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Summary

The current world average recovery factor from oil fields is widely agreed to be about
30− 35%. An increase of 10% point of this recovery factor would bring about 500
billion of oil barrels, sufficient to meet 16 years of current global production. To realize
this potential production increase, the research community is working on improving
current feedback model-based optimal control technologies.

The topic of this thesis is production optimization for water flooding in the secondary
phase of oil recovery. We developed numerical methods for nonlinear model predictive
control (NMPC) of an oil field. The controller consists of

• A model based optimizer for maximizing some predicted financial measure of
the reservoir (e.g. the net present value).

• A parameter and state estimator.

• Use of the moving horizon principle for data assimilation and implementation of
the computed control input.

The optimizer uses gradient-based optimization and the required gradients are com-
puted by the adjoint method. We propose the use of efficient high order implicit time
integration methods for the solution of the forward and the adjoint equations of the dy-
namical model. The Ensemble Kalman filter is used for data assimilation. Further, we
studied the use of robust control strategies in both open-loop, i.e. without measurement
feedback, and closed-loop, i.e. with measurement feedback, configurations.

This thesis has three main original contributions:
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1. The first contribution in this thesis is to improve the computationally expen-
sive gradient computation by using high-order ESDIRK (Explicit Singly Diag-
onally Implicit Runge-Kutta) temporal integration methods and continuous ad-
joints. The high order integration scheme allows larger time steps and therefore
faster solution times. We compare gradient computation by the continuous ad-
joint method to the discrete adjoint method and the finite-difference method. We
demonstrate that the optimization algorithm can be accelerated by using the con-
tinuous time adjoint equations. This is the first time in the literature that the
higher order continuous adjoint and higher order discrete adjoint mehtods have
been investigated for oil production optimization.

2. The second contribution of this thesis is the application of the Robust Optimiza-
tion strategy in both open-loop (i.e. without measurement feedback) and closed-
loop (i.e. with measurement feedback). In the oil industry, Robust Optimization
has been suggested to compensate for inherent geological uncertainties in an oil
field. In robust optimization of an oil reservoir, the water injection and produc-
tion borehole pressures are computed such that the predicted net present value
of an ensemble of permeability field realizations is maximized. In our study, the
permeability field is the uncertain parameters. We compare the performance of
the RO strategy to a certainty equivalent optimization strategy, based on the en-
semble mean of the permeability field realizations as its permeability field, and
to a reactive strategy. In open-loop, for the case studied, the reactive strategy
performed better than the open-loop RO strategy. These observations are non-
trivial, as previous literature suggests that the open-loop RO strategy performs
better than the reactive strategy. Simulations indicate that the inferior perfor-
mance of the open-loop RO strategy compared to the reactive strategy is due to
the inability of the RO strategy to efficiently encompass ensembles with very dif-
ferent and conflicting optimal control trajectories. Hence, we propose a modified
RO strategy that allow shut in of uneconomical wells. The modified RO strategy
performs significantly better than the other open-loop strategies and the reactive
strategy. Finally, this is the first time in literature that the RO optimization has
been investigated in closed-loop. Surprisingly, for the case studied, the closed-
loop certainty equivalent strategy yields a higher NPV than the closed-loop RO
strategy. The uncertainty reduction of the permeability field estimate due to data
assimilation explains the good performance of the closed-loop certainty equiva-
lent optimization strategy. Consequently, in closed-loop, the increased computa-
tional effort of the RO strategy compared to the certainty equivalent strategy is
not justified for the particular case studied in this paper.

3. The third contribution of this thesis is a mean-variance method for risk mitigation
in production optimization of oil reservoirs. We introduce a return-risk bicrite-
rion objective function for the profit-risk tradeoff. With this objective function
we link the optimization problem in production optimization to the Markowitz
portfolio optimization problem in finance or to the the robust design problem in
topology optimization. In this study we focus on open-loop configuration, i.e.
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without measurement feedback. We demonstrate that a return-risk bi-criterion
objective function is a valuable tool for the profit-risk tradeoff. If combined
with the previous contribution, this result trigger the necessity of comparing the
closed-loop CE strategy with the closed-loop MV strategy.

The thesis consists of a summary report and a collection of five research papers written
during the period May 2010 to August 2013. Three papers are published in conference
proceedings, one paper is published in Computational Geosciences journal and another
paper is submitted to Journal of Petroleum Science and Engineering.
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Summary (Danish)

På nuværende tidspunkt er den gennemsnitlige indvindingsgrad af verdens oliefelter
bredt accepteret til at ligge omkring 30-35%. En forøgelse af indvindingsgraden på
10% vil resultere i omkring 500 milliarder tønder olie; svarende til 16 års udvinding
ved nuværende produktion på verdensplan. For at realisere denne potentielle produk-
tionsforøgelse arbejder forskningsmiljøerne på at forbedre nuværende feedback model-
baserede optimale reguleringsteknologier.

Denne afhandling omhandler produktionsoptimering ved vandinjektion i anden fase
af olieudvindingen. Vi har udviklet numeriske metoder til non-lineær modelprædiktiv
regulering (NMPC) af et oliefelt. Regulatoren består af

• En modelbaseret optimeringsalgoritme til at maximere en given prædikteret øko-
nomisk målestok (f.eks. nuværende netto værdi).

• En parameter og tilstandsestimator.

• Brug af ’moving horizon’ princippet til databehandling og implementation af
regulatorinputl

Optimeringsalgoritmen burger gradientbaseret optimering, og de krævne gradienter be-
regnes ved ’adjoint method’. Vi anbefaler anvendelsen af effektive højordens implicite
tidsintegrationsmetoder til løsningen af the forward and adjoint equations for den dy-
namiske model. Ensemble Kalman filter anvendes til databehandling. Vi har yderligere
undersøgt anvendelsen af robuste reguleringsstrategier i både åben sløjfe, dvs. uden fe-
edback fra de målte variable, og lukket sløjfe, dvs. med feedback fra de målte variable
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3 hovedelementer udgør denne afhandling:

1. Første element i denne afhandling er at effektivisere den beregningsmæssigt dy-
re gradientberegning ved anvendelse af højordens ESDIRK (Eksplicit Singulær
Diagonalt Implicit Runge-Kutta) tidsmæssig integration samt continous adjoints.
Højordens integrationsmetoden muliggør længere tidsskridt og dermed hurtigere
beregningstider. Vi sammenligner gradientberegning ved continous adjoint met-
hod to discrete adjoint method samt med Finite Difference metoden. Vi viser,
at optimeringsalgoritmen kan gøres hurtigere ved brug af continous time adjoint
equations.

2. Andet element i denne afhandling omhandler anvendelsen af robust optimering
i både åben sløjfe (dvs. uden feedback fra målte variable) og i lukket sløjfe
(dvs. med feedback fra målte variable). Inden for olieindustrien er robust op-
timering blevet foreslået som en måde at kompensere for de geologiske unøjag-
tigheder i et oliefeldt. Ved robust optimering af et oliereservoir beregnes trykket
ved vandinjektions- samt produktionsbrøndene således, at den prædikterede net-
to værdi af et ensemble af feldtets permeabilitetsrepresensationer maksimeres. I
vores studie udgør feldtets permeabilitet usikkerhedsparametren. Vi sammenlig-
ner ydelsen af den robuste optimeringsstrategi med en given tilsvarende optime-
ringsstrategi, hvor feldtets permeabilitet beregnes baseret på et gennemsnit over
et ensemble af feldtets permeabilitetsrepresentationer, samt til en reaktiv strategi.

3. Det tredje bidrag til denne afhandling er en ’mean-variance’ metode for risiko
nedsættelse modvirkning i produktions optimering af olie reservoirer. Vi introdu-
cerer en retur-risiko bi-kriterium objektiv funktion for fortjeneste risiko tradeoff.
Med denne objektiv funktion, linker vi optimeringens problemet i produktions
optimering til Markowitz portfølje optimerings problemet i finans eller til det ro-
buste designproblem i topologi optimering. I dette studie fokuserer vi pøpen-loop
konfiguration, dvs. uden maling(s) feedback tilbagemelding.

Denne afhandling består et resume’ samt en artikkelsamling bestående af 5 artikler
skrevet i perioden maj 2010 til august 2013. 3 artikler er udgivet som konferencear-
tikler, en er udgivet i tidsskriftet Computational Geosciences Journal og endnu en er i
forberedelsesfasen til indsendelse og en anden artikel er indsendt til Journal of Petrole-
um Science and Engineering.



Glossary

List of abbreviations

The following abbreviations are used in this thesis:

AD Automatic Differentiation
BFGS Broyden-Fletcher-Goldfarb-Shanno
BHP Bottom-hole pressure
CE Certainty equivalent
CLRM Closed-loop Reservoir Management
EnKF Ensemble Kalman Filter
EOR Enhanced Oil Recovery
ESDIRK Explicit Singly Diagonally Implicit Runge-Kutta
KKT Karush-Kuhn-Tucker
mD milli Darcy
MPC Model Predictive Control
MV Mean-variance
NMPC Nonlinear Model Predictive Control
NPV Net Present Value
NO Nominal
PDE Partial Differential Equation
RK Runge-Kutta
RO Robust Optimization
SQP Sequential Quadratic Programming
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CHAPTER 1

Introduction

More than 9 billion people are expected to live on Earth by 2050, up from 7 billion
today. As living standards improve for many across the world and more people buy
their first refrigerators, computers or cars, energy use will rise. Total global energy
demand could rise by up to 80% by mid-century from its level in 2000. Despite up
to 50% of the world’s energy mix could come from renewables and nuclear in 2050,
fossil fuels (i.e. coal, oil and natural gas) will still be main sources of energy. Global
proved oil reserves at the end of 2012 are sufficient to meet about 52 years of global
production and the number of new significant oil fields found per year is decreasing
[1]. Further, the current world average recovery factor from oil fields is widely agreed
to be 30−35%. Increasing this recovery with 10% point would bring about 500 billion
of oil barrels, sufficient to meet 16 years of global production. To realize this poten-
tial production increase, the research community is working on improving current oil
recovery techniques.

Oil is generally found in sandstones and limestones, beneath the earth surface. The
rock containing the oil is called the reservoir rock. An important rock property for
oil extraction is the porosity, i.e. the fraction of the rock that can be occupied by the
fluids. Another important property is the permeability, which describes the ability of
the rock to transmit fluids through interconnected pores. A suitable reservoir rock must
be porous, permeable, and contain enough oil to make it economically feasible for
the operating company to drill and produce oil. After the exploration phase, where
reservoirs are identified and wells are drilled, oil fields are developed in two or three
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phases. In the primary phase, the reservoir pressure is large enough to make the oil
flow to the production wells. In the secondary phase, water must be injected to maintain
pressure and move the oil towards the producers. In some cases, a tertiary phase known
as enhanced oil recovery is considered. Enhanced oil recovery includes technologies
such as in situ combustion, surfactant flooding, polymer flooding, and steam flooding
[2]. After the secondary phase, typically the oil recovery is somewhere between 10%
and 50% [3, 4].

In this thesis we describe numerical techniques from system and control theory to im-
prove the oil recovery process in the secondary phase. Specifically, we focus on:

• Reservoir simulation

• Closed-loop reservoir management

• Production Optimization under Uncertainty

1.1 Reservoir Simulation

Reservoir simulation is the simulation of the flow of fluids (typically, oil, water, and
gas) through porous media under the wells’ control (usually well’s bottom hole pres-
sure or liquid rate). Mathematically, the model description is given through a system of
nonlinear partial differential equations (PDEs). After spatial and temporal discretiza-
tion, these PDEs are reduced to a system of nonlinear equations. The state of the
reservoir (pressure, saturation, fluid composition, rock properties) is updated in time
by solving this system of nonlinear equations. There are a number of different math-
ematical reservoir models as well as different discretization techniques. In this thesis,
we use the method of lines to discretize the reservoir equations, i.e. we first discretize
the equations in space and then in time. However, we describe in detail only the time
discretization. The space discretization is done in the same way as described in [5], to
which we refer for further details. For temporal integration we propose a high order
temporal integration method (Explicit Singly Diagonally Implicit Runge-Kutta, ES-
DIRK) for forward computation of the initial value problem and for backward solution
of the associated continuous-time and discrete-time adjoints. Conventional practice by
commercial reservoir simulators is limited to the use of first order temporal implicit or
semi-implicit integrators for the initial value problem and the adjoints. [6–8] introduce
high order ESDIRK methods in two phase reservoir simulation and production opti-
mization based on the discrete adjoints. Hovewer, they use only first order (implicit
Euler) adjoint computation. We extend that work by using a high order scheme also for
gradient computation. Further, we consider the use of the continuous adjoint for gradi-
ent computation. A high order scheme allows larger steps and therefore faster solution
of the reservoir model equations.
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Real Oil Reservoir 
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Data assimilation 
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Noise Noise Output Input 

Control 
Input 

Figure 1.1: Closed loop reservoir management

In our study, we consider two reservoir models:

1. A slightly compressible two phase flow. We implement a Matlab reservoir sim-
ulator based on finite volume discretization in space and ESDIRK discretization
in time. With this model we show the opportunity to exploit efficient high order
time integration schemes and its adjoint gradient computation.

2. An incompressible two phase flow implemented in the MRST reservoir simulator
[9, 10]. We use this simulator in combination with a code, developed by [10], that
compute discrete adjoint gradients. With this second model we study the closed-
loop reservoir management and the mean-variance optimization concepts. These
two concepts are further explained in the subsequent sections.

1.2 Closed-loop Reservoir Management

In the oil industry, closed-loop reservoir management (CLRM) has been suggested to
maximize oil recovery or a financial measure such as the net present value of a given oil
reservoir [11–22]. Fig. 1.1 illustrates the components in closed-loop reservoir manage-
ment. The controller consists of model based data assimilation (red box and arrows in
Fig. 1.1), also known as a parameter and state estimator, and a model based optimizer
(blue box and arrows in Fig. 1.1) for maximizing the oil recovery or some predicted
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financial measure such as the net present value. The inputs to the controller are pro-
duction measurements, forecasts of the oil price, the interest rate, and the operating
unit costs. Based on these inputs the controller computes water injection trajectories as
well as borehole pressure trajectories. Only the first part of these trajectories are imple-
mented in the real oil reservoir. As new measurements become available, the process is
repeated. The parameters and the states of the model are re-estimated using the data as-
similation component. These filtered states and parameters are used in the model based
optimization for computation of optimal trajectories for the manipulated variables, and
the first part of the trajectories are implemented. This form of control is also known as
Nonlinear Model Predictive Control (NMPC) [23–29]. A key difference of NMPC ap-
plied to reservoir management with traditional process control applications, is the size
of the model describing the system. In reservoir management, spatial discretization
of the partial differential equation (PDE) system describing the flow results in a sys-
tem of differential equations that is much larger (sizes of 104−107 are common in oil
problems) than the systems typically encountered in process control applications. The
large-scale nature of the closed-loop reservoir management problem requires special
numerical techniques for the data assimilation [30] as well as the optimization [31, 32].

1.2.1 Model Based Optimization

In CLRM, model based optimization is called production optimization. Production
optimization aims to find the optimal control input that maximize a performance index,
e.g. net present value or oil recovery, for the life time of the oil reservoir. The control
input for oil reservoirs can be well rates, bottom-hole pressures (bhp), and valve/choke
settings.

Litterature studies show that in conventional waterflooding of an oil field, optimal con-
trol strategies may enable higher oil recovery than with a conventional reactive strat-
egy in which producers are closed based on water breakthrough. There are different
optimization methods available in the oil litterature. A first classification consists in
considering global optimization methods (e.g. simulated annealing, swarm-based op-
timization algorithms ) versus nonlinear programming methods. Nonlinear program-
ming methods cannot guaranteee to find a global optimum since they aim to find a
local optimum. However, due to the large computational costs of the global optimiza-
tion methods, nonlinear programming methods are most used in practice. Among the
nonlinear programming methods we can differentiate between derivative-free methods
and gradient based methods. When the gradients are available from the reservoir sim-
ulator, the gradient based methods are more efficient compared to the derivative free
methods [33]. In gradient based methods, gradients can be computed by a perturbation
method (e.g. finite difference method), by the adjoint method or by an ensemble-based
method [34, 35]. The perturbation method perturbs the simulator computation around
a nominal value. This method is computational expensive and affected by numerical
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noise. Computing the gradient using the adjoint method is more laborious because re-
quires knowledge of the internal of a simulator. The ensemble-based computation is
a more recent approach that promises to be a good compromise among computational
cost, quality of the gradient computation, and ease of implementation.

Once the gradients are available, we need to choose the optimization method to use. In
this work we will to a large extent use existing state of art optimization packages (i.e.
Knitro, Matlab’s fmincon). We also implement a sequential quadratic programming
(SQP) algorithm with line-search and BFGS approximation of the Hessian [36].

1.2.2 Data Assimilation

Data assimilation is the process of reconstructing, in the presence of uncertainties,
unknown reservoir’s quantities based on the available measurements such as production
data, well logs or seismic data. Usually fluid and rock properties such as permeability,
porosity, saturation, pressure and fault location are estimated.

Data assimilation techniques are mostly used in fields like meteorology [37], oceanog-
raphy [37], groundwater flow [38] and reservoir simulation [39]. There are two dif-
ferent approaches to data assimilation: the variational approach and the sequential ap-
proach. The variational approach uses optimization techniques that aim to minimize a
distance between measured data and forecasts from the model. This is done by adjust-
ing initial conditions and/or parameters [40–42]. The most known sequential approach
is Kalman filtering [43]. Kalman filtering is an effective tool for solving uncertain lin-
ear models. A recent development of the Kalman filter, the Ensemble Kalman Filter
(EnKF) has gained a lot of attention in the reservoir community. The EnKF method is
a Monte Carlo implementation of the Kalman filter [44]. EnKF uses an ensemble of
prior models and updates them every time a new measurement is available. When all
the ensemble members are updated, a new prediction of the reservoir’s performance can
be estimated. Data assimilation by the EnKF is a popular method for history matching
as well as closed-loop reservoir management [11, 13, 14, 16, 45]. In [46], different
data assimilation and optimization methods are tested on the synthetic "Brugge field"
to maximize its NPV. The three best results are all obtained by methods using an EnKF
for data assimilation. The literature available on the EnKF in petroleum engineering
is rather large and mature. Data assimilation using the ensemble Kalman filter has
been reviewed by [47–49] and [30, 50, 51] provide overviews of filtering techniques.
A review of various issues of the EnKF, including sampling error because of small
ensembles, covariance localization (limiting the influence of the observations to the
state variables that are located spatially close to them), filter divergence, and model
error, is given in [48] and [47]. [52] describes the necessity of introducing a confirm-
ing step to ensure consistency of the updated static and dynamic variables with the
flow equations, while [47] discusses the reduction of the ensemble size with a resam-
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pling scheme. The problem of ensemble collapse is discussed in [53]. [54] considers a
way to handle model constraints within the EnKF. [55] investigates an update step that
preserves multi-point statistics and not only two point-statistics.

In this thesis we implement an EnKF algorithm in Matlab to do parameter estimation.

1.3 Production Optimization under Uncertainty

When we approximate the real reservoir behaviour by using a numerical model, we
should keep in mind two important aspects of the approximation that we are doing.
First of all, not all the physics occurring in a real reservoir can be modelled in an ap-
propriate way. In general, many simplifications are imposed on the model, to make the
problem computationally tractable. Secondly, there is usually a large uncertainty in the
parameter values of the simulation model. Geophysical and fluid properties (e.g. reser-
voir structure, the initial fluid contacts, the values of permeabilities, porosities, fault
transmissibilities, etc.), as well as the amount of hydrocarbons present in the reservoir
are poorly known. These reservoir related parameters are assumed to be known in con-
ventional production optimization algorithms [12–14, 18, 21, 22, 56, 57]. However,
neglecting the uncertainties leads to results produced by numerical reservoir models
that contradict the data gathered from the real field. It is then difficult to make de-
cisions based only on the output of a numerical model. In the oil industry, Robust
Optimization (RO) [56, 58] has been suggested to compensate for the inherent geo-
logical uncertainties in an oil field. In RO of an oil reservoir, the water injection and
production borehole pressures (bhp) are computed such that the expected net present
value (NPV) of an ensemble of realizations of the permeability field is maximized. In
conventional production optimization, the nominal net present value (NPV) of the oil
reservoir is maximized (to compute the NPV, nominal values for the model’s parame-
ters are taken). In certainty equivalent production optimization, the expected reservoir
model parameters are used in the maximization. The purpose of the robust production
optimization is to (indirectly) mitigate the significant uncertainties in the parameters of
the reservoir model. However, by the certainty equivalent and the robust production
optimization methods, the trade-off between expected profit (NPV) and risk (variance
of the NPV) is not addressed directly. Compared to a certainty equivalent optimiza-
tion which uses a single realization of the reservoir model, in RO the risk is reduced
because we model the uncertainty with an ensemble of realizations of the reservoir
model. Fig. 1.2 illustrates risk versus expected return (mean) for different optimization
and operation strategies. This is a sketch that shows the qualitative behaviour of the
results in this thesis. As it is evident, certainty equivalent optimization and RO strategy
indicate that a significant risk (variance in the NPV) is associated with these strategies.
The implication is that the RO strategy may improve current operation, but you cannot
be sure due to the significant risk arising from the uncertain reservoir model. This is
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Figure 1.2: A sketch of the trade-off between risk and expected return in different
optimization methods implemented in the optimizer for model based pro-
duction optimization.

probably one of the reasons that NMPC for CLRM has not been widely adopted in the
operation of oil reservoirs. The optimization problem in production optimization can
be compared in some sense to Markowitz portfolio optimization problem in finance
[59, 60] or to robust design in topology optimization [61, 62]. The key to mitigate risk
is to optimize a bi-criterion objective function including both expected return (NPV)
and risk (variance of NPV) for the ensemble of possible reservoir models. In this way,
we can use a single parameter to compute an efficient frontier (the blue Pareto curve in
Fig. 1.2) of risk and expected return. One limit of this efficient frontier represents the
robust optimization, while the other limit is the minimum risk minimum return solu-
tion. By proper balancing the risk and the return in the bi-criterion objective function,
we can tune the optimizer in the controller such that an optimal ratio of return vs risk
is obtained (such a solution is called the Market solution in Fig. 1.2).

