

Introduction to Chip Design
Using Open-Source Tools

First Edition

Introduction to Chip Design
Using Open-Source Tools

First Edition

Martin et al.

Copyright © 2026 Martin...

This work is licensed under a Creative Commons Attribution-ShareAlike
4.0 International License. http://creativecommons.org/licenses/
by-sa/4.0/

Email: martin@jopdesign.com
Visit the source at https://github.com/os-chip-design/chip-design-book

First edition published 2026 by Kindle Direct Publishing,
https://kdp.amazon.com/

Library of Congress Cataloging-in-Publication Data

TBD... Schoeberl, Martin

xxxl
Martin ...
Includes bibliographical references and an index.
ISBN xxx

Manufactured in the United States of America.
Typeset by Martin Schoeberl.

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
martin@jopdesign.com
https://github.com/os-chip-design/chip-design-book
https://kdp.amazon.com/

Contents

Foreword vii

Preface ix

1 Introduction 1
1.1 History of Design Tools . 1

1.1.1 Simulation . 1
1.2 Tool Installation . 2

1.2.1 Nix Based . 2
1.2.2 Docker Images . 2
1.2.3 Compiling from Source 3
1.2.4 Installing LibreLane . 3
1.2.5 Further Packages . 3

1.3 Hello World . 4
1.3.1 Exploring the Design . 6

1.4 Manual Flow with Python . 8
1.4.1 Tuning the Synthesis Flow 10

2 Open-Source Production Frameworks 11
2.1 OpenROAD . 11
2.2 OpenLane . 12

2.2.1 The Design Flow . 12
2.2.2 OpenLane2 and LibreLane 13
2.2.3 Running the Flow Manually 13

2.3 Caravel . 13
2.3.1 Caravel Harness . 13
2.3.2 Caravel User Project . 16
2.3.3 Setup . 16
2.3.4 Hardening the User Project 16
2.3.5 Testing . 19

I

CONTENTS

2.3.6 Timing Analysis . 19
2.3.7 Precheck . 20
2.3.8 Submission to ChipFoundry 20
2.3.9 A Wishbone Peripheral . 20
2.3.10 Notes . 25

2.4 Tiny Tapeout . 25
2.4.1 Local Hardening . 25

2.5 wafer.space . 27
2.6 Maybe something from Edu4Chip? 27

3 Memories 29
3.1 Flip-Flop and Latch-based Memories 29
3.2 Exploring OpenRAM Memories 31
3.3 DFFRAM . 31
3.4 CF RAM . 31

3.4.1 SRAM links . 31

4 List of Chapters 33
4.1 Notes and Pointers (Reading List) 33

4.1.1 Matt Venn Links . 33
4.2 The MOSFET and CMOS Technology 34
4.3 Standard Cells . 34

4.3.1 FABs . 34
4.3.2 PDK . 34

4.4 The Design Flow . 34
4.5 Hardware Description Languages 34

4.5.1 Verilog . 34
4.5.2 VHDL . 34
4.5.3 SystemVerilog . 34
4.5.4 Chisel . 34
4.5.5 Other Languages . 35
4.5.6 Amaranth . 35
4.5.7 SpinalHDL . 35
4.5.8 MyHDL . 35
4.5.9 Clash . 35
4.5.10 Spade . 35
4.5.11 Generator Scripting Languages 35

II Index Contents

CONTENTS

4.6 Open-Source Tools . 35
4.6.1 Magic . 35
4.6.2 ABC . 35
4.6.3 Yosys . 35

4.7 Use Cases . 35

A Resources 37

B Acronyms 39

Bibliography 43

Contents Index III

List of Figures

1.1 The synthesized adder as visualized in KLayout. 6

2.1 OpenLane design flow, including the OpenROAD flow in blue. Copy-
right 2020-2022 Efabless Corporation and contributors, License:
Apache 2.0. 12

2.2 The combination of the Caravel harness with the user project results
in the final Caravel tile for the MPW run. Copyright 2020-2022
Efabless Corporation and contributors, License: Apache 2.0. 14

2.3 The Caravel Harness . 15
2.4 Wishbone interface . 21
2.5 Wishbone asynchronous read followed by an asynchronous write . . 22
2.6 Wishbone synchronous read followed by a synchronous write 23

3.1 A six-transistor (6T) CMOS SRAM cell. 30

IV

https://en.wikipedia.org/wiki/Static_random-access_memory

List of Tables

V

Listings

1.1 Python script to show the version of the installed LibreLane (version.py). 4
1.2 A pipelined adder as a Hello World example for LibreLane (adder.v). 5
1.3 The YAML configuration file (adder.yaml). 5
1.4 Setting up the PDK (pdk.py). 9
1.5 Configure the project (config.py). 9
1.6 Get started with the steps (steps.py). 9
1.7 Running the synthesis (synth.py). 10

2.1 A simple Wishbone device in Chisel (WishboneExample.scala). . . 24
2.2 A simple Wishbone device in Verilog (WishboneExample.v). 26

3.1 128 Bytes of Flip-Flop based Memory (FlipFlopMemory.scala). . . 30

VI

https://github.com/os-chip-design/chip-design-book/blob/main/code/version.py
https://github.com/os-chip-design/chip-design-book/blob/main/code/adder.v
https://github.com/os-chip-design/chip-design-book/blob/main/code/adder.yaml
https://github.com/os-chip-design/chip-design-book/blob/main/code/pdk.py
https://github.com/os-chip-design/chip-design-book/blob/main/code/config.py
(https://github.com/os-chip-design/chip-design-book/blob/main/code/steps.py
https://github.com/os-chip-design/chip-design-book/blob/main/code/synth.py
https://github.com/os-chip-design/chip-design-book/blob/main/src/main/scala/WishboneExample.scala
https://github.com/os-chip-design/chip-design-book/blob/main/code/WishboneExample.v
https://github.com/os-chip-design/chip-design-book/blob/main/src/main/scala/FlipFlopMemory.scala

Foreword

It is an exciting time to be in the world of chip design....

VII

Preface

This book is an introduction to chip design with a focus on using open-source tools
and open-source PDKs.

I have not used any large language model (LLM) to write even a single sentence.
All mistakes are mine, not a halizunisation by an LLM. I use Grammarly for gram-
mar checking and Copilot for writing code.

Acknowledgements

IX

1 Introduction

This book is an introduction to chip design using open-source tools. It covers the
steps needed to produce a chip for a design described in a hardware description
language (HDL), down to the files that are sent to the fab. Those steps are often
called the backend design.

This book does not cover digital design, such as basic Boolean equations and
sequential circuits. For this topic, we refer to other textbooks, such as [4] and [10].
When we need to describe some circuits, we will describe them in Chisel [2] and in
Verilog.

This book is optimized for reading on a tablet (e.g., an iPad) or a laptop. We
include links to further reading in the running text, primarily to Wikipedia articles.

1.1 History of Design Tools

Very early chips have been designed by hand, and the photo masks have been pro-
duced by drawing them with tapes. As this process does not scale, computer-aided
design (CAD) tools have been developed. Another term used is: electronic design
automation (EDA).

Alberto Sangiovanni-Vincentelli was invited to give a keynote speech at the 40th
Design Automation Conference (DAC). That speech resulted in a paper on the his-
tory (and future) of EDA [8], mostly work as presented at DAC.

Alberto co-founded Cadence Design Systems and Synopsys, the two major EDA
tool vendors.

Read https://arxiv.org/pdf/2311.02055

1.1.1 Simulation

IBM’s Astap (advanced statistical analysis program) and UC Berkeley’s Spice (sim-
ulation program for integrated circuits emphasis)

Early tools, still in use today: Spice, Espresso, Magic,

1

https://www.chisel-lang.org/
https://en.wikipedia.org/
https://arxiv.org/pdf/2311.02055

1 INTRODUCTION

1.2 Tool Installation

The magic of open-source tools is that we can install them on a personal computer
without any concerns of licensing and license servers. The downside of open-source
tools is the variety of installation options. There is no single best way for the in-
stallation. Furthermore, open-source tools are best supported on a Unix operating
system, and preferably Linux. Support under macOS comes second. MS Windows
is best served by using the Windows Subsystem for Linux.

1.2.1 Nix Based

From OpenLane2 (now LibreLane) on, the preferred installation is Nix-based. Nix
is a cross-platform package manager that also provides native binaries for x86 and
ARM-based systems (e.g., Mac laptops). The LibreLane installation documentation
explains how to install Nix, and also how to set up the Nix cache for the LibreLane
tools.

