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Motivating example of a
challenging control problem

measurements

l

EGR

l

VGT

l

speed

l

engine control unit fuel

Characteristics:

= Multiple inputs/outputs

- Constraints

= Nonlinear, coupled dynamics
- Hardly ever in steady-state
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Challenges:

- Fast sampling times

- Limited computational resources
- Controller has to run extremely

reliable



Model Predictive Control
on embedded hardware

1) Measure or estimate
current system state

0 @ 2) Predict future behavior
S using dynamic model
y u
3) Optimize behaviour using
MPC Controller optimization algorithm
mﬁ? Ziu)) 0 4) Apply optimized inputs
S. L. u) =
Hw) < 0 to system
Why embedded?

= Controller hardware highly integrated into product
- Guaranteed communication latency (safety critical!)

- Hardware may be much cheaper and more energy-efficient
DD
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What makes Embedded MPC special?

Reliability

Computation time

Software dependencies

Memory management

Number representation
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Server-based
Optimization

important, but operator can
still override controller

couple of seconds
and above

easy to link external
libraries

dynamic or static

double precision

Embedded
Optimization

crucial as typically no user-
interaction possible

seconds and below
(often millisecond range)

self-contained code
strongly preferred

typically static
(or even in hardware)

double/single precision

Qeven fixed-point /




Embedded MPC
As part of “Smart” Products
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CAPABILITIES OF SMART,
CONNECTED PRODUCTS

The capabilities of smart, connected products can

be grouped into four areas: monitoring, control,
optimization, and autonomy. Each builds on the
preceding one; to have control capability, for example,
a product must have monitoring capability.

sensors and external
data sources enable the
comprehensive monitoring of:
» the product’s condition
« the external environment
« the product’s operation

and Lisage
Monitoring also enables aleris
and notifications of changes

software embedded in the
product ar in the product
cloud enables:

= Control of product functions
+ Personalization of the user

expearience

Embedded
MPC

e Maonitoring and control
capabilities enable algorithms
that optimize product
operation and use in order to:
» Enhance product

performance
» Allow predictive diagnostics,
service, and repair

Autonomy

o Comhining monitoring, control,

and optimization allows:

= Autonomous product
operation

« Salf-coordination of
operation with other
products and systams

= Autonomols product
enhancement and
personalization

= Self-diagnosis and
service

Source: M.E. Porter, J.E. Heppelmann: How Smart, Connected Products Are Transforming

Competition, Harvard Business Review, Nov. 2014.
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Model Predictive Control
QP and general NLP

Linear OCP:

tot+ty
OCP(xy): min f x(©)TQx(t) + u(t)TRu(t) dt
Ot )y,

s.t. x(ty) = xo
x(t) =Ax(t) + Bu(t) Vte€ [t to+tp]

0 >Cx(t)+Dut) Vte |ty ty+ty]
0 =Cx(to+t,)

Quadratic Program (QP):
QP (xy): mzin 2z"Hz +2'g
s.t. Bz = b(x,)
Az < a
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Nonlinear OCP:

OCP(x,): Jmin fto" p](x(t),u(t)) dt + P (x(to + t,,))

s.t. x(ty) = x
x(0) = f(x(®),u®) Yte [ty to+ty]

0 = c(x(®),u®) Yte/tyto+ty)
0 = E(x(to + tp))

Nonlinear Program (NLP):

NLP(xy): mZin F(z)
s.t. G(z,xy) =0
H(z) <0

(or MINLP in case of binary variables)

A\ 1d D
W



Embedded Linear MPC
The quest for fast and reliable solvers

- Embedded applications have triggered major academic
efforts to develop highly efficient solvers:

First-order gradient method, primal FGM, dual FGM, GPAD, FiOrdOs

Active-set quadprog (primal), QLD (dual), gpOASES (primal-dual)

Interior-point | primal barrier, CVXGEN (primal-dual), FORCES (primal-dual),
HPMPC

Others PQP, gpDUNES (Newton-type), ADMM, MPT (explicit MPC)

= Best choice is highly problem-dependent due to:
- numerical properties of MPC formulation

- implementation aspects (e.g. target hardware)

© ABB
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Numerical Properties
Sparse vs. dense QP formulation

- MPC leads to specially-structured QP problems:
= specific sparsity pattern
= parametric dependency

- How to exploit problem sparsity?

a) Using sparse solver: b) Eliminate states:
QP,(xy): mzin %Z’HSZ +z'g; or QP,(x): mzin %Z'HdZ + 2" g4(x0)
s.t. Bsz = b(xy) s.t. Agz < ayz(xp)
Asz < ag

- Parametric dependency can be exploited by warm-starts

© ABB Group "“
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Numerical Properties
Constraints and objective functions

