELINE

def alu(op: UInt, a: UInt, b: UInt): Ulnt = {
val res = Wire(UInt(32.W))
res := DontCare
switch(op) {

is(ADD.id.U) {
res :=a + b
}
is(SUB.id.U) {
res := a - b
}
is(AND.id.U) {
res := a &b
}
is(OR.id.U) {
res :=a | b
}
is(XOR.id.U) {
res :=a "~ b
}
is(SLL.id.U) {
res := a << b4, 0)
}
is(SRL.id.U) {
res := a > b(4, 0)
}
is(SRA.id.U) {
res := (a.asSInt >> b(4, 0)).asUInt
}
is(SLT.id.U) {
res := (a.asSInt < b.asSInt).asUInt
}
is(SLTU.id.U) {
res := (a < b).asUInt
}
}
res

Listing 15.11: The ALU function.

Contents Index 249

15 A RISC-V PIPELINE

branchTarget := (decExReg.pc.asSInt +
decExReg.decOut.imm).asUInt
when (decExReg.decOut.isJalr) {

branchTarget := res
}
doBranch := ((compare(decExReg.func3, vl, v2) &&
decExReg.decOut.isBranch) || decExReg.decOut.isJal ||

decExReg.decOut.isJalr) && decExReg.valid

Listing 15.12: Branch execution

when (decExReg.decOut.isLoad && !doBranch) {
res := selectLoadData(io.dmem.rdData, decExReg.func3,
decExReg.memLow)

Listing 15.13: Memory load.

The memory read operation is performed in the execution stage. Listing 15.13
shows the multiplexer for the load instruction. The function selectLoadData se-
lects, depending on the instruction and the lower 2 bits of the address, which part of
the read data is used.

15.5 Summary and Exercise

This chapter showed the usage of pipelining in digital design. We used the design
of a RISC processor to demonstrate pipelining. The most important parts of the
Wildcat RISC-V processor are shown in this chapter. See the complete source code,
including test cases, at the Wildcat GitHub repository.

As an exercise, you can build on top of those code fragments shown and imple-
ment your own version of a RISC-V processor.

250 Index Contents

https://github.com/schoeberl/wildcat

16 Contributing to Chisel

Chisel is an open-source project that is constantly being developed and improved.
Therefore, you can also contribute to the project. Your contribution can be twofold:
(1) publish your Chisel circuits in open-source and as a library, or (2) contribute
enhancements to Chisel itself. Here we describe first how to publish a library and
second how to set up your environment for Chisel library development and how to
contribute to Chisel.

16.1 Publishing a Chisel Library

When you develop an open-source circuit and share it, for example, on GitHub, this
is a very educational act, as others can learn to describe hardware in Chisel from
your code example. However, sharing just the source code forces others to copy
your code into their project. This leads to at least two problems: (1) Two copies are
never the same.! This means that changes will happen to the source of one copy,
and they are not in sync anymore. (2) It is cumbersome to update the copy when the
original design has been improved with a bug fix or a new feature.

A better approach is to publish that open-source circuit as a library. Compiled
Chisel code is simply a Java class file. And those class files are platform-independent.
Therefore, this is an ideal way to share Chisel libraries. Java (and Scala) have a
long tradition and good infrastructure to support the public sharing of libraries with
unique group identifiers and version control. That is also how Chisel itself and some
support libraries are published.

This section describes the steps needed to publish a Chisel library. As the tools
you use for publishing may change quickly, consider finding the latest information
on the Internet. A good blog entry on the topic can be found here.

'T learned this phrase from Doug Locke during discussion sessions developing the safety-critical spec-
ification for Java

251

https://medium.com/rahasak/publish-scala-library-project-to-maven-central-with-sonatype-d7edaa67d275

16 CONTRIBUTING TO CHISEL

16.1.1 Using a Library

A Chisel library can be used in your project by adding it to build.sbt. Here is an
example of a collection of Chisel circuits in ip-contributions:

libraryDependencies += "edu.berkeley.cs" % "ip-contributions" % "0.5.0"

The ip-contributions library also contains the UART and the FIFOs, described in
this book. Modern IDEs let you automatically download the library’s source code
for inspection when configured in build. sbt.

If you have a Chisel circuit that you would like to share, consider contributing it
to ip-contributions. Contribution starts with a git pull request of your addition.
This will start a friendly review process.

16.1.2 Prerequisite

Maven Central is one of the largest repositories for hosting software libraries. Pub-
lishing to Maven Central is easiest via Sonatype. Sonatype offers free hosting of
open-source projects via the Sonatype Repository. The following initial steps are
needed before publishing a library:

1. Create a Sonatype JIRA account

2. You need a unique groupId, which is usually a domain name in reverse order,
e.g., edu.berkeley.cs. You can also use your GitHub account as a groupld,
for example, mine is io.github.schoeberl. You register this groupld by
opening an issue. This is a manual process where you get a request to prove
that you own the requested groupld. When using the GitHub domain name,
you are requested to set up a repository to show your ownership.

3. Create sonatype.sbt in $HOME/.sbt/1.0 with your Sonatype login informa-
tion:

credentials += Credentials(
"Sonatype Nexus Repository Manager",
"oss.sonatype.org",
"<user name>",
"<password>"

252 Index Contents

https://github.com/freechipsproject/ip-contributions
https://mvnrepository.com/repos/central
https://www.sonatype.com/
https://central.sonatype.org/pages/ossrh-guide.html
https://issues.sonatype.org/secure/Signup!default.jspa
https://issues.sonatype.org/secure/CreateIssue.jspa?issuetype=21&pid=10134

16.1 PUBLISHING A CHISEL LIBRARY

4. All artefacts must be signed with a PGP key pair. You can use the open-source
GNU Privacy Guard. You can create, list, and upload your public PGP key
with:

gpg --gen-key
gpg --list-keys
gpg --keyserver keyserver.ubuntu.com --send-keys keyID

Note that the keyID is the long hexadecimal string you find in your list of keys. If
that step fails, one can manually upload the public key to a key server.