Another option to install Nix is via Determinate. Note that you need to install the
LibreLane cache to avoid building all the tools yourself.

1.2.2 Docker Images

Another option is to use Docker containers with ready-installed tools. Harald Prettl,
from the Johannes Kepler University of Linz, provides IIC-OSIC-TOOLS (Inte-
grated Infrastructure for Collaborative Open Source IC Tools), a Docker container
based on Ubuntu 24.04 LTS for the following CPU architectures: x86 64/amd64
and aarch64/arm64.

The folder /foss/designs is the place to access user data on your local machine.
It points to the directory pointed by the environment variable DESIGNS, the default
is $HOME/eda/designs. To change this to start with your home folder, invoke the
Docker image with:

DESIGNS=$HOME ./start_x.sh

Note that, as of the time of writing, the default PDK is the IHP PDK, which is
not yet supported in the LibreLane flow from within the container.1 Switch to the
Sky130 PDK with the following command:

sak-pdk sky130A

1See: https://github.com/iic-jku/IIC-OSIC-TOOLS/issues/147

2 Index Contents

https://en.wikipedia.org/wiki/Nix_(package_manager)
https://librelane.readthedocs.io/en/latest/installation/index.html
https://docs.determinate.systems/
https://github.com/iic-jku/IIC-OSIC-TOOLS
https://github.com/iic-jku/IIC-OSIC-TOOLS/issues/147

1.2 TOOL INSTALLATION

1.2.3 Compiling from Source

As the tools are open-source, it is always a (theoretical) option to compile them from
source. However, often there are library dependencies that are not easy to resolve.
Therefore, we recommend installing the tools with some packaging software that
ensures compatibility between the various tools.

1.2.4 Installing LibreLane

When you use the nix-based setup, you need to install LibreLane. Install LibreLane
by cloning it:

git clone git@github.com:librelane/librelane.git

You set up your environment by entering nix as follows:

cd librelane

nix-shell

The frontend command is librelane. Check the version you have installed with:

librelane --version

LibreLane also installs the Sky130 PDK using the ciel tool. The PDKs are stored
under $HOME:/.ciel.

1.2.5 Further Packages

There are several other distributions of the open-source chip design tools available:

OSS CAD Suite is a collection of tools with a focus on open-source design flow for
FPGAs.

YoWASP (Yosys WebAssembly Synthesis & PnR) is a collection of tools targeting
FPGA design flow compiled to WebAssembly. Therefore, they can be easily
run on different platforms, even as a Visual Studio Code plugin.

Contents Index 3

https://github.com/librelane/librelane
https://github.com/YosysHQ/oss-cad-suite-build
https://en.wikipedia.org/wiki/Field-programmable_gate_array
https://yowasp.org/

1 INTRODUCTION

import librelane

print(librelane.__version__)

Listing 1.1: Python script to show the version of the installed LibreLane
(version.py).

1.3 Hello World

After installing the tools, we want to explore them in action. The Hello World
version for the backend chip design is to synthesize a minimal circuit from the HDL
description to generate a GDSII file and visualize it in an editor. Note that all code
examples in this book are part of the book’s GitHub repository.

Execute ‘nix-shell‘ in your LibreLane installation. Try to check your LibreLane
version by invoking Python on the code shown in Listing 1.1.

Then, switch to a working directory and create the following small Verilog design
(adder.v), as shown in Listing 1.3. This example is an adder, including registers at
the input and output ports, so we can use static timing analysis (STA) to explore the
maximum clocking frequency.

Furthermore, you need a configuration for your flow. You can find all possible
configuration parameters at the Universal Flow Configuration Variables section of
the LibreLane documentation. However, most variables can be left at their default
values.

Config files can support more than one PDK, see the LibreLane example. Con-
figuration can be in YAML or JSON format. We will use the adder.yaml file with a
minimal configuration, as shown in Listing 1.5.

For a fully automatic run of the full flow, you can execute:

librelane adder.yaml

This single command runs the complete synthesis flow from RTL to GDSII. As
the design is very simple, the flow will run in about a minute. Figure 1.1 shows the
final GDSII file for the adder in KLayout.

A flow takes, at the time of this writing, with LibreLane v2.4.8, 74 steps, each
reporting in its folder. During the flow, a lot of information is printed out. Scrolling
back in the terminal, you can see reports of design checks and resource usage. Every
time you run the flow, it will create a new folder under folder runs. The name of the
folder will be RUN_year_month_day_hh-mm-ss.

4 Index Contents

https://github.com/os-chip-design/chip-design-book/blob/main/code/version.py
https://en.wikipedia.org/wiki/GDSII
https://github.com/os-chip-design/chip-design-book/tree/main/code
https://librelane.readthedocs.io/en/latest/reference/common_flow_vars.html
https://github.com/librelane/librelane/blob/main/librelane/examples/spm/config.yaml

1.3 HELLO WORLD

module adder (

input clock,

input [7:0] a,

input [7:0] b,

output [7:0] sum

);

reg [7:0] reg_a, reg_b, reg_sum;

always @(posedge clock) begin

reg_a <= a;

reg_b <= b;

reg_sum <= reg_a + reg_b;

end;

assign sum = reg_sum;

endmodule

Listing 1.2: A pipelined adder as a Hello World example for LibreLane (adder.v).

DESIGN_NAME: adder

VERILOG_FILES: dir::adder.v

CLOCK_PERIOD: 20

CLOCK_PORT: clock

Listing 1.3: The YAML configuration file (adder.yaml).

Contents Index 5

https://github.com/os-chip-design/chip-design-book/blob/main/code/adder.v
https://github.com/os-chip-design/chip-design-book/blob/main/code/adder.yaml

1 INTRODUCTION

Figure 1.1: The synthesized adder as visualized in KLayout.

1.3.1 Exploring the Design

A first step to explore the design is to view the GDS in KLayout with:

librelane --last-run --flow openinklayout adder.yaml

In Klayout, you can explore the design. Use the rulers to measure your design.
How large is it? Would it fit into a Tiny Tapeout Tile? How large is a Tiny Tapeout
tile? When you expand the adder in Cells, you can see which cells have been used.
By double-clicking on a cell type, it is removed from the display. This is an indirect
way to show the cells in the GDS. The flip-flop standard cells in Sky130 have names
that include “dfxtp” in their name. Double-clock that cell to see how many flip-flops
are used. How many should there be?

Another option is to open the design with the OpenROAD viewer:

librelane --last-run --flow openinopenroad adder.yaml

Matt Venn has a good selection of layers and color assignments at klayout gds.xml.
You can use it with klayout as follows:

6 Index Contents

https://github.com/mattvenn/librelane_summary/blob/librelane/klayout_gds.xml

1.3 HELLO WORLD

klayout -l klayout_gds

That configuration file is part of the summary tools, which can be used for a
quick exploration of the design. Clone the repository, add it to your path, and set
the PDK_ROOT variable (easiest into a file that you source, or add those lines to your
$HOME/.bashrc):

export PATH=$PATH:$HOME/path/to/librelane_summary

export PDK_ROOT=$HOME/.ciel

Explore the tool with:

summary.py --help

When in a folder that contains the LibreLane runs, explore the GDS of the latest
run with:

summary.py --gds

At the time of this writing, the flow generates 74 folders containing the results
and reports for each individual step. You can find those subfolders in the folder
runs/RUN_DATE_TIME. Not all reports are equally important. We will explore some
of them.

Linting and a First Area Estimate

The first four steps perform linting of the design, and any Verilog syntax errors are
identified during this process. An initial estimate of the used cells can be found
in the report 06-yosys-synthesis/reports/stat.rpt. For our pipelined adder, we
can identify the 24 flip-flops as dfxtp_2 cells in that report:

...

Number of cells: 60

sky130_fd_sc_hd__a31oi_2 1

sky130_fd_sc_hd__and2_2 4

sky130_fd_sc_hd__dfxtp_2 24

...

We use the Sky130 PDK and can find the documentation of each cell online. E.g.,
the DFF is described at dfxtp. The file adder.nl.v contains the design synthesized
to standard cells from the used PDK. As our example is very simple, we can manu-
ally inspect the generated Verilog.