1.4 Contribution

In this section we describe the three main contributions of this thesis, putting them in
perspective with current state-of-art research.

1. Efficient High Order Forward and Adjoint Gradients Computation by ESDIRK
Methods
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To compute the gradient of the objective function in a single shooting optimiza-
tion method, [63] introduces the discrete adjoint of a generic Runge-kutta method
to solve an optimal control problem governed by ODEs. [64] shows that such
discrete adjoint has the same order and linear stability as the forward integra-
tor. He also points out that the calculation of gradients by reverse automatic
differentiation leads to the discrete adjoint approach. [4] provide an overview
of gradient computation using the discrete adjoint. [12] and [65] explain and
demonstrate gradient computation by the adjoint equations based on the implicit
Euler discretization. [66] describes the continuous adjoint method and studies
the stability of the continous adjoint system. [67] suggest the continuous-time
high order adjoint equations for gradient computation in production optimiza-
tion. [6–8] introduce high order ESDIRK methods in two phase reservoir simu-
lation and production optimization based on the implicit Euler discrete adjoints.
The high order scheme allows larger steps and therefore faster solution of the
reservoir model equations. [21] apply high order continuous-time adjoint based
on ESDIRK to a conventional oil field case study. [68] compare gradients com-
puted by discrete and continuous adjoints for problems arising in aerodynamics.
They conclude that the gradients computed from continuous adjoints is accurate
enough to be used in optimization algorithms. Since computation of gradients
based on continuous time adjoints is faster than gradients based on discrete ad-
joints, this conclusion implies that the gradient computations can be accelerated
by using the continuous time adjoint equations.

The novel contribution in this thesis is that we formulate and compare the ad-
joint gradient computation of high order ESDIRK methods. Using the ESDIRK
method, the continuous adjoint method is able to use a time grid different than
the time grid used in the forward integration. So it can compute the sensitivities
much faster than the discrete adjoint method and the finite-difference method.
Computational experiments (See section 4.4) show that when the time steps are
controlled in a certain range, the continuous adjoint method produces gradients
sufficiently accurate for the optimization algorithm and somewhat faster than the
discrete adjoint method.

2. Study of Open-loop and Closed-loop Robust Optimization Strategies

In the model based optimization part of CLRM, a traditional choice is to use
methods based on one realization, usually the ensemble mean from the EnKF.
To reduce the risk arising from uncertainty in the geological description, [58]
proposes to optimize the expectation of net present value over a set of reservoir
models using a gradient based method. This procedure is referred to as robust
optimization (RO). In open-loop simulations, [58] compares the results of the
RO procedure to two alternative approaches: a nominal optimization (NO) and
a reactive control approach. They find that RO yields a much smaller variance
than the alternatives. Moreover the RO strategy significantly improves the ex-
pected NPV over the alternative methods (on average 9.5% higher than using
reactive-control and 5.9% higher than the average of NO strategies). [34, 45, 69]
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do closed-loop reservoir management using an EnKF for data assimilation and
robust optimization with a gradient-free ensemble based optimization scheme for
the model based optimization. [34] reports that an ensemble based optimization
results in a NPV improvement of 22% compared to a reactive strategy. However,
they do not compare the closed-loop robust strategy to a closed-loop certainty
equivalent strategy.

In general, for open-loop implementations, previous test case studies presented
in the literature, show that a traditional robust optimization strategy (RO) gives
a higher expected NPV with lower NPV standard deviation than a conventional
reactive strategy. We present and study a test case (see section 5.3) where the
opposite happen: The reactive strategy gives a higher expected NPV with a lower
NPV standard deviation than the RO strategy. To improve the RO strategy, we
propose a modified robust optimization strategy (modified RO) that can shut in
uneconomical producer wells. This strategy inherits the features of both the
reactive and the RO strategy. Simulations reveal that the modified RO strategy
results in operations with larger returns and less risk than the reactive strategy,
the RO strategy, and the certainty equivalent strategy. The returns are measured
by the expected NPV and the risk is measured by the standard deviation of the
NPV.

To our knowledge, there is no closed-loop application of the gradient-based ro-
bust optimization strategy as implemented in [58] available in the literature. Fur-
thermore, the CLRM literature misses an open-loop as well as a closed-loop
comparison of the performance of an ensemble based optimization scheme [34]
or a gradient-based robust optimization scheme [58] with a certainty equivalent
optimization strategy based on the ensemble mean. In this thesis we partially
fill this gap and do CLRM comparing a RO strategy [58] to three alternative
approaches: a reactive strategy, a nominal strategy, and a certainty equivalent
strategy. By using feedback, the ensemble of permeability fields converge to a
point such that the RO strategy becomes equivalent to the certainty equivalent
strategy based on the ensemble mean. The RO is more expensive computation-
ally than the certainty equivalent strategy. In Section 5.3 we use a case study
to compare the RO strategy in both open-loop and closed-loop configurations to
other strategies.

3. Return-risk Mitigation in Production Optimization In Chapter 5 we address the
problem of including the risk management in a standard robust gradient based
optimization algorithm. We introduce a mean-variance model to the oil problem
by adding a variance term to the robust objective function. In the oil litterature,
previous efforts to explicitly include a risk measure in the objective function did
not give any insight on the risk-return relationship. In [70] they improve the
sweep efficency by equalizing the arrival time of the waterfront at all produc-
ers using multiple geologic realizations. They address geological uncertainty in
terms of two forms of objective functions: 1) a stochastic form which includes
the expected value and the standard deviation combined with a risk coefficient
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and 2) a min-max form which minimizes the worst case scenario. [71] propose
the use of a multi-objective optimization strategy. They optimize the sum of three
different objective functions. Each objective function consist of a weighted com-
bination of expected value and standard deviation. However, in both these works
the relation between risk and the expected value or how to choose the adversion
factors are not clear. A main contribution of this thesis is to demonstrate, that
a return-risk bi-criterion objective function is a valuable tool for the profit-risk
tradeoff. We do this for the open loop optimization and do not consider the effect
of feedback (see Section 5.4).

1.5 Thesis Organization

This thesis is divided into 6 chapters and 6 appendices.

• Chapter 1 - In this chapter we give the background and motivation behind the
project

• Chapter 2 - This chapter provides preliminary materials for the next chapters. We
describe the oil reservoir models used in this work, we formulate the constrained
optimal control problem involved in the oil production optimization problem and
we describe the ensemble Kalman filter i.e. the data assimilation method used in
this thesis for parameter estimation.

• Chapter 3 - In this chapter we describe our implementation of the ESDIRK
method for time integration of the reservoir model and for computation of the
objective function.

• Chapter 4 - In this chapter we describe sensitivity computation using continuous
and the discrete ESDIRK adjoint methods. For completeness, we present also the
forward sensitivity computation using ESDIRK. Finally, we present a case study
where the continuous adjoint and the discrete adjoint methods are compared in a
production optimization study.

• Chapter 5 - In this chapter we deal with production optimization under uncer-
tainty. We formulate a mean-variance objective function for the oil problem and
demonstrate that RO is a special extreme case of this objective function. Finally,
we present two case studies.

In the first case study we compare both the open-loop and the closed loop per-
formances of the CE and the RO strategies.

In the second case study we investigate and compare the performance of the
mean-variance optimization to a certainty equivalent optimization, a reactive
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control strategy, and RO. In this second case study we consider only open-loop
excerpts of the solution.

• Chapter 6 - Concluding remarks and recommendation for further work are given
in this chapter.

• Appendix A - This appendix reports the ESDIRK coefficients and some useful
results used in this thesis.

• Appendix B - F - These appendices report three published conference papers, one
journal paper published in Computational Geosciences journal and one journal
paper submitted to Journal of Petroleum Science and Engineering. The material
presented in the papers and in the thesis overlap to some extend. However, they
are complementary, since both contain details that are not presented elsewhere.
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CHAPTER 2

Preliminaries

This chapter provides preliminary materials for the next chapters. We describe the oil
reservoir models used in this work, we formulate the constrained optimal control prob-
lem involved in the oil production optimization problem, and we describe the ensemble
Kalman filter for parameter or state estimation.

This chapter is based on [21, 56].

2.1 Reservoir Model

An oil reservoir is a porous medium that contains a mixture of hydrocarbons and water.
In general, the hydrocarbon part consists of many components but a common simpli-
fication is to assume a three phase (oil, gas, water) description known as the black
oil model [72–74]. In this thesis, we assume that the reservoirs are in the secondary
recovery phase (waterflooding) where the pressures are above the bubble point pres-
sure of the oil phase. Therefore, two-phase immiscible flow, i.e. flow without mass
transfer between the two phases, is a reasonable assumption. In this section we present
two reservoir models used in this thesis. The first reservoir model is a slightly com-
pressible two-phase flow. We developed an oil reservoir simulator in the same way
as described in [5]. The second model is an incompressible two phase flow. We do
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n 

 Ω 

∂Ω 

Figure 2.1: Porous media domain Ω

not develop an oil reservoir simulator for this second reservoir model. Instead, we use
the MRST [9] reservoir simulator. In both reservoir models we assume incompressible
rocks, constant porosity, no gravity effects or capillary pressure, no-flow boundaries,
and isothermal conditions.

2.1.1 Two Phase Flow Model

The two-phase flow is described by a mass conservation equation and by the Darcy’s
law [73]. Let Ω ⊂ Rd (d ≤ 3) be a porous medium domain with frontier ∂Ω and let n
be the outward pointing unit normal on the boundary as depicted in Fig. 2.1. The mass
conservation of water (l ≡ w) and oil (l ≡ o)

∂

∂ t
Cl(Pl ,Sl) =−∇ ·Fl(Pl ,Sl)+ Q̃l , l ∈ {w,o}, r ∈Ω (2.1)

states that the difference in mass flowing out of a unit volume per unit time, ∇ ·Fl(Pl ,Sl)[ Kg
m3s

]
, plus the mass added or extracted through an external source/sink (well), Q̃l , must

be equal to the accumulation of mass per unit of time and volume, ∂

∂ t Cl .

In (2.1), Fl = ρl(Pl)ul(Pl ,Sl)
[ Kg

m2s

]
is the flux of phase l, ul

[m
s

]
is the velocity of phase

l, Cl = φρl(Pl)Sl is the mass concentration of phase l, Sl is the saturation of the phase
l defined as the proportion of the pore space occupied by the respective phase, φ is the
porosity defined as the ratio of aggregated pore space to the volume of the entire rock,
ρl is the density of phase l, and Pl is the pressure of phase l. The well terms Q̃l are
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given by

Q̃w = ∑
i∈I ,P

ρw ·qw,i ·δ (r− ri) (2.2a)

Q̃o = ∑
i∈P

ρo ·qo,i ·δ (r− ri) (2.2b)

where I and P are the set of injector and producer wells, respectively, δ (r−ri)
[ 1

m3

]
is the Dirac’s delta function, qw,i

[m3

s

]
and qo,i are the volumetric water and oil rates at

well i.

Darcy’s law

ul(Pl ,Sl) =−Kλl

(
∇Pl−ρi(Pl)g∇z

)
(2.3)

with the boundary condition

ul ·n = 0, l ∈ {w,o}, x ∈ ∂Ω (2.4)

gives the macroscopic phase velocity.

In (2.3), λl =
krl(Sl)

µl
is the mobility of phase l, krl [−] is the relative permeability of

phase l, µl [Pa · s] denotes the viscosity of phase l, g [ m
s2 ] is the gravitational accelera-

tion, z [m] denotes depth, and K [m2] stands for the absolute permeability tensor. The
absolute permeability represents the ability to flow or transmit fluids through a rock
when a single phase is present in the rock. In general the permeability tensor K is a full
3× 3 matrix. However, in pratical applications, the orientation of the coordinate sys-
tem can be aligned with geological layering in the reservoir such that the permeability
tensor K becomes a diagonal matrix:

1D: K = k, 2D: K =

(
kx 0
0 ky

)
, 3D: K =

 kx 0 0
0 ky 0
0 0 kz

 (2.5)

The saturations and the pressure of the two phases are linked by the relations [73] :

Sw +So = 1 (2.6)
Po−Pw = Pc(Sw) (2.7)

Pc [Pa] is the oil-water capillary pressure, which depends on the water saturation Sw.
The densities are assumed to be linear functions of the pressures [72, 73]

ρl = ρl(Pl) = ρ
0
l
(
1+ cl(Pl−P0

l )
)

l ∈ {w,o} (2.8)

where ρ0
l and P0

l are densities and pressures references and cl is the compressibility of
phase l.
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In this thesis, we consider only 2D flows and isotropic permeability fields (i.e. kx =
ky = k). Also gravity forces and capillary pressure are ignored i.e. Po = Pw = P. Then
combining (2.1) for each of phases l with (2.2) and (2.3), the 2D slightly compressible
two-phase flow system used in this thesis takes the form:

∂

∂ t

(
φρw(P)Sw

)
= ∇ ·

(
ρw(P)λwK∇P

)
+ ∑

i∈I ,P

ρw ·qw,i ·δ (r− ri) (2.9a)

∂

∂ t

(
φρo(P)So

)
= ∇ ·

(
ρo(P)λoK∇P

)
+ ∑

i∈P
ρo ·qo,i ·δ (r− ri) (2.9b)

Incrompressible Two-Phase Flow
In case of an incompressible reservoir, the governing equations can be represented by
pressure and saturation equations [73].

The pressure equation is described as

u =−λtK∇P, ∇ ·u = ∑
i∈I ,P

qi ·δ (r− ri) inΩ

u ·n = 0 on∂Ω

(2.10)

where u = uw +uo is the Darcy velocity (total velocity), qi [
m3

s ] is the volumetric well
rate, and λt = λw +λo is the total mobility, which in this setting is the sum of the water
and oil mobility functions.

The saturation equation is given by

φ
∂

∂ t
Sw +∇ ·

(
fw(Sw)u

)
= ∑

i∈I ,P

qw,i ·δ (r− ri) (2.11)

fw(Sw) is the water fractional flow which is defined as

fw(Sw) =
λw

λt
(2.12)

Fig. 2.2 illustrates the water fractional flow as function of the water saturation.

Relative Permeabilities
When more phases are flowing simultaneously, they interfere with each other. To take
this effect into account, the concept of relative permeabilities is introduced. They rep-
resent the additional resistance to flow of a phase caused by the presence of the other
phase. They are considered to be functions of water saturation only. Their values are
derived based on laboratory measurements performed on core samples taken from a
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Figure 2.2: Typical clipped relative permeabilities and fractional flow curves.

real reservoir. However, in this thesis, the Corey model [72, 73] is used to describe the
relationship between relative permeabilities and water saturation:

krw = k0
rwSnw (2.13a)

kro = k0
ro(1−S)

no (2.13b)

and

S =
Sw−Swc

(1−Sor−Swc)
(2.14a)

k0
rw and k0

ro are the end-point relative permeabilities for the oil and water respectively.
no and nw are the Corey exponents. Sor is the residual oil saturation and Swc is the
connate water saturation. Fig. 2.2 shows typical clipped relative permeability curves.

2.1.2 Wells

Wells are implemented using the Peaceman well model [75]

qi =−λtWIi(pi− pbhp
i ) (2.15)

pbhp
i is the wellbore pressure, and WIi is the Peaceman well-index. The volumetric

water flow rates at injection and production wells are

qw,i = qi i ∈I (2.16a)
qw,i = fwqi i ∈P (2.16b)

The volumetric oil flow rates at production wells are

qo,i = (1− fw)qi i ∈P (2.17)
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At time t, the cumulative oil production, Qo(t) [m3], and the cumulative water injection,
Qw(t) [m3], are

Qo(t) =
∫ t

0
∑

i∈P
qo,i dt (2.18)

Qw(t) =
∫ t

0
∑

i∈I
qi dt (2.19)

Spatial Discretization
The slightly compressible reservoir model is developed in the same way as imple-
mented in [5]. [5] use a first order spatial discretization consisting of a finite volume
(FV) discretization of the equations (2.9) combined with a two point flux approxi-
mation (TPFA) of the fluxes Fl . The resulting discretized equations are integrated in
time using an ESDRIK method. The incompressible reservoir model is implemented
in the MRST [9] reservoir simulator. Also MRST uses a first order spatial discretiza-
tion method. The pressure and saturation equations, (2.10) and (2.11), are first dis-
cretized by the FV method with TPFA and then solved sequentially (explicit-pressure
and implicit-saturation).

In general, after spatial discretization, both reservoir models used in this thesis reduce
to an initial value problem (IVP) in the general form [5]

x(ta) = x0 (2.20a)
d
dt

g
(
x(t)
)
= f (x(t),u(t),θ), t ∈ [ta, tb], (2.20b)

x(t) is the state vector consisting of the pressures and saturations of each reservoir’s
grid block, u(t) is the control vector consisting of wells bhp or wells liquid rates and θ

is a parameter vector. We will use this IVP formulation in the next section to define the
constrained optimal control problem that we solve in oil production optimization.

2.2 Gradient based Optimization

In this section, we present the continuous-time constrained optimal control problem
and its transcription by the single shooting method to a finite dimensional constrained
optimization problem. First we present the continuous-time optimal control problem.
Then we parametrize the control function using piecewise constant basis functions. Fi-
nally, we convert the problem into a constrained optimization problem using the single
shooting method.
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Consider the continuous-time constrained optimal control problem in the Bolza form
[76, 77]

max
x(t),u(t)

J = Φ̂(x(tb))+
∫ tb

ta
Φ(x(t),u(t))dt (2.21a)

subject to

x(ta) = x0 (2.21b)
d
dt

g
(
x(t)
)
= f (x(t),u(t),θ), t ∈ [ta, tb], (2.21c)

u(t) ∈U (t) (2.21d)

x(t) ∈ Rnx is the state vector, u(t) ∈ Rnu is the control vector and θ is a parameter
vector in an uncertain space Θ (in our case the permeability field). The time interval
I = [ta, tb] as well as the initial state, x0, are assumed to be fixed. (2.21c) represents
the dynamic model and includes systems described by index-1 differential algebraic
equations (DAE). (2.21d) represents linear constraints on the input values, e.g. umin ≤
u(t) ≤ umax and some constraints related to the rate of movement that are dependent
on the input parametrization. In our formulations, we do not allow nonlinear state or
output constraints, see e.g. [57] for a discussion of output constraints.

2.2.1 Control Parametrization

Let Ts denote the sample time such that an equidistant mesh can be defined as

ta = t0 < .. . < tS < .. . < tN = tb (2.22)

with t j = ta + jTs for j = 0,1, . . . ,N. We use a piecewise constant representation of the
control function on this equidistant mesh, i.e. we approximate the control vector for
every subinterval [t j, t j+1] by the zero-order-hold parametrization

u(t) = u j, u j ∈ Rnu , t j 6 t < t j+1, j ∈N (2.23)

with
N = {0,1, . . . ,N−1}. (2.24)

With this discretization we can introduce the discretized control vector

ū =


u0
u1
...

uN−1

 (2.25)
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2.2.2 Input Constraints

The input constraints (2.21d) include bound constraints umin ≤ uk ≤ umax. In the dis-
crete problem using the zero-order-hold parametrization, we also include rate of move-
ment constraints in the form ∆umin ≤ ∆uk ≤ ∆umax with ∆uk = uk−uk−1.

2.2.3 Single Shooting Optimization

We use a single shooting algorithm [21, 78] for solution of (2.21). Alternatives are
multiple-shooting [79, 80] and collocation methods [81]. Despite the fact that multiple-
shooting and collocation methods offer better convergence properties than the single
shooting method [79–81], their application in production optimization is restricted by
the large state dimension of production optimization problems. The use of multiple
shooting is prevented by the need for computation of state sensitivities. The collocation
method do not allow for adaptive time stepping and would need to solve huge-scale
optimization problems. In the single shooting optimization algorithm, we define the
function

ψ(ū,x0,θ) =

{
J =

∫ tb

ta
Φ(x(t),u(t))dt + Φ̂(x(tb)) : x(t0) = x0,

d
dt

g(x(t)) = f (x(t),u(t),θ), ta ≤ t ≤ tb, u(t) = uk, tk ≤ t < tk+1, k ∈N

}
(2.26)

such that (2.21) can be approximated with the finite dimensional constrained optimiza-
tion problem [82]

max
ū

ψ = ψ(ū,x0,θ) (2.27a)

s.t. c(ū)≥ 0 (2.27b)

We use gradient based methods [10] for solution of (2.27). To compute the required
gradients of the objective function (2.26) with respect to the control vector parameters,
i.e. ∂ψ/∂uk, k ∈ N we use the adjoint method. In Chapter 4 we describe how to
compute adjoint gradients using ESDIRK methods.