16.1.3 Library Setup

For each library, you need to set up the following:
1. Install sbt plugins in project/plugins.sbt:

addSbtPlugin("org.xerial.sbt" % "sbt-sonatype" % "2.3")
addSbtPlugin("com. jsuereth" % "sbt-pgp" % "2.0.2")

2. Add information about the library into build.sbt. As an example, the rele-
vant section of build.sbt in ip-contributions:

name := "ip-contributions"
version := "0.4.0"

// groupld, SCM, license information

organization := "edu.berkeley.cs"

homepage := Some(url("https://github.com/freechipsproject/ip-contributions"))

scmInfo := Some(ScmInfo(url(
"https://github.com/freechipsproject/ip-contributions™),
"git@github.com/freechipsproject/ip-contributions"))

developers := List(Developer('schoeberl", "schoeberl",
"martin@jopdesign.com”, url("https://github.com/schoeberl")))

licenses += ("Unlicense", url("https://unlicense.org/"))

publishMavenStyle := true

// disable publish with Scala version
crossPaths := false

Contents Index 253

https://en.wikipedia.org/wiki/Pretty_Good_Privacy
https://en.wikipedia.org/wiki/GNU_Privacy_Guard
https://github.com/freechipsproject/ip-contributions/blob/master/build.sbt

16 CONTRIBUTING TO CHISEL

publishTo := Some(
if (isSnapshot.value)
Opts.resolver.sonatypeSnapshots
else
Opts.resolver.sonatypeStaging

16.1.4 Regular Publishing
All is now set up to sign and publish the library to Sonatype with:

sbt publishSigned

In my setup, the signing from sbt does not work (sometimes), so I have to copy
out the pgp command to sign, something similar to:

gpg --detach-sign --armor --use-agent --output path-to.asc\\
path-to-0.1.pom

and repeat sbt publishSigned.
You can already use that library from Sonatype, for example, for an internal
project. However, to release your library to Maven Central run:

sbt sonatypeRelease

A few minutes later, it should be visible on Maven Central Repository Search.

16.2 Contributing to Chisel

The following is an advanced topic, and I propose that you first start following the
discussions of the Chisel project issues on GitHub before you create your first pull
request (PR).

16.2.1 Setup the Development Environment

Chisel consists of several different repositories: the main repositories are hosted on
CHIPS Alliance and others on the freechips organization at GitHub.

Fork the repository to which you would like to contribute into your personal
GitHub account. You can fork the repository by pressing the Fork button in the

254 Index Contents

https://search.maven.org/
https://github.com/chipsalliance/chisel3
https://github.com/freechipsproject

16.2 CONTRIBUTING TO CHISEL

GitHub web interface. Then, from that fork, clone your fork of the repository.” In
our example, we change chisel3, and the clone command for my local fork is:

$ git clone git@github.com:schoeberl/chisel3.git

To compile Chisel 3 and publish it as a local library, execute:

$ cd chisel3
sbt compile
$ sbt publishlLocal

&~

Watch out during the publish local command for the version string of the pub-
lished library, which contains the string SNAPSHOT. If you use the tester and the
published version is not compatible with the Chisel SNAPSHOT, fork and clone the
chisel-tester repo as well and publish it locally.

To test your changes in Chisel, you probably also want to set up a Chisel project,
for example, by forking/cloning an empty Chisel project, renaming it, and removing
the .git folder from it.

Change the build. sbt to reference the locally published version of Chisel. Com-
pile your Chisel test application and take a close look to ensure that it picks up the
locally published version of the Chisel library (there is also a SNAPSHOT version
published, so if, for example, the Scala version is different between your Chisel li-
brary and your application code, it picks up the SNAPSHOT version from the server
instead of your local published library.)

See also some notes at the Chisel repo.

16.2.2 Testing

When you change the Chisel library, you should run the Chisel tests. In an sbt-based
project, they are usually run with:

$ sbt test

Furthermore, if you add functionality to Chisel, you should also provide tests for
the new features.

Note that on a breaking FIRRTL/Chisel change, you might need also to fork and clone firrtl.

Contents Index 255

https://github.com/freechipsproject/chisel-testers
https://github.com/schoeberl/chisel-empty
https://github.com/chipsalliance/chisel3

16 CONTRIBUTING TO CHISEL

16.2.3 Contribute with a Pull Request

In the Chisel project, no developer commits directly to the main repository. A con-
tribution is organized via a pull request from a branch in a forked version of the
library. For further information, see the documentation on GitHub on collaboration
with pull requests. The Chisel group started to document contribution guidelines.

16.3 Exercise

Invent a new operator for the UInt type, implement it in the Chisel library, and
write some usage/test code to explore the operator. It does not need to be a useful
operator; just anything will be good, for example, a ? operator that delivers the
lefthand side if it is different from O and the righthand side otherwise. Sounds like
a multiplexer, right? How many lines of code did you need to add?’

As simple as this was, please do not be tempted to fork the Chisel project and add
your little extensions. Changes and extensions shall be coordinated with the main
developers. This exercise was just a simple exercise to get you started.

If you are getting bold, you could pick one of the open issues and try to solve
it. Then, contribute with a pull request to Chisel. However, probably first watch
the style of development in Chisel by watching the GitHub repositories. See how
changes and pull requests are handled in the Chisel open-source project.

3 A quick and dirty implementation needs just two lines of Scala code.

256 Index Contents

https://help.github.com/articles/creating-a-pull-request-from-a-fork/
https://help.github.com/categories/collaborating-with-issues-and-pull-requests/
https://help.github.com/categories/collaborating-with-issues-and-pull-requests/
https://github.com/freechipsproject/chisel-lang-governance/blob/master/reviewer_guidelines.md
https://github.com/chipsalliance/chisel3/issues

17 Summary

This book presented an introduction to digital design using the hardware construc-
tion language Chisel. We have seen several simple to medium-sized digital circuits
described in Chisel. Chisel is embedded in Scala and, therefore inherits the powerful
abstraction of Scala. As this book is intended as an introduction, we have restricted
our examples of simple uses of Scala. The next logical step is to learn a few basics
of Scala and apply them to your Chisel project.

I would be happy to receive feedback on the book, as I will further improve it
and publish new editions. You can contact me at mailto:masca@dtu.dk or with
an issue request on the GitHub repository. I also happily accept pull requests for the
book repository for fixes and improvements.

Source Access

This book is available in open source, including all Chisel code presented. The
repository also contains slides for a digital design course with Chisel and all Chisel
examples: https://github.com/schoeberl/chisel-book

A collection of medium-sized examples, which are referenced in the book, is also
available in open source. This collection also contains projects for various popular
FPGA boards: https://github.com/schoeberl/chisel-examples

257

mailto:masca@dtu.dk
https://github.com/schoeberl/chisel-book
https://github.com/schoeberl/chisel-examples

A VHDL and Verilog

This book teaches digital design with Chisel. However, you might be confronted
with other hardware description languages in your professional career. When you
understand the basic concepts of digital design and how to describe digital circuits
in Chisel, switching to another language will take just a few days.

The two dominating hardware description languages are VHDL and Verilog, with
an update to SystemVerilog (SV). The recent movement in hardware development
and testing is from VHDL to SV. However, as many open-source tools still mainly
support standard Verilog, we will use plain Verilog in the examples.