Contents Index 7

https://github.com/mattvenn/librelane_summary
https://skywater-pdk.readthedocs.io/en/main/
https://skywater-pdk.readthedocs.io/en/main/contents/libraries/sky130_fd_sc_hd/cells/dfxtp/README.html

1 INTRODUCTION

Static Timing Analysis

In folder nn-openroad-stapostpnr, the static timing analysis (STA) reports are
found.

Size

When not constraining the chip’s size, LibreLane will choose the size.

Design Rule Checks

Summary

The subfolder final contains a summary of the project in files metrics.csv and
metrics.json. It includes timing information, size of the design, number of stan-
dard cells used, and other detailed metrics.

1.3.2 Change the Design

The current example has non-initialized registers after power-up. Although those
random values will be cleared with valid values after on and two clock cycles, it is
good practise to reset registers. This expcially useful for verification.

There are two ways flip-flops can be reset: (1) with an asynchronous reset or (2)
with a synchronous reset. Explain which one is to be preferred and why. Which one
needs a larger area? This question is not easy to explain by a back-of-the-envelope
calculation when we do (yet) not know the available standard cells and their sizes.

However, we can easily decide this question by exploring both versions with Sky-
Water130. Change the design to reset all registers. Run both versions through the
flow. Then explore the size and which flip-flop types have been used.

1.4 Manual Flow with Python

However, we can also run the individual steps from Python. We will reuse the
pipelined adder for this exploration from Section 1.3. The following example is
inspired by running LibreLane on Google Colab, a nice way to explore LibreLane
just from your browser.

8 Index Contents

https://colab.research.google.com/github/librelane/librelane/blob/main/notebook.ipynb

1.4 MANUAL FLOW WITH PYTHON

import ciel

from ciel.source import StaticWebDataSource

from librelane.common import get_opdks_rev , ScopedFile

ciel.enable(

ciel.get_ciel_home(),

"sky130",

get_opdks_rev(),

data_source =

StaticWebDataSource("https://fossi-foundation.github.io/ciel-releases"),

)

Listing 1.4: Setting up the PDK (pdk.py).

Start Python from within your Nix shell and run the following commands. All
code from this book can be found in the GitHub repo of the book: code. You can
execute those scripts from within Python with the following command:

python

exec(open("pdk.py").read())

• Execute Listing 1.4 to setup the PDK.

• A Flow needs to be configured. Execute Listing 1.5 to configure your project.
The configuration is similar to the YAML file we used in the initial example.

Let us start with the Yosys synthesis. The design is split into so-called steps.
Therefore, we need to import Step and State, as shown in Listing 1.6). The last
command shows us help with the steps.

We can run the synthesis with the code from Listing 1.7.

1.4.1 Tuning the Synthesis Flow

LibreLane has several variables that can be set to tweak the flow. .

"//": "Hold slack margin - Increase them in case you are getting hold violations.",

"PL_RESIZER_HOLD_SLACK_MARGIN": 0.1,

"GRT_RESIZER_HOLD_SLACK_MARGIN": 0.05,

Contents Index 9

https://github.com/os-chip-design/chip-design-book/blob/main/code/pdk.py
https://github.com/os-chip-design/chip-design-book/tree/main/code

1 INTRODUCTION

from librelane.config import Config

Config.interactive(

"adder",

PDK = "sky130A",

CLOCK_PORT = "clock",

CLOCK_NET = "clock",

CLOCK_PERIOD = 20,

PRIMARY_GDSII_STREAMOUT_TOOL = "klayout",

)

Listing 1.5: Configure the project (config.py).

from librelane.steps import Step

from librelane.state import State

initial_state = State()

Synthesis = Step.factory.get("Yosys.Synthesis")

Synthesis.display_help()

Listing 1.6: Get started with the steps (steps.py).

synthesis = Synthesis(state_in=initial_state ,

VERILOG_FILES=["adder.v"])

synthesis.start()

Listing 1.7: Running the synthesis (synth.py).

10 Index Contents

https://github.com/os-chip-design/chip-design-book/blob/main/code/config.py
(https://github.com/os-chip-design/chip-design-book/blob/main/code/steps.py
https://github.com/os-chip-design/chip-design-book/blob/main/code/synth.py

2 Open-Source Production
Frameworks

Chip design consists of several steps from synthesis down to GDSII files. Scripts
usually orchestrate those steps. In the following, we describe different frameworks
that contain the needed open-source tool, but also the scripts to run the flow.

2.1 OpenROAD

OpenROAD [1] started as a DARPA-sponsored project to enable an end-to-end de-
sign flow of chips from RTL to the final chips without human intervention, within a
maximum of 24 hours. The documentation is published on Read the Docs. Open-
ROAD includes the following open-source tools:

• ifp defines the core are, the rows, and the tracks.

• pdn is a power distribution network (PDN) generator.

• Tapcell inserts tapcells or endcaps.

• gpl performs global placement. The tool is an extension of the RePlAce tool.

• Gate Resizer to optimize the design until the maximum utilization is reached.

• OpenDP performs detailed placements.

• TritonCTS 2.0 is performs clock tree synthesis.

• FastRoute performs global routing.

• TritonRoute performs detailed routing.

• OpenRCX performs parasitics extraction.

• And some more.

Use the links for documentation of the individual tools.

11

https://github.com/The-OpenROAD-Project
https://openroad.readthedocs.io/en/latest/
https://openlane.readthedocs.io/en/latest/flow_overview.html
https://github.com/the-openroad-project/openroad/tree/master/src/ifp
https://github.com/the-openroad-project/openroad/tree/master/src/pdn
https://github.com/the-openroad-project/openroad/tree/master/src/tap
https://github.com/the-openroad-project/openroad/tree/master/src/gpl
https://github.com/The-OpenROAD-Project/RePlAce
https://github.com/the-openroad-project/openroad/tree/master/src/rsz
https://github.com/the-openroad-project/openroad/tree/master/src/dpl
https://github.com/the-openroad-project/openroad/tree/master/src/cts
https://github.com/the-openroad-project/openroad/tree/master/src/grt
https://github.com/the-openroad-project/openroad/tree/master/src/drt
https://github.com/the-openroad-project/openroad/tree/master/src/rcx

2 OPEN-SOURCE PRODUCTION FRAMEWORKS

Figure 2.1: OpenLane design flow, including the OpenROAD flow in blue.
Copyright 2020-2022 Efabless Corporation and contributors, License:
Apache 2.0.

2.2 OpenLane

OpenLane [5, 13] is a collection of EDA tools, such as Yosys, Magic, Netgen, and
KLayout. It also includes OpenROAD. OpenLane consists of TCL scripts to au-
tomate the flow from RTL, described in Verilog, to the chip production data as a
GDSII file.

OpenLane was developed by eFabless, and the documentation is published on
Read the Docs.

2.2.1 The Design Flow

Figure 2.1 shows the design flow of OpenLane.

12 Index Contents

https://github.com/The-OpenROAD-Project/OpenLane
https://openlane.readthedocs.io/en/latest/

2.3 CARAVEL

2.2.2 OpenLane2 and LibreLane

OpenLane2 is a new, partly rewritten,1 framework for chip design with a focus on
substituting TCL scripts with Python scripts. The documentation is published on
Read the Docs. However, the original OpenLane documentation is richer than the
OpenLane2 documentation. Therefore, consider reading that one as a basis.

Efabless, the original developer of OpenLane and OpenLane2, exited the busi-
ness in spring 2024. To continue the development of OpenLane, the repository was
cloned/forked in April 2025, and the project was renamed to LibreLane.

2.2.3 Running the Flow Manually

2.3 Caravel

Caravel is a SoC framework developed by Efabless for the Google/Skywater 130nm
Open PDK. It is the basis for the chipIgnite MPW shuttles. It contains a padframe, a
houskeeping block, a management area including a RISC-V core, and a user project
wrapper. The user area is 3000 µm x 3600 µm (10 mm2). To put this into perspec-
tive, a simple 3-stage RISC-V pipeline, such as Wildcat [12], fits into a 0.2 mm2

area. A 4 KiB memory from eFabless has a 0.18 mm2 area.
ChipFoundry now maintains Caravel. Note that the transition to ChipFoundry

is still in progress; therefore, some documentation still contains the eFabless name.
Additionally, some datasheets are outdated (e.g., referring to the PicoRV as the man-
agement processor, which is now the VexRiscv).

Caravel is, in fact, two artifacts that are combined during the MPW chip pro-
duction. The Caravel harness, which combines the RISC-V CPU and IO man-
agement with the user project, is used to build the final Caravel tile. Figure 2.2
shows this combination of the two components to the final Caravel. The so-called
user_project_wrapper is the design that is submitted to ChipFoundry. As users,
we do not need to directly deal with the Caravel harness.