- Inequality constraints are a main reason to use MPC...
and they also make solving the QP more demanding

~~~~~~~

~e

- Badly conditioned QP problems
(due to unstable dynamics, scaling, etc.)

- What if QP problem becomes infeasible?

- Some methods cannot handle semi-definite objective

A D
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Implementation Aspects
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- Reliability is key! (find a sufficiently accurate solution in time)

- Is computation time constant or (strongly) varying,

predictable, bounded, or unknown? In any case, short enough?

- Do warm-starts help? (average vs. worst-case execution time)

- Code size, programming language, software dependencies,

memory management

= Suitability for parallel execution on multi-core (or even hybrid)

architectures

- Suitability for fixed-point implementation (e.g. on FPGA)



Existing Linear MPC Algorithms
A rough overview

Linear MPC can run reliably
at kHz sampling times
even on embedded platforms!

How to choose the algorithm?



Decision Support Tool for MPC
Benchmarking and ranking

e P —— e
Problem Hardware CAESAR MPC Benchmarking Sulte ABR
Formulation Configuration eT— pr— S

Decision Support Tool e i :

extract problem » WB s |
features il g 1 B == |

¥

Algorithm A » s =5 |
Algorithm B z I

Selection Criteria | mmp

Algorithm C ) A4

Algorithm D

Algorithm E ¥ - Matlab-based tool

rank algorithms
- Compares up to 12 algorithms on
PC, PEC2, PEC3, Xilinx’ Zynq
- A e
. Algorithm C ":‘% " ; 4 &
| Algorithm A | 1 | Algorithm E I
3 I

2

(joint work with Helfried Peyrl)
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file:///C:/Program Files/MATLAB/R2013a_x64/bin/matlab.exe
file:///C:/Program Files/MATLAB/R2013a_x64/bin/matlab.exe

MPC Benchmarking Suite
lllustrative results: speed

= Overall computational performance on 14 MPC benchmark examples:

= >2500 QP instances more efficient

2-12 states

= 1-4 control inputs 0.9 ,ff- /
« 3-100 intervals 0.8 f
« different constraints 0.7 I-

_ 0.6

t:.;_ 0.5§

« Remarks:
= solver-specific

. FiOrdOs |
termination criterion He y FORCES
and default options o f a qu:.EES I

o quadprog

n - 0 1 i I T
no warm-starts : . - - - : A
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MPC Benchmarking Suite
lllustrative results: accuracy

- Comparing accuracy of “first-order methods* with fixed number of

iterations:
more accurate

S

- 7 = (0 defined as

relative error less

or equal than 108

Py 10 ()

more reliable

ADMM

|
I
. | |
- Remark: 0.2 : i A
- no problem-specific 0.1} : _E_ﬁ;ﬁ”“”
tuning for ADMM ol L i i .
0 5 10 15 20

T
see Kouzoupis, Zanelli, Peyrl, Ferreau (2015)
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MPC Benchmarking Suite
lllustrative results: #iterations

- Comparing number of iterations vs. number of active constraints
for a specific example:

350
300} : ' Yol L .
. . . - i
. ¥ 1 : L -
250‘ ? 5 ; H
—_— .F L F w B
=, 3 .
& 200f i s 5. .0 230 .
o H
§=) ' . 3+ 3
s * ' o3
= 150F - : E o FORCES [
I DR ee— 1, ] * GPAD (g)
100} -_ ' } +  QpOASES |
- Remark: > Vi
- gpOASES performing i I A erssbbbrerrt |
' 4444
cold-starts 5 m.m&&!?!538Sgup-:mouQooooooomaoﬂor::}
5 10 15 20 25 30 35 40

active constraints [#]

see Kouzoupis, Zanelli, Peyrl, Ferreau (2015)
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gpOASES
An Implementation of the Online Active SEt Strategy
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- JpOASES solves QP problems

. 1./ /
min =z 'Hz +z'g(x,)
of the following form: z 2 IiFo

s.t. b(xg) <z < b(xp)

c(xg) <Az < ¢(xy)

- C/C++ implementation with dense linear algebra,

developed since 2007 see e.g. Ferreau, Kirches, Potschka, Bock, Diehl (2014)

- Reliable and efficient for solving small- to medium-scale QPs

(when states have been eliminated from MPC problem)

- Self-contained code (optionally, LAPACK/BLAS can be linked)

- Distributed as open-source software (GNU LGPL),

download at: https://projects.coin-or.org/qpOASES



gpOASES
Interfaces and Applications

- Matlab / Octave / Scilab
[x,fval,exitflag,iter,lambda] = qpOASES( H,g,A,1b,ub,1bA,ubA )

= Simulink (dSPACE / xPC Target)

A few applications:
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Model Predictive Control
QP and general NLP

Linear OCP:

tot+ty
OCP(xy): min f x(©)TQx(t) + u(t)TRu(t) dt
Oul) )y,

s.t. x(ty) = xo

x(t) =Ax(t) + Bu(t) Vte€ [t to+tp]
0 >Cx(t)+Dut) Vte |ty ty+ty]

0 =Cx(to+t,)

Quadratic Program (QP):
