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challenging control problem

Characteristics:

 Multiple inputs/outputs

 Constraints

 Nonlinear, coupled dynamics

 Hardly ever in steady-state

Challenges:

 Fast sampling times

 Limited computational resources

 Controller has to run extremely 

reliable



Model Predictive Control
on embedded hardware
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1) Measure or estimate 

current system state

2) Predict future behavior 

using dynamic model

3) Optimize behaviour using 

optimization algorithm

4) Apply optimized inputs 

to system

Why embedded?

 Controller hardware highly integrated into product

 Guaranteed communication latency (safety critical!)

 Hardware may be much cheaper and more energy-efficient

MPC Controller

min
u

𝐹(𝑢)

𝑠. 𝑡. 𝐺 𝑢 = 0
𝐻(𝑢) ≤ 0

 𝒚

𝒚

𝒖∗











Server-based

Optimization

Embedded 

Optimization

Reliability
important, but operator can 

still override controller

crucial as typically no user-

interaction possible

Computation time
couple of seconds 

and above

seconds and below 

(often millisecond range)

Software dependencies
easy to link external 

libraries

self-contained code 

strongly preferred

Memory management dynamic or static
typically static 

(or even in hardware)

Number representation double precision
double/single precision 

or even fixed-point

What makes Embedded MPC special?

April 18, 2016 | Slide 4

© ABB



Embedded MPC
As part of “Smart” Products
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Source: M.E. Porter, J.E. Heppelmann: How Smart, Connected Products Are Transforming 

Competition, Harvard Business Review, Nov. 2014.

Embedded

MPC



Outline
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 Motivation

 High-Speed Linear MPC

 Embedded Nonlinear MPC

 Selected Applications at ABB

 Conclusions



Model Predictive Control
QP and general NLP
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Linear OCP:

𝑂𝐶𝑃 𝑥0 : min
𝑥 ∙ ,𝑢 ∙

 
𝑡0

𝑡0+𝑡𝑝

𝑥 𝑡 𝑇𝑄𝑥 𝑡 + 𝑢 𝑡 𝑇𝑅𝑢 𝑡 𝑑𝑡

𝑠. 𝑡. 𝑥 𝑡0 = 𝑥0
 𝑥 𝑡 = 𝐴𝑥 𝑡 + 𝐵𝑢 𝑡 ∀ 𝑡 ∈ 𝑡0, 𝑡0 + 𝑡𝑝
0 ≥ 𝐶𝑥 𝑡 + 𝐷𝑢 𝑡 ∀ 𝑡 ∈ 𝑡0, 𝑡0 + 𝑡𝑝
0 ≥  𝐶𝑥 𝑡0 + 𝑡𝑝

Nonlinear OCP:

𝑂𝐶𝑃 𝑥0 : min
𝑥 ∙ ,𝑢 ∙

 
𝑡0

𝑡0+𝑡𝑝

𝐽 𝑥 𝑡 , 𝑢 𝑡 𝑑𝑡 + 𝑃 𝑥 𝑡0 + 𝑡𝑝

𝑠. 𝑡. 𝑥 𝑡0 = 𝑥0
 𝑥 𝑡 = 𝑓 𝑥 𝑡 , 𝑢 𝑡 ∀ 𝑡 ∈ 𝑡0, 𝑡0 + 𝑡𝑝
0 ≥ 𝑐 𝑥 𝑡 , 𝑢 𝑡 ∀ 𝑡 ∈ 𝑡0, 𝑡0 + 𝑡𝑝

0 ≥  𝑐 𝑥 𝑡0 + 𝑡𝑝

Quadratic Program (QP):

𝑄𝑃 𝑥0 : min
𝑧

1
2
𝑧𝑇𝐻𝑧 +𝑧′𝑔

𝑠. 𝑡. 𝐵𝑧 = 𝑏 𝑥0
𝐴𝑧 ≤ 𝑎

Nonlinear Program (NLP):

𝑁𝐿𝑃 𝑥0 : min
𝑧

𝐹 𝑧

𝑠. 𝑡. 𝐺 𝑧, 𝑥0 = 0
𝐻 𝑧 ≤ 0

(or MINLP in case of binary variables)



Embedded Linear MPC
The quest for fast and reliable solvers
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 Embedded applications have triggered major academic 

efforts to develop highly efficient solvers:

 Best choice is highly problem-dependent due to:

 numerical properties of MPC formulation

 implementation aspects (e.g. target hardware)

First-order gradient method, primal FGM, dual FGM, GPAD, FiOrdOs

Active-set quadprog (primal), QLD (dual), qpOASES (primal-dual)

Interior-point primal barrier, CVXGEN (primal-dual), FORCES (primal-dual), 

HPMPC

Others PQP, qpDUNES (Newton-type), ADMM, MPT (explicit MPC)



Numerical Properties

 MPC leads to specially-structured QP problems:

 specific sparsity pattern

 parametric dependency

 How to exploit problem sparsity?