In solving (2.27), a gradient based method seek to converge to a solution where the
Karush-Kuhn-Tucker (KKT) [82, 83] conditions hold. A solution u∗, which yields op-
timal states x∗, of the optimization problem (2.27) is said to satisfy the KKT conditions
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if there exist a Lagrange multiplier vector µ∗ ∈ Rnc , with components µ∗i , such that

∇ūψ(ū,x0)+∇ūc(u∗)µ∗ = 0
c(u∗)≥ 0

µ
∗
i ≥ 0 i = 1, . . . ,nc

µ
∗
i · c(u∗)i = 0 i = 1, . . . ,nc

(2.28)

To solve the KKT equations (2.28) we use different optimizers. For the case study
presented in Section 4.4, we developed a quasi-Newton implementation of Powell’s
Sequential Quadratic Programming (SQP) method with linesearch for stepsize selec-
tion and BFGS update of the Hessian. The method is described in [36]. For the case
studies presented in Section 5.3 and Section 5.4 we use two commercial optimization
software packages: Knitro [84] and Matlab’s fmincon function [85]. Both of these
software have two main solvers, which are based on state-of-art active-set and interior-
point methods. When using Knitro as well as fmincon, we select an interior point
method since we experience the lowest computation times with this method. Further
details on the optimizers are given in the case studies.

2.3 Parameter Estimation with the Ensemble Kalman
Filter (EnKF)

We use the Ensemble Kalman filter (EnKF) for estimating the permeability field. The
estimation is based on production data measurements. The EnKF is a Monte Carlo im-
plementation of the Kalman filter [23, 43, 86, 87] using an ensemble of nd realizations
to represent the necessary first and second moments (means and covariances). In this
section we describe the EnKF.

Consider the discrete time system

xk+1 = F(xk,uk,θ) (2.29a)
yk = G(xk,uk)+ vk vk ∼ N(0,R) (2.29b)

2.3.1 Basic Ensemble Kalman Filter

(2.29a) includes the states, x, and the parameters, θ . Therefore, we form the augmented
state space model

xk+1 = F(xk,uk,θ k) (2.30a)
θ k+1 = θ k (2.30b)
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and apply the EnKF to the dynamic equation (2.30) and the measurement equation
(2.29b). In the EnKF all means and covariances are represented by samples of the
stochastic variables. Therefore, the initial mean and covariance of the augmented
states, [xk, θk], are represented by{

xi
0|0,θ

i
0|0

}nd

i=1
=
{

x0,θ
i
0|0

}nd

i=1
(2.31)

It should be noted that the initial states, x0, in our case are assumed to be known exactly.
Only the parameters, θ , are uncertain. Index i refers to each of the nd members of the
ensemble, i.e. each realization.

In the following, we describe the algorithm for discrete time instant k. In general, at
discrete time instant k, both the states and the parameters from the previous instant,
k−1, are uncertain. This is denoted{

xi
k−1|k−1,θ

i
k−1|k−1

}nd

i=1
k = 1,2, . . . (2.32)

In the EnKF, the one-step prediction step is conducted by passing each ensemble mem-
ber through the dynamics (2.30) such that for i = 1,2, . . . ,nd

xi
k|k−1 = F(xi

k−1|k−1,uk−1,θ
i
k−1|k−1), (2.33a)

θ
i
k|k−1 = θ

i
k−1|k−1, (2.33b)

where the previous input, uk−1, is known. Then the output, zi
k|k−1, and the measure-

ment, yi
k|k−1, at discrete time k may be computed as

zi
k|k−1 = G(xi

k|k−1,uk−1) i = 1,2, . . . ,nd (2.34a)

yi
k|k−1 = zi

k|k−1 + vi
k i = 1,2, . . . ,nd (2.34b)

To obtain the correct covariances of the state estimates in the EnKF, it is important that
each ensemble member, yi

k|k−1, contain measurement noise, vi
k|k−1 [88]. It should also

be noted that uk−1 is used in the evaluation of G in (2.34a). The explanation for the
use of uk−1 is that we use a zero-order-hold representation of u(t), i.e. u(t) = uk−1 for
tk−1 ≤ t < tk, and that we assume the measurement is conducted at time t−k = limt<tk t.
Then, at time tk, the EnKF and optimal control computations are conducted infinitely
fast such the next decisions, u(t) = uk for tk ≤ t < tk+1, can be implemented at time tk.

The innovation, ei
k, for each ensemble member is computed using the actual measure-

ment, yk, and the predicted measurement

ε
i
k = zi

k|k−1− yk i = 1,2, . . . ,nd (2.35a)

ei
k = yk− yi

k|k−1 =−ε
i
k− vi

k i = 1,2, . . . ,nd (2.35b)
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In these equations, yk is the actual measurement and therefore a deterministic variable.
In the EnKF, the realized trajectory of the system and an ensemble of different state
trajectories are considered. In the derivation of the standard Kalman filter [23, 86, 87],
it is the other way around. A (infinite) number of system realizations are considered,
while the filter is represented by one deterministic trajectory (the mean).

The optimal linear estimator conditioned on the innovations are [86]

xi
k|k = xi

k|k−1 +Kx,kei
k i = 1,2, . . . ,nd (2.36a)

θ
i
k|k = θ

i
k|k−1 +Kθ ,kei

k i = 1,2, . . . ,nd (2.36b)

with the Kalman filter gains computed as

Kx,k = 〈xk|k−1,ek〉〈ek,ek〉−1 (2.37a)

Kθ ,k = 〈θk|k−1,ek〉〈ek,ek〉−1 (2.37b)

using the covariances

〈xk|k−1,ek〉= 〈xk|k−1,εk〉 (2.38a)

〈θk|k−1,ek〉= 〈θk|k−1,εk〉 (2.38b)

〈ek,ek〉= 〈εk,εk〉+ 〈vk,vk〉 ≈ 〈εk,εk〉+R (2.38c)

The Kalman gains may be based on direct computation of the empirical estimates
(〈xk|k−1,ek〉, 〈θk|k−1,ek〉, 〈ek,ek〉) or the relations in (2.38). We choose to base the
computations on (2.38). The approximate first moments (means) are computed as

ẑk|k−1 = E
{

ẑk|k−1
}
≈ 1

nd

nd

∑
i=1

zi
k|k−1

ε̂k = E {εk} ≈
1
nd

nd

∑
i=1

ε
i
k = ẑk|k−1− yk

x̂k|k−1 = E
{

xk|k−1
}
≈ 1

nd

nd

∑
i=1

xi
k|k−1

θ̂k|k−1 = E
{

θk|k−1
}
≈ 1

nd

nd

∑
i=1

θ
i
k|k−1

and the approximate second moments (covariances) computed by

〈xk|k−1,εk〉 ≈
1

nd−1

nd

∑
i=1

(xi
k|k−1− x̂k|k−1)(ε

i
k− ε̂k)

′

〈θk|k−1,εk〉 ≈
1

nd−1

nd

∑
i=1

(θ i
k|k−1− θ̂k|k−1)(ε

i
k− ε̂k)

′

〈εk,εk〉 ≈
1

nd−1

nd

∑
i=1

(ε i
k− ε̂k)(ε

i
k− ε̂k)

′
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The result of (2.36) in this procedure is an ensemble{
xi

k|k,θ
i
k|k

}nd

i=1
k = 1,2, . . . (2.41)

representing the states and parameters at time k given measurements up until time k.
Using this ensemble, a robust optimization may be performed or various statistics such
as the mean may be computed.

(2.36) may result in non-physical updates. Therefore, we modify the EnKF such that
the ensemble (2.41) satisfies physical constraints, e.g. that the permeabilities are in cer-
tain ranges. To mitigate such effects, we clip the solution according to the constraints

θ
i
k|k :=


θmin θ i

k|k < θmin

θ i
k|k θmin ≤ θ i

k|k ≤ θmax

θmax θ i
k|k > θmax

(2.42)

and compute the filtered states, x̂i
k|k, by solving the dynamic model equations

xi
j+1|k = F(xi

j|k,u j,θ
i
k|k), xi

0|k = x0, j = 0,1, . . . ,k−1 (2.43)

for each ensemble member, i∈ {1, . . . ,nd}, using the clipped parameter estimates com-
puted by (2.42). In this way, state updates consistent with the model is guaranteed [52].
In particular, this eliminates the possibility of nonphysical states (nonphysical pres-
sures and saturations). The computational load can potentially be reduced by only
doing the initial-value simulation when the estimated saturation and pressure changes
passes a certain threshold [34]. The modifications (2.42) and (2.43) provides the en-
semble (2.41) that is used for the optimal control computations and for the initiation
of the EnKF at the next time step. Finally it should be mentioned that, the choice of
the ensemble size, nd , in the EnKF is a topic of research itself[89]. It affects the per-
formance of the filter. In reservoir engineering an ensemble size of 100 is a common
choice based on experience [14], [90]. However, this number is problem dependent and
in some cases good results can also be obtained using ensembles with fewer members
[90].

2.3.2 Performance Metrics

To measure the convergence of the Kalman filter estimates, we consider the mean stan-
dard deviation

σk =

√√√√ 1
np

(
1

nd−1

nd

∑
i=1

∥∥∥θ i
k|k− θ̂k|k

∥∥∥2

2

)
(2.44)
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of the parameters in the parameter vector, θk|k. σk measures the ensemble spread. We
also consider the root-mean-square-error of the parameter estimates compared to the
true parameters, θ 0:

RMSEk =

∥∥θ̂k|k−θ 0
∥∥

2√np
(2.45)

θk can be computed for real as well as synthetic cases, while RMSEk can only be
computed for synthetic cases in which the true parameters, θ 0, are available.

In the ideal case, the spread (2.44) should converge to a number related to the measure-
ment noise and the root-mean-square-error (2.45) should converge to 0. In practice,
(2.45) will not converge to zero due to e.g. factors like model-plant mismatch. Cases
with divergence of the root-mean-square-error may indicate that the ensemble is too
small to represent the true uncertainty.
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CHAPTER 3
ESDIRK Integration

methods

This chapter is based on [79].

In this section, we describe our implementation of the ESDIRK method. This imple-
mentation of ESDIRK is used to integrate a dynamical model in the general form

x(ta) = x0 (3.1a)
d
dt

g
(
x(t)
)
= f (x(t),u(t)), t ∈ [ta, tb], (3.1b)

as wells as the objective function ψ({uk}N−1
k=0 ,x0) in (2.26). Note that for notational

simplicity we ignore the θ parameter because it is assumed to be fixed during the time
integration.

ESDIRK methods are special implicit Runge-Kutta methods that are computationally
efficient and often constructed such that they have an embedded error estimator and
are both A- and L-stable as well as stiffly accurate [91–93]. This implies that they
can be applied for solving stiff systems as well as index-1 differential algebraic equa-
tion systems. For problems with frequent discontinuities, such that in zero-order-hold
parametrized optimal control problems, ESDIRK methods have been reported to out-
perform multi-step methods such as BDF for problems in which medium- to high-
accuracy solutions are required [93–95]. [96] develops ESDIRK methods of order 1-
3 with embedded error estimators, i.e. ESDIRK1(2), ESDIRK2(3) and ESDIRK3(4),
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that are A- and L-stable as well as stiffly accurate. [97, 98] implement the ESDIRK3(4)
with approximate computation of the sensitivities for ODEs and index-1 DAEs. [99]
first shows how to solve a systems of differential equations in the form (3.1) by a fully
implicit Runge-kutta (IRK) method using an efficient inexact newton method. [8] pro-
pose to use ESDIRK method to intergrate a reservoir model in the form (3.1).

In the oil community, it is believed that high order methods in the time domain are not
needed because of the big uncertainty in the parameters and because of the significant
non-smoothness of the solutions. Despite this, we believe that the greater accuracy of
these methods is beneficial in improving convergence during the optimization process.
Furthermore, high order methods are ideal in combination with a predictive step-size
controller, that can significantly speed-up the integration process compared to conven-
tional heuristic step-size algorithms.

3.1 ESDIRK Methods

Computation of ψ({uk}N−1
k=0 ,x0) consists of two major operations: 1) For each integra-

tion step we first compute the model states x(t) solving the initial value problem (3.1),
2) and then we compute, using the same quadrature points, the value of the Lagrange
term (3.2)

ψ̄(t) :=
∫ t

ta
Φ(x(t),u(t))dt ta ≤ t ≤ tb. (3.2)

in the cost function (2.21a). Let t̃n denote the integration times chosen by the step
size controller in the integrator. Each integration step size, hn, is chosen such that it is
smaller than or equal to the sample time, Ts. Therefore, one sample interval contains
many integration steps. Fig. 3.1 illustrates this. We consider ESDIRK methods with
s stages that are designed to be stiffly accurate and with an embedded error estimator
[96, 97]. The numerical solution of the IVP (2.21c) by such ESDIRK method may in
each integration step [t̃n, t̃n+1] be denoted [7, 79]

T1 = t̃n, Ti = t̃n + cihn (3.3a)
X1 = xn, u = u(t̃n) (3.3b)

φi({X j}i−1
j=1,u) = g(X1)+hn

i−1

∑
j=1

ai j f (X j,u) (3.3c)

g(Xi) = φi({X j}i−1
j=1,u)+hnγ f (Xi,u) (3.3d)

xn+1 = Xs (3.3e)

en+1 = hn

s

∑
j=1

di f (X j,u) (3.3f)
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u0                                             

h0                        h1                                     h2                           h3                                                        h4                                          

X2,i t0                          t1                                   t2                                       t3                                            t4                                                   t5 ~                         ~                        ~                         ~                            ~                                                 ~ 
 
 

t0                                                                                  t1                                                                                                                           t2 

 x0                x1                         x2                         x3                   x4                                                     x5 

u1 

Figure 3.1: State and control input time-discretization. The figure shows a time hori-
zon divided in 5 integration steps with 2 control steps. X2,i denotes the
ESDIRK inner stages Xi in the integration step [t̃2, t̃3].

with i = 2, . . . ,s. Xi denotes the numerical solution at time Ti for i ∈ {1, . . . ,s}. xn+1
is the numerical solution at time t̃n+1 = t̃n + hn. en+1 is the estimated error of the
numerical solution, i.e. ‖en+1‖ ≈ ‖g(xn+1)−g(x(t̃n+1))‖.

Subsequent to solution of (3.3), we compute the numerical solution of the cost function
(3.2)

ψ̄(t̃n+1) = ψ̄(t̃n)+hn

s

∑
i=1

biΦ(Xi,u) (3.4)

When t̃n+1 = tb, we add the Mayer term of (2.21a) such that

ψ({uk}N−1
k=0 ,x0) = ψ(tb) = ψ̄(tb)+ Φ̂(x(tb)) (3.5)

The main computational effort in the ESDIRK method is solution of the implicit equa-
tions (3.3d) using a Newton based method. (3.3d) is solved by sequential solution of

Ri(Xi) := [g(Xi)−hnγ f (Xi,u)]−φi({X j}i−1
j=1,u) = 0 (3.6)

for i = 2, . . . ,s. (3.6) is solved using an inexact Newton method. Each iteration in the
inexact Newton method for solution of (3.6) may be denoted

M∆X [l]
i =−Ri(X

[l]
i ) (3.7a)

X [l+1]
i = X [l]

i +∆X [l]
i (3.7b)

The iteration matrix, M, is an approximation

M ≈ J(X [l]
i ) (3.8)



30 ESDIRK Integration methods

to the Jacobian of the residual function

Ji(Xi) =
∂Ri

∂Xi
(Xi) =

∂g
∂x

(Xi)−hnγ
∂ f
∂x

(Xi,u) (3.9)

In this thesis we only consider direct methods for solution of the linear system (3.7).
This implies that a sparse LU factorization is used for the factorization of the iteration
matrix. The iteration matrix, M, and its LU factorization is updated adaptively by
monitoring the convergence rate of the inexact Newton iterations. Convergence of the
inexact Newton iteration is measured by

‖Ri(X
[l]
i )‖= max

j∈1,...,nx

|(Ri(X
[l]
i ) j|

max{atol j, rtol jg j(X
[l]
i )}

< τ (3.10)

where atol is the absolute tolerance and rtol is the relative tolerance. Steps are accepted
if this measure of the residual is smaller than τ ≈ 10−2. In case of divergence or
slow convergence, the iterations are terminated, the step size, hn, is decreased, and the
Jacobian of the iteration matrix is re-evaluated and factorized. As explained in e.g.
[7] and [79], the controller adjusts the temporal step sizes such that the error estimate
satisfies a norm similar to the norm used in (3.10).



CHAPTER 4

Gradients Computations

This chapter is based on [19, 79].

The easiest way to implement computation of gradients is to use finite-difference meth-
ods [82]. These methods are easy to implement because they treat the oil reservoir
simulator as a black box. However, due to the large number of state and control vari-
ables in oil problems, these methods become prohibitive. Another way to compute
gradients is to use the sensitivity equations [100], which is still quite expensive. In
fact, both of these methods have a time complexity of O(nu) objective function evalua-
tions (2.26), where nu is the dimension of the control input u. In this thesis we use the
adjoint method to compute the gradients, which requires two times the evaluation of
the objective function regardless of the dimension of control input. In order to validate
the adjoint-gradient implementation, we compare the gradients produced by the adjoint
methods against those from the finite difference computation.

In this chapter we discuss both the continuous and the discrete ESDIRK adjoint com-
putation for a model in the form (3.1). For completeness, we also present the forward
sensitivity computation for this kind of model equations. Finally, we present a case
study where continuous adjoint, discrete adjoint, and finite difference computations are
compared in a production optimization study. Simulations show that the continuous
adjoint method produces gradients sufficiently accurate for the optimization algorithm
and somewhat faster than the discrete adjoint method.
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This is the first time in the literature that the higher order continuous adjoint and higher
order discrete adjoint mehtods have been investigated for oil production optimization.

4.1 Forward Sensitivities

The contribution of this section is exact numerical computation of the sensitivities
in differential equations (3.1) based on ESDIRK1(2), ESDIRK2(3) and ESDIRK3(4).
The sensitivities are computed using the staggered corrector approach [97, 100] and an
efficient inexact Newton algorithm that reuses the factorization of the iteration matrix.
In this thesis we do not use forward sensitivities in the solution of the production opti-
mization problem because of their higher computational effort compared to the adjoint
method. Nevertheless, in this Section we present gradient computation using forward
sensitivities because in [79] we use the solution of the differential equation (3.1) and its
forward sensitivities in a multiple-shooting algorithm for constrained optimal control.

By introducing input and state sensitivities

Suk(t) =
∂

∂uk
x(t;x0,{u j}N−1

j=0 )

Sx0(t) =
∂

∂x0
x(t;x0,{u j}N−1

j=0 )

(4.1)

and considering that (2.23) implies

∂u
∂uk

(t) =

{
I tk ≤ t < tk+1

0 otherwise
, (4.2)

the gradients, ∂ψ/∂uk and ∂ψ/∂x0, may be computed as

∂ψ

∂uk
=

∂ Φ̂

∂x
Suk(tb)+

∫ tb

ta

(
∂Φ

∂u
∂u
∂uk

(t)+
∂Φ

∂x
Suk(t)

)
dt k = 0,1, . . . ,N−1

∂ψ

∂x0
=

∂ Φ̂

∂x
Sx0(tb)+

∫ tb

ta

(
∂Φ

∂x
Sx0(t)

)
dt

(4.3)

in which x(t) is computed by solution of (3.1). Suk(t) satisfies

Suk(t) = 0, t ≤ tk (4.4a)

∂

∂ t

(
∂g
∂x

(x(t))Suk(t)
)
=

∂ f
∂x

(x(t),u(t))Suk(t)

+
∂ f
∂u

(x(t),u(t))
∂u
∂uk

(t), t ≥ tk

(4.4b)
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and Sx0(t) satisfies

Sx0(ta) = I (4.5a)

∂

∂ t

(
∂g
∂x

(x(t))Sx0(t)
)
=

∂ f
∂x

(x(t),u(t))Sx0(t) (4.5b)

(4.36), (4.4) and (4.5) may be derived from (2.26) by taking the derivatives with respect
to x0 and uk, using the chain rule and the Schwartz theorem.

4.1.1 Discrete Sensitivity Equations

The ESDIRK method is used in a staggered-corrector fashion to integrate the sensitivity
equations (4.4) and (4.5) at the same quadrature points used for integration of the initial
value problem (3.1).

In each integration step [t̃n, t̃n+1], subsequent to the solution of (3.3), we compute the
state sensitivities using the ESDIRK method by solution of

S̄x0,1 = Sx0,n (4.6a)

Θx,i =
∂g
∂x

(X1)S̄x0,1 +hn

i−1

∑
j=1

ai j
∂ f
∂x

(X j,u)S̄x0, j (4.6b)

∂g
∂x

(Xi)S̄x0,i = Θx,i +hnγ
∂ f
∂x

(Xi,u)S̄x0,i (4.6c)

Sx0,n+1 = S̄x0,s (4.6d)

for i = 2, . . . ,s. The computationally expensive step in these computations is solution
of the linear system of equations (4.6c)

Rx,i(S̄x0,i) = J(Xi)S̄x0,i−Θx,i = 0 (4.7)

with J(Xi) defined by (3.9).