We will show you code examples in Chisel, VHDL, and Verilog. Note that this
appendix is not a complete introduction to VHDL or Verilog. It will just get you
started on reading VHDL and Verilog and enable you to translate hardware con-
structs from Chisel to VHDL and Verilog. For the translation from Chisel to Ver-
ilog, you can also start with the Chisel generated Verilog. It might be less readable
than hand-written code, but it is a working starting point. A nice side-by-side intro-
duction of VHDL and SystemVerilog can be found in [10]. Furthermore, we will
show how we can integrate legacy code in Verilog into a Chisel design.

A.1 Code Examples

We will present the VHDL and Verilog examples together with the Chisel version
of the code.

A.1.1 Components

Listing A.1 shows a simple adder ! as our example component in Chisel. To make
this a complete example, the listing also includes the import statements.

"'We should never use such small components in real designs when the code that defines the function is
just a few lines. In this example, just one line. However, we keep it short for the presentation of the
concept of a component.

259

A VHDL AND VERILOG

import chisel3._
import chisel3.util._

class ChiselAdder extends Module {
val io = IO(new Bundle() {
val a, b = Input(UInt(8.W))
val sum = Output (UInt(8.W))
b

io.sum := io.a + io.b

Listing A.1: A simple component in Chisel.

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity adder is
port (
a, b : in unsigned(7 downto 0);
sum : out unsigned(7 downto 0)
);
end entity;

architecture rtl of adder is
begin

sum <= a + b;
end architecture;

Listing A.2: A simple component in VHDL.

260 Index Contents

A.1 CODE EXAMPLES

module adder (
input [7:0] a,
input [7:0] b,
output [7:0] sum
)

assign sum = a + b;

endmodule

Listing A.3: A simple component in Verilog.

Listing A.2 shows the adder component in VHLD. Similar to Chisel, the file starts
with import statements to include some standard functions. In VHDL, a component
needs a declaration of an entity and the definition of an architecture. The entity
declares the ports for the component. The architecture defines the function of the
component. The architecture needs to be named, in our example that name is
rtl. However, today, that naming has lost its practical meaning. VHDL is case
insensitive, that means Adder and adder are treated equally. However, the current
practice is to stick to lower cases for identifiers.

Listing A.3 shows the adder component in Verilog. Similar to Chisel, a compo-
nent is also called a module. > The adder has two 8-bit inputs and one 8-bit output.
The assign statement is a concurrent statement that continuously assigns the value
of the sum of a and b to the output port sum. The difference between Verilog and
Chisel is minimal for such a simple component.

A.1.2 Using a Component

Listing A.4 shows how to create a component with new in Chisel, give it a name (m),
and connect the input and output ports to wires.

Listing A.5 shows how to declare and use the adder component in VHDL. VHDL
is strongly typed, so a component must be declared before it is instantiated. The
component declaration is very similar to the entity declaration of the adder itself.
The component is instantiated by calling it, prepending it with a name (m) and con-
necting the input and output ports with a port map to signals.

2In fact, the naming in Chisel was inspired by Verilog.

Contents Index 261

A VHDL AND VERILOG

val inl = Wire(UInt(8.W))
val in2 = Wire(UInt(8.W))
val result = Wire(UInt(8.W))

val m = Module(new ChiselAdder)

m.io.a := inl
m.io.b := in2
result := m.io.sum

Listing A.4: Using the ChiselAdder component in Chisel.

signal inl, in2, result : unsigned(7 downto 0);

component adder
port (
a, b : in unsigned(7 downto 0);
sum : out unsigned(7 downto 0)
);

end component;
begin

m: adder
port map (
a => inl,
b => in2,
sum => result

s

Listing A.5: Using the adder component in VHDL.

wire [7:0] inl;
wire [7:0] in2;
wire [7:0] result;

adder m(.a(inl), .b(in2), .sum(result));

Listing A.6: Using the adder component in Verilog.

262 Index Contents

A.1 CODE EXAMPLES

val reg = RegEnable(data, 0.U(8.W), enable)

Listing A.7: A register with reset and enable in Chisel.

signal reg : std_logic_vector(7 downto 0);
begin
process (clock)
begin
if rising_edge(clock) then
if reset = ’1’ then
reg <= (others => '0’);
elsif enable = ’1’ then
reg <= data;
end if;
end if;

end process;

Listing A.8: A register with reset and enable in VHDL.

Listing A.6 shows how to create and use a component (module) in Verilog. Here,
it is created by calling it, followed by a name (m), and connecting the wires to the
ports.

Note a, b, and sum represent the ports of the adder; inl, in2, and result are
the wires/signals connected to those ports. The instances of the adders in all three
examples were named m. In VHDL and Verilog, the name of the component is not
used so often; in Chisel, we need the module’s name to access the 10 ports.

A.1.3 Register

Listing A.7 shows an 8-bit register with reset (to 0) and an enable input in Chisel,
using the three-parameter version of RegEnable. The inputs are connected at the
creation, and the output is available as the returned value of RegEnable. Note that
the clock and reset signals are implicit in Chisel.

Listing A.8 shows VHDL code for a register (reg) with a synchronous reset and
an enable input. Note that the VHDL process includes the clock signals in the sen-

Contents Index 263

A VHDL AND VERILOG

reg [7:0] reg_data;

always @(posedge clk) begin
if (reset)
reg_data <= 8’b0;
else if (enable)
reg_data <= data;
end

Listing A.9: A register with reset and enable in Verilog.

sitivity list. The register is inferred using a clocked process and rising_edge (clock).
In contrast to Chisel both, clock and reset, need to be explicitly used.

Listing A.9 shows the definition of a register (reg_data) with a synchronous reset
and an enable input in Verilog. The Verilog reg keyword declares a variable. This
does not necessarily mean that the variable represents a register. It can also represent
combinational logic when used in an always @(*) block. The always @(posedge
clk) statement with a clock implies that the code within that block represents a
register.

Registers are defined implicitly by a code patterns in Verilog and VHDL. In
Chisel the registers are defined explicitly.

A.1.4 Combinational Blocks

Simple combinational logic can be written by an assignment as a concurrent state-
ment in all three languages. We have seen examples in the adder components. How-
ever, for more complex logic, e.g., describing nested conditions, it is more conve-
nient to use blocks for combinational logic. In Verilog, this is an always block; in
VHDL this is a process.

Listing A.10 shows as an example of a combinational block a switch statement
in Chisel. This code is a 4:1 multiplexer. In Chisel the default value for the output
needs to be assigned before the switch statement.