 Parametric dependency can be exploited by warm-starts

Sparse vs. dense QP formulation
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𝑄𝑃𝑠 𝑥0 : min
𝑧

1
2
𝑧′𝐻𝑠𝑧 + 𝑧′𝑔𝑠

𝑠. 𝑡. 𝐵𝑠𝑧 = 𝑏𝑠 𝑥0

𝐴𝑠𝑧 ≤ 𝑎𝑠

𝑄𝑃𝑑 𝑥0 : min
𝑧

1
2
𝑧′𝐻𝑑𝑧 + 𝑧′𝑔𝑑 𝑥0

𝑠. 𝑡. 𝐴𝑑𝑧 ≤ 𝑎𝑑 𝑥0

a) Using sparse solver: b) Eliminate states:

or



Numerical Properties

 Inequality constraints are a main reason to use MPC…

and they also make solving the QP more demanding

 Badly conditioned QP problems

(due to unstable dynamics, scaling, etc.)

 What if QP problem becomes infeasible?

 Some methods cannot handle semi-definite objective

Constraints and objective functions
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Implementation Aspects

 Reliability is key! (find a sufficiently accurate solution in time)

 Is computation time constant or (strongly) varying, 

predictable, bounded, or unknown? In any case, short enough?

 Do warm-starts help? (average vs. worst-case execution time)

 Code size, programming language, software dependencies, 

memory management

 Suitability for parallel execution on multi-core (or even hybrid) 

architectures

 Suitability for fixed-point implementation (e.g. on FPGA)
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 First-order methods:

 compute step towards solution of unconstrained QP

 project to feasible set (difficult for general constraints)

 Active-set methods: 

 guess which inequalities hold with equality at solution

 solve resulting equality-constrained QP (almost trivial)

 check if guess was correct, update guess if not

 Interior-point methods:

 remove inequalities, but penalize constraint violations in 

objective function (non-quadratic term, e.g. logarithmic)

 solve resulting equality-constrained NLP with Newton’s method

 Explicit methods and others

Linear MPC can run reliably 

at kHz sampling times 

even on embedded platforms!

How to choose the algorithm?

Existing Linear MPC Algorithms
A rough overview
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Decision Support Tool for MPC
Benchmarking and ranking
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Problem 

Formulation

Hardware 

Configuration

Decision Support Tool

extract problem 

features

consider hardware

run simulations

rank algorithms

Algorithm B

Algorithm D

Selection Criteria

Algorithm A

Algorithm B

Algorithm C

Algorithm D

Algorithm E

Algorithm C

Algorithm A

2
3

1 Algorithm E

 Matlab-based tool

 Compares up to 12 algorithms on 

PC, PEC2, PEC3, Xilinx’ Zynq

(joint work with Helfried Peyrl)

file:///C:/Program Files/MATLAB/R2013a_x64/bin/matlab.exe
file:///C:/Program Files/MATLAB/R2013a_x64/bin/matlab.exe


MPC Benchmarking Suite

 Overall computational performance on 14 MPC benchmark examples:

 > 2500 QP instances

 2-12 states

 1- 4 control inputs

 3-100 intervals

 different constraints

 Remarks:

 solver-specific 

termination criterion 

and default options

 no warm-starts

Illustrative results: speed

April 18, 2016 | Slide 14

© ABB Group

m
o

re
 r

e
lia

b
le

more efficient

see Kouzoupis, Zanelli, Peyrl, Ferreau (2015)



MPC Benchmarking Suite
Illustrative results: accuracy
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more accurate

m
o

re
 r

e
lia

b
le

 Comparing accuracy of “first-order methods“ with fixed number of 

iterations:

 𝜏 = 0 defined as 

relative error less 

or equal than 10-8

 Remark:

 no problem-specific

tuning for ADMM

see Kouzoupis, Zanelli, Peyrl, Ferreau (2015)



MPC Benchmarking Suite
Illustrative results: #iterations
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 Comparing number of iterations vs. number of active constraints

for a specific example:

 Remark:

 qpOASES performing

cold-starts

see Kouzoupis, Zanelli, Peyrl, Ferreau (2015)



qpOASES

 qpOASES solves QP problems 

of the following form:

 C/C++ implementation with dense linear algebra,

developed since 2007

 Reliable and efficient for solving small- to medium-scale QPs 

(when states have been eliminated from MPC problem)

 Self-contained code (optionally, LAPACK/BLAS can be linked)

 Distributed as open-source software (GNU LGPL),

download at: https://projects.coin-or.org/qpOASES

© ABB Group 
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min
𝑧

1
2 𝑧

′𝐻𝑧 +𝑧′𝑔 𝑥0

𝑠. 𝑡. 𝑏 𝑥0 ≤ 𝑧 ≤  𝑏 𝑥0

𝑐 𝑥0 ≤𝐴𝑧 ≤  𝑐 𝑥0

see e.g. Ferreau, Kirches, Potschka, Bock, Diehl (2014)

An Implementation of the Online Active SEt Strategy



qpOASES

 Matlab / Octave / Scilab

 Simulink (dSPACE / xPC Target)

A few applications:

Interfaces and Applications
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Model Predictive Control
QP and general NLP
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Linear OCP:

𝑂𝐶𝑃 𝑥0 : min
𝑥 ∙ ,𝑢 ∙

 
𝑡0

𝑡0+𝑡𝑝

𝑥 𝑡 𝑇𝑄𝑥 𝑡 + 𝑢 𝑡 𝑇𝑅𝑢 𝑡 𝑑𝑡

𝑠. 𝑡. 𝑥 𝑡0 = 𝑥0
 𝑥 𝑡 = 𝐴𝑥 𝑡 + 𝐵𝑢 𝑡 ∀ 𝑡 ∈ 𝑡0, 𝑡0 + 𝑡𝑝
0 ≥ 𝐶𝑥 𝑡 + 𝐷𝑢 𝑡 ∀ 𝑡 ∈ 𝑡0, 𝑡0 + 𝑡𝑝
0 ≥  𝐶𝑥 𝑡0 + 𝑡𝑝

Nonlinear OCP:

𝑂𝐶𝑃 𝑥0 : min
𝑥 ∙ ,𝑢 ∙

 
𝑡0

𝑡0+𝑡𝑝

𝐽 𝑥 𝑡 , 𝑢 𝑡 𝑑𝑡 + 𝑃 𝑥 𝑡0 + 𝑡𝑝

𝑠. 𝑡. 𝑥 𝑡0 = 𝑥0
 𝑥 𝑡 = 𝑓 𝑥 𝑡 , 𝑢 𝑡 ∀ 𝑡 ∈ 𝑡0, 𝑡0 + 𝑡𝑝
0 ≥ 𝑐 𝑥 𝑡 , 𝑢 𝑡 ∀ 𝑡 ∈ 𝑡0, 𝑡0 + 𝑡𝑝

0 ≥  𝑐 𝑥 𝑡0 + 𝑡𝑝

Quadratic Program (QP):

𝑄𝑃 𝑥0 : min
𝑧

1
2
𝑧𝑇𝐻𝑧 +𝑧′𝑔

𝑠. 𝑡. 𝐵𝑧 = 𝑏 𝑥0
𝐴𝑧 ≤ 𝑎

Nonlinear Program (NLP):

𝑁𝐿𝑃 𝑥0 : min
𝑧

𝐹 𝑧

𝑠. 𝑡. 𝐺 𝑧, 𝑥0 = 0
𝐻 𝑧 ≤ 0



Solution Methods for Nonlinear MPC
Direct methods
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 Direct methods first replace the continuous control input 

trajectory 𝑢(𝑡) by a finite-dimensional parameterization 𝑈

 Typically a piecewise constant control parameterization is 

used (on a partition 𝑡0 < 𝑡1 < … < 𝑡𝑁−1 = 𝑡0 + 𝑡𝑝):