Similarly, the parameter sensitivities are computed using the ESDIRK method by solu-
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tion of

S̄uk,1 = Suk,n (4.8a)

Θuk,i =
∂g
∂x

(X1)S̄uk,1

+hn

i−1

∑
l=1

ail

(
∂ f
∂x

(Xl ,u)S̄uk,l +
∂ f
∂u

(Xl ,u)
∂u
∂uk

(Tl)

)
+hnγ

∂ f
∂u

(Xi,u)
∂u
∂uk

(Ti)

(4.8b)

∂g
∂x

(Xi)S̄uk,i = Θuk,i +hnγ
∂ f
∂x

(Xi,u)S̄uk,i (4.8c)

Suk,n+1 = S̄uk,s (4.8d)

for i = 2, . . . ,s. The computationally expensive step in these computations is the solu-
tion of the linear system of equations (4.8c)

Ruk,i(S̄uk,i) = J(Xi)S̄uk,i−Θuk,i = 0 (4.9)

with J(Xi) defined by (3.9).

Subsequent to solution of (4.6) and (4.8), we compute the numerical solution of (4.3)
using the same quadrature points, i.e.

∂ψ

∂uk
(t̃n+1) =

∂ψ

∂uk
(t̃n)+hn

s

∑
i=1

(
∂Φ

∂u
∂u
∂uk

(t̃n)+
∂Φ

∂x
(Ti)S̄uk,i

)
k = 0,1, . . . ,N−1

∂ψ

∂x0
(t̃n+1) =

∂ψ

∂x0
(t̃n)+hn

s

∑
i=1

(
∂Φ

∂x
(Ti)S̄x0,i

)
(4.10)

When t̃n+1 = tb, we add the gradient of the Mayer term comparing in (4.3), such that

∂ψ

∂uk
({u j}N−1

j=0 ,x0) =
∂ψ

∂uk
(t̃b)+

∂ Φ̂

∂x
Suk(tb)

∂ψ

∂x0
({u j}N−1

j=0 ,x0) =
∂ψ

∂x0
(t̃b)+

∂ Φ̂

∂x
Sx0(tb)

(4.11)

The linear system of equations (4.7) and (4.9) may be solved in identical ways. There-
fore, we only discuss the solution of the state sensitivity equation (4.7) in the following.
It is implied that the parameter sensitivity equation (4.9) is solved in a similar way.

(4.7) is solved using an inexact Newton method that employs that the LU-factors of an
approximation, M, of the Jacobian matrix, J(Xi), are already available. The steps in
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this inexact Newton procedure may be denoted

M∆S̄[l]x0,i
=−Rx,i(S̄

[l]
x0,i

) (4.12a)

S̄[l+1]
x0,i

= S̄[l]x0,i
+∆S̄[l]x0,i

(4.12b)

where M is the already factorized matrix (3.8). These factors are used in the solution
of (4.12a).

Convergence of the inexact Newton iteration is measured by

‖Rx,i(S̄
[l]
sk,i

)‖< τ (4.13)

using the norm defined by (3.10) columnwise. The tolerances specified for the differ-
ential equations (3.1) may be different from the tolerances specified for the sensitivity
equations.

4.1.2 Convergence- and Error-Control

The ESDIRK method computes the sensitivities using a staggered-corrector approach
[100]. First, the method solves for the state equations. Only when they have converged
it solves the sensitivity equations. The method is implemented such that it satisfies
the internal-numerical-differentiation principle [101]. Satisfaction of this principle is
achieved by converging the discrete-time sensitivity equations (4.6) and (4.8) and keep-
ing the same step size as used in the state equations. Consequently, no error estimation
is needed in the sensitivity computations.

The step size controller for the state equations (3.3) is based on the error estimator
embedded in the ESDIRK method. We use a predictive step size controller [102]. The
convergence in the inexact Newton iterations is monitored by observing the ratio

αl+1 =
‖Rl+1

i ‖
‖Rl

i‖
(4.14)

with Rl
i being the relevant residual at iteration l and ‖ · ‖ being the norm defined by

(3.10). In case of divergence (αl+1 > 1) the step size is reduced and the computations
at the current step are repeated.

The initial guesses of the solution to the residual equations are obtained using an ex-
plicit Euler step from either the previous converged solution or the first stage value.
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4.2 Continuous Adjoint Method

In this section, we describe a continuous-time adjoint based method for computation
of the gradients ∂ψ

∂uk

∂ψ

∂x0
of the objective function (2.26).

PROPOSITION 1 (GRADIENTS BASED ON CONTINUOUS ADJOINTS) Consider the
function ψ = ψ({uk}N−1

k=0 ;x0) defined by (2.26).

The gradients, ∂ψ/∂uk and ∂ψ/∂x0, may be computed as

∂ψ

∂uk
=
∫ tk+1

tk

(
∂Φ

∂u
−λ

T ∂ f
∂u

)
dt k = 0,1, . . . ,N−1 (4.15a)

∂ψ

∂x0
=−λ

T (ta)
∂g
∂x

(ta) (4.15b)

in which x(t) is computed by solution of (2.21b)-(2.21c) and λ (t) is computed by solu-
tion of the adjoint equations

dλ T

dt
∂g
∂x

+λ
T ∂ f

∂x
− ∂Φ

∂x
= 0 (4.16a)

∂ Φ̂

∂x
(x(tb))+λ

T (tb)
∂g
∂x

(x(tb)) = 0 (4.16b)

PROOF. See Appendix A.2.

REMARK 2 (COMPUTATION USING ESDIRK) x(t) is computed using the ESDIRK
method applied to (2.21b)-(2.21c) and integrating forwards. This gives the approxima-
tions xn ≈ x(tn). This solution is stored. The same ESDIRK method is applied for
computation of λ (t) by solving (4.16) integrating backwards in time, see Fig. 4.1. A
continuous extension of x(t), see section 4.2.2, is used to compute approximations λ (t)
in the backward quadrature points. Finally, (4.15a) is integrated using the backward
quadrature points used to compute λ (t).

REMARK 3 (GRADIENTS COMPUTED BY CONTINUOUS ADJOINTS) The gradients
computed using the continuous adjoints are not the exact gradients, ∂ψ/∂uk, when the
involved differential equations and integrals are computed by discretization using the
ESDIRK method. However, they can be made sufficiently precise for the optimizer such
that they do not affect the convergence [68]. The advantage of the continuous adjoint
equations (4.16) is that they can be solved faster than the adjoint equations for the
discretized system (3.3)-(3.5).
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Backward time discretization 

Figure 4.1: Forward and Backward time discretizations.

4.2.1 Solving the Adjoint Equations

Usually, integration software is written to integrate forward in time. Our ESDIRK
methods are also implemented in that way. To integrate the linear equations (4.16), we
introduce the change of variables

t = tb + ta− t̄ (4.17)

λ̄ (t̄) = λ (tb + ta− t̄) (4.18)

such that the transpose of (4.16) becomes

A(t̄)
dλ̄

dt̄
−B(t̄)λ̄ +C(t̄) = 0 (4.19a)

D(ta)+A(ta)λ̄ (ta) = 0 (4.19b)

where

A(t̄) = ∇xg
(
x(tb + ta− t̄)

)
(4.20)

B(t̄) = ∇x f
(
x(tb + ta− t̄),u(tb + ta− t̄)

)
(4.21)

C(t̄) = ∇xΦ
(
x(tb + ta− t̄),u(tb + ta− t̄)

)
(4.22)

D(t̄) = ∇xΦ̂
(
x(tb + ta− t̄)

)
(4.23)

We integrate this system (4.19) forward in t̄ ∈ [ta, tb]. The solution of system (4.19) by
an s-stage, stiffly accurate, Runge-Kutta ESDIRK method may in each integration step
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[t̄n−1, t̄n] be denoted [103]

A(t̄n−1)Ẏ1−B(t̄n−1)λ̄n−1 +C(t̄n−1) = 0 (4.24a)[
A(t̄n−1 + cih̄n−1)− h̄n−1γB(t̄n−1 + cih̄n−1)

]
Ẏi = B(t̄n−1 + cih̄n−1)

[
λ̄n−1+

+ h̄n−1

i−1

∑
j=1

ai jẎj
]
−C(t̄n−1 + cih̄n−1)

(4.24b)

with i = 2, . . . ,s where

Ẏi ≈
dλ̄

dt̄
(t̄n−1 + cih̄n−1) (4.25)

Yi = λ̄n−1 + h̄n−1

s

∑
j=1

ai jẎj ≈ λ̄ (t̄n−1 + cih̄n−1) (4.26)

λ̄n = λ̄n−1 + h̄n−1

s

∑
j=1

b jẎj ≈ λ̄ (t̄n) (4.27)

The main computational effort in solving the adjoint equations using the ESDIRK
method is to solve the linear equations (4.24).

4.2.2 Continuous Extension

When we solve the system (4.19) using the ESDIRK solver, we need a numerical ap-
proximation of the state vector x(t) in temporal points T̄i that in general are not the same
as the quadrature points Ti of the forward integration in (3.3). To compute this approx-
imation we use a continuous extension. The numerical approximation to x(t̃n + hnθ)
for θ ∈ [0,1] is given by [96, 97]

x(t̃n +hnθ) = xn +hn

s

∑
i=1

b̄i(θ) f̄ (Xi,u) (4.28a)

Xi are the stage values of solving the system (3.3) in t ∈ [t̃n, t̃n+1] and

f̄ (Xi,u) =
[

∂g
∂x

(Xi)

]−1

f (Xi,u). (4.29)

b̄i(θ) is a matrix function [96, 97]

b̄i(θ) =
q

∑
k=1

b̄i,k θ
k (4.30)

where q is the order of the continuous extension. Further, the continuous extension
used is of the same order as the forward integration method (except the extension for
ESDIRK34 that is one order lower [96, 97]).
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4.3 Discrete Adjoint Method

In this section, we describe a discrete adjoint based method to compute the gradients
of the cost function with respect to the control vector parameters, ∂ψ/∂uk for k ∈N .
In the following, we use N̄ to indicate the total number of (forward) integration steps.
Let X j,i denote the i-th stage values in the integration step [t̃ j, t̃ j+1], see Fig. 3.1, such
that we have

X0,1 ≡ x0, t = ta = t̃0
X j,i, t ∈ [t̃ j, t̃ j+1]

X j+1,1 ≡ X j,s, t = t̃ j+1 ∀ j ∈ {0, . . . , N̄−2}
XN̄−1,s, t = tb = t̃N̄

ũ j ≡ u(t̃ j) = uk for some k ∈N .

(4.31)

With this notation, the ESDIRK discretization of (2.26) is

ψ({uk}N−1
k=0 ,x0) =

{
J = Φ̂(XN̄−1,s)+

N̄−1

∑
j=0

s

∑
i=1

h jbiΦ(X j,i, ũ j) :

R j,i({X j,l}i
l=1, ũ j) = 0 j ∈ {0, . . . , N̄−1}, i ∈ {2, . . . ,s}

} (4.32)

and

R j,i = g
(
X j,i
)
−φ j,i({X j,l}i−1

l=1, ũ j)−h jγ f (X j,i, ũ j)

φ j,i(X j,1, . . . ,X j,i−1, ũ j) = g(X j,1)+h j

i−1

∑
l=1

ail f (X j,l , ũ j).
(4.33)

Introduce the vectors x̄ ∈ R(N̄·(s−1))·nx , R̄ ∈ R(N̄·(s−1))·nx , and ū ∈ RN·nu by

x̄ =



X0,2
...

X0,s
X1,2

...
XN̄−2,s
XN̄−1,2

...
XN̄−1,s


, ū =


u0
u1
...

uN−1

 , R̄ =



R0,2
...

R0,s
R1,2

...
RN̄−2,s
RN̄−1,2

...
RN̄−1,s


, (4.34)
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Then we can rewrite the problem (2.27) in the compact form

max
ū

ψ(x0, ū) =
{

J(x0, x̄, ū) : R̄(x0, x̄, ū) = 0
}

(4.35a)

s.t. ū ∈U (4.35b)

R̄(x0, x̄, ū) = 0 is the discretized dynamical model (2.21b)-(2.21c) in residual form. The
relation R̄(x0, x̄, ū) = 0 and the vectors x0 and ū determine the state vector x̄.
This leads to the following proposition for computation of the discrete adjoints.

PROPOSITION 4 (GRADIENTS BASED ON DISCRETE ADJOINTS) Consider the func-
tion ψ = ψ(ū;x0) defined in (4.35).

The gradients, ∂ψ/∂ ū,∂ψ/∂x0, may be computed as

∂ψ

∂ ū
=

∂J
∂ ū

+λ
T ∂ R̄

∂ ū
∂ψ

∂x0
=

∂J
∂x0

+λ
T ∂ R̄

∂x0

(4.36)

in which x̄ is computed by solution of R̄(x0, x̄, ū) = 0 and λ is computed by solution of
the discrete adjoint equations

λ
T ∂ R̄

∂ x̄
=−∂J

∂ x̄
(4.37a)

PROOF. See Appendix A.3.

4.3.1 Solving the Discrete System

Due to the special block structure of ∂ R̄
∂ x̄ , the solution of the discrete adjoint equations

(4.37) is computed backward. Define the vector λ as

λ =



λ0,2
...

λ0,s
λ1,2

...
λN̄−2,s
λN̄−1,2

...
λN̄−1,s


(4.38)
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We compute λ by computing its subvectors in the reverse order, i.e. λN̄−1,s, . . . ,λN̄−1,2, . . . ,λ0,2,λ0,0.
The last subvector, λN̄−1,s, is computed by

λ
T
N̄−1,s ·

∂RN̄−1,s

∂XN̄−1,s
=− ∂J

∂XN̄−1,s
(4.39)

which is equivalent to the expression

λ
T
N̄−1,s ·

(
∂g
∂x

(XN̄−1,s)−hN̄−1γ
∂ f
∂x

(XN̄−1,s,uN)

)
=−

(
∂ Φ̂

∂x
(XN̄−1,s)+hN̄−1bs

∂Φ

∂x
(XN̄−1,s,uN)

)
(4.40)

Subsequently, the remaining subvectors, λk, j and λk−1,s, are computed by marching
backwards

λ
T
k,s− j ·

∂Rk,s− j

∂Xk,s− j
=− ∂J

∂Xk,s− j
−

j

∑
i=1

λ
T
k,s− j+i ·

∂Rk,s− j+i

∂Xk,s− j
(4.41a)

λ
T
k−1,s ·

∂Rk−1,s

∂Xk−1,s
=− ∂J

∂Xk−1,s
−

s−1

∑
i=1

λ
T
k,i+1 ·

∂Rk,i+1

∂Xk−1,s
(4.41b)

for k ∈ {N̄ − 1, . . . ,1} and j ∈ {1, . . . ,s− 2}. For k = 0 and j ∈ {1, . . . ,s− 2} we
compute λ0,s−1, . . . ,λ0,2 by solving

λ
T
0,s− j ·

∂R0,s− j

∂X0,s− j
=− ∂J

∂X0,s− j
−

j

∑
i=1

λ
T
0,s− j+i ·

∂R0,s− j+i

∂X0,s− j
(4.42a)

Finally, we can rewrite (4.36) as

∂ψ

∂uk
= ∑

j:u(t̃ j)≡uk

(
h j

s

∑
l=1

bl
∂Φ

∂u
(X j,l ,uk)+

s

∑
i=2

λ
T
j,i

∂R j,i

∂ ũ j
({X j,r}i

r=1,uk)

)
∂ψ

∂x0
= h0b1

∂Φ

∂x0
(x0,u0)+λ

T
0,2

∂g
∂x0

(x0)

(4.43)

The derivatives, ∂R j,i
∂X j,l

, ∂R j,i
∂ ũ j

, are provided in Appendix A.3.

Note In the special case that s = 2, e.g. in ESDIRK12, we don’t have to solve the
equations (4.41a) and (4.42).
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Figure 4.2: Left: Permeability field with the location of the wells. A circle indicates
the location of an injector and a cross indicates the location of a producer.
Right: The net present value (NPV) computed using ESDIRK3(4) and the
discrete adjoint.

4.4 Case Study I: Production Optimization for a Con-
ventional Oil Field

In this section, we apply our algorithm for constrained optimal control problems to
production optimization in a conventional horizontal oil field that can be modeled as a
slightly compressible two phase flow in a porous medium (2.9). This test case is taken
from [21]. The reservoir size is 450 m× 450 m× 10 m. By spatial discretization this
reservoir is divided into 25× 25× 1 grid blocks. The configuration of injection wells
and producers as well as the permeability field is illustrated in Fig. 4.21. As indicated
in Fig. 4.21, the four injectors are located in the corners of the field, while the single
producer is located in the center of the field.

The specification of the two phase oil model consists of the injector (i ∈ I ) and the
producer (i ∈P) locations, the permeability parameters indicated in Fig. 4.21, and
the parameters listed in Table 5.1. The initial reservoir pressure is 400 atm everywhere
in the reservoir. The initial water saturation is 0.1 everywhere in the reservoir. This
implies that initially the reservoir has a uniform oil saturation of 0.9.

The discounted stage cost function (see (2.21a))

Φ(t) = Φ(x(t),u(t)) =− 1
(1+b)t/365 ∑

j∈P
(ro(1− fw)− fwrw)q j(t) (4.44)

accounts for the value of the oil produced minus the processing cost of the produced
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Table 4.1: Parameters for the two phase model and the discounted state cost function
(4.44).

Symbol Description Value Unit
φ Porosity 0.2 -
cr Rock compressibility 0 Pa−1

ρo Oil density (400 atm) 800 kg/m3

ρw Water density (400 atm) 1000 kg/m3

co Oil compressibility 10−5 1/atm
cw Water compressibility 10−5 1/atm
µo Dynamic oil viscosity 2 ·10−3 Pa · s
µw Dynamic water viscosity 1 ·10−3 Pa · s
Sor Residual oil saturation 0.1 -
Sow Connate water saturation 0.1 -
no Corey exponent for oil 1.5 -
nw Corey exponent for water 1.4 -
Pinit Initial reservoir pressure 400 atm
Sinit Initial water saturation 0.1 -
ro Oil price 100 USD/m3

rw Water production cost 20 USD/m3

water. In this cost function, we have neglected the processing cost of injected water as
well as the effect of pressure on injecting water. b is the discount factor. The fractional
flow of water, fw = λw/(λw+λo), indicates the relative flow of water. λw = ρwkkrw/µw
and λo = ρokkro/µo are the water and oil mobilities, respectively. In the problems con-
sidered, we do not have any cost-to-go terms, i.e. Φ̂(tb) = 0. The optimizer maximizes
the net present value by manipulating the injection of water at the injectors and by
manipulation of the total fluid production (oil and water) at the producers. Hence, the
manipulated variable at time period k ∈ N is uk = {{qw,i,k}i∈I ,{qi,k}i∈P} with I
being the set of injectors and P being the set of producers. For i ∈ I , qw,i,k is the
injection rate (m3/day) of water in time period k ∈N at injector i. For i ∈P , qi,k is
the total flow rate (m3/day) at producer i in time period k ∈N . Therefore, at producer
i ∈P , the water flow rate is qw,i,k = fwqi,k and the oil flow rate is qo,i,k = (1− fw)qi,k.

There are bound constraints in the production optimization problem because the water
injected at injectors and the production at the producers must both be positive and be-
cause each production facility has a maximum flow capacity. In the considered problem
we have

|qi,k−qi,k−1| ≤ 5 i ∈I ∪P, k ∈N (4.45a)
−qmax ≤ qi,k ≤ 0 i ∈P, k ∈N (4.45b)

The maximum flow capacity, qmax, is the same for all injectors and producers in this
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case study. The rate of change for all injectors and producers are |qi,k − qi,k−1| ≤ 5
for i ∈I ∪P and k ∈N . Since the injection of oil is zero, qo,i,k = 0 for i ∈I , we
get |qw,i,k − qw,i,k−1| ≤ 5 for i ∈ I and k ∈ N . This leads to the rate of movement
constraints. In addition we use a voidage replacement constraint [4, 12]

∑
i∈I

qi,k = ∑
i∈I

qw,i,k =− ∑
i∈P

qi,k k ∈N (4.46)

and enforce a constant total injection, ∑i∈I qw,i,k = qmax for k ∈N . This translates
into constraints of the type (2.27b). By the total injection constraint, the optimization
problem reduces to a problem of redistributing the flows among the injectors.

The prediction and control horizon is tb = 4200 days and the sampling period is Ts =
120 days. Hence the prediction and control horizon correspond to N = 35 periods.
With a total injection at each time period of qmax = 100 m3/day, these specifications
corresponds to injection of 1.05 pore volume during operation of the reservoir. A ref-
erence case with a constant injection of 25 m3/day from each injector is considered. A
prediction horizon of 4270 days is optimal in the reference case for a total injection of
100 m3/day. We consider the case of no discount, i.e. b = 0.

Fig. 4.2(2) illustrates the net present value for the base case scenarios as well as the
optimized scenarios. The plot of NPV demonstrates that the NPV is lower than the
base case NPV at some time during the production. At the end of the production, the
optimized NPV increases with 7.2% compared to the reference case.