QP (xy): mzin 2z"Hz +2'g
s.t. Bz = b(x,)
Az < a
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G)nlinear OCP: \

OCP(xy): min f " p](x(t),u(t)) dt + P (x(to + tp))

O Jy,

s.t. x(ty) = x
x(0) = f(x(®),u®) Yte [ty to+ty]

0 = c(x(®),u®) Yte/tyto+ty)
0 = E(x(to + tp))

Nonlinear Program (NLP):

NLP(xy): min F(z)
zZ
s.t. G(z,xy) =0

H(z) <0

\_




Solution Methods for Nonlinear MPC
Direct methods

- Direct methods first replace the continuous control input
trajectory u(t) by a finite-dimensional parameterization U

- Typically a piecewise constant control parameterization is
used (on a partition ty < t; < .. <ty_; =ty + tp):

U= (up, Uy, ..., Uy_1) = (u(to);u(tﬂ; ---:u(tN—l))

dlscretlze optimize

- The way the states are discretized leads to different variants:
- single shooting (sequential approach)
- multiple shooting

- collocation (simultaneous approach)
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Direct Methods for Nonlinear MPC
Solving the NLP

= NLPs can be solved efficiently using Newton-type methods:
= Interior-Point methods (e.g. IPOPT)

- Sequential Quadratic Programming

IP Methods: SQP Methods:

v’ rather constant runtime v’ rely on solving QPs

v’ easy to exploit sparsity v’ easy to warm-start

% difficult to warm-start v’ 1st order derivatives enough
X need 2" order derivatives X more variable runtime

© ABB
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SQP Algorithm for Nonlinear MPC

NMPC Controller
Estimate x, from measurement y *

2. Run SQP algorithm:

=)

a) Discretize OCP at current SQP iterate
b) Linearize objective and constraints

y c) Prepare QP sub-problem

d) Solve QP sub-problem

e) Update SQP iterate

3. Send ug to process

- Real-time iteration scheme: only perform one iteration of
a full-step Gauss-Newton SQP scheme
see Diehl (2001), Diehl et al. (2002)
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SQP Algorithm for Nonlinear MPC
ACADO Toolkit

-

- ACADO Code Generation:
see Houska, Ferreau, Diehl (2011)

- Takes symbolic NMPC problem
formulation in C++ or Matlab

- Auto-generates efficient, customized *
and self-contained C code
implementing SQP algorithm for NMPC I 1 =

= Compiles NMPC algorithm into
Simulink S function

= Developed since 2009 at KU Leuven *
(now U Freiburg)
« Open-source: www.acadotoolkit.or ' S
p g s o
ADD
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MPC for Compressor Control
Challenges

= Up to 97% of compressor lifetime costs
are engergy costs

- Goal: Combined anti-surge
and process control to operate
gas compressors more efficiently

- Challenges:
= Nonlinear, coupled dynamics
- Time delays
- Safety critical
= Millisecond sampling times
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MPC for Compressor Control
Tests at PLCRC

- Setup:

- Compressor test rig with 15kW
variable-speed drive

- |dentified nonlinear grey-box
model with 5 states

- Linearized MPC algorithm
using gpOASES

- Kalman filter for state estimation

= Running with 50ms sampling
time on AC 800PEC

» Results:
- 10% more distance to surge

- 50% faster process control

see Cortinovis, Ferreau, Lewandowski,
Mercang6z (2015)
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NMPC for Load Commutated Inverters
48 Megawatt at 1kHz

106 Porsche Carrera GTs
Thomas Besselmann (48 MW at full-throttle)

Synchronous machine
(48 Megawatt)
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NMPC for Load Commutated Inverters
48 Megawatt at 1kHz

- Load commutated inverters (LCIs) play an important role in
powering electrically-driven compressor stations

- Goal: Enable LCls to ride through
partial loss of grid voltage Tratsirme e o G

Recliier Reacior Imearkss

| —{&] = [#
= Solution: —@:$K$ .

. AutO'generated N M PC algorith m ;_2}1_2_-'-p;JiSr_E'-Gl-JI:If_iQ-U_r;[Iﬂ-ﬂ- Sy
(ACADO/qpOASES)

= Running at 1kHz on AC 800PEC

DC link cwrrent Est’d Torgue

» Results:

= Successfully tested on a 48 MW
pilot plant installation

= Works where PID solution fails!

see Besselmann, Van de moortel, Aimer, Jorg,
Ferreau (2016)
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Conclusions
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= MPC can run reliably at millisecond sampling times,

even on embedded controller hardware

= If numerical performance is crucial, care must be taken to

choose the most appropriate implementation

- Many more applications may benefit from embedded MPC

(enabling to “smart” products)
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