𝑈 = 𝑢0, 𝑢1, … , 𝑢𝑁−1 = 𝑢 𝑡0 , 𝑢 𝑡1 , … , 𝑢 𝑡𝑁−1

 The way the states are discretized leads to different variants:

 single shooting (sequential approach)

 multiple shooting

 collocation (simultaneous approach)

OCP NLP Solution

discretize optimize

© ABB



Direct Methods for Nonlinear MPC
Solving the NLP

 NLPs can be solved efficiently using Newton-type methods:

 Interior-Point methods (e.g. IPOPT)

 Sequential Quadratic Programming
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IP Methods:

 rather constant runtime

 easy to exploit sparsity

 difficult to warm-start

 need 2nd order derivatives

SQP Methods:

 rely on solving QPs

 easy to warm-start

 1st order derivatives enough

 more variable runtime



SQP Algorithm for Nonlinear MPC
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NMPC Controller

𝒚

 𝒚 1. Estimate 𝑥0 from measurement  𝑦

2. Run SQP algorithm:

a) Discretize OCP at current SQP iterate

b) Linearize objective and constraints

c) Prepare QP sub-problem

d) Solve QP sub-problem

e) Update SQP iterate

3. Send 𝑢0
∗ to process

 Real-time iteration scheme: only perform one iteration of 

a full-step Gauss-Newton SQP scheme

𝒖∗

see Diehl (2001), Diehl et al. (2002)



SQP Algorithm for Nonlinear MPC
ACADO Toolkit
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 ACADO Code Generation:

 Takes symbolic NMPC problem 

formulation in C++ or Matlab

 Auto-generates efficient, customized 

and self-contained C code 

implementing SQP algorithm for NMPC

 Compiles NMPC algorithm into 

Simulink S function

 Developed since 2009 at KU Leuven

(now U Freiburg)

 Open-source: www.acadotoolkit.org

see Houska, Ferreau, Diehl (2011)



Outline

April 18, 2016 | Slide 25

© ABB

 Motivation

 High-Speed Linear MPC

 Embedded Nonlinear MPC

 Selected Applications at ABB

 Conclusions



MPC for Compressor Control
Challenges
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 Up to 97% of compressor lifetime costs 

are engergy costs

 Goal: Combined anti-surge 

and process control to operate 

gas compressors more efficiently

 Challenges:

 Nonlinear, coupled dynamics

 Time delays

 Safety critical

 Millisecond sampling times

MAX 

efficiency



MPC for Compressor Control
Tests at PLCRC
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 Setup:

 Compressor test rig with 15kW 

variable-speed drive

 Identified nonlinear grey-box

model with 5 states

 Linearized MPC algorithm

using qpOASES

 Kalman filter for state estimation

 Running with 50ms sampling 

time on AC 800PEC

 Results:

 10% more distance to surge

 50% faster process control

see Cortinovis, Ferreau, Lewandowski, 

Mercangöz (2015)



NMPC for Load Commutated Inverters
48 Megawatt at 1kHz
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Thomas Besselmann

Synchronous machine

(48 Megawatt)

=

106 Porsche Carrera GTs

(48 MW at full-throttle)



NMPC for Load Commutated Inverters
48 Megawatt at 1kHz
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 Load commutated inverters (LCIs) play an important role in 

powering electrically-driven compressor stations

 Goal: Enable LCIs to ride through 

partial loss of grid voltage

 Solution: 

 Auto-generated NMPC algorithm 

(ACADO/qpOASES)

 Running at 1kHz on AC 800PEC

 Results:

 Successfully tested on a 48 MW 

pilot plant installation

 Works where PID solution fails!

see Besselmann, Van de moortel, Almer, Jörg, 

Ferreau (2016)
MPC           PID



«Kollsnes accounts for more than
40% of all Norwegian gas deliveries» (Gassco)
«Kollsnes accounts for more than
40% of all Norwegian gas deliveries» (Gassco)
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«Kollsnes accounts for more than 
40% of all Norwegian gas deliveries» (Gassco)

«Kollsnes accounts for more than 
40% of all Norwegian gas deliveries» (Gassco)

Embedded MPC!
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Conclusions
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 MPC can run reliably at millisecond sampling times,

even on embedded controller hardware

 If numerical performance is crucial, care must be taken to 

choose the most appropriate implementation

 Many more applications may benefit from embedded MPC

(enabling to “smart” products)