4.4.1 Discussion of the Results

The ESDIRK methods that we refer to in this case study are ESDIRK1(2), ESDIRK2(3)
and ESDIRK3(4). They are first, second, and third order accurate methods, respec-
tively. Their embedded error estimator is one order higher than the order of the advanc-
ing method. ESDIRK1(2) is the implicit Euler integration scheme with an embedded
error estimator of order two.
Firstly, we test the gradient computation using the continuous adjoint, the discrete ad-
joint and the central finite differences. These methods produce gradients of compara-
ble numerical values. We compare the gradients computed by the continuous adjoint
method and the finite difference method to adjoints computed by the discrete adjoint
method. We do this by computing the relative error with respect to the gradient com-
puted by the discrete adjoint method. Finally, Table 4.2 provides computational statis-
tics of ESDIRK3(4) method. It reveals that for increasing stepsizes h̄ of the adjoint
integration, the continuous adjoint method is significantly faster than the discrete ad-
joint method (which is based on a fixed forward integration step h).
Secondly, we report the optimization results of the test case introduced in the previous
section. Table 4.3 reports the computational statistics of the optimization process. We
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find that there is a benefit in using the continuous adjoint method because the optimiza-
tion algorithm requires less time and the value of the net present values is comparable
with the one obtained by using the discrete adjoint. Finally, the optimal trajectories are
compared.

In all the examples in this work, we use a fixed stepsize, h = 4 days, for the forward
integration. We tried also smaller stepsizes h = 0.5,1,2 days finding similar qualitative
results. Using a bigger stepsize, e.g. h = 5 days, was not possible because of a failure
in the convergence of the equation solver (3.3). We solve (3.3) using absolute and
relative tollerances in (3.10) equal to 10−8. The perturbation used for the central finite
difference method is δu = 10−4.

Gradient Computation Results

Fig. 4.3(1) shows the gradients, ∂ψ

∂uk
, computed using the different methods. The differ-

ent gradients are comparable and by visual inspection we see no difference. Fig. 4.3(2)
reports the relative error of the gradient, ∂ψ

∂uk
, computed using the finite difference and

the continuous adjoint methods with respect to the gradients computed by the discrete
adjoint method. In general, the error increases as the adjoint stepsize, h̄, increases; this
is particular noticeable for the last control step. Different injectors have different rela-
tive errors. Injector 4 has the largest relative error, i.e. 80%. This error occurs in the
last control step. Large differences in the last control step was also noted in [67]. They
computed the continuous adjoint based on the implicit Euler method. [67] also show
that the explanation for this large error between the continuous adjoint method and the
discrete adjoint is in the different boundary conditions. Thus the Lagrange multipliers
obtained by the two methods differ in general and so will be the corresponding gradi-
ents of the objective.

Table 4.2 reports computational statistics for gradient computations using ESDIRK3(4).
We note that using the continuos adjoint, the time, Tad j, spend for gradient computa-
tion is inversely proportional to the continuous adjoint step-size, h̄. Using the same
step size, h = h̄, the continuous adjoint method uses more computation time, tad j, than
the discrete adjoint method. This is due to the increased time spend in computing the
continuous extension.

Using the others ESDIRK methods, 1(2)-3(4), we get similar tables. However there
is an issue in our implementation. Using the continuous ESDIRK1(2) adjoint method,
we do not need to solve both linear systems in (4.24) in each step. It is enough to solve
only (4.24b) as we don’t need Ẏ1 to compute Y2 = λ̄n for ESDIRK1(2). This gives a
penalty in using the continuous adjoint with ESDIRK1(2). In a future implementation,
we will tailor the method for ESDIRK1(2) such that we avoid this penalty.
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Table 4.2: Computational statistics for the gradient computation. h: forward integra-
tion step size. h̄: continuous adjoint stepsize. tad j: time to compute the
gradient with the adjoint method scaled with respect to the forward integra-
tion time. Tad j: time to compute the gradient with the continuous adjoint
method scaled with respect to the time to compute the gradient with the
adjoint method using h̄ = 4.

ESDIRK h[day] h̄[day] tad j Tad j
discrete adjoint 3(4) 4 – 1.37 –
continuous adjoint 3(4) 4 4 1.70 1

3(4) 4 12 0.58 0.33
3(4) 4 120 0.06 0.03

Optimization Results

The optimizer chosen for this case study is an SQP solver, see Section 2.2.3. We use
the following stopping criteria for our SQP algorithm. An optimal solution is reported
if the KKT conditions are satisfied to within a relative and absolute tolerance of 10−6.
The current best but non-optimal iterate is also returned in case of failure in the line
search procedure, i.e. if the line search uses more than 20 iterations. Finally, the cur-
rent best but non-optimal iterate is also returned in case of a relative change in the cost
function less than 10−10 or if the number of SQP iterations exceeds 100. For the current
case, we have never experienced that the SQP algorithm uses more than 100 iterations.

Table 4.3 reports computational statistics for the optimization process. We note that
the NPVs computed using ESDIRK3(4) are bigger than the NPVs computed using
ESDIRK1(2). Also the NPVs computed by the discrete adjoints are bigger than the
ones computed using the continuous adjoint (with the same ESDIRK scheme). For
both ESDIRK1(2) and ESDIRK3(4), we note that using the continuous adjoint with
the biggest stepsize h̄ = 20 days, the computation time T/Tdiscr,RK12 is reduced by a
factor of about three. Furthermore, we note that using the continuous adjoint based on
ESDISRK3(4) with h̄ = 20, the computation time is halved when compared to using
the ESDIRK1(2) method with the discrete adjoint gradient computation. This is indi-
cated by T/Tdiscr,RK12 in Table 4.3.

Fig. 4.4(1) and Fig. 4.4(2) report the optimal water injection rates using the different
adjoint methods based on ESDIRK1(2) and ESDIRK3(4), respectively. We note that
when h = h̄ = 4, the trajectories agree for all times and visually we see no differences.
Increasing h̄ produces a change in the solution and this change is more marked in the
last control steps. This is in agreement with the results of Fig. 4.3(2). We note that
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Table 4.3: Computational statistics for the optimization process. h: forward integra-
tion stepsize (in days). h̄: continuous adjoint stepsize (in days). SQP:
Number of iterations in the SQP-algorithm. QP: Number of KKT-matrix
factorizations in the interior-point QP-solver. LS: Number of line searches
and call to the ESDIRK algorithm.T/Td.,RK12: time to compute the opti-
mal solution scaled to the time to compute the optimal solution using the
ESDIRK1(2) discrete gradient. T/Td.,RK34: time to compute the optimal
solution scaled to the time to compute the optimal solution using the ES-
DIRK3(4) discrete gradient.

RK Adj. h h̄ SQP QP LS T/Td.,RK12 T/Td.,RK34 NPV [$]
1(2) discr. 4 – 84 1248 111 1 – 27.661.373

cont. 4 4 62 894 129 0.94 – 27.661.351
cont. 4 12 42 552 74 0.50 – 27.659.895
cont. 4 120 25 272 45 0.27 – 27.598.463

3(4) discr. 4 – 66 938 92 1.42 1 27.672.877
cont. 4 4 66 945 134 1.85 1.30 27.672.870
cont. 4 12 69 998 106 1.32 0.93 27.672.875
cont. 4 120 38 507 58 0.57 0.40 27.667.576

the solutions computed using continuous adjoints are closer to the solution computed
by discrete adjoints for EDSIRK3(4) than for ESDIRK1(2). This is due to the higher
accuracy of the EDSIRK3(4) method compared to the ESDIRK1(2) method.

Fig. 4.5(1) and Fig. 4.5(2) report the NPVs as function of the SQP iteration number.
We note that in general the different methods converge to similar numerical values.
As reported in Table 4.3, they converge with a different rate (i.e. they use a different
number of iterations). Increasing the step size, h̄, the NPV decreases and this decrease
is greater for ESDIRK1(2) than ESDIRK3(4).

4.4.2 Summary

We propose the use of high order continuous and discrete adjoint methods in a gradient
based algorithm for oil reservoir production optimization. The resulting algorithm is
tested for a production optimization problem of an oil reservoir with a slightly com-
pressible two phase flow. For all cases considered, the dynamic optimization increases
the net present value of the field and gives increased oil production.

Computational experiments demonstrate that the accuracy of the sensitivities obtained
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by the adjoint methods are comparable to the accuracy obtained by the finite difference
method. Using the ESDIRK method, the continuous adjoint method is able to use a
time grid different from the time grid used for forward integration. Therefore, it can
compute these sensitivities much faster than the discrete adjoint method and the finite-
difference method. The discrete adjoint method produces the gradients of the numerical
schemes and this an advantage when the gradient is used in a numerical optimization
algorithm. Computational experiments show that when the time steps are controlled in
a certain range, the continuous adjoint method produces gradients sufficiently accurate
for the optimization algorithm and somewhat faster than the discrete adjoint method.
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Figure 4.4: Optimal water injection rates using different adjoint methods based on ES-
DIRK1(2) and ESDIRK3(4). discr.: discrete adjoint method., cont.: con-
tinuous adjoint method, h: forward step size in days, h̄: adjoint step size in
days.
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CHAPTER 5

Production Optimization
under Uncertainty

This chapter is based on [56, 104].

In this chapter, we focus on the formulation of the optimization problem in the NMPC
for CLRM under parameter uncertainty. In RO of an oil reservoir, the water injec-
tion and production borehole pressures (bhp) are computed such that the expected net
present value (NPV) of an ensemble of realizations of the permeability field is maxi-
mized. A main problem with the RO is that the risk management enters only indirectly
into the solution. Compared to a certainty equivalent optimization, the risk is reduced
because we model the uncertainty with an ensemble of realizations of the reservoir
model. To mitigate the risk, we propose a mean-variance (MV) bi-criterion objective
function for an ensemble of reservoir models and demonstrate that the RO is a special
extreme case in this objective function. The key to mitigate the risk for the oil pro-
duction optimization problem is to optimize a bi-criterion objective function including
both the expected NPV (mean of NPV) and the risk (variance of NPV) for the ensem-
ble of possible reservoir models. With the inclusion of the risk directly in the objective
function, we are able to compute the solution that gives the best return-risk balance.
To illustrate the performance of the RO and the MV strategies under geological uncer-
tainty, we present two case studies.

In the first case study, we compare both the open-loop and the closed loop performances
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of the CE and the RO strategies. The CE optimization is based on a single realization
of the permeability field. It uses the mean of the ensemble as its permeability field. In
open-loop we also suggest a modified RO strategy that improve RO by adding a reactive
control. In closed-loop we make use of the ensemble Kalman filter (EnKF) for model
updating through data assimilation (history-matching) and of the moving horizon prin-
ciple for data assimilation and implementation of the computed control input. This is
the first time in theliterature that the RO optimization has been investigated in closed-
loop. Surprisingly, for the case studied, the closed-loop certainty equivalent strategy
yields a higher NPV than the closed-loop RO strategy. The uncertainty reduction of
the permeability field estimate due to data assimilation explains the good performance
of the closed-loop certainty equivalent optimization strategy. Consequently, in closed-
loop, the increased computational effort of the RO strategy compared to the certainty
equivalent strategy is not justified for the particular case studied in this paper.

In the second case study, we investigate and compare the performance of the MV op-
timization to a certainty equivalent optimization, a reactive control strategy, and RO.
In the study of different optimization formulations, we leave out data assimilation (his-
tory matching) as well as the effect of feedback from a moving horizon implementation
and consider only the predictions and computations of the manipulated variables in the
open-loop optimization of NMPC. This can be regarded as an optimal control study.
The reason for this is twofold. First, in the initial development of a field, no production
data would be available and the production optimization would be an open-loop optimal
control problem. Secondly, the ability of different optimization strategies to mitigate
the significant uncertainties present in reservoir models is better understood if investi-
gated in isolation. With this case study, we demonstrate that a return-risk bi-criterion
objective function is a valuable tool for the profit-risk tradeoff. This result trigger the
question of how the closed-loop CE strategy would compare with the closed-loop MV
strategy.

Both case studies presented in this chapter use the incompressible reservoir model
(2.10)-(2.11) implemented in the MRST simulator.

5.1 Optimal Control Problem

Production optimization aims at maximizing the net present value (NPV) or oil recov-
ery, for the life time of the oil reservoir. The stage cost, Φ, in the objective function for
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a NPV maximization can be expressed as

Φ(x(t),u(t)) =
−1

(1+ d
365 )

τ(t)

[
∑

i∈P

(
ro qo,i(u(t),x(t))− rwp qw,i(u(t),x(t))

)

+ ∑
l∈I

rwi ql(u(t),x(t))

] (5.1)

ro, rwp, and rwi represent the oil price, the water separation cost, and the water injection
cost, respectively. qw,i and qo,i are the volumetric water and oil flow rate at producer
i; ql is the volumetric well injection rate at injector l; d is the annual interest rate and
τ(t) is the integer number of days at time t. The discount factor (1+ d

365 )
−τ(t) accounts

for a daily compounded value of the capital. Note that from the well model (2.15), it
follows that the flow rates q are negative for the producer wells and positive for the
injector wells. Hence, the negative sign in front of the square bracket in the stage cost
ψ . Note that in the special case when the discount factor is zero (d = 0) and the water
injection and separation costs are zero as well, the NPV is equivalent to the quantity of
produced oil.

The optimizer maximizes the net present value by manipulating the well bhps. With
reference to the time discretization introduced in Section 2.2.1, the manipulated vari-
ables at time period k ∈N are uk = {{pbhp

i,k }i∈I ,{pbhp
i,k }i∈P} with I being the set of

injectors and P being the set of producers. For i ∈ I , pbhp
i,k is the bhp (bar) in time

period k ∈N at injector i. For i ∈P , pbhp
i,k is the bhp (bar) at producer i in time period

k ∈N .

5.1.1 Control Constraints

The bhps are constrained by well and reservoir conditions. To maintain the two phase
situation, we require the pressure to be above the bubble point pressure (290 bar). To
avoid fracturing the rock, the pressure must be below the fracture pressure of the rock
(350 bar). To maintain flow from the injectors to the producers, the injection pressure
is maintained above 310 bar and the producer pressures are kept below 310 bar. With
these bounds, we did not experience that the flow was reversed. Without these pressure
bounds, state constraints must be included to avoid flow reversion.
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5.1.2 Certainty-Equivalent, Robust, and Mean-Variance Optimiza-
tion

In reservoir models, geological uncertainty is generally profound because of the noisy
and sparse nature of seismic data, core samples, and borehole logs. The consequence of
a large number of uncertain model parameters (θ ) is the broad range of possible mod-
els that may satisfy the seismic and core-sample data. Obviously, the optimal controls,
{uk}N−1

k=0 = {uk(x0,θ)}N−1
k=0 , computed as the solution of the finite dimensional opti-

mization problem (2.27) with the objective function (2.26) depend on the values of the
uncertain parameters, θ . In practice, the initial states, x0, will also be uncertain, but in
this paper we assume that all uncertainty is contained within θ . When θ is determinis-
tic, the objective function ψ = ψ({uk}N−1

k=0 ;x0,θ) is deterministic and the optimization
problem (2.27) is well defined. In contrast, when θ is stochastic ψ =ψ({uk}N−1

k=0 ;x0,θ)
is stochastic and the optimization problem (2.27) is not well defined. To define the op-
timization problem (2.27) for the stochastic case, a deterministic objective function for
(2.27) must be constructed. The Certainty Equivalent (CE) optimization obtains a de-
terministic objective function by using the expected value of the uncertain parameters

ψCE = ψ({uk}N−1
k=0 ;x0,Eθ [θ ]) (5.2)

The MV optimization strategy is obtained by using the bi-criterion function

ψMV = λEθ [ψ]− (1−λ )Vθ [ψ] λ ∈ [0,1] (5.3)

as the objective function in (2.27). The term Eθ [ψ] is related to maximizing return
while the term Vθ [ψ] is related to minimizing risk.

[58] introduces Robust Optimization (RO) for production optimization to reduce the
effect of geological uncertainties compared to the CE optimization. The RO objective
is

ψRO = Eθ [ψ] (5.4)

The RO objective, ψRO, is a special case of the MV objective, ψMV , i.e. ψRO = ψMV
for λ = 1.

We use a Monte-Carlo approach for computation of the expected value of the param-
eters, Eθ [θ ]. The expected value of the return, Eθ [ψ], and the variance of the return,
Vθ [ψ], are also computed by the Monte-Carlo approach. A sample is a set of realiza-
tions of the stochastic variables, θ :

Θd =

{
θ

1,θ 2, . . . ,θ nd

}
=

{
θ

i
}nd

i=1
(5.5)

This sample is also called an ensemble and is generated by the Monte-Carlo method.
The objective function values, ψ i, corresponding to this ensemble are

ψ
i = ψ({uk}N−1

k=0 ;x0,θ
i) i = 1, . . . ,nd (5.6)
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The sample estimators of the means and the variance are

θ̂ =
1
nd

nd

∑
i=1

θ
i (5.7a)

ψ̂ =
1
nd

nd

∑
i=1

ψ
i (5.7b)

σ
2 =

1
nd−1

nd

∑
i=1

(
ψ

i− ψ̂
)2 (5.7c)

θ̂ is an estimator for Eθ [θ ] and ψ̂ is an estimator for Eθ [ψ]. σ2 is an unbiased estimate
of Vθ [ψ] and therefore, σ is an unbiased estimator of the standard deviation σθ [ψ] =√

Vθ [ψ].

The CE objective function, ψCE , is computed using the sample estimator θ̂ ≈ Eθ [θ ],
i.e.

ψCE = ψ({uk}N−1
k=0 ;x0, θ̂) (5.8)

Similarly, the MV objective function, ψMV , is computed using the sample estimators
ψ̂ ≈ Eθ [ψ] and σ2 ≈Vθ [ψ], i.e.

ψMV = λψ̂− (1−λ )σ2
λ ∈ [0,1] (5.9)

ψMV is computed by computation of ψ i for each parameter, i = 1, . . . ,nd , and subse-
quent computation of the sample estimators, ψ̂ and σ2. The gradient based optimizer
used in this paper needs the objective, ψMV , and the gradients, ∇uk ψMV for k ∈ N .
Appendix A.5 provides an explicit derivation of these gradients. The computation of

the objectives and the gradients, ψ i
{

∇uk ψMV

}N−1

k=0
, can be conducted in parallel for

i = 1,2, . . . ,nd . The RO objective based on the sample estimator, ψ̂ ≈ Eθ [ψ], is

ψRO = ψ̂ (5.10)

The computational effort in computing ψMV is similar to the computational effort in
computing ψRO. Therefore, no computational penalty is adopted by using the MV
approach rather that the RO approach. The CE optimization needs one function and
gradient evaluation in each iteration, while the MV optimization needs nd function
and gradient evaluations in each iteration. However, these nd function and gradient
evaluations may be conducted in parallel.

5.2 Key Performance Indicators

In this section, we present the key performance indicators (KPIs) used to evaluate the
optimal control strategies. The KPIs are divided into economic KPIs and production
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related KPIs.

5.2.1 Profit, Risk and Market Solution

Given a control sequence, {uk}N−1
k=0 , computed by some strategy, the NPV may be com-

puted for each realization of the ensemble, ψ i = ψ({uk}N−1
k=0 ;x0,θ

i) for i = 1, . . . ,nd .
This gives a set of NPVs, {ψ i}nd

i=1. By itself, these NPVs and their distribution is of
interest. Economic KPIs such as NPV mean, NPV standard deviation, ratio of NPV
mean to NPV standard deviation, and the minimum and maximum NPV in the finite
set are used to summarize and evaluate the performance of a given control strategy,
{uk}N−1

k=0 . Given {ψ i}nd
i=1, the expected mean NPV may be approximated using (5.7b),

Eθ [ψ]≈ ψ̂ . Similarly, the standard deviation of the mean may be approximated using
(5.7c), σθ [ψ]≈ σ . The ratio of return and risk is called the Sharpe ratio and is defined
as [105]

Sh =
Eθ [ψ]

σθ [ψ]
≈ ψ̂

σ
(5.11)

The ensemble, {ψ i}nd
i=1, is finite. Therefore, the minimum and maximum NPV may be

computed by

ψ = min {ψ i}nd
i=1 (5.12a)

ψ̄ = max {ψ i}nd
i=1 (5.12b)

We interpret ψ , ψ̄ as the worst case NPV and the best case NPV, respectively.

The economic KPIs,
{

ψ̂,σ ,Sh,ψ, ψ̄

}
, provide a set of values that may be used to

quickly evaluate and compare different control strategies, {uk}N−1
k=0 , in terms of return

and risk. Subsequently, selected solutions, {uk}N−1
k=0 , may be evaluated in detail by

inspection of the distribution of {ψ i}nd
i=1 and by inspection of the solution trajectories,

{uk}N−1
k=0 . The idea in the mean-variance model, i.e. MV, is to compute the optimal

solution for different values of the return-risk trade-off parameter, λ ∈ [0,1] [59, 60].