Listing A.11 shows the same combinational block in VHDL. A combinational
block is a process. Start is additionally marked with a begin and the end of the
process with end process; The default value for that case statement is assigned in
with a when others entry. Note that a VHDL process has a sensitive list, where all
signals that appear on the right hand side of an expression or a a condition need to

264 Index Contents

A.1 CODE EXAMPLES

io.out := 0.U
switch(io.sel) {
is("b00".U) { io.out := io.in(0®) 1}

is("b01".U) { io.out := io.in(1) }
is("b10".U) { io.out := io.in(2) }
is("b11".U) { io.out := io.in(3) 1}

Listing A.10: A switch statement in Chisel.

process (sel, input)
begin
case sel is
when "00" => output <= input(0);
when "01" => output <= input(l);
when "10" => output <= input(2);
when "11" => output <= input(3);
when others => output <= '0’;
end case;
end process;

Listing A.11: A case statement in VHDL.

Contents Index

265

A VHDL AND VERILOG

module comb (
input [1:0] sel,
input [3:0] in,
output reg out

)
always @(*) begin
case (sel)
2°b00: out = in[0];
2’b01: out = in[1];
2°b10: out = in[2];
2’bll: out = in[3];
default: out = 1’b0;
endcase
end
endmodule

Listing A.12: A case statement in Verilog.

be listed. In our example, this is sel and input.

Listing A.12 shows the same combinational block in Verilog. Note the marking of
the start of a combinational block with always @(*)begin and the end of the block
with end. The default value for that case statement is assigned in with a default
entry. This example includes the module header to show that the output out needs
to be declared as reg, as is is assigned in an always block.

Note that Verilog has two different assignment operators: the = is called a block-
ing statement and the <= a non-blocking statement. This might also be a source of
confusion. Use the <= assignment operator for registers (in an always @(posedge
clk) block) and the = assignment operator for combinational logic (in an always
@(*) block).

Another convenient construct in a combinational block is a combination of condi-
tionals, also known as “if...else if...else” statements. We will show an example with
three inputs (inl, in2, and in3), two boolean conditions (c1 and 2), and the output
out.

Listing A.13 shows the Chisel version. However, as if and else are condi-
tional expressions in Scala (reserved keywords), Chisel uses when, .elsewhen, and

266 Index Contents

A.1 CODE EXAMPLES

when (io.cl) {
io.out := io.inl

} .elsewhen (io.c2) {
io.out := io.in2

} .otherwise {
io.out := io.in3

}

Listing A.13: An “if...else if...else” statement in Chisel.

process(cl, c2, inl, in2, in3)

begin
if c1 = ’1’ then
output <= inl;
elsif c2 = ’1’ then
output <= in2;
else
output <= in3;
end if;

end process;

Listing A.14: An “if...else if...else” statement in VHDL.

.otherwise
Listing A.14 shows the same construct in VHDL. Note that all input signals (in-
cluding the condition signals) need to be part of the sensitivity list of the process.
Listing A.15 shows the same expression in Verilog within an always block.

A.1.5 Advanced Chisel Features

The basic elements look similar in Chisel, Verilog, and VHDL, and the verbosity
The basic elements look similar in Chisel, Verilog, and VHDL, and the verbosity
is also in the same range (although VHDL is a bit more chatty). However, nei-
ther VHDL nor Verilog contain object-oriented features for hardware description.
SystemVerilog includes object-oriented programming only for writing test benches.
Both languages are missing functional programming, which is important when writ-

Contents Index 267

A VHDL AND VERILOG

always @(*) begin
if (cl)
out = inl;
else if (c2)
out = in2;
else
out = in3;
end

Listing A.15: An “if...else if...else” statement in Verilog.

ing reusable hardware generators. Furthermore, Bundles with directions and the
possibility to flip the direction are also missing.

Although any hardware can be equally described in Chisel, VHDL, and Verilog,
the modern features in Chisel allow the programming of a higher abstractions by
writing hardware generators.

A.2 External Modules and Integration of Legacy Code

Sometimes, you might wish to include a component whose description is written
in Verilog, e.g., legacy code, or you might wish to ensure the emitted Verilog of a
component has a concrete structure that your synthesis tool can recognize and map
to an available primitive. Chisel provides support for this through its BlackBox and
ExtModule classes, which allow you to define components with Verilog sources.
Both are parameterized with a Map[String, Param], translated to module parame-
ters in the emitted Verilog. BlackBoxes are emitted as individual Verilog files, while
ExtModules act as placeholders and are emitted as source-less module instantiations.
This feature makes ExtModules particularly useful for, e.g., Xilinx or Intel device
primitives such as clock or input buffers.

class BUFGCE extends BlackBox(Map("SIM_DEVICE" ->
"7SERIES")) {
val io = I0O(new Bundle {
val I = Input(Clock())
val CE = Input(Bool())
val 0 = Output(Clock())
b

268 Index Contents

A.2 EXTERNAL MODULES AND INTEGRATION OF LEGACY CODE

class alt_inbuf extends ExtModule (
Map("io_standard" -> "1.0 V",
"location" -> "IOBANK_1",
"enable_bus_hold" -> "on",
"weak_pull_up_resistor" -> "off",
"termination" -> "parallel 50 ohms")) {
val io = I0(new Bundle {
val i = Input(Bool())
val o = Output(Bool())
b
}

BlackBoxes, on the other hand, can represent any component. They can be declared
in three different ways, with their source either inlined or available in a separate file.
As an example, consider a 32-bit adder with the following IO.

class BlackBoxAdderIO extends Bundle {
val a = Input(UInt(32.W))
val b = Input(UInt(32.W))
val cin = Input(Bool())
val ¢ = Output (UInt(32.W))
val cout = Output(Bool())
}

The inlined version is declared as follows:

class InlineBlackBoxAdder extends HasBlackBoxInline {
val io = IO(new BlackBoxAdderIO)
setInline("InlineBlackBoxAdder.v",
|module InlineBlackBoxAdder(a, b, cin, c, cout);
|input [31:0] a, b;
|input cin;
|output [31:0] c;
| output cout;

|wire [32:0] sum;

|

|assign sum = a + b + cin;
|assign c = sum[31:0];

Contents Index 269

A VHDL AND VERILOG

|assign cout = sum[32];

| endmodule
.stripMargin)

Providing the source code within a string literal (denoted by an s or an £ before the
double quotes) and using pipes allows for the inclusion of nicely formatted Verilog
code. Additionally, it enables support for parameterization because Scala variables
can be inserted using the $ or ${} escape characters. The stripMargin method
removes the pipes and tabs when emitting the code.