2.3.1 Caravel Harness

Figure 2.3 shows a simplified block diagram of the Caravel harness. The Caravel
harness contains the management core, the user project, the padframe, and GPIOs
configured by an SPI controller.

1OpenLane2 started out of OpenLane and OpenROAD scripts

Contents Index 13

https://github.com/efabless/openlane2
https://openlane2.readthedocs.io/
https://openlane.readthedocs.io/en/latest/
https://github.com/librelane/librelane
https://caravel-harness.readthedocs.io/
https://chipfoundry.io/chipignite
https://github.com/SpinalHDL/VexRiscv
https://github.com/chipfoundry/caravel_mgmt_soc_litex

2 OPEN-SOURCE PRODUCTION FRAMEWORKS

Figure 2.2: The combination of the Caravel harness with the user project results in
the final Caravel tile for the MPW run. Copyright 2020-2022 Efabless
Corporation and contributors, License: Apache 2.0.

The management core contains a VexRiscv RISC-V core, 256-word memory
(latch-based), shared for instruction and data, and peripherals, connected via a Wish-
bone bus. The peripherals include a flash controller, a UART, an SPI master, and a
logic analyzer. The Wishbone bus and the logic analyzer are connected to the user
area. The management core is built with the LiteX framework, which itself uses
Migen, a Python project to build digital hardware.

The RISC-V core in the management runs firmware out of the Flash to configure
the user project GPIOs, interact with the user area via the Wishbone bus, and interact
with the logic analyzer.

The user project is connected to the GPIO pins, the Wishbone bus of the RISC-
V CPU, the logic analyzer, and interrupt pins to the RISC-V CPU. The example
components are split into a wrapper and the real component. For example, the user
project is split into a user_project_wrapper and a user_proj_example.

The chipIgnite project includes a board containing the Caravel chip, a power
supply, a serial Flash for the firmware, and an FTDI FT232 for communication
between a PC via USB.

14 Index Contents

https://github.com/SpinalHDL/VexRiscv
https://github.com/enjoy-digital/litex
https://github.com/m-labs/migen
https://github.com/fossi-foundation/caravel_board

2.3 CARAVEL

User ProjectManagement Core

RISC-V
(VexRiscv)

Memory

W
ish

bo
ne

Flash ctrl

UART

SPI

Logic ana

IRQ

Wishbone

Logic Analyzer

GPIO
and config

Padframe

Figure 2.3: The Caravel Harness

Contents Index 15

2 OPEN-SOURCE PRODUCTION FRAMEWORKS

2.3.2 Caravel User Project

The Caravel framework itself is split into two repositories: the user project (of-
ten called user_project_wrapper, as this is the top-level of the user project) and
Caravel itself. The example user project contains a tiny example (a counter) to get
started. Within that project, all the needed tools are installed, including a lite version
of Caravel, the management core for simulation, LibreLane, and the Sky130 PDK.

The starting point is the user project. The flow is run within Docker. Follow the
instructions in the Caravel User Project. The dependencies on Docker and Python
are listed there. Missing is the dependency on two Python libraries: python-tk and
Click.

There are two ways to integrate your design into Caravel: (1) Harden your user
project first and then instantiate it in the wrapper as a hard macro, and then run the
hardening of the wrapper; (2) Harden the whole project at once (include your user
project as Verilog files in the wrapper configuration). The example project performs
the individual hardening.

Following video from ChipFoundry gives an overview of the flow of the example
project. Then follow the instructions in the Caravel User Project.

2.3.3 Setup

Start by cloning the user project by selecting Use this template. Install the prereq-
uisites and clone your repository. Note that the project requires several GB of space
on your hard disc. The initial clone is 1/4 GB. The needed tools are installed with:

make setup

During this setup phase, a lightweight version of Caravel (caravel_lite), the
management core for simulation, the Sky130 PDK, a Docker with LibreLane, and
timing scripts are downloaded.

The download will take several minutes and needs around 7.5 GB of hard disk
space.

2.3.4 Hardening the User Project

The example project consists of a simple 16-bit counter that is connected to the
Wishbone bus, the logic analyzer, and 16 output pins. With the Wishbone connec-
tion, the counter can be controlled (i.e., started and stopped) from the management
core. The source can be found in verilog/rtl/user_proj_example.v.

16 Index Contents

https://github.com/chipfoundry/caravel_user_project
https://github.com/chipfoundry/caravel
https://github.com/chipfoundry/caravel_user_project/blob/main/docs/source/index.md
https://www.youtube.com/watch?v=YWj4HhRU36U&t=302s
https://github.com/chipfoundry/caravel_user_project/blob/main/docs/source/index.md
https://github.com/chipfoundry/caravel_user_project
https://en.wikipedia.org/wiki/Wishbone_(computer_bus)

2.3 CARAVEL

To get started, we recommend hardening and testing the user project as it is.
After you have successfully hardened and tested the example, add your modules to
the project. The default configuration is set up to harden the user project first and
include the GDS as a hard macro in the wrapper project.

The user project contains two projects in folder openlane:

1. user_proj_example and

2. user_project_wrapper

To simplify the hardening, it is recommended to keep those names.2 Both folders
contain a config.json for the LibreLane run. Explore the two configuration files.
You will see that the die area for the user project is set to 2800 µm x 1760 µm,
which is smaller than the available 10 mm2 on the Caravel project. Change this
setting later to fit your design. In the configuration file of the wrapper, we can see
that the user project is instantiated as a hard macro at position [60, 15].

The user project is hardened with:

make user_proj_example

That command starts the hardening of the user project with LibreLane, generating
the GDS file and a gate-level netlist with instances of the Sky130 standard cells for
gate-level simulation. That GDS can be found in folder gds. Use e.g., KLayout to
explore that hard macro. The gate-level netlist in folder verilog/gl. The LibreLane
reports and generated files can be found in the folder openlane/user_proj_example/runs.

The project now needs 10 GB of disk space. Note that many of the generated files
have already been committed to the original git repository, which creates annoying
false source changes. Avoid committing those changes after every run.

The default configuration uses Docker to run the LibreLane tools. Depending on
your setup (processor and operating system), running with Docker can be signifi-
cantly slower than running the tools natively. For example, the user project required
2 hours to harden on my Mac with an M1. Most of the time was spent on magic
spice extraction (1h30). When running it natively using Nix, the whole run executes
in 15’. You can select Nix with:

make user_proj_example LIBRELANE_USE_NIX=1

The next step is to harden the project wrapper with:

2Although a name that includes a word such as example sounds a bit silly, most projects keep the names.

Contents Index 17

https://github.com/chipfoundry/caravel_user_project

2 OPEN-SOURCE PRODUCTION FRAMEWORKS

make user_project_wrapper

This wrapper includes the user project as a hard macro. Similar to the user project,
the run generates the GDS file and the Verilog file for gate-level simulation. The
GDS file is the one that is submitted to the fab for production. The project has
expanded to 11 GB.

GPIO Configuration

Finally, before we can run a precheck, we need to update the default configuration
for the GPIO pins in verilog/rtl/user_defines.v. GPIO[0] to GPIO[4] are used
by the management core and cannot be changed. The example design uses 16 output
pins. Therefore, we set them to OUTPUT and all other pins, which are not used as
an INPUT, as follows:

...

‘define USER_CONFIG_GPIO_5_INIT ‘GPIO_MODE_USER_STD_OUTPUT

‘define USER_CONFIG_GPIO_6_INIT ‘GPIO_MODE_USER_STD_OUTPUT

‘define USER_CONFIG_GPIO_7_INIT ‘GPIO_MODE_USER_STD_OUTPUT

‘define USER_CONFIG_GPIO_8_INIT ‘GPIO_MODE_USER_STD_INPUT_NOPULL

‘define USER_CONFIG_GPIO_9_INIT ‘GPIO_MODE_USER_STD_INPUT_NOPULL

‘define USER_CONFIG_GPIO_10_INIT ‘GPIO_MODE_USER_STD_INPUT_NOPULL

...