As part of the mean-variance optimization, the NPV of each realization of the ensemble
is computed for various values of λ in the mean-variance objective function (5.9). This
gives {ψ i(λ )}nd

i=1 and {uk(λ}N−1
k=0 for a range of values of the mean-variance trade-off

parameter, λ ∈ [0,1]. For each value of λ , the set of NPVs and (5.7b) are used to
approximate the expected NPV as function of λ , Eθ [ψ(λ )] ≈ ψ̂(λ ). Similarly, the
set of NPVs and (5.7c) are used to approximate the standard deviation of the NPV as
function of λ , σθ [ψ(λ )]≈σ(λ ). The expected NPV, Eθ [ψ(λ )], and the risk σθ [ψ(λ )],
may be plotted and tabulated as a function of λ . This gives some overview of the
behaviour of key economic performance indicators such as expected profit and risk as
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a function of λ . Also a phase plot of risk versus return,
{

σθ [ψ(λ )],Eθ [ψ(λ )]

}
for

λ ∈ [0,1], illustrates the risk-return relationship of the mean-variance model. Further,
from this phase plot, we can compute the efficient frontier defined as the set of solutions
with the highest expected return for a defined level of risk. The efficient frontier gives
a curve for the maximal return as function of risk. The efficient frontier in itself does
not provide a unique solution but only efficient pairs of return and risk; the preferred
solution depends on the risk preferences of the decision maker. One way to choose a
solution among the efficient risk-return pairs is to choose the solution that maximizes
the Sharpe ratio (5.11) [105]. The solution that maximizes the Sharpe ratio is called
the market solution.

5.2.2 Cumulative Productions Indicators

Other indicators that we use are the expected cumulative oil and water productions
and the production efficiency. We approximate the cumulative oil production (5.13a)
and water injection (5.13b) at final time tb by using the right rectangle (implicit Euler)
integration method

Qo = Qo(tb) =
N−1

∑
k=0

(
∑

i∈P
qo,i(xk+1,uk)

)
∆tk (5.13a)

Qw,in j = Qw(tb) =
N−1

∑
k=0

(
∑

i∈I
qi(xk+1,uk)

)
∆tk (5.13b)

and then we compute the expected values of the cumulative productions (5.13a)-(5.13b)
as the sample averages

Eθ [Qo] =
1
nd

nd

∑
i=1

Qi
o (5.14a)

Eθ [Qw,in j] =
1
nd

nd

∑
i=1

Qi
w,in j (5.14b)

Superscript i refers to the quantity computed using realization i.

The production efficiency

ξ =
Eθ [Qo]

Eθ [Qw,in j]
(5.15)

is defined as the volumetric ratio of the produced oil and the injected water.
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Figure 5.1: Excerpt from the ensemble of 100 permeability realizations. The realiza-
tions are quite heterogeneous, values are in the range 6−2734 mD.

5.2.3 Uncertain Parameters

In our study, the permeability field is the uncertain parameter. We generate 100 perme-
ability field realizations of a 2D reservoir in a fluvial depositional environment with a
known vertical main-flow direction. Fig. 5.1 illustrates such an ensemble of permeabil-
ity fields. To generate the permeability fields, we first create a set of 100 binary (black
and white) training images by using the sequential Monte Carlo algorithm ’SNESIM’
[106]. Then a Kernel PCA [107] procedure is used to preserves the channel structures
and to smooth the original binary images. The realizations obtained by this procedure
are quite heterogeneous. The values of the permeability are in the range 6−2734 mD.

5.2.4 Optimizer

For the case studies described in this chapter we use two commercial optimization soft-
ware packages to solve (2.27): Knitro [84] and Matlab’s fmincon function [85]. Knitro
as well as fmincon allow us to use an interior point or an active-set method. The initial
guesses are constant bhp trajectories. We use up to 10 different initial guesses when
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running the optimizations and we find similar qualitative results with both softwares.
The interior point algorithms and the active set algorithms give similar solutions. How-
ever, when using Knitro as well as fmincon, we select an interior point method since
we experience lowest computation times with this method. Further, a local optimal
solution is reported if the KKT conditions are satisfied to within a relative and absolute
tolerance of 10−6. The current best but non-optimal iterate is also returned in cases
when the optimization algorithm uses more than 100 iterations (200 in case study III).
Similarly, the current best, but non-optimal, iterate is also returned in the case of a rel-
ative cost function or step size change less than 10−8. Furthermore, in our simulations
we noted that normalizing the cost function improved the convergence.
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Figure 5.2: Configuration of injection wells and producer wells for Case Study II.

5.3 Case Study II: Robust Optimization Performances

We consider a conventional horizontal oil field that can be modeled as a two phase
flow in a porous medium (2.10)-(2.11). The reservoir size is 450 m× 450 m× 10 m.
By spatial discretization this reservoir is divided into 45× 45× 1 grid blocks. The
permeability field is uncertain. We assume that the ensemble in Fig. 5.1 represents
the range of possible geological uncertainties. The configuration of injection wells and
producers is illustrated in Fig. 5.2. As indicated in Fig. 5.2, the four producers are
located in the corners of the field, while the single injector is located in the center of
the field.

The reservoir’s petrophysical parameters are listed in Table 5.1. The initial reservoir
pressure is 300 bar everywhere in the reservoir. The initial water saturation is 0.1
everywhere in the reservoir. This implies that initially, the reservoir has a uniform
oil saturation of 0.9. The manipulated variables are the bhp of the five wells (four
producers, one injector) over the life of the reservoir. In this study, we consider a zero
discount factor d in the cost function (5.1). This means that we maximize NPV at the
final time without caring about the shorter horizon [21].

The case study is divided into an open-loop optimization part and a closed-loop op-
timization part. In open-loop optimization, we compute the control strategy without
using measurement feedback to update the parameters, i.e. the ensemble in Fig. 5.1
is fixed in time. In closed-loop optimization, we use production measurements and
the EnKF to estimate the permeability field parameters. To simulate the reservoir and
create production data, the first realization of the permeability field, θ 1

0|0, in Fig. 5.1 is
used. This permeability field represents the true permeability field of the reservoir.

In reality, we never know the true model when performing data assimilation with EnKF.
We can only implicitly assume that we can generate a reasonable approximation of the
true reservoir. Since we focus on the optimizer formulation and separate the effects
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Table 5.1: Parameters for the two phase model, the discounted state cost function (5.1),
and the measurement noise.

Symbol Description Value Unit
φ Porosity 0.2 -
cr Rock compressibility 0 Pa−1

ρo Oil density (300 bar) 700 kg/m3

ρw Water density (300 bar) 1000 kg/m3

µo Dynamic oil viscosity 3 ·10−3 Pa · s
µw Dynamic water viscosity 0.3 ·10−3 Pa · s
Sor Residual oil saturation 0.1 -
Sow Connate water saturation 0.1 -
no Corey exponent for oil 2 -
nw Corey exponent for water 2 -
Pinit Initial reservoir pressure 300 bar
Sinit Initial water saturation 0.1 -
ro Oil price 120 USD/bbl
rwp Water production cost 20 USD/bbl
rwi Water injection cost 10 USD/bbl
d Discount factor 0 -
R Meas. noise cov. matrix Diag(5 ·10−3, 5 ·10−3, 5 ·10−3, 5 ·10−3, 30)

of the quality in data assimilation from the quality of CE, RO and reactive strategies
as much as possible, we assume that the true reservoir is contained in the ensemble of
initial guesses.

5.3.1 Open-Loop Optimization

We consider a prediction horizon of tN = 4 · 365 = 1460 days divided in N = 60 con-
trol periods (i.e. a control period Ts ≈ 24 days). We control the reservoir using five
different strategies that we call: the reactive strategy, the nominal strategy (NO), the
certainty equivalent strategy, the robust optimization strategy (RO), and the modified
robust optimization strategy (modified RO).

The reactive strategy develops the field at the maximum production rate (setting the
producers at the lowest allowed value of 290 bar and the injector at the maximum al-
lowed value of 350 bar) and subsequently shut-in each production well when it is no
longer economical. From the values in Table 5.1, we observe that a producer well be-
comes uneconomical when the fractional flow fw is above the value 120/(120+20) =
0.857. The nominal strategy is based on a single realization. For each realization in
the ensemble we compute the optimal control trajectory. Then we apply each of these
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Figure 5.3: Permeability mean Eθ [θ ] of the ensemble given in Fig. 5.1

100 optimal control trajectories to each of the ensemble members obtaining 100 NPV
values for each control trajectory. The certainty equivalent strategy is based on solving
problem (2.27) using the certainty equivalent cost function ψCE (5.8). It uses the mean
of the ensemble as its permeability field. Fig. 5.3 illustrates the mean of the perme-
ability field ensemble given in Fig. 5.1. The RO strategy is based on solving problem
(2.27) using the robust cost function ψro (5.10). The modified robust optimization is
the RO strategy with an added reactive strategy, i.e. we solve problem (2.27) using
(5.10) but we shut in a producer well when it is non economical. This means that
when we solve the flow equations (2.10)-(2.11), the number of active producer wells
can change. This in turn means that once a well is shut-in, its later contribution to the
NPV and its gradient will be zero. We could say that for each realization we manipu-
late producer wells bhps as long as they are profitable. Further, this strategy stops the
production of a reservoir when all wells are non-economical. To our knowledge, there
exist no extension of robust optimization to include a reactive control. However, the
idea of adding reactive control has been used to improve the NPV of a single reservoir
model. In [108] they consider production optimization in the absence of uncertainty by
including a watercut constraint on the well completions. This results in increased NPV
and a faster convergence of the optimizer.

Simulations reveal that for the present case, the RO strategy yields an higher expected
NPV Eθ [ψ] and a lower standard deviation of the NPV (see Table 5.5) compared to
the certainty equivalent strategy. However, both the RO and the certainty equivalent
strategies are worse than the reactive strategy because of a much lower expected NPV
Eθ [ψ] with a much higher NPV standard deviation. The modified RO strategy has a
NPV standard deviation comparable to the reactive strategy, but a higher expected NPV
Eθ [ψ]. It is important to stress that the results concerning the merits of the different
strategies are particular to this case study and not universal. [58] presents a case in
which the RO strategy provides higher expected NPV and lower NPV standard devia-
tion than the reactive strategy. In making a comparison with [58], there are a number
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Figure 5.4: log10 K [D] of the first two realizations of the ensemble in Fig.5.1 and their
ensemble mean θ̂0|0.

of things we should stress. First of all, in [58] they control directly the liquid rates of
12 wells with no direct control on the bhp values. In our test case we control the bhp
values of only 5 wells with no direct control on the liquid rates. In [58], all the realiza-
tions give positive NPV for all the control strategies. Further, they find that the reactive
strategy is the worst to use. In our test case, the NO strategy is the worst to use, and
it gives a substantial negative NPV contribution. Hence, it seems like the test case in
[58] favors optimal control strategies. In our case, however, the heterogeneities in the
ensemble realizations make it hard for optimal control strategies to improve on a reac-
tive strategy. To summarize, the problems treated in [58] and in this case study have
quite different characteristics. Hence, different preferences with respect to open-loop
strategies is not necessarily surprising. The results in our case study indicates the value
of feedback. The reactive strategy as well as the modified robust strategy both use a
simple form of feedback. The nominal strategy, the certainty equivalent strategy, and
the robust optimization strategy are pure open-loop strategies that do not use feedback.

To illustrate the results in a tutorial way, we split the discussion of the open-loop opti-
mization into a two ensemble case and a hundred ensemble case. In the two ensemble
case, we present the results of open-loop optimization using an ensemble of two real-
izations. Fig. 5.4 illustrates the two realizations of the uncertain permeability field for
this case. In the case with hundred ensemble members, we use the entire ensemble in
Fig. 5.1 to represent the uncertain permeability field.

5.3.1.1 Case - Ensemble with Two Members

In this subsection, we describe the performance of the RO strategy for the case with
an ensemble consisting of the two permeability field realizations illustrated in Fig. 5.4.
We compare the results of the RO control strategy with the results of the reactive, the
modified RO and the optimal control strategies. By the optimal control strategies for
the two realizations in Fig. 5.4, we mean the optimal control strategies, {uk}N−1

k=0 , that
are computed by solving the optimization problem (2.27) using the true permeability
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fields. These are

ψ = ψ({uk}N−1
k=0 ; x̄0,θ

1) = ψ
1

ψ = ψ({uk}N−1
k=0 ; x̄0,θ

2) = ψ
2

The NPVs computed using these optimal control strategies act as an upper bound for
the NPVs computed using the other control strategies. In selecting the two realizations
to use, we first compute optimal control trajectories for the realizations in the ensemble
of Fig. 5.1. Then we select two realizations with large differences in the optimal
production strategies.

Fig. 5.5(1), Fig. 5.5(2) and Fig. 5.5(3) show the terms ψ1, ψ2 and Eθ [ψ] ≈ ψ̂ (5.7b)
for the reactive strategy, the RO strategy, and the modified RO strategy, respectively.
As expected, the NPVs computed using the optimal control strategies give the highest
values for ψ1 and ψ2. Compared to the reactive strategy, the RO strategy gives a lower
NPV, ψ1, for realization 1, and a higher NPV, ψ2, for realization 2. As illustrated in
Fig. 5.5(3), this results in a lower NPV mean, Eθ [ψ], for the RO strategy compared to
the reactive strategy. The modified RO control strategy gives the highest NPVs for all
the realizations.

Furthermore, it is interesting to observe the difference in production times for the differ-
ent strategies. For the RO strategy, the production continue for the entire time horizon
(1460 days) considered. In the reactive strategy, the production lasts 949 days in the
first realization (ψ2) and 1119 days in the second realization (ψ2). So there is an im-
portant difference in the field developing time of the two realizations. In the modified
RO strategy, the production lasts 1289 days in the first realization and 1240 days in the
second realization. We note that with the modified RO strategy, the production time is
longer than the production time of the reactive strategy.

Fig. 5.6 shows the control trajectories of the RO, the modified RO and the optimal
strategies. We note that because of the heterogeneity between the realizations, the re-
sulting optimal control trajectory of one realization can be very different and conflicting
with the optimal control trajectory for the other realization. To find a common optimal
control that takes all these differences into account can be difficult if not impossible.
Especially if we do not allow for changes in the configuration of active wells. E.g.
producer number 4 is producing at its minimum (310 bar) in the solution for ensemble
1 and at its maximum (290 bar) in the solution for ensemble 2. The RO and modified
RO solutions for the producer number 4 stay in between the two optimal trajectories.

In conclusion, the two-ensemble case demonstrates that the optimizer produces the
maximal profit for the optimal cases. Therefore, the optimizer works well and the
lower profit of the RO strategy is not the result of lack of convergence in the optimizer,
but rather the result of heterogeneous permeability fields giving conflicting control tra-
jectories.
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5.3.1.2 Case - Ensemble with Hundred Members

In this subsection, we describe the results for the case in which we do open-loop op-
timization using the entire ensemble of 100 realizations in Fig 5.1. Fig. 5.3 illustrates
the mean permeability field for the ensemble of permeability fields in Fig. 5.1. Fig. 5.7
shows the profit evolution in the case of an ensemble consisting of 100 permeability
fields for the certainty equivalent strategy, the reactive strategy, the RO strategy, and the
the modified RO strategy. Table 5.5 reports the corresponding key performance indica-
tors (expected NPV Eθ [ψ] and standard deviation of the NPV). As in the two ensemble
case, the reactive strategy yields both a larger expected NPV and a smaller standard
deviation for the NPV compared to the certainty equivalent and the the RO strategies.
The reasons for the inferior performance of the RO strategy should be searched in the
conflicting controls required for the different realizations. Fig. 5.8(1) shows that the
RO strategy cannot avoid that some ψ i gives a negative contribution to the expected
NPV Eθ [ψ]. In contrast, as illustrated in Fig.5.8(2), the modified RO strategy does not
produce realizations with negative profit. Furthermore, each realization of the modi-
fied RO strategy seems to increase the profit compared to the RO strategy. The reactive
strategy performs better than both the RO and ceratinty equivalent strategies because it
can shut in a well when it is no longer profitable to operate the well. The modified RO
strategy inherits the ability of the reactive strategy to shut in unprofitable wells. This is
in essence a simple feedback mechanism. Fig. 5.9 and Fig. 5.10 show the saturation
profiles of the first two realizations for the open-loop strategies. We note that the reac-
tive strategy and the modified strategy inject a higher water quantity and displace the
oil more uniformly compared to the RO and the certainty equivalent strategies.

Fig. 5.11 shows the control trajectories of the RO, the modified RO and the certainty
equivalent strategies. Compared to the the trajectories in Fig. 5.6, for the two ensemble
case, it seems that the RO and certainty equivalent strategies include some averaging
(smoothing) in the resulting control trajectories that limits their effectiveness. The
result is a control trajectory that produces less oil than the modified RO strategy that
can shut in uneconomical producer wells.

As indicated by Fig. 5.6, the RO control trajectories may be the average of conflicting
control trajectories and therefore inefficient for the uncertain system.

Fig. 5.12 shows the cumulative distribution function for the different control strategies,
i.e. the probability to get a NPV 6 x. These curves are similar to the ones reported
in [58] with the difference that the NO and the certainty equivalent strategies have a
positive probability of giving negative NPVs. Fig. 5.12 confirms that the modified RO
strategy is superior to the other open-loop strategies.
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Table 5.2: Key indicators for the open loop optimized cases. Improvements are relative
to the nominal case.

NO Reactive Certainty equivalent RO RO modified
106 USD 106 USD, % 106 USD, % 106 USD, % 106 USD, %

Eθ [ψ] 33.84 56.47, +66.9 42.72, +26.2 44.11, +30.3 58.18, +71.9
Std. dev. 26.35 6.05 18.27 13.19 6.25

5.3.2 Closed-Loop optimization

The closed-loop optimization strategies are implemented using the moving horizon
principle. In this method, each time new measurements from the real or simulated
reservoir are available, the EnKF uses these measurements to update the estimates of
the permeability field, and an open-loop optimization problem is solved using the up-
dated permeability field. Only the first part of the resulting optimal control trajectory is
implemented. As new measurements become available, the procedure is repeated. The
sampling time for the system is Ts = 146 days, i.e. the data assimilation and optimiza-
tion is performed every 146 days. The open-loop optimization uses a prediction and
control horizon of 4 ·365 = 1460 days that is divided into N = 60 periods (the same as
for the open-loop optimization strategies). With this parametrization, the control steps
for the first six periods are implemented to the system, and then we receive new mea-
surements to do new data assimilation and optimization computations for a shifted time
window. In this case study, we consider 35 of these steps such that the total production
horizon is 146 ·35 = 5110 days.

We compare three closed-loop optimization strategies: A reactive strategy, a certainty
equivalent strategy, and a RO strategy. We did not implement a modified RO strategy
because that would be complicated by the need to manage situations with a variable
number of active wells and measurements for different ensemble realizations. Further,
it would require a strategy to replace ensemble realizations when all the producing
wells are shut-in.

Fig. 5.13 shows the NPV, ψ({uk}N−1
k=0 ;x0,θ

1
0|0), for the reactive strategy, the closed-loop

RO strategy, the closed-loop certainty equivalent strategy, the optimal control strategy,
and the open-loop strategies introduced in the previous section. The optimal control
strategy is obtained solving the optimization problem (2.27) using the true permeabil-
ity field (the first realization of the permeability field in Fig. 5.1). The NPV computed
by the optimal control strategy represents the best possible operation of the reservoir.
Table 5.3 reports key performance indicators (expected NPV and improvements com-
pared to the reactive strategy) for the closed-loop strategies at different levels of mea-
surement noise. Fig. 5.13 and Table 5.3 show that for all investigated cases, both the
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closed-loop certainty equivalent strategy and the closed-loop RO strategy yield sig-
nificantly higher NPV than the reactive strategy. As is also evident from Fig. 5.13
and Table 5.3, the closed-loop certainty equivalent strategy yields higher NPV than the
closed-loop RO strategy. Furthermore, the NPV of the closed-loop certainty equivalent
strategy is very close to the NPV of the optimal strategy. Consequently, the closed-
loop certainty equivalent strategy is preferable over the closed-loop RO strategy as it
yields higher NPV and requires significantly less computational effort. This observa-
tion is also confirmed when using the second realization in Fig. 5.1 as the permeability
field. From Fig. 5.13 we note also that the modified RO is the best open-loop strategy
and that the closed-loop strategies CE and RO provide better results compared to the
modified RO starting from the assimilation steps 13 (t ≈ 1898 days) and 16 (t ≈ 2336
days), respectively. Fig. 5.14 shows the cumulative water injection and the cumu-
lative oil production for different strategies. The slope of the curves is the reservoir
injection/production rate. In general, we note that the closed-loop strategies inject at
a lower rate compared to the open-loop strategies. This happens since we use a zero
discount factor, i.e. we focus on long term behaviour. Moreover, there are no direct
bounds on the liquid rates. We note that the open-loop strategies, so as the optimal
strategy, have an upward concavity. This means that the water injection rate increases
with time. These strategies increase the injection at the final time to exploit the high
oil-to-water price ratio. The closed-loop strategies, instead, have a downward concav-
ity. At the beginning (first 300 days) the closed-loop strategies inject at a similar pace
as their open-loop counterparts (same slope in the initial part of the curves). How-
ever, as the data assimilation proceed, and a better estimate of the true field is given,
the closed-loop strategies try to inject/produce as much as the optimal strategy (black
curves in figure). This explains the change in concavity of the closed-loop strategies,
i.e. why the closed-loop strategies reduce the water injection rate with time. Fig. 5.15
illustrates the saturation profiles of the true field for the closed-loop strategies. We note
that they have similar field sweep at the final time. Fig. 5.16 shows the corresponding
control trajectories of the different closed-loop control strategies. It is evident that the
control trajectories of the optimal control strategy are very different from the control
trajectories for the closed-loop certainty equivalent and the closed-loop RO strategies.