There are two alternatives to inlined BlackBoxes, both expecting the Verilog
source in a separate file. They are declared as follows.

class ResourceBlackBoxAdder extends HasBlackBoxResource {
val io = IO(new BlackBoxAdderIO)
addResource (" /ResourceBlackBoxAdder.v")

}

class PathBlackBoxAdder extends HasBlackBoxPath {
val io = IO(new BlackBoxAdderIO)
addPath("./src/main/resources/PathBlackBoxAdder.v")

The HasBlackBoxResource version expects to find its Verilog source in the
./src/main/resource folder. The HasBlackBoxPath version can be provided with
any relative path from the project folder.

BlackBoxes are instantiated like other modules by wrapping them as Module (new
BlackBoxModule). They cannot be tested directly but must be wrapped either in a
named class or an anonymous class by the tester. Both are allowed to have the same
IO as the Blackbox.

class InlineAdder extends Module {
val io = IO(new BlackBoxAdderIO)

val adder = Module(new InlineBlackBoxAdder)
io <> adder.io

test(new Module {

270 Index Contents

A.3 EXERCISE

val io = IO(new BlackBoxAdderIO)
val adder = Module(new InlineBlackBoxAdder)
io <> adder.io

B

Note that HasBlackBoxInline, HasBlackBoxPath, and HasBlackBoxResource are
traits that extend Chisel’s BlackBox class meaning that, e.g., class Example
extends BlackBox with HasBlackBoxInline is equivalent to
class Example extends HasBlackBoxInline.

A.3 Exercise

Use one of your Chisel designs and translate it manually to Verilog. To avoid writing
a test bench in Verilog, you can reuse your test code from ChiselTest and instantiate
the Verilog code as a black box for testing. You can also change your test code
to instantiate your Chisel and Verilog components and compare them in the same
Chisel tester. The examples in the book are tested in that way. You can take a look
at the code from the book examples to see how this can be done. This form of
cosimulation can also be driven from random test vectors and comparing the Chisel
“golden model” with your Verilog translation.

The VHDL integration within Chisel/Verilator is not yet so smooth, although a
solution with GHLD plugin for yosys should be able to translate VHDL to Verilog
can then be tested in Chisel similar to the Verilog designs.

For VHDL, there are fewer open-source options available. The code in this chap-
ter is tested with test benches written in VHDL (generated by copilot) and simulated
with GHDL.?

Shttp://ghdl. free. fr/

Contents Index 271

http://ghdl.free.fr/

B Reserved Keywords

Several keywords are reserved in Chisel (and Scala) and cannot be used as identifiers
for your hardware design. Table B.1 lists the reserved words from Scala.

>:

catch
false
implicit
object
sealed
try
yield

<-
@
class
final
import

override

super
type

<:

#

def
finally
lazy
package
this
val

<%

do
for

match
private

throw
var

abstract
else
forSome
new
protected
trait
while

=

case
extends
if
null
return
true
with

Table B.1: Reserved keywords from the Scala language.

Table B.2 lists the reserved words added by the Chisel library. In contrast to
the Scala reserved word listing, it also contains type/class names defined by Chisel.
Although technically possible, you should also avoid using Chisel (and Scala) op-
erators, such as + or <<, for example.

clock
name
RegNext
Vec

##
elsewhen
orR
reset
VecInit

andR

io
otherwise
SInt
when

Bits
is

Reg
switch
Wire

Bool

Mem
RegEnable
SyncMem
WireDefault

Cat
Module
RegInit
UInt
XorR

Table B.2: Reserved keywords from the Chisel language.

273

C Chisel Projects

Chisel is not (yet) used in many projects. Therefore, open-source Chisel code to
learn the language and the coding style is rare. Here, we list several projects we
know that use Chisel and are open source.

Rocket Chip is a RISC-V [31] processor-complex generator that comprises the
Rocket microarchitecture and TileLink interconnect generators. Originally
developed at UC Berkeley as the first chip-scale Chisel project [4], Rocket
Chip is now commercially supported by SiFive.

Sodor is a collection of RISC-V implementations intended for educational use. It
contains 1, 2, 3, and 5 stages pipeline implementations. All processors use
a simple scratchpad memory shared by instruction fetch, data access, and
program loading via a debug port. Sodor is mainly intended to be used in
simulation.

Patmos is an implementation of a processor optimized for real-time systems [27].
The Patmos repository includes several multicore communication architec-
tures, such as a time-predictable memory arbiter [23], a network-on-chip [26],
and a shared scratchpad memory with an ownership [28].

FlexPRET is an implementation of a precision timed architecture [34]. FlexPRET
implements the RISC-V instruction set and has been updated to Chisel 3.1.

Lipsi is a tiny processor intended for utility functions on a system-on-chip [19]. As
the code base of Lipsi is very small; it can serve as an easy starting point for
processor design in Chisel. Lipsi also showcases Chisel/Scala’s productivity.
It took me 14 hours to describe the hardware in Chisel and run it on an FPGA,
write an assembler in Scala, write a Lipsi instruction set simulator in Scala
for co-simulation, and write a few test cases in Lipsi assembler.

Leros is a small accumulator based processor processor, originally as al6-bit ver-
sion written in VHDL [18]. The redesign is now coded in Chisel and a 32-bit

275

https://github.com/chipsalliance/rocket-chip
https://en.wikipedia.org/wiki/RISC-V
https://www.sifive.com/
https://github.com/ucb-bar/riscv-sodor
https://github.com/t-crest/patmos
https://github.com/pretis/flexpret
https://github.com/schoeberl/lipsi
https://leros-dev.github.io/

C CHISEL PROJECTS

version [25]. Morten Borup Petersen ported the LLVM C compiler to support
the Leros ISA [15].

OpenSoC Fabric is an open-source NoC generator written in Chisel [9]. It is in-
tended to provide a system-on-chip for large-scale design exploration. The
NoC is a state-of-the-art design with wormhole routing, credits for flow con-
trol, and virtual channels. OpenSoC Fabric is still using Chisel 2.

DANA is a neural network accelerator [7] that integrates with the RISC-V Rocket
processor using the Rocket Custom Coprocessor (RoCC) interface [§]. DANA
supports inference and learning.

Chiselwatt is an implementation of the POWER Open ISA. It includes instructions
to run Micropython.

VTA Hardware Design Stack is an accelerator for machine learning for the Apache
TVM machine learning compiler framework.

Chisel IP Contributions started to collect small Chisel components. It includes the
source of the UART and FIFOs that are presented in this book.