Tim Edwards wrote on the FOSSI chat:

The user project example is certainly not using best practices. The
way I designed the caravel harness (I did not design the user project ex-
ample), pins 1 to 4 are used by the housekeeping SPI to communicate
with the host computer through the FTDI chip and USB. So it is gen-
erally “occupied” and becomes a bit difficult to make use of for a user
project. It can be done (contrary to what the instructions might say):
The purpose of the harness chip design was to give the user project the
maximum number of pins to use, if needed. Best practice (again, not the
user example) is to leave the lower five pins (or seven, if you count the
UART) alone unless you run out of pins and absolutely need them. It is
always possible to run a program off of the flash that reconfigures all of
the pins, including the lower ones, to whatever you want. Reconfigur-
ing the pins that are connected to the FTDI will result in the inability to
communicate with the chip without doing a complicated power cycle

18 Index Contents

2.3 CARAVEL

and simultaneous reset. So that’s why it’s not recommended: It will
make working with the chip very annoying. But it is neither prohibited,
nor impossible.

For the pin assignment, see also the schematic of the board that comes with the
ChipFoundry offer.

2.3.5 Testing

The Caravel project uses cocotb, a Python-based testing framework for testing the
RTL of the design and also the gate-level netlist. The tests with cocotb run in their
own Docker image. Therefore, on the first run, the Docker image will be down-
loaded. Note that this Docker image is an x86 image, which will run slowly on a
Mac ARM.

make cocotb-verify-all-rtl

You can run a single test, e.g., the counter_wb test with:

make cocotb-verify-counter_wb-rtl

Note that pulling the Docker image might fail. In that case, do it manually:

docker pull docker.io/efabless/dv:cocotb

The tests can be found on verilog/dv/cocotb. The above make target runs four
tests for the counter user project. Running the tests generates a sim folder and times-
tamped folders for each run. Within this folder, you find runs.log summarizing the
test runs.

pip install caravel-cocotb

https://pypi.org/project/caravel-cocotb/

2.3.6 Timing Analysis

Extract parasitics for user_project_wrapper and its macros, create the spef file,
and finally run the timing analysis with OpenSTA.

make extract-parasitics

make create-spef-mapping

make caravel-sta

Contents Index 19

https://github.com/fossi-foundation/caravel_board
https://www.cocotb.org/
https://pypi.org/project/caravel-cocotb/

2 OPEN-SOURCE PRODUCTION FRAMEWORKS

2.3.7 Precheck

Before submitting your design to the fab (i.e., to ChipFoundry), it is highly recom-
mended to run the precheck.

make precheck

Clones the mpw_precheck repository in the home folder, which is the default lo-
cation. The installation location can be overwritten by setting PRECHECK_ROOT.

make run-precheck

As the LVS may take a long time, we can skip it with:

DISABLE_LVS=1 make run-precheck

Precheck generates a new folder precheck_results for all the logs. The main
logfile is precheck.log. The results folder also includes individual reports, e.g., the
LVS report. Precheck also checks for documentation issues, which gives errors from
the cocotb documentation. Change the Makrfile for the run-prechcheck target and
add --private to the call mpw_precheck.py.

The Docker for the precheck is built for an x86 and therefore runs very slowly on
a Mac M1 with the Rosetta x86 emulation. The precheck of the simple example ran
for almost 4 hours.

2.3.8 Submission to ChipFoundry

Submission to chipfactory needs only two files: the gds/user_project_wrapper.gds
and verilog/rtl/user_defines.v, where the default for the GPIO pins directions
are defined. The files can also be compressed with gzip.

ChipFoundry uses a command-line tool (cf) to manage uploading of your design
via SFTP. Before uploading your design for manufacturing, you need to register
for an SFTP Account. However, that account will only be enabled after paying the
initial $ 500 non-refundable reservation deposit.

2.3.9 A Wishbone Peripheral

Caravel uses the Wishbone [7] bus to interface the processor core with the user
design. Wishbone is an open-source bus definition intended to be used on-chip.
The Wishbone specification defines a point-to-point communication. Wishbone is a
public domain standard used by several open-source IP cores.

20 Index Contents

https://github.com/chipfoundry/cf-cli
https://chipfoundry.io/sftp-registration
https://en.wikipedia.org/wiki/Wishbone_(computer_bus)

2.3 CARAVEL

SysCon

RST_I
CLK_I

ADR_O()
DAT_I()

DAT_O()
WE_O

SEL_O()
STB_O
ACK_I

CYC_O
TAGN_O
TAGN_I

TAGN_I
TAGN_O

RST_I

DAT_I()

DAT_O()

CLK_I
ADR_I()

WE_I
SEL_I()
STB_I
ACK_O
CYC_I

User
Defined

W
is

hb
on

e
M

as
te

r

W
is

hb
on

e
S

la
v

e

Figure 2.4: Wishbone interface

The Wishbone Bus

Figure 2.4 shows the connection between a Wishbone master and a Wishbone ser-
vant. Wishbone is a simple request/acknowledgment interface. The master signals
a request by asserting SEL_O and STB_O. An asynchronous slave can, in the same
cycle, reply with ACK_O. A synchronous slave can delay the acknowledgment. The
master needs to hold the address, data, and control signals valid through the whole
read or write cycle.

Although the bus specification is relatively simple, the Wishbone documentation
is a bit lengthy, with 128 pages. However, we can follow RULE 3.40 and PERMIS-
SION 3.10 from the specification to build simple Wishbone devices.

Rule 3.40:

As a minimum, the master interface must include the following sig-
nals: ACK_I, CLK_I, CYC_O, RST_I, and STB_O. As a minimum, the
slave interface must include the following signals: ACK_O, CLK_I, CYC_I,
STB_I, and RST_I. All other signals are optional.

Permission 3.10:

Contents Index 21

2 OPEN-SOURCE PRODUCTION FRAMEWORKS

CLK I

ADR O addr addr

DAT I data

DAT O data

WE O

CYC O

STB O

ACK I

Figure 2.5: Wishbone asynchronous read followed by an asynchronous write

If in standard mode, the slave guarantees it can keep pace with all
master interfaces, and if the ERR_I and RTY_I signals are not used, then
the slave’s ACK_O signal may be tied to the logical AND of the slave’s
STB_I and CYC_I inputs. The interface will function normally under
these circumstances.

Of course, to build a useful peripheral device, we also need to include the address,
data in and out, and write enable signals.

Figure 2.5 shows a read and write transaction with an so-called asynchronous
device. The terminology of asynchronous devices is from the Wishbone spec. It
just means that for a single clock cycle bus transaction, the ACK signals need to be
generated combinationally from CYC and STB.

Having this combinational loop from the master to the device and back to the
master can lead to large combinational circuits when several devices are connected
to the Wishbone bus. To break this loop, the ACK signal can be registered, leading
to a two-clock-cycle-long transaction. This configuration is called a synchronous
slave in the Wishbone specification. Figure 2.6 shows the timing diagram for a read
and write on a synchronous device.

The latest Wishbone specification (B4) adds a pipelined definition. Note that the

22 Index Contents

2.3 CARAVEL

CLK I

ADR O address address

DAT I data

DAT O data

WE O

CYC O

STB O

ACK I

Figure 2.6: Wishbone synchronous read followed by a synchronous write

specification now includes two different, not necessarily compatible, specifications.
The non-pipelined access is then called Wishbone classic. The pipelined mode has
the following Issue: the slave does not know if the master will issue a pipelined
request. It would need to observe changing addresses, which is not practical. To be
on the safe side, a synchronous slave would need to assert STALL_O. However, as the
Wishbone interface of the Caravel user project does not include a STALL_I input, we
assume that there will be no pipelined Wishbone transaction.

A Simple Wishbone Device

The Wishbone interface for the user device is mapped to address 0x3000_0000 till
0x3fff_ffff. We will design a very simple user device example with an 8-bit output
port and an 8-bit input port. Both ports can be mapped to the same address, and we
do not need any additional address decoding.

Listing 2.1 shows our very simple Wishbone device, coded in Chisel. It contains
a Bundle definition for the interface and the main module WishboneExample. That
module has two IO interfaces: (1) wb to the Wishbone bus from Caravel, and (2) io
to 8 input and output pins. Note that we do not use the original, a bit dated, names
for the Wishbine bus.