Fig. 5.17 illustrates the RMSE (2.45) and the ensemble spread (2.44) of the EnKF when
applied together with the certainty equivalent strategy. The RMSE indicates whether
the permeability parameter estimate of the EnKF converges toward the true perme-
ability parameters. The ensemble spread indicates the uncertainty in the estimated
permeability parameters. The RMSE and the ensemble spread sequences are computed
for different levels of measurement noise, i.e. different values of R in (2.29b). Fig.
5.17(2) indicates that decreasing levels of measurements noise, R, decrease the ensem-
ble spread (2.44). This decrease does not always results in a lower RMSE (2.45) value.
However, as is evident from Fig. 5.17(1), in most of the cases, lower measurement
noise levels reduce the RMSE. In this case study there is no ensemble collapse. In
fact, Fig. 5.19 shows that the ensemble realizations have different distances at the last
assimilation time. This distances is an index of the heterogeneity in the ensemble of
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Table 5.3: Key indicators for the closed loop optimized cases. Improvements are rela-
tive to the reactive case.

Meas. noise Reactive Certainty equivalent RO Optimal
106 USD 106 USD, % 106 USD, % 106 USD, %

5 ·R 51.24 59.13, +15.4 58.34, +13.9 60.41, +17.3
R 51.24 59.79, +16.7 59.09, +15.3 60.41, +17.3

5−1 ·R 51.24 59.84, +16.8 59.52, +16.2 60.41, +17.3
5−2 ·R 51.24 59.95, +17.0 59.56, +16.2 60.41, +17.3

realizations.

In the EnKF, at each data assimilation step, we update the estimated permeability field
for each ensemble member. Fig. 5.18 illustrates the time evolution of the mean, θ̂k|k−1,
of these estimated permeability field ensembles for the closed-loop certainty equivalent
optimization strategy. Fig. 5.18 indicates that the estimated mean permeability field
captures the main features of the true permeability field. We start out with a mean
permeability field having four channel structures and converge towards the correct two
channel structure.

5.3.3 Summary

In this section, we demonstrate the open-loop and the closed-loop performance of the
certainty equivalent strategy and the RO strategy. For the open-loop case we present a
modified RO strategy that performs significantly better than the other open-loop strate-
gies. In the closed-loop situation for the case studied, we arrive at the surprising con-
clusion that the certainty equivalent strategy is slightly better than the RO strategy.

For the case presented, the open-loop RO strategy yields 3% higher expected NPV
and 28% lower NPV standard deviation than the open-loop certainty equivalent strat-
egy. Yet, the reactive strategy performed even better than the open-loop RO strategy.
Simulations indicate that the inferior performance of the open-loop RO strategy com-
pared to the reactive strategy is due to the inability of the RO strategy to efficiently
encompass ensembles with very different and conflicting optimal control trajectories.
We propose a modified RO strategy that allow shut in of uneconomical wells. The
modified RO strategy performs significantly better than the other open-loop strategies
and the reactive strategy. The modified RO optimization strategy yields an expected
NPV that is 36% higher than the expected NPV of the open-loop certainty equivalent
strategy and 3% higher than the expected NPV for the reactive strategy. The NPV stan-
dard deviation of the modified RO strategy is similar to the NPV standard deviation of
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the reactive strategy. These observations are non-trivial, as previous literature suggests
that the open-loop RO strategy performs better than the reactive strategy [58]. The
improved economic performance of the open-loop modified RO strategy justifies the
computational effort used in determining the trajectories for this strategy.

The simulations for the closed-loop strategies, reveal that the RO strategy and the cer-
tainty equivalent strategy yields significantly higher NPV than the reactive strategy.
Surprisingly, the closed-loop certainty equivalent strategy yields a higher NPV than
the closed-loop RO strategy for the case studied. The uncertainty reduction of the per-
meability field estimate due to data assimilation explains the good performance of the
closed-loop certainty equivalent optimization strategy. Consequently, in closed-loop,
the increased computational effort of the RO strategy compared to the certainty equiv-
alent strategy is not justified for the particular case studied in this section.
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Figure 5.5: Profit evolutions for open-loop optimization of the two ensemble case. The
optimal trajectories computed using the true permeability fields give the
highest possible profit. The profit of the RO strategy is below the profit of
the reactive strategy for the first permeability realization and slightly above
the second permeability realization. On average the RO strategy gives less
profit than the reactive strategy. For all cases, the modified RO strategy
produces a higher profit than the reactive strategy.
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Figure 5.6: Control trajectories for open-loop optimization of the two ensemble case.
The control trajectories for the considered optimization strategies are very
different.
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Figure 5.7: Profit evolution for open-loop optimization in the hundred ensemble case.
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Figure 5.8: Profit evolution of the open-loop RO strategy and the open-loop modified
RO-strategy for each realization of the permeability field. Some scenarios
in the RO strategy give negative profits while the modified RO strategy
avoids that by shutting in uneconomical producer wells.
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Figure 5.9: Saturation profiles of the first realization for the open-loop optimization
strategies in the hundred ensemble case.
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Figure 5.11: Control trajectories for open-loop optimization in the hundred ensemble
case.
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Figure 5.15: Saturation profiles of the true field for the closed-loop optimization strate-
gies.
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Figure 5.16: Control trajectories for the closed-loop optimization strategies.
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Figure 5.17: Convergence measures for the EnKF with various levels of measurement
noise for the closed-loop certainty equivalent strategy. (1) shows that the
EnKF does not converge to the true parameters. However, the estimate
captures enough features to be useful. (2) illustrates that the parameter
uncertainty decreases as more production data is assimilated in the esti-
mates.
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(1) t = 0

(36) t = 35∆T (37) true

Figure 5.18: Estimates of the mean permeability field as function of time for the
closed-loop certainty equivalent strategy. The initial estimate is a four
channel structure. The estimates, θ̂k|k−1, converge towards the true two-
channel structure as more measurements are assimilated.
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Figure 5.19: Closed-loop. Distance of the ensemble realizations of the permeability
field respect to the true permeability field for (1) the initial ensemble,
(2) the final ensemble with a measurement noise of 5 R and (3) the final
ensemble with a measurement noise of R/5. We note that also in the case
with the lowest measurement noise, the ensemble is not collapsing.
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5.4 Case study III: Mean-Variance Optimization

The mean-variance optimization strategy is studied for two test cases. The same reser-
voir permeability fields and petro-physical parameters are used for the two test cases.
Fig. 5.1 illustrates the ensemble of permeability fields used to represent the uncertain
reservoir. Fig. 5.3 illustrates the mean permeability field of the ensemble of permeabil-
ity fields. As illustrated by Fig. 5.20 and reported in Table 5.4, the differences between
the two test cases are the well configurations and the economical parameters. Test Case
I contains more injector wells than Test Case II. Furthermore, compared to Test Case
II, the water injection costs and the water separation costs are higher in Test Case I.
This implies that a reactive strategy that injects water at a maximal rate is penalized in
Test Case I with high water injection and water separation costs. Consequently, Test
Case I is used to illustrate a complicated well configuration benefitting from intelligent
coordination of wells and penalizing conventional reactive strategies. Test Case II is
simpler and the value of feedback becomes more important than predictive coordina-
tion of the wells. This means that in Test Case II, a feedback based reactive strategy
will be able to do better than a model based open loop strategy. Combined, the two test
cases illustrate that the shape and geometry of the efficient frontier is case dependent,
that the value of feedback in a reactive strategy compared to an open-loop optimization
strategy is dependent on the well configuration, and that the mean-variance objective
formulation is an efficient way to trade off risk and return.
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Figure 5.20: The well configuration for Test Case I and II. The permeability field in
this plot is the permeability field in the upper left corner of Fig. 5.1. Pro-
ducer wells are indicated by the letter p, and injector wells are indicated
by the letter i. In addition to the injector and producer wells in Test Case
II, Test Case I has a number of injector wells on the boundary of the field.
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Table 5.4: Petro-physical and economical parameters for the two phase model and the
discounted state cost function used in the case studies. TC I = Test Case I.
TC II = Test Case II.

Description Value Unit
φ Porosity 0.2 -
cr Rock compressibility 0 Pa−1

ρo Oil density (300 bar) 700 kg/m3

ρw Water density (300 bar) 1000 kg/m3

µo Dynamic oil viscosity 3 ·10−3 Pa · s
µw Dynamic water viscosity 0.3 ·10−3 Pa · s
Sor Residual oil saturation 0.1 -
Sow Connate water saturation 0.1 -
no Corey exponent for oil 2 -
nw Corey exponent for water 2 -
Pinit Initial reservoir pressure 300 bar
Sinit Initial water saturation 0.1 -
ro Oil price 120 USD/bbl
rwp Water separation cost (TC I) 25 USD/bbl
rwp Water separation cost (TC II) 20 USD/bbl
rwi Water injection cost (TC I) 15 USD/bbl
rwi Water injection cost (TC II) 10 USD/bbl
d Discount factor 0

5.4.1 Description of the Test Cases

We consider a conventional horizontal oil field that can be modeled as two phase flow
in a porous medium [3]. The reservoir size is 450 m× 450 m× 10 m. By spatial dis-
cretization this reservoir is divided into 45×45×1 grid blocks. The permeability field
is uncertain, θ = lnK. We assume that the ensemble in Fig. 5.1 represents the range of
possible geological uncertainties.

Table 5.4 lists the reservoir’s petro-physical and economical parameters. The initial
reservoir pressure is 300 bar everywhere in the reservoir. The initial water saturation
is 0.1 everywhere in the reservoir. This implies that initially, the reservoir has a uni-
form oil saturation of 0.9. The manipulated variables are the bhps over the life of the
reservoir. In this study, we consider a zero discount factor, d, in the cost function (5.1).
This means that we maximize NPV at the final time without short term production
considerations [21].

In both test cases, we consider a prediction horizon of tN = 4 ·365 = 1460 days divided
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in N = 60 control periods (i.e. the control period is Ts ≈ 24 days). We control the reser-
voir using three strategies: a reactive strategy, a CE strategy, and a MV strategy. The
RO strategy is considered a special MV strategy with λ = 1. In the reactive strategy, we
develop the field at the maximum production rate by setting the producers at the lowest
allowed bhp value (290 bar) and the injectors at the maximum allowed bhp value (350
bar). When a production well is no longer economical it is shut in. A production well
is uneconomical when the value of the produced oil is less than the separation cost of
the produced water. The CE strategy is based on solving problem (2.27) using the CE
cost function ψCE (5.8). It uses the mean (Fig. 5.3) of the ensemble (Fig. 5.1) as its
permeability field. The MV strategy is based on solving problem (2.27) using the cost
function ψMV (5.9) for different values of the parameter λ .

5.4.2 Test Case I

Fig. 5.20(1) illustrates the well configuration for Test Case I. Test Case I has 9 injec-
tion wells and 4 producer wells. Table 5.4 contains the petro-physical as well as the
economic parameters. From the oil price and the water separation cost for Test Case I,
it is apparent that a producer well becomes uneconomical when the fractional flow, fw,
exceeds ro/(ro + rwp) = 120/(120+25) = 0.828.

Fig. 5.21 shows the optimal bhp trajectories for the the producer wells, while Fig. 5.22
shows the optimal bhp trajectories for the injector wells. These trajectories are com-
puted using the reactive, the MV, the RO, and the CE optimization strategy. λ = 0.59
gives the market solution for this case, and this value of λ is used in the MV strategy.
Compared to the RO and the market MV strategy, the CE trajectories do not contain
sudden large changes in the bhp. This is due to the fact that the mean permeability
field used by the CE strategy does not have sharp edges. It is also apparent that the
bhp trajectories of the RO strategy has larger sudden changes than the trajectories of
the market MV strategy. For some realizations of the permeability field, the RO trajec-
tories would perform very well because they utilize the sharp channel structure in the
permeability field. However, sudden large changes in the manipulated variables is an
indication of solutions that are sensitive to process noise and model uncertainties. As
sensitivity to noise is related to high risk, the trajectories of the bore hole pressures in-
dicate that the RO strategy is more risky than the market MV strategy. This observation
is confirmed in Fig. 5.23.

Fig. 5.23 illustrates the profit, ψ i, for each realization of the permeability field using
the reactive strategy as well as the CE, the RO, and the market MV optimal control
strategies. The average profit over the realizations is a measure of the expected return,
while the fluctuations are a measure of risk. For each control strategy, the bigger the
fluctuations in profit the bigger the related risk. It is evident that the CE strategy has the
lowest expected return and the biggest risk. The CE strategy also has the lowest worst



88 Production Optimization under Uncertainty

0 500 1000
285

290

295

300

305

310

315

bh
p 

(b
ar

)

well: p2

0 500 1000
285

290

295

300

305

310

315
well: p4

0 500 1000
285

290

295

300

305

310

315

time (days)

bh
p 

(b
ar

)

well: p1

 

 

CE
Reactive
RO
MV, λ=0.59

0 500 1000
285

290

295

300

305

310

315

time (days)

well: p3

Figure 5.21: Test Case I. Trajectories of the bhp at producer wells using different op-
timization strategies. In the reactive strategy, the producer wells are shut
in when production becomes uneconomical. The shut in time is different
for each realization and is not indicated in the plot.

case return. The reactive strategy has a mean return that is higher than the mean return
of the CE strategy but lower than the mean returns of the RO and the MV strategies.
The risk for the reactive strategy is lower than the risk for the CE strategy but higher
than the risks for the RO and the MV strategies. Comparing the market MV and the
RO strategies, the RO strategy has a slightly higher mean profit than the market MV
strategy but at the price of a significantly higher risk.

Table 5.5 reports key performance indicators for each control strategy. The economi-
cal key performance indicators are the expected NPV, the standard deviation NPV, the
Sharpe ratio, and the minimum and maximum NPV for the ensemble. The produc-
tion related key performance indicators are the mean oil production, the mean water
injection, and the production efficiency (5.15) for the ensemble. The mean oil pro-
duction and the mean water injection are scaled by the pore volume of the reservoir.
Interestingly, the MV market strategy (λ = 0.59) has the highest minimum ensemble
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Figure 5.22: Test Case I. Trajectories of bhp for injector wells using different opti-
mization strategies.

Table 5.5: Key performance indicators for Test Case I. The economic KPIs are the
expected profit, the standard deviation of the profit, the Sharpe ratio, and the
minimum and maximum profit for the ensemble. The reported production
related KPIs are the expected oil production, the expected water injection,
and the production efficiency, ξ . The productions are normalized by the
pore volume. All improvements are relative to the reactive strategy.

Strategy ψ̂ σ Sh ψ ψ̄ Eθ [Qo ] Eθ [Qw,in j ] ξ

106 USD, % 106 USD, % 106 USD, % 106 USD, % , % , % %
Reactive 39.04, / 9.01, / 4.34 17.62, / 60.47, / 0.39, / 1.04, / 37.8
CE 28.57, −26.8 18.93, +110.2 1.51 -23.86, −235.4 60.25, −0.40 0.32, −18.4 0.88, −15.3 36.4
MV
λ = 1 (RO) 50.40, +29.1 8.17, −9.3 6.17 28.11, +67.2 69.90, +15.6 0.26, −34.0 0.44, −57.4 58.5
λ = 0.75 48.00, +25.0 6.13, −32.0 7.83 34.68, +96.8 64.52, +6.7 0.24, −38.9 0.39, −62.5 61.6
λ = 0.59 47.09, +20.6 4.89, −45.7 9.63 35.44, +101 57.747, −4.5 0.23, −40.9 0.38, −63.6 61.5
λ = 0.5 45.58, +16.7 5.15, −42.8 8.85 33.13, +88.0 57.84, −4.3 0.23, −41.0 0.39, −62.4 59.3
λ = 0.25 45.09, +15.5 4.76, −47.1 9.47 32.39, +83.8 56.3, −6.9 0.22, −42.5 0.37, −64.0 60.3
λ = 0.125 44.00, +12.7 4.61, −48.8 9.54 31.73, +80.1 54.67, −9.6 0.22, −44.1 0.36, −65.1 60.5
λ = 0 41.57, +6.5 5.02, −44.2 8.28 29.47, +67.2 52.40, −13.3 0.21, −45.6 0.36, −64.9 58.6
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Figure 5.23: Test Case I. The net present value (NPV) of the optimal solution for each
realization of the ensemble. The optimal solution is computed using a
CE objective, a RO objective, and a MV objective with a mean-variance
trade-off corresponding to the market solution (λ = 0.59). We also show
the NPVs for the reactive strategy.

NPV value, i.e. in this case the market solution has a better worst case profit compared
to all other control strategies including the MV strategies with lower standard devia-
tion. Compared to the CE strategy and the reactive strategy, all MV control trajectories
give higher expected NPV and lower NPV standard deviation. In that sense the MV
solutions are said to dominate the CE solution and the solution given by the reactive
strategy. The RO solution has the highest maximum NPV and also the highest expected
NPV. However, among the MV solutions, it is also the solution with the lowest min-
imum NPV. This implies that the RO solution is very risky and this is confirmed by
its high NPV standard deviation. Among the MV solutions, the RO solution has the
highest NPV standard deviation. Fig. 5.24 summarizes the economic key performance
indicators of the MV solutions. Fig. 5.24(1) shows the expected NPV as well as the
worst and best NPV for the ensemble as function of the mean-variance trade-off pa-
rameter, λ . It is easily observed that the market MV solution, coincidentally, is also the
max-min solution, i.e. the solution yielding the highest worst case NPV. Similarly, the
high risk of the RO solution is evident. Fig. 5.24(2) illustrates the standard deviation of
the NPV as function the mean-variance trade-off parameter, λ . The standard deviation
of the NPV is a measure of risk. The risk is a non-monotonous function of the mean-
variance trade-off parameter, λ . Measured by NPV standard deviation, the minimum
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Figure 5.24: Mean-variance relations for Test Case I. Profit (1), risk (2), and Sharpe
Ratio (3) for different mean-variance trade-offs, λ . (4) is a phase plot of
expected profit vs risk measured as the standard deviation of profit. The
blue curve is the efficient frontier. The red curve is the inefficient frontier.
Also the CE solution and the reactive solution are indicated.

risk solution is obtained for λ = 0.125. However, this solution is inferior to the market
MV solution, as the market MV solution has a higher worst case NPV, a higher mean
NPV, and a higher best case NPV (see Fig. 5.24(1)). Fig. 5.24(3) plots the Sharpe ratio
as function of the mean-variance trade-off parameter, λ . This plot indicates that the
maximal Sharpe ratio, i.e. the market solution, is obtained for λ = 0.59. The Sharpe
ratio is not a concave function of λ in this case. Another local maximum with almost
the same Sharpe ratio as the global maximum is obtained for λ = 0.125, i.e. for the
minimum risk solution. As we noted previously, this solution is inferior to the market
solution. Also note that the RO solution has the lowest Sharpe ratio. Fig. 5.24(4) illus-
trates the risk-return relations for the different MV strategies as well as the CE, the RO
(MV with λ = 1), and the reactive strategy. This figure clearly illustrates the superiority
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Table 5.6: Key Performance Indicators for Test Case II. The economic KPIs are the
expected profit, the standard deviation of the profit, the Sharpe ratio, and the
minimum and maximum profit for the ensemble. The reported production
related KPIs are the expected oil production, the expected water injection,
and the production efficiency, ξ . The productions are normalized by the
pore volume. All improvements are relative to the reactive strategy.

Strategy ψ̂ σ Sh ψ ψ̄ Eθ [Qo ] Eθ [Qw,in j ] ξ

106 USD, % 106 USD, % 106 USD, % 106 USD, % , % , % %
Reactive 56.47, / 6.05, / 9.33 43.92, / 70.104, / 0.35, / 0.86, / 39.5
CE 42.72, −24.35 18.27, +202.0 2.34 -38.40, −187.4 72.21, +3.01 0.26, −26.0 0.64, −27.4 40.3
MV
λ = 1 (RO) 44.11, −21.9 13.19, +118.0 3.34 9.28, −78.9 67.14, −4.2 0.23, −34.9 0.47, −45.8 47.5
λ = 0.75 42.52, −24.7 8.58, +41.8 4.96 17.93, −59.2 59.16, +15.6 0.19, −44.9 0.33, −61.9 57.2
λ = 0.5 39.62, −29.8 6.39, +5.6 6.20 21.24, −51.6 51.82, −26.1 0.17, −52.0 0.26, −70.6 64.6
λ = 0.25 35.97, −36.3 4.81, −20.5 7.48 22.46, −48.9 46.45, −33.7 0.15, −58.0 0.21, −76.3 70.0
λ = 0.125 32.64, −42.2 4.32, −28.7 7.56 21.29, −51.5 42.46, −39.4 0.13, −62.5 0.18, −79.6 72.7
λ = 0 26.23, −53.5 3.99, −34.0 6.57 17.37, −60.5 36.38, −48.1 0.10, −71.2 0.12, −86.1 81.9

of the market MV strategy over the reactive strategy and the CE strategy. It also shows
the reduced risk of the market MV strategy compared to the RO strategy at the cost of
slightly reduced mean profit. The risk-return curve for the MV optimization strategies
has two arcs. The efficient frontier arc is the blue curve in Fig. 5.24(4); the red curve
is the inefficient frontier. In the efficient frontier, an increased risk is associated with
an increased mean return. The MV strategy contains some risk-return points that are
feasible but not on the efficient frontier, i.e. points that for a given risk level does not
produce the maximal expected return.