Constellation is a NoC Generator developed at UC Berkeley [33]. Constellation
generates packet-switched NoCs with wormhole routing, virtual channels,
and credit-based flow control. The interface to the NoC can use AXI-4 or
TileLink. Compared to other NoCs and NoC generators, Constellation can
generate any topology with application-specific routes.

XiangShan is an open-source, out-of-order RISC-V processor [32]. XiangShan
promotes Chisel for agile hardware design.

Wildcat is a simple pipelined RISC-V processor [20]. The focus on Wildcat is to
provide readable Chisel code that can be used in education.

If you know an open-source project that uses Chisel, please drop me a note so [
can include it in a future edition of the book.

276 Index Contents

http://www.opensocfabric.org/
https://github.com/bu-icsg/xfiles-dana
https://github.com/antonblanchard/chiselwatt
https://github.com/apache/tvm-vta
https://github.com/freechipsproject/ip-contributions
https://github.com/ucb-bar/constellation
https://github.com/OpenXiangShan/XiangShan
https://github.com/schoeberl/wildcat

D Acronyms

Hardware designers and computer engineers like to use acronyms. However, it takes
time to get used to them. Here is a list of common digital design and computer
architecture terms.

ADC analog-to-digital converter

ALU arithmetic and logic unit

ASIC application-specific integrated circuit
CFG control flow graph

Chisel constructing hardware in a Scala embedded language
CISC complex instruction set computer
CPI clock cycles per instruction

CPU central processing unit

CRC cyclic redundancy check

DAC digital-to-analog converter

DFF D flip-flop, data flip-flop

DMA direct memory access

DRAM dynamic random access memory
EMC electromagnetic compatibility

ESD electrostatic discharge

FF flip-flop

FIFO first-in, first-out

277

D ACRONYMS

FPGA field-programmable gate array
HDL hardware description language
HLS high-level synthesis

IC instruction count

IDE integrated development environment
ILP instruction-level parallelism

IC integrated circuit

10 input/output

ISA instruction set architecture
JDK Java development kit

JIT just-in-time

JVM Java virtual machine

LC logic cell

LRU least-recently used

LSB least significant bit

MMIO memory-mapped 10

MSB most significant bit

MUX multiplexer

OO object-oriented

000 out-of-order

OS operating system

RAM random access memory

RISC reduced instruction set computer

278 Index

Contents

SDRAM synchronous DRAM

SRAM static random access memory

TOS top of stack

UART universal asynchronous receiver/transmitter
VHDL VHSIC hardware description language

VHSIC very high speed integrated circuit

Contents Index

279

Bibliography

(1]
(2]
(3]

(4]

(5]

(6]

(7]

Altera. Avalon interface specification, April 2005.
ARM. AMBA specification (rev 2.0), May 1999.

ARM. AMBA AXI and ACE protocol specification AXI3, AXI4, and AXI4-
Lite ACE and ACE-Lite. https://developer.arm.com/documentation/
ihi®022/e/, 2011.

Krste Asanovi¢, Rimas Avizienis, Jonathan Bachrach, Scott Beamer, David
Biancolin, Christopher Celio, Henry Cook, Daniel Dabbelt, John Hauser,
Adam Izraelevitz, Sagar Karandikar, Ben Keller, Donggyu Kim, John Koenig,
Yunsup Lee, Eric Love, Martin Maas, Albert Magyar, Howard Mao, Miquel
Moreto, Albert Ou, David A. Patterson, Brian Richards, Colin Schmidt,
Stephen Twigg, Huy Vo, and Andrew Waterman. The rocket chip genera-
tor. Technical Report UCB/EECS-2016-17, EECS Department, University of
California, Berkeley, Apr 2016.

Jonathan Bachrach, Huy Vo, Brian Richards, Yunsup Lee, Andrew Waterman,
Rimas Avizienis, John Wawrzynek, and Krste Asanovic. Chisel: constructing
hardware in a Scala embedded language. In Patrick Groeneveld, Donatella
Sciuto, and Soha Hassoun, editors, The 49th Annual Design Automation Con-
ference (DAC 2012), pages 12161225, San Francisco, CA, USA, June 2012.
ACM.

William J. Dally, R. Curtis Harting, and Tor M. Aamodt. Digital design using
VHDL: A systems approach. Cambridge University Press, 2016.

Schuyler Eldridge, Amos Waterland, Margo Seltzer, Jonathan Appavoo, and
Ajay Joshi. Towards general-purpose neural network computing. In 2015 In-
ternational Conference on Parallel Architecture and Compilation, PACT 2015,
San Francisco, CA, USA, October 18-21, 2015, pages 99-112, 2015.

281

https://developer.arm.com/documentation/ihi0022/e/
https://developer.arm.com/documentation/ihi0022/e/

BIBLIOGRAPHY

[8] Schuyler Eldridge, Amos Waterland, Margo Seltzer, and Jonathan Ap-
pavooand Ajay Joshi. Towards general-purpose neural network computing.
In 2015 International Conference on Parallel Architecture and Compilation
(PACT), pages 99-112, Oct 2015.

[9] Farzaf Fatollahi-Fard, David Donofrio, George Michelogiannakis, and John
Shalf. Opensoc fabric: On-chip network generator. In 2016 IEEE Interna-
tional Symposium on Performance Analysis of Systems and Software (ISPASS),
pages 194-203, April 2016.

[10] S. Harris and D. Harris. Digital Design and Computer Architecture, RISC-V
Edition. Elsevier Science, 2021.

[11] IBM. On-chip peripheral bus architecture specifications v2.1, April 2001.

[12] Kevin Laeufer, Jonathan Bachrach, and Koushik Sen. Open-source formal
verification for chisel. In Proceedings of the Fourth Workshop on Open-Source
EDA Technology (WOSET), 2021.

[13] OCP-IP Association. Open core protocol specification 2.1.
http://www.ocpip.org/, 2005.

[14] David A. Patterson and John L. Hennessy. Computer Organization and De-
sign, RISC-V Edition: The Hardware/Software Interface. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 2nd edition, 2020.

[15] Morten Borup Petersen. A compiler backend and toolchain for the leros archi-
tecture. B.sc.eng. thesis, Technical University of Denmark, 2019.

[16] Wade D. Peterson. WISHBONE system-on-chip (SoC) interconnec-
tion architecture for portable IP cores, revision: B.3. Available at
http://www.opencores.org, September 2002.

[17] Martin Schoeberl. SimpCon - a simple and efficient SoC interconnect. In
Proceedings of the 15th Austrian Workshop on Microelectronics, Austrochip
2007, Graz, Austria, October 2007.