Contents Index 23

2 OPEN-SOURCE PRODUCTION FRAMEWORKS

import chisel3._

// Wishbone interface definition (classic, minimal)

class WishboneIO(addrWidth: Int, dataWidth: Int) extends

Bundle {

val cyc = Input(Bool())

val stb = Input(Bool())

val we = Input(Bool())

val addr = Input(UInt(addrWidth.W))

val din = Input(UInt(dataWidth.W))

val dout = Output(UInt(dataWidth.W))

val ack = Output(Bool())

}

// Simple Wishbone device: 8-bit in, 8-bit out

class WishboneExample extends Module {

val wb = IO(new WishboneIO(addrWidth = 1, dataWidth =

32))

val io = IO(new Bundle {

val in = Input(UInt(8.W))

val out = Output(UInt(8.W))

})

val outReg = RegInit(0.U(8.W))

// wishbone combinational ack generation

wb.ack := wb.cyc && wb.stb

io.out := outReg

// input with two FFs to contain meta stability

wb.dout := RegNext(RegNext(io.in))

// Wishbone write

when(wb.cyc && wb.stb && wb.we) {

outReg := wb.din

}

}

object WishboneExample extends App {

emitVerilog(new WishboneExample , Array("--target-dir",

"generated"))

}

Listing 2.1: A simple Wishbone device in Chisel (WishboneExample.scala).
24 Index Contents

https://github.com/os-chip-design/chip-design-book/blob/main/src/main/scala/WishboneExample.scala

2.4 TINY TAPEOUT

To keep the device simple, we use a combination acknowledgement for Wish-
bone. On a write, the output register outReg is written. It is directly connected to
the 8-bit output pins. The input is connected to two levels of FFs to contain metasta-
bility. Otherwise, that input is directly connected to the Wishbone data input ports.

If you prefer to read Verilog, the same example in Verilog is shown in Listing 2.2.
The Verilog code is a cleaned-up version of the Verilog that is generated by the
Chisel example.

2.3.10 Notes

chipfoundry upload: https://github.com/chipfoundry/cf-cli?tab=readme-ov-file#
installation

register an account at: https://chipfoundry.io/sftp-registration

2.4 Tiny Tapeout

Tiny Tapeout is a project that takes the idea of a multi-project wafer to the next level.
Tiny Tapeout uses one tile of an MPW shuttle on Skywater130 or IHP and divides
that tile into 512 smaller tiles. Therefore, the production cost can be further split,
allowing for the sale of one tile for less than 100 USD.

Tiny Tapeout uses GitHub actions to harden user designs. Therefore, this is the
easiest way to produce a chip. No tools need to be installed locally. The project is
configured within two files: config.json and info.yaml.

2.4.1 Local Hardening

It is also possible to run the hardening locally, avoiding the long latency of GitHub
actions. Follow the instructions on the TT website.

However, we can also do the local hardening with our installation of LibreLane
instead of using the Docker image. After installing the Python dependencies into a
Python virtual environment, execute the Python script to generate the configuration:

./tt/tt_tool.py --create-user-config

This command generates the file usr_config.json in folder srcwith information
extracted from the info.yaml file. This file is merged with the config.json into
config_merged.json. We can now harden the design by running:

librelane config_merged.json

Contents Index 25

https://github.com/chipfoundry/cf-cli?tab=readme-ov-file#installation
https://github.com/chipfoundry/cf-cli?tab=readme-ov-file#installation
https://chipfoundry.io/sftp-registration
https://tinytapeout.com/
https://tinytapeout.com/guides/local-hardening/

2 OPEN-SOURCE PRODUCTION FRAMEWORKS

module WishboneExample(

input clock,

input reset,

input wb_cyc,

input wb_stb,

input wb_we,

input wb_addr,

input [31:0] wb_din,

output [31:0] wb_dout,

output wb_ack,

input [7:0] io_in,

output [7:0] io_out

);

reg [7:0] outReg;

reg [7:0] wb_dout_REG;

reg [7:0] wb_dout_REG_1;

assign wb_dout = {{24’d0}, wb_dout_REG_1};

assign wb_ack = wb_cyc & wb_stb;

assign io_out = outReg;

always @(posedge clock) begin

if (reset) begin

outReg <= 8’h0;

end else if (wb_cyc & wb_stb & wb_we) begin

outReg <= wb_din[7:0];

end

wb_dout_REG <= io_in;

wb_dout_REG_1 <= wb_dout_REG;

end

endmodule

Listing 2.2: A simple Wishbone device in Verilog (WishboneExample.v).

26 Index Contents

https://github.com/os-chip-design/chip-design-book/blob/main/code/WishboneExample.v

2.5 WAFER.SPACE

2.5 wafer.space

wafer.space is a new MPW service started by Tim Ansell and Leo Moser. It uses
GF130 and offers 1000 dies with a user space of 20 mm2. The project template is
just the pad ring and a counter as an example design.

2.6 Maybe something from Edu4Chip?

Contents Index 27

https://wafer.space/
https://github.com/wafer-space/gf180mcu-project-template

3 Memories

When describing memories in an HDL, the synthesis tool will not generate on-chip
memories, as we are used to in an FPGA. It will use generated storage out of DFF
and multiplexers, which is very expensive. As an example, a 1024-bit memory is
needed to implement the register file for an RISC-V processor. Implementing an
RV-32I version in a 3-stage pipeline, the register file needs 320 µm x 320 µm or
about 55% of the processor area [11].

An efficient memory cell is built out of six-transistor (6T) SRAM cells, as shown
in Figure 3.1. The middle four transistors implement two cross-coupled inverters.
The other two transistors are used for reading and writing the bit.

However, standard synthesis tools do not generate memories based on 6T SRAM
cells. The tools to generate on-chip memories are called memory compilers. Open-
RAM is an open-source memory compiler [6]. Furthermore, the Sky130 PDK in-
cludes a few memories generated with OpenRAM.

3.1 Flip-Flop and Latch-based Memories

When describing memories in an HDL, the synthesis tool will usually infer FFs for
the storage and large multiplexers for reading. The register file example is probably
a bit extreme, as it describes a memory with two read ports, meaning we need two
read multiplexers.

Listing 3.1 shows the Chisel code of a flip-flop-based memory. The memory is
128 bytes, which is 1024 bits, the same size as the register file example discussed
at the start of the chapter. The area for that memory in Sky130 is 290 µm x 290 µm
(0.08 mm2), which is similar to that of the register file mentioned at the beginning
of the chapter. The 1 KiB register-based memory, organized as 256 x 32-bit, uses
810 µm x 810 µm (0.66 mm2).

128 x 8: Chisel 3.6: 314 x 310, but DRC errors (setup violations). Chisel 6.x:
290 x 290, DRC OK

CF RAM 1024x32: 310 x 390 OpenRAM: 256x32: 500x400

29

https://openram.org/
https://openram.org/

3 MEMORIES

VDD

M6M5

M2 M4

M3M1

WL

BLBL

Q
Q

Figure 3.1: A six-transistor (6T) CMOS SRAM cell.

import chisel3._

class FlipFlopMemory extends Module {

val io = IO(new Bundle {

val addr = Input(UInt(7.W))

val din = Input(UInt(8.W))

val we = Input(Bool())

val dout = Output(UInt(8.W))

})

val mem = Reg(Vec(128, UInt(8.W)))

when(io.we) {

mem(io.addr) := io.din

}

io.dout := mem(io.addr)

}

object FlipFlopMemory extends App {

emitVerilog(new FlipFlopMemory , Array("--target-dir",

"generated"))

}

Listing 3.1: 128 Bytes of Flip-Flop based Memory (FlipFlopMemory.scala).

30 Index Contents

https://en.wikipedia.org/wiki/Static_random-access_memory
https://github.com/os-chip-design/chip-design-book/blob/main/src/main/scala/FlipFlopMemory.scala

3.2 EXPLORING OPENRAM MEMORIES

3.2 Exploring OpenRAM Memories

The process of including those macros is not straightforward. First errors occur
in nn-magic-writelef. To ignore those errors, we can add the following line to our
.yaml file:

MAGIC_CAPTURE_ERRORS: false

The 1 KiB OpenRAM memory, organized as 256 x 32-bit, uses 490 µm x 420 µm
(0.2 mm2).

3.3 DFFRAM

DFFRAM is a memory generator using FFs or latches. The GitHub releases contain
ready-to-use GDS macros. A 1 KiB memory, latch-based, uses 430 µm x 440 µm
(0.19 mm2).

3.4 CF RAM

You can install the commercial RAM from ChipFoundry and the DFFRAM with
their IP management tool ipm, using the available Python virtual environment venv:

source venv/bin/activate

pip install cf-ipm

ipm install CF_SRAM_1024x32

ipm install DFFRAM256x32

deactivate

Note that on a Linux machine ipm is installed at .loca/bin, which might not be
in your PATH.

4 KiB (1024 x 32) 0.17 mm2

3.4.1 SRAM links

SRAM on TT09: https://github.com/FriedrichWu/tt09-sram/tree/main
Uri’s IHP SRAM test on TT:mhttps://tinytapeout.com/chips/ttihp0p2/
tt_um_urish_sram_test

Contents Index 31

https://github.com/AUCOHL/DFFRAM
https://github.com/FriedrichWu/tt09-sram/tree/main
https://tinytapeout.com/chips/ttihp0p2/tt_um_urish_sram_test
https://tinytapeout.com/chips/ttihp0p2/tt_um_urish_sram_test

3 MEMORIES

Another SRAM compiler: https://github.com/rahulk29/sram22 includ-
ing precompiled memories: https://github.com/rahulk29/sram22_sky130_
macros

Matt design: https://github.com/mattvenn/zero_to_asic_mpw7/tree/
mpw7/openlane/user_project_wrapper

OpenRAM playground: https://gist.github.com/proppy/1054e1618f5f90ce3af529ab5e56ad3f
DFFRAM: https://github.com/AUCOHL/DFFRAM
https://tinytapeout.com/specs/memory/

Tutorial: https://armleo-openlane.readthedocs.io/en/merge-window-4/
tutorials/openram.html

and at https://openlane.readthedocs.io/en/latest/tutorials/openram.
html

32 Index Contents

https://github.com/rahulk29/sram22
https://github.com/rahulk29/sram22_sky130_macros
https://github.com/rahulk29/sram22_sky130_macros
https://github.com/mattvenn/zero_to_asic_mpw7/tree/mpw7/openlane/user_project_wrapper
https://github.com/mattvenn/zero_to_asic_mpw7/tree/mpw7/openlane/user_project_wrapper
https://gist.github.com/proppy/1054e1618f5f90ce3af529ab5e56ad3f
https://github.com/AUCOHL/DFFRAM
https://tinytapeout.com/specs/memory/
https://armleo-openlane.readthedocs.io/en/merge-window-4/tutorials/openram.html
https://armleo-openlane.readthedocs.io/en/merge-window-4/tutorials/openram.html
https://openlane.readthedocs.io/en/latest/tutorials/openram.html
https://openlane.readthedocs.io/en/latest/tutorials/openram.html

4 List of Chapters

4.1 Notes and Pointers (Reading List)

Intro to OpenLane: https://openlane2.readthedocs.io/en/latest/getting_
started/newcomers/index.html

https://vlsi.ethz.ch/wiki/VLSI_Lectures ETHZ notes
https://github.com/OS-EDA/Course IHP course
https://github.com/open-source-eda-birds-of-a-feather/open-source-eda-birds-of-a-feather.

github.io/blob/main/doc/slides_2025/BOF25_PULP_mbertuletti.pdf ETH
presenation
https://github.com/open-source-eda-birds-of-a-feather/open-source-eda-birds-of-a-feather.

github.io/blob/main/doc/slides_2025/DAC25%20Recent%20Experiences%

20Markarian-v3a.pdf UCSD course
On STA: https://www.zerotoasiccourse.com/terminology/sta/
Chip design book: https://link.springer.com/book/10.1007/978-90-481-9591-6
Local TT hardening: https://tinytapeout.com/guides/local-hardening/
https://github.com/iic-jku/SKY130-RTL-with-Custom-Standardcell-to-GDSII/

blob/main/README.md

Use the correct layer map with KLayout:

klayout -l ../../dependencies/pdks/sky130A/libs.tech/klayout/tech/sky130A.lyp runs/25_10_23_16_34/final/gds/user_project_wrapper.gds

4.1.1 Matt Venn Links

List of efabless projects: https://github.com/mattvenn/efabless_project_
tool clone and efabless tool.py
./efabless_tool.py --fields id,sumary,giturl --list | grep -i sram

New summary tool from Matt: https://github.com/mattvenn/librelane_
summary

An article from Matt https://www.zerotoasiccourse.com/post/excited_
by_silicon/?mc_cid=5a18c03517&mc_eid=ba890f57df

33

https://openlane2.readthedocs.io/en/latest/getting_started/newcomers/index.html
https://openlane2.readthedocs.io/en/latest/getting_started/newcomers/index.html
https://vlsi.ethz.ch/wiki/VLSI_Lectures
https://github.com/OS-EDA/Course
https://github.com/open-source-eda-birds-of-a-feather/open-source-eda-birds-of-a-feather.github.io/blob/main/doc/slides_2025/BOF25_PULP_mbertuletti.pdf
https://github.com/open-source-eda-birds-of-a-feather/open-source-eda-birds-of-a-feather.github.io/blob/main/doc/slides_2025/BOF25_PULP_mbertuletti.pdf
https://github.com/open-source-eda-birds-of-a-feather/open-source-eda-birds-of-a-feather.github.io/blob/main/doc/slides_2025/DAC25%20Recent%20Experiences%20Markarian-v3a.pdf
https://github.com/open-source-eda-birds-of-a-feather/open-source-eda-birds-of-a-feather.github.io/blob/main/doc/slides_2025/DAC25%20Recent%20Experiences%20Markarian-v3a.pdf
https://github.com/open-source-eda-birds-of-a-feather/open-source-eda-birds-of-a-feather.github.io/blob/main/doc/slides_2025/DAC25%20Recent%20Experiences%20Markarian-v3a.pdf
https://www.zerotoasiccourse.com/terminology/sta/
https://link.springer.com/book/10.1007/978-90-481-9591-6
https://tinytapeout.com/guides/local-hardening/
https://github.com/iic-jku/SKY130-RTL-with-Custom-Standardcell-to-GDSII/blob/main/README.md
https://github.com/iic-jku/SKY130-RTL-with-Custom-Standardcell-to-GDSII/blob/main/README.md
https://github.com/mattvenn/efabless_project_tool
https://github.com/mattvenn/efabless_project_tool
https://github.com/mattvenn/librelane_summary
https://github.com/mattvenn/librelane_summary
https://www.zerotoasiccourse.com/post/excited_by_silicon/?mc_cid=5a18c03517&mc_eid=ba890f57df
https://www.zerotoasiccourse.com/post/excited_by_silicon/?mc_cid=5a18c03517&mc_eid=ba890f57df

4 LIST OF CHAPTERS

TT config.json has hints what to do on hold time violation (also change cycle
time for setup violations)

4.2 The MOSFET and CMOS Technology

4.3 Standard Cells

We can explore the standard cells contained in the Sky130 PDK with KLayout:

klayout $HOME/.ciel/sky130A/libs.ref/sky130_fd_sc_hd/gds/sky130_fd_sc_hd.gds

However, with Matt’s summary tool, the invocation is easier and the layers have
names and better colors:

summary.py --show-sky130

Right-click on any cell in the Cells window to select a new one with Show as New
Top.

4.3.1 FABs

4.3.2 PDK

We have three PDKs available in open source. Therefore, we can compare them as
an exercise.

4.4 The Design Flow

4.5 Hardware Description Languages

4.5.1 Verilog

4.5.2 VHDL

4.5.3 SystemVerilog

4.5.4 Chisel

[2] [10]

34 Index Contents

4.6 OPEN-SOURCE TOOLS

4.5.5 Other Languages

4.5.6 Amaranth

4.5.7 SpinalHDL

4.5.8 MyHDL

4.5.9 Clash

4.5.10 Spade

4.5.11 Generator Scripting Languages

4.6 Open-Source Tools

4.6.1 Magic

John Ousterhout wrote Magic at UCB. Now he is at Stanford and has written a book
on agile SW development. https://web.stanford.edu/˜ouster/cgi-bin/
home.php

4.6.2 ABC

4.6.3 Yosys

Yosys [14] started as a Bachelor’s project by Clifford Wolf at the Technical Uni-
versity of Vienna [15]. Yosys is a free and open-source software for Verilog HDL
synthesis. Yosys synthesizes Verilog HDL to logically equivalent netlists. Yosys
uses external tools, such as Berkeley’s ABC [3] for combinational logic minimiza-
tion.