[18] Martin Schoeberl. Leros: A tiny microcontroller for FPGAs. In Proceedings
of the 21st International Conference on Field Programmable Logic and Ap-
plications (FPL 2011), pages 10-14, Chania, Crete, Greece, September 2011.
IEEE Computer Society.

282 Index Contents

BIBLIOGRAPHY

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

Martin Schoeberl. Lipsi: Probably the smallest processor in the world. In
Architecture of Computing Systems — ARCS 2018, pages 18-30. Springer In-
ternational Publishing, 2018.

Martin Schoeberl. The educational risc-v microprocessor wildcat. In Pro-
ceedings of the Sixth Workshop on Open-Source EDA Technology (WOSET),
2024.

Martin Schoeberl, Sahar Abbaspour, Benny Akesson, Neil Audsley, Raffaele
Capasso, Jamie Garside, Kees Goossens, Sven Goossens, Scott Hansen, Rein-
hold Heckmann, Stefan Hepp, Benedikt Huber, Alexander Jordan, Evangelia
Kasapaki, Jens Knoop, Yonghui Li, Daniel Prokesch, Wolfgang Puffitsch, Pe-
ter Puschner, André Rocha, Claudio Silva, Jens Sparsg, and Alessandro Toc-
chi. T-CREST: Time-predictable multi-core architecture for embedded sys-
tems. Journal of Systems Architecture, 61(9):449-471, 2015.

Martin Schoeberl, Florian Brandner, Stefan Hepp, Wolfgang Puffitsch, and
Daniel Prokesch. Patmos reference handbook. Technical report, Technical
University of Denmark, 2014.

Martin Schoeberl, David VH Chong, Wolfgang Puffitsch, and Jens Sparsg.
A time-predictable memory network-on-chip. In Proceedings of the 14th In-
ternational Workshop on Worst-Case Execution Time Analysis (WCET 2014),
pages 53-62, Madrid, Spain, July 2014.

Martin Schoeberl, Hans Jakob Damsgaard, Luca Pezzarossa, Oliver Keszocze,
and Erling Rennemo Jellum. Hardware generators with chisel. In 2024
27th Euromicro Conference on Digital System Design (DSD), pages 168—175,
2024.

Martin Schoeberl and Morten Borup Petersen. Leros: The return of the accu-
mulator machine. In Martin Schoeberl, Thilo Pionteck, Sascha Uhrig, Jiirgen
Brehm, and Christian Hochberger, editors, Architecture of Computing Systems
- ARCS 2019 - 32nd International Conference, Proceedings, pages 115-127.
Springer, 1 2019.

Martin Schoeberl, Luca Pezzarossa, and Jens Sparsg. A minimal network
interface for a simple network-on-chip. In Martin Schoeberl, Thilo Pionteck,
Sascha Uhrig, Jirgen Brehm, and Christian Hochberger, editors, Architecture
of Computing Systems - ARCS 2019, pages 295-307. Springer, 1 2019.

Contents Index 283

BIBLIOGRAPHY

[27] Martin Schoeberl, Wolfgang Puffitsch, Stefan Hepp, Benedikt Huber, and
Daniel Prokesch. Patmos: A time-predictable microprocessor. Real-Time Sys-
tems, 54(2):389-423, Apr 2018.

[28] Martin Schoeberl, Térur Biskopstg Strgm, Oktay Baris, and Jens Sparsg.
Scratchpad memories with ownership. In 2019 Design, Automation and Test
in Europe Conference Exhibition (DATE), 2019.

[29] Bill Venners, Lex Spoon, and Martin Odersky. Programming in Scala, 3rd
Edition. Artima Inc, 2016.

[30] Andrew Waterman. Design of the RISC-V Instruction Set Architecture. PhD
thesis, EECS Department, University of California, Berkeley, Jan 2016.

[31] Andrew Waterman, Yunsup Lee, David A. Patterson, and Krste Asanovic.
The RISC-V instruction set manual, volume I: Base user-level ISA. Techni-
cal Report UCB/EECS-2011-62, EECS Department, University of California,
Berkeley, May 2011.

[32] Yinan Xu, Zihao Yu, Dan Tang, Guokai Chen, Lu Chen, Lingrui Gou, Yue Jin,
Qianruo Li, Xin Li, Zuojun Li, Jiawei Lin, Tong Liu, Zhigang Liu, Jiazhan
Tan, Huagiang Wang, Huizhe Wang, Kaifan Wang, Chuanqi Zhang, Fawang
Zhang, Linjuan Zhang, Zifei Zhang, Yangyang Zhao, Yaoyang Zhou, Yike
Zhou, Jiangrui Zou, Ye Cai, Dandan Huan, Zusong Li, Jiye Zhao, Zihao Chen,
Wei He, Qiyuan Quan, Xingwu Liu, Sa Wang, Kan Shi, Ninghui Sun, and
Yungang Bao. Towards Developing High Performance RISC-V Processors
Using Agile Methodology. In 2022 55th IEEE/ACM International Symposium
on Microarchitecture (MICRO), pages 11781199, 2022.

[33] Jerry Zhao, Animesh Agrawal, Borivoje Nikolic, and Krste Asanovi¢. Constel-
lation: An open-source SoC-capable NoC generator. In 2022 [5th IEEE/ACM
International Workshop on Network on Chip Architectures (NoCArc), pages
1-7,2022.

[34] Michael Zimmer. Predictable Processors for Mixed-Criticality Systems and
Precision-Timed I/0. PhD thesis, EECS Department, University of California,
Berkeley, Aug 2015.

284 Index Contents

Index

ALU, 56, 219
Arbiter, 67, 156

arithmetic operations, 13

Array, 18

Assembler, 227
Assertion, 211
Asynchronous Input, 97
AXI, 198

BCD, 139

Binary-coded decimal, 139

Bit
concatenation, 14
extraction, 14
reduction, 14
Bitfield
concatenation, 14
extraction, 14
Blackbox, 268
Bool, 13
BoringUtils, 206
Bubble FIFO, 162
build.sbt, 47
Bulk connection, 59
Bundle, 18

Case classes, 144
Chisel
Contribution, 251

Examples, 6, 275

Versions, 33
ChiselEnum, 110
ChiselTest, 39
Circular buffer, 176

read pointer, 176
write pointer, 176

Clock, 73
Collection, 18

Combinational circuit, 61

Communicating state machines, 119

Comparator, 71
Component, 49
Counter, 78
Counting, 18

Data forwarding, 90
Datapath, 125
Debouncing, 98
Debugging, 201
Decoder, 63
DecoupledlO, 172