4.7 Use Cases

In this section, we describe some uses of open-source tools with open-access PDKs.
With the initial Google-sponsored tapeout, a lot of projects have been taped out

on SkyWater130. All projects have been submitted through eFabless, and the open-
source projects have been listed on the eFabless website. However, with the closure

Contents Index 35

https://web.stanford.edu/~ouster/cgi-bin/home.php
https://web.stanford.edu/~ouster/cgi-bin/home.php

4 LIST OF CHAPTERS

of eFabless, the list of projects got lost. We tried to recover as many projects as
possible as a reference for future open-source tapeouts.

Basilisk is a RISC-V core developed at the ETH Zurich and the University of
Bologna [9]. Basilisk is one of the largest designs today implemented with open-
source tools. It is a 64-bit Linux-capable RISC-V code. Besides the core itself, it
includes IO devices, such as a DRMA controller, USB host, and video output. The
core was implemented in the IHP’s 130 nm BiCMOS technology with the open-
source PDK in 34 mm2 and can be clocked at a nominal 1.2 V voltage at 77 MHz.

36 Index Contents

A Resources

• LibreLane is the current collection of tools for open-source chip design

• The Caravel User Project is the starting point for a chip designed for the Car-
avel platform produced by

• ChipFoundry can produce you prototyping chip

• Caravel the harness for the ChipFoundry MPW run

• The Caravel documentation is a bit outdated

• Caravel Simulation

• Management core documentation

• The PCB containing the Caravel chip

37

https://github.com/librelane/librelane
https://github.com/chipfoundry/caravel_user_project
https://chipfoundry.io/
https://github.com/chipfoundry/caravel
https://caravel-harness.readthedocs.io/en/latest/
https://caravel-sim-infrastructure.readthedocs.io/en/latest/usage.html
https://caravel-mgmt-soc-litex.readthedocs.io/en/latest/
https://github.com/fossi-foundation/caravel_board

B Acronyms

Hardware designers and computer engineers like to use acronyms. However, it takes
time to get used to them. Here is a list of common terms related to digital design
and computer architecture.

ADC analog-to-digital converter

ALU arithmetic and logic unit

ASIC application-specific integrated circuit

CAD computer-aided design

Chisel constructing hardware in a Scala embedded language

CISC complex instruction set computer

CPI clock cycles per instruction

CPU central processing unit

CRC cyclic redundancy check

DAC digital-to-analog converter

DFF D flip-flop, data flip-flop

DMA direct memory access

DRAM dynamic random access memory

EDA electronic design automation

EMC electromagnetic compatibility

ESD electrostatic discharge

FF flip-flop

39

B ACRONYMS

FIFO first-in, first-out

FPGA field-programmable gate array

GDS graphic design system

HDL hardware description language

HLS high-level synthesis

IC integrated circuit (also instruction count in computer architecture)

IDE integrated development environment

ILP instruction-level parallelism

IO input/output

ISA instruction set architecture

JDK Java development kit

JIT just-in-time

JVM Java virtual machine

LC logic cell

LRU least-recently used

LSB least significant bit

MMIO memory-mapped IO

MSB most significant bit

MUX multiplexer

OO object oriented

OOO out-of-order

OS operating system

PDK Process Development Kit

40 Index Contents

RAM random access memory

RISC reduced instruction set computer

SDRAM synchronous DRAM

SRAM static random access memory

UART universal asynchronous receiver/transmitter

VHDL VHSIC hardware description language

VHSIC very high speed integrated circuit

Contents Index 41

Bibliography

[1] Tutu Ajayi, Vidya A. Chhabria, Mateus Fogaça, Soheil Hashemi, Abdelrah-
man Hosny, Andrew B. Kahng, Minsoo Kim, Jeongsup Lee, Uday Mallappa,
Marina Neseem, Geraldo Pradipta, Sherief Reda, Mehdi Saligane, Sachin S.
Sapatnekar, Carl Sechen, Mohamed Shalan, William Swartz, Lutong Wang,
Zhehong Wang, Mingyu Woo, and Bangqi Xu. Invited: Toward an open-
source digital flow: First learnings from the openroad project. In 2019 56th
ACM/IEEE Design Automation Conference (DAC), page 76. ACM, 2019.

[2] Jonathan Bachrach, Huy Vo, Brian Richards, Yunsup Lee, Andrew Waterman,
Rimas Avizienis, John Wawrzynek, and Krste Asanovic. Chisel: constructing
hardware in a scala embedded language. In The 49th Annual Design Automa-
tion Conference (DAC 2012), pages 1216–1225, San Francisco, CA, USA,
June 2012. ACM.

[3] Robert Brayton and Alan Mishchenko. Abc: An academic industrial-strength
verification tool. In Tayssir Touili, Byron Cook, and Paul Jackson, editors,
Computer Aided Verification, pages 24–40, Berlin, Heidelberg, 2010. Springer
Berlin Heidelberg.

[4] William J. Dally, R. Curtis Harting, and Tor M. Aamodt. Digital design using
VHDL: A systems approach. Cambridge University Press, 2016.

[5] Ahmed Ghazy and Mohamed Shalan. Openlane: The open-source digital
asic implementation flow. In Workshop on Open-Source EDA Technology
(WOSET), 2020.

[6] Matthew R. Guthaus, James E. Stine, Samira Ataei, Brian Chen, Bin Wu,
and Mehedi Sarwar. Openram: An open-source memory compiler. In 2016
IEEE/ACM International Conference on Computer-Aided Design (ICCAD),
pages 1–6.

[7] Wade D. Peterson. WISHBONE system-on-chip (SoC) interconnec-
tion architecture for portable IP cores, revision: B.4. Available at
http://www.opencores.org, September 2010.

43

BIBLIOGRAPHY

[8] A. Sangiovanni-Vincentelli. The tides of EDA. IEEE Design & Test of Com-
puters, 20(6):59–75, 2003.

[9] Paul Scheffler, Philippe Sauter, Thomas Benz, Frank K. Gürkaynak, and Luca
Benini. Basilisk: An end-to-end open-source linux-capable risc-v soc in
130nm cmos, 2024.

[10] Martin Schoeberl. Digital Design with Chisel. Kindle Direct Publishing, 2019.
available at https://github.com/schoeberl/chisel-book.

[11] Martin Schoeberl. The educational risc-v microprocessor wildcat. In Pro-
ceedings of the Sixth Workshop on Open-Source EDA Technology (WOSET),
2024.

[12] Martin Schoeberl. Wildcat: Educational risc-v microprocessors. In Architec-
ture of Computing Systems – ARCS 2025, 2025.

[13] Mohamed Shalan and Tim Edwards. Building openlane: A 130nm openroad-
based tapeout- proven flow : Invited paper. In 2020 IEEE/ACM International
Conference On Computer Aided Design (ICCAD), pages 1–6, 2020.

[14] Claire Wolf and Johann Glaser. Yosys-a free verilog synthesis suite. In In:
Proceedingsof the 21st Austrian Workshop on Microelectronics (Austrochip).

[15] Clifford Wolf. Design and implementation of the yosys open synthesis suite.
Bachelor thesis, Vienna University of Technology, 2013.

44 Index Contents

https://github.com/schoeberl/chisel-book

	Foreword
	Preface
	Introduction
	History of Design Tools
	Simulation

	Tool Installation
	Nix Based
	Docker Images
	Compiling from Source
	Installing LibreLane
	Further Packages

	Hello World
	Exploring the Design
	Change the Design

	Manual Flow with Python
	Tuning the Synthesis Flow

	Open-Source Production Frameworks
	OpenROAD
	OpenLane
	The Design Flow
	OpenLane2 and LibreLane
	Running the Flow Manually

	Caravel
	Caravel Harness
	Caravel User Project
	Setup
	Hardening the User Project
	Testing
	Timing Analysis
	Precheck
	Submission to ChipFoundry
	A Wishbone Peripheral
	Notes

	Tiny Tapeout
	Local Hardening

	wafer.space
	Maybe something from Edu4Chip?

	Memories
	Flip-Flop and Latch-based Memories
	Exploring OpenRAM Memories
	DFFRAM
	CF RAM
	SRAM links

	List of Chapters
	Notes and Pointers (Reading List)
	Matt Venn Links

	The MOSFET and CMOS Technology
	Standard Cells
	FABs
	PDK

	The Design Flow
	Hardware Description Languages
	Verilog
	VHDL
	SystemVerilog
	Chisel
	Other Languages
	Amaranth
	SpinalHDL
	MyHDL
	Clash
	Spade
	Generator Scripting Languages

	Open-Source Tools
	Magic
	ABC
	Yosys

	Use Cases

	Resources
	Acronyms
	Bibliography