Double buffer FIFO, 174

Edge detection, 102
elsewhen, 62

emit Verilog, 32
Encoder, 65

Priority encoder, 71

285

INDEX

FIFO, 161, 169
FIFO buffer, 161
File reading, 140
Finite-State Machine
Mealy, 112
Moore, 108
Finite-state machine, 107
First-in, first-out buffer, 161
Flip-flop, 73
Flipped, 172
FSM, 107
FSMD, 124
Function components, 137
Functional programming, 152

generate Verilog, 32
Hardware generators, 135

if/elseif/else, 62
Inheritance, 150
Initialization, 74
Integer
constant, 12
signed, 11
unsigned, 11
width, 11
Interconnect, 187
10, 25
10 interface, 49

Java
Versions, 36

Leros, 215

Logic generation, 139
Logic table generation, 139
Logical clock, 81

logical operations, 13

286

Index

Majority voting, 100
Memory, 89

Memory mapped 10, 194
Metastability, 97
Module, 49

Multiplexer, 16

Object-oriented, 150
Operators, 14
otherwise, 62

Parameters, 143
Pipelining, 237
Ports, 49
printf, 45
Processor, 215
ALU, 219
instruction decode, 224

RAM, 89
Ready/valid interface, 130, 172
Reg, 16, 25
Register, 16, 73
with enable, 76
Register file, 21
Reserved keywords, 273
Reset, 74
RISC-V, 237
ROM, 139

sbt, 29

Scala, 135
for loop, 136
Seq, 137
tuple, 137
val, 135
Versions, 36

ScalaTest, 38

Contents

INDEX

Serial port, 164

Source organization, 29

SRAM, 89

State diagram, 108

State machine with datapath, 124
Structure, 18

switch, 64

Synchronous memory, 89
Synchronous sequential circuit, 107

Testing, 37, 201
Tick, 81
Timer, 83
Timing diagram, 74
Timing generation, 80
tuple, 180
Type
conversion, 142
parameters, 145

UART, 164

Vcd, 43

VCS, 210

Vec, 18

Veclnit, 20, 140
Vector, 18
Verification, 201
Verilator, 210
Verilog, 32, 259
VHDL, 259

Waveform, 43
Waveform diagram, 74
when, 62

Wildcat, 237

Wire, 14, 25
Wishbone, 196

Contents Index

287

	Foreword
	Preface
	Introduction
	Installing Chisel and FPGA Tools
	macOS
	Linux/Ubuntu
	Windows
	FPGA Tools

	Hello World
	Chisel Hello World
	An IDE for Chisel
	Source Access and eBook Features
	Further Reading
	Exercises

	Basic Components
	Chisel Types and Constants
	Combinational Circuits
	Multiplexer

	Registers
	Counting

	Structure with Bundle and Vec
	Bundle
	Vec

	Wire, Reg, and IO
	Chisel Generates Hardware
	Exercises

	Build Process and Testing
	Building your Project with sbt
	Source Organization
	Running sbt
	Generating Verilog
	Tool Flow
	Chisel Versions
	Using a GitHub Template

	Testing with Chisel
	ScalaTest
	ChiselTest
	Waveforms
	printf Debugging

	Exercises
	A Minimal Project
	A Testing Exercise

	Components
	Components in Chisel are Modules
	Nested Components
	An Arithmetic Logic Unit
	Bulk Connections

	Combinational Building Blocks
	Combinational Circuits
	Decoder
	Encoder
	Arbiter
	Priority Encoder
	Comparator
	Exercise

	Sequential Building Blocks
	Registers
	Counters
	Counting Up and Down
	Generating Timing with Counters
	The Nerd Counter
	A Timer
	Pulse-Width Modulation

	Shift Registers
	Shift Register with Parallel Output
	Shift Register with Parallel Load

	Memory
	Exercises

	Input Processing
	Asynchronous Input
	Debouncing
	Filtering of the Input Signal
	Combining the Input Processing with Functions
	Synchronizing Reset
	Exercise

	Finite-State Machines
	Basic Finite-State Machine
	Faster Output with a Mealy FSM
	Moore versus Mealy
	Exercise

	Communicating State Machines
	A Light Flasher Example
	State Machine with Datapath
	Ready/Valid Interface

	Hardware Generators
	A Little Bit of Scala
	Lightweight Components with Functions
	Generate Combinational Logic
	File Reading
	Type Conversion

	Configuration with Parameters
	Simple Parameters
	Case Classes
	Functions with Type Parameters
	Modules with Type Parameters
	Parameterized Bundles
	Optional Ports

	Use Inheritance
	Hardware Generation with Functional Programming
	Minimum Search Example
	An Arbitration Tree

	Example Designs
	FIFO Buffer
	A Serial Port
	FIFO Design Variations
	Parameterizing FIFOs
	Redesigning the Bubble FIFO
	Double Buffer FIFO
	FIFO with Register Memory
	FIFO with On-Chip Memory

	A Multi-clock Memory
	Exercises
	Explore the Bubble FIFO
	The UART
	FIFO Exploration

	Interconnect
	A Classic Microprocessor Bus
	An On-Chip Bus
	Combinational Handshake
	Pipelined Handshake
	Example IO Device
	Memory Mapped Devices

	Bus and Interface Standards
	Wishbone
	AXI
	Open Core Protocol
	Further Bus Specifications

	Exercise

	Debugging, Testing, and Verification
	Debugging
	Testing in Chisel
	Use Functions
	Selecting Tests
	Accessing Internal Signals
	Multithreaded Testing
	Simulator Backends

	Assertions and Formal Verification
	Exercise

	Design of a Processor
	The Instruction Set Architecture
	The Datapath
	Start with an ALU
	Decoding Instructions
	Assembling Instructions
	The Instruction Memory
	A State Machine with Data Path Implementation
	Implementation Variations
	Exercise

	A RISC-V Pipeline
	The RISC-V Instruction Set Architecture
	Pipeline Stage Definition
	Number of Pipeline Stages
	The Wildcat Pipeline
	Top Level
	Instruction Fetch
	Instruction Decode and Register File Read
	Execute and Memory Read

	Summary and Exercise

	Contributing to Chisel
	Publishing a Chisel Library
	Using a Library
	Prerequisite
	Library Setup
	Regular Publishing

	Contributing to Chisel
	Setup the Development Environment
	Testing
	Contribute with a Pull Request

	Exercise

	Summary
	VHDL and Verilog
	Code Examples
	Components
	Using a Component
	Register
	Combinational Blocks
	Advanced Chisel Features

	External Modules and Integration of Legacy Code
	Exercise

	Reserved Keywords
	Chisel Projects
	Acronyms
	Bibliography
	Index