For Test Case I, the production related key performance indicators in Table 5.5 demon-
strate that the reactive strategy produces much more oil compared to the other control
strategies. However, it also injects and produces much more water, i.e. Eθ [Qo] = 0.39
pore volume and Eθ [Qw,in j] = 1.04 pore volume. From a pure production point of view,
the most efficient MV solution does not coincide with the market solution nor with the
RO solution. It occurs for λ = 0.75 and has a production efficiency of ξ = 61.6%, i.e.
61.6 barrels of oil is produced for 100 barrels of injected water.

5.4.3 Test Case II

Test Case II has the well configuration indicated in Fig. 5.20(2). The petro-physical
and economical parameters reported in Table 5.4 are used for the simulations. This
implies that a producer well becomes non-economical when the fractional water flow,
fw, exceeds ro/(ro + rwp) = 120/(120+ 20) = 0.857. Compared to Test Case I, Test
Case II has fewer injection wells and the water separation cost is lower.

Fig. 5.25 and Table 5.6 report the economic key performance indicators for Test Case
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Figure 5.25: Mean-variance relations for Test Case II. Profit (1), risk (2), and Sharpe
Ratio (3) for different mean-variance trade-offs, λ . (4) is a phase plot of
expected profit vs risk measured as the standard deviation of profit. The
blue curve is the efficient frontier. Also the CE and reactive strategy are
indicated.

II. They summarizes and provides an overview of the performance of different control
strategies for Test Case II. The Sharpe ratio curve in Fig. 5.25(3) indicates that the
market MV solution is obtained for λ = 0.125. As illustrated by the efficient frontier
in the risk-return plot in Fig. 5.25(4), the RO solution and the CE solution both have
higher expected return as well as significantly higher risk (NPV standard deviation)
than the MV market solution. Comparing with the sketch in Fig. 1.2, the efficient
frontier illustrated in Fig. 5.25(4) is a textbook example of the relation between risk and
return. At the price of a low reduction in the expected return, the MV market solution
decreases the risk significantly compared to the RO solution and CE solution. Also the
worst case NPV is much higher for the MV market solution than the corresponding
values for the RO solution and the CE solution. For the CE solution, the worst case
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NPV is even negative.

Test Case II has been included to demonstrate the value of information and feedback.
While the optimization based strategies studied in this paper are open-loop strategies
that do not use feedback, the reactive strategy is a feedback controller. As reported in
Fig. 5.25(4) and Table 5.6, the reactive strategy has both a higher expected NPV and a
lower risk (NPV standard deviation) than the RO solution as well as the CE solution.
Consequently, the reactive solution is superior to the open-loop CE and RO strategies.
Furthermore, the worst case NPV of the reactive strategy is higher than worst case
NPVs of the CE solution and the RO solution. The worst case NPV of the reactive
strategy is even better than the mean NPV of the CE strategy. Fig. 5.25(4) illustrates
that the reactive strategy has a significantly higher return than the MV market solution.
However, the reactive strategy also has a higher risk measured by the NPV standard
deviation. Nevertheless, the reactive strategy is still superior to the MV market solution
as the worst case NPV of the reactive strategy is larger than the best case NPV of the
market MV solution. This illustrates that even though a control strategy may have a
larger standard deviation than another control strategy, it may still be superior as all its
possible profits are larger than the profits of the other control strategy.

Interestingly and perhaps surprising, Fig. 5.25(1) as well as Table 5.6 indicates that the
Market MV solution is in some sense inferior to the MV solution obtained for λ = 0.25.
The MV solution for λ = 0.25 has a worst case NPV, a mean NPV, and a best case
NPV, that are all higher than the corresponding values for the market solution. Even
though the market solution has lower risk in terms of standard deviation of the NPV,
this becomes in some sense irrelevant as both the mean NPV and the worst case NPV of
the MV solution with λ = 0.25 are higher than the corresponding values of the market
solution. A more detailed comparison of the two MV strategies would require the
distribution of the NPVs for the two strategies and not only the just discussed statistics.

In addition to economic key performance indicators, Table 5.6 also reports key per-
formance indicators related to production. The reactive strategy has the highest oil
recovery but also the highest water injection such that the production efficiency, ξ , is
the lowest of all strategies. The most efficient solution measured by the production ef-
ficiency, ξ , would be the minimum variance solution obtained for λ = 0. This solution
would have a production efficiency of ξ = 81.9%. In economic terms, this solution
would still be inferior to the reactive strategy.

5.4.4 Summary

Using two test cases, we have demonstrated production optimization of an uncertain oil
reservoir by open-loop optimal control using a mean-variance objective function. We
have compared optimal control using a mean-variance objective function to open-loop
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optimal control with a CE objective function and an RO objective function, respec-
tively. For uncertain reservoirs, the market solution of the mean-variance objective
provides better and more well-behaved bhp trajectories with less risk (standard devia-
tion) of the NPV. This reduced risk typically comes at the price of reduced profit. The
simulations reveal that for the reservoirs in this paper, the reduction in expected NPV is
modest compared to the risk reduction. Risk mitigation by the mean-variance objective
can be regarded as a regularization of the RO objective and has the same regulariz-
ing effect on the solution, i.e. the bhp trajectories, as the effect of e.g. a Tikhonov
regularizer in least squares problems [109].

The analysis, evaluation and discussion of control performance in uncertain oil reser-
voirs is facilitated by Fig. 5.24 and Fig. 5.25. In practice a dash board of risk re-
turn relations similar to Fig. 5.24 and Fig. 5.25 will be very valuable for reservoir
management and risk mitigation. A closed-loop reservoir management system, should
compute MV optimal control solutions for λ ∈ [0,1]. This would give the expected
NPV, the NPV standard deviation, the Sharpe ratio, and the efficient frontier in a risk-
return diagram. The range of possible NPVs are subsequently computed by simulating
each of the optimal control solutions for each of the permeability fields in the ensem-
ble. Reservoir engineers and managers could then analyze the diagrams as well as
selected bhp trajectories. Based on this analysis, they should select a mean-variance
trade-off parameter, λ . This could be the market solution, but it could also be another
value. A set of optimal injector and producer well bhp trajectories corresponds to the
selected value of λ . The bhp values in the first control period are implemented in the
reservoir. Test Case II demonstrated the importance of feedback. To incorporate mea-
surements obtained one control period later, a history matching procedure should be
used to update the ensemble of permeability fields. Based on this updated ensemble
of permeability fields, the mean-variance open-loop optimal control computations are
repeated and the first part of the selected optimal bhps are implemented [56].

In the analysis and discussion of the performance of different control strategies, worst
case analysis is beneficial and informative. In this study, we analyzed worst case perfor-
mance by simulation using a bhp trajectory obtained by open-loop MV optimization;
i.e. as part of solving the mean-variance optimal control problem, we computed the
NPV, ψ i, for each member of the ensemble, and the set {ψ i}nd

i=1 was used to determine
ψ = min {ψ i}nd

i=1 and ψ̄ = max {ψ i}nd
i=1. In a future study, it would be interesting to

compare the MV solution to a max-min solution, i.e. to compute the optimal control
trajectories by solution of

max
{uk}N−1

k=0

min
i∈{1,2,...,nd}

ψ = ψ({uk}N−1
k=0 ;x0,θ

i) (5.16a)

s.t. c({uk}N−1
k=0 )≤ 0 (5.16b)

Subsequently, key performance indicators such as the mean, the standard deviation,
and the Sharpe ratio may be computed. These key performance indicators can be used
to evaluate and compare the max-min solution to the mean-variance solutions.
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CHAPTER 6

Concluding Remarks and
Recommendations for

Further Work

In this section, we offer some concluding remarks, possible extensions, and directions
for future research.

In this thesis we have looked at the application of Nonlinear Model Predictive Control
to the oil production optimization problem. Specifically, we focused on three active
research areas in the oil industry:

1. Efficient High Order Forward and Adjoint gradients computation by ESDIRK
methods

In Chapter 4 we propose the use of high order continuous and discrete adjoints,
based on ESDIRK methods, in a gradient based algorithm for oil reservoir pro-
duction optimization. The resulting algorithm is tested for a production optimiza-
tion problem of an oil reservoir with a slightly compressible two phase flow. For
all cases considered, the dynamic optimization increases the net present value of
the field and gives increased oil production. Computational experiments demon-
strate that the accuracy of the sensitivities obtained by the adjoint methods are
comparable to the accuracy obtained by the finite difference method. Using the
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ESDIRK method, the continuous adjoint method is able to use a time grid dif-
ferent from the time grid used for forward integration. Therefore, it can compute
these sensitivities much faster than the discrete adjoint method and the finitedif-
ference method. Computational experiments show that when the time steps are
controlled in a certain range, the continuous adjoint method produces gradients
sufficiently accurate for the optimization algorithm and somewhat faster than the
discrete adjoint method.

Future work in this area should investigate the use of a variable step-size in the
forward integration. For basic simulation tasks, our software is equipped with
a PI stepsize controller, while the forward integration reported in this thesis is
based on a fixed step size. In this work we didn’t report preliminary results
of using the adaptive step size controller as it is not clear yet how to set the
controller tollerances during the adjoint integration. Simulations suggests that
relatively smaller step-sizes should be taken at the end of the horizon when inte-
grating backward with the continuous adjoint.

2. Study of Open-loop and Closed-loop Robust Optimization Strategies

In Chapter 5, we demonstrate the open-loop and the closed-loop performance of
the certainty equivalent strategy and the RO strategy. For the open-loop case we
present a modified RO strategy that performs significantly better than the other
open-loop strategies. In the closed-loop situation for the case studied, we arrive
at the surprising conclusion that the certainty equivalent strategy is slightly better
than the RO strategy.

For the case presented, the open-loop RO strategy yields 3% higher expected
NPV and 28% lower NPV standard deviation than the open-loop certainty equiv-
alent strategy. Yet, the reactive strategy performed even better than the open-loop
RO strategy. Simulations indicate that the inferior performance of the open-loop
RO strategy compared to the reactive strategy is due to the inability of the RO
strategy to efficiently encompass ensembles with very different and conflicting
optimal control trajectories. We propose a modified RO strategy that allow shut
in of uneconomical wells. The modified RO strategy performs significantly bet-
ter than the other open-loop strategies and the reactive strategy. The modified
RO optimization strategy yields an expected NPV that is 36% higher than the
expected NPV of the open-loop certainty equivalent strategy and 3% higher than
the expected NPV for the reactive strategy. The NPV standard deviation of the
modified RO strategy is similar to the NPV standard deviation of the reactive
strategy. These observations are non-trivial, as previous literature suggests that
the open-loop RO strategy performs better than the reactive strategy [58]. The
improved economic performance of the open-loop modified RO strategy justifies
the computational effort used in determining the trajectories for this strategy.

The simulations for the closed-loop strategies, reveal that the RO strategy and
the certainty equivalent strategy yields significantly higher NPV than the reac-
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tive strategy. Surprisingly, the closed-loop certainty equivalent strategy yields
a higher NPV than the closed-loop RO strategy for the case studied. The un-
certainty reduction of the permeability field estimate due to data assimilation
explains the good performance of the closed-loop certainty equivalent optimiza-
tion strategy. Consequently, in closed-loop, the increased computational effort
of the RO strategy compared to the certainty equivalent strategy is not justified
for the particular case studied in in Section 5.3.

Future work in this area should include a test of the strategies discussed in Sec-
tion 5.3 for a more complex scenario (many wells, 3D grid, state/output con-
straints, spurious correlations), and we plan to work on the "Brugge field" [46].
In open-loop simulations, we expect that the modified RO strategy will improve
the RO strategy as seen here. This result is in some way anticipated in [108],
where, despite they do not consider uncertainty in the reservoir parameters, they
get an increased NPV on the "Brugge field" by adding a reactive control to an
optimal control strategy. In closed-loop simulations, we expect to obtain similar
results for the RO and the CE strategies provided the data assimilation converges
properly, as in the case showed in Section 5.3.

3. Return-risk Mitigation in Production Optimization
In Chapter 5, we describe a mean-variance approach to risk mitigation in produc-
tion optimization by open-loop optimal control. The mean-variance approach to
risk mitigation is well known in finance and design optimization, but have to
our knowledge not been used previously for production optimization of oil reser-
voirs. By simulation, we demonstrate a computationally tractable method for
mean-variance optimal control calculations of a reservoir model consisting of
an ensemble of permeability fields. Compared to the RO strategy and the CE
strategy, the MV strategy based on the market value of the mean-variance trade-
off parameter, λ , is able to reduce risk significantly. This comes at the price of
slightly reduced mean profits. In Test Case II we indicated the importance of
feedback. Therefore, future studies should investigate the mean-variance opti-
mal control strategy in a moving horizon closed-loop fashion. Implemented in
closed-loop using the moving horizon principle, the optimal control problem for
production optimization of an oil reservoir is an example of an Economic Non-
linear Model Predictive Controller (Economic NMPC). Therefore, we believe
that the mean-variance objective function introduced in this paper will be of in-
terest to not only production optimization for closed-loop reservoir management
but also for Economic NMPC in general. Further, a modified MV strategy that
can shut in uneconomical wells (similar to the modified RO in [56]) should be
investigated. Finally, we should take in consideration modifications to the MV
cost function (5.9). For example, we should investigate the results of directly
maximizing the Sharpe ratio (5.11) in (2.27) or investigate what happens if we
consider the dimensional correct standard deviation σ instead of the dimensional
incorrect variance σ2 in (5.9).
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Future work should include also other important tasks, as:

• In this thesis, we used a direct sparse LU solver to solve the flow equations.
Future work should use efficient large-scale iterative solvers as implemented in
the Stanford General Purpose Reservoir Simulator [110].

• Implementations of the algorithms as efficient C++/MPI code are needed to solve
more realistic scenarios (the algorithms described in this thesis have been imple-
mented in Matlab).

• Integrations of the implemented algorithms in a unique software for CLRM

• Test the algorithms discussed in this thesis for more complex scenarios to gener-
alize the results presented in this thesis

• Comparisons with state-of-the-art commercial simulators as a validation of the
developed software.

• Lastly, to fully exploit the potential of high order schemes, we should combine
the high order time integration scheme ESDIRK with a high order spatial inte-
gration scheme. In [111] they solve a two-phase flow by combining a higher
order discontinuous Galerkin method with a high order explicit RK method. The
method proposed shows very promising results in both quality of the results and
computational efficency.



APPENDIX A

Useful Results

A.1 ESDIRK Coefficients

The coefficients for ESDIRK12, ESDIRK23 and ESDIRK34 used in chapters 3 and 4
are found in Table A.1, A.2 and A.3 respectively.
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Table A.1: Coefficients for ESDIRK12

Coefficient Value
s 2
c1 0
c2 1
a21 0
γ 1
b1 0
b2 1
d1 − 1

2
d2

1
2

q 2

b̄i,k

(
0 −1/2
0 1/2

)

Table A.2: Coefficients for ESDIRK23

Coefficient Value
s 3
c1 0
c2 0.585786437626905
c3 1
a21 0.292893218813452
γ 0.292893218813452
a31 0.353553390593274
a32 0.353553390593274
b1 0.353553390593274
b2 0.353553390593274
b3 0.292893218813452
d1 0.13807118745769
d2 −0.333333333333333
d3 0.195262145875635
q 3

b̄i,k

 1 −1.35355339059327 0.569035593728849
0 2.06066017177982 −1.37377344785321
0 −0.707106781186547 0.804737854124365
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Table A.3: Coefficients for ESDIRK34

Coefficient Value
s 4
c1 0
c2 0.871733043016918
c3 0.468238744851844
c4 1
a21 0.435866521508459
γ 0.435866521508459
a31 0.140737774724706
a32 −0.108365551381321
a41 0.102399400619911
a42 −0.376878452255556
a43 0.838612530127186
a44 γ

b1 a41
b2 a42
b3 a43
b4 a44
d1 −0.054625497240414
d2 −0.494208893625995
d3 0.221934499735065
d4 0.326899891131344
q 3

b̄i,k


0.92277773077164 −1.53835725968353 0.71797892953181
−0.69864686211777 0.26665836746888 0.05511004239334
0.31374150452444 1.88835458133266 −1.36348355572992
0.46212762682169 −0.61665568911801 0.59039458380477
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A.2 Proof of Proposition 1.

The idea in the proof stems from [66]. Define

G(x, ẋ,u) =
d
dt

g(x(t))− f (x(t),u(t)) =
∂g
∂x

ẋ(t)− f (x(t),u(t)) = 0 (A.1)

and introducing the adjoint variable, λ (t), to define the augmented objective function
as

JA = J+
∫ tb

ta
λ

T (t)G(x, ẋ,u)dt (A.2a)

(A.1) implies that the derivative of the augmented objective function, JA, can be ex-
pressed as

dJA

duk
=

dJ
duk

=
∂ Φ̂

∂x
∂x
∂uk

∣∣∣∣
tb

+
∫ tb

ta

(
∂Φ

∂u
∂u(t)
∂uk

+
∂Φ

∂x
∂x(t)
∂uk

)
dt

+
∫ tb

ta
λ

T (t)
(

∂G
∂u

∂u(t)
∂uk

+
∂G
∂x

∂x(t)
∂uk

+
∂G
∂ ẋ

∂ ẋ
∂uk

)
dt

(A.3)

where

∂u(t)
∂uk

=

{
I tk ≤ t < tk+1

0 otherwise
(A.4)

Integrating by part∫ tb

ta
λ

T (t)
∂G
∂ ẋ

∂ ẋ
∂uk

dt =
[

λ
T ∂G

∂ ẋ
∂x(t)
∂uk

]∣∣∣∣tb
ta
−
∫ tb

ta

d
dt

(
λ

T ∂G
∂ ẋ

)
∂x
∂uk

dt (A.5)

and using ∂x
∂uk

(ta) = 0 in our case, we can rearrange equation (A.3) as

dJ
duk

=
∫ tk+1

tk

(∂Φ

∂u
+λ

T ∂G
∂u

)
dt +

∫ tk+1

tk

(
∂Φ

∂x
+λ

T ∂G
∂x
− d

dt

(
λ

T ∂G
∂ ẋ

)) ∂x
∂uk

dt

+

[(
∂ Φ̂

∂x
+λ

T ∂G
∂ ẋ

)
∂x
∂uk

]∣∣∣∣
tb

(A.6)

This expression gives the derivative dJ/duk for any value (not just the optimal one) of
λ (t). We choose λ (t) such that it satisfies

∂Φ

∂x
+λ

T ∂G
∂x
− d

dt

(
λ

T ∂G
∂ ẋ

)
= 0 (A.7a)[

∂ Φ̂

∂x
+λ

T ∂G
∂ ẋ

]∣∣∣∣
tb

= 0 (A.7b)
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and gives a simple expression for evaluation of dJ/duk

∂ψ

∂uk
=

dJ
duk

=
∫ tk+1

tk

(
∂Φ

∂u
−λ

T ∂ f
∂u

)
dt (A.8)

(A.1) implies

∂G
∂x

=
d
dt

(
∂g
∂x

)
− ∂ f

∂x
(A.9a)

∂G
∂ ẋ

=
∂g
∂x

(A.9b)

such that (A.7) can be rearranged to

dλ T

dt
∂g
∂x

+λ
T ∂ f

∂x
− ∂Φ

∂x
= 0 (A.10a)

∂ Φ̂

∂x
(x(tb))+λ

T (tb)
∂g
∂x

(x(tb)) = 0 (A.10b)

Similarly we derive the expression for dJ/dx0

dJA

dx0
=

dJ
dx0

=
∂ Φ̂

∂x
∂x
∂x0

∣∣∣∣
tb

+
∫ tb

ta

(
∂Φ

∂x
∂x(t)
∂x0

)
dt

+
∫ tb

ta
λ

T (t)
(

∂G
∂x

∂x(t)
∂x0

+
∂G
∂ ẋ

∂ ẋ
∂x0

)
dt

(A.11)

Integrating by part

∫ tb

ta
λ

T (t)
∂G
∂ ẋ

∂ ẋ
∂x0

dt =
[

λ
T ∂G

∂ ẋ
∂x(t)
∂x0

]∣∣∣∣tb
ta
−
∫ tb

ta

d
dt

(
λ

T ∂G
∂ ẋ

)
∂x
∂x0

dt (A.12)

and using ∂x
∂x0

(ta) = I in our case, we can rearrange equation (A.11) as

dJ
dx0

=
∫ tk+1

tk

(
∂Φ

∂x
+λ

T ∂G
∂x
− d

dt

(
λ

T ∂G
∂ ẋ

)) ∂x
∂x0

dt +
[(

∂ Φ̂

∂x
+λ

T ∂G
∂ ẋ

)
∂x
∂x0

]∣∣∣∣
tb

−λ
T (ta)

∂G
∂ ẋ

(ta)

(A.13)

finally using λ (t) computed in (A.7) we have

dJ
dx0

=−λ
T (ta)

∂g
∂x

(ta) (A.14)
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A.3 Proof of Proposition 4.

We follow the same adjoint formalism as in [112, 113]. This is different, but equiv-
alent to the more common one based on the Lagrange formalism [12, 65, 114] which
make use of the augmented objective function Ja = J−λ R̄. Adjoint formalism have
a wider scope because adjoint variables are defined not only when optimal conditions
are satisfied. When optimal conditions are satisfied, the adjoint variables coincide with
Lagrange multipliers.

Starting from the discretized dynamical model in residual form (4.35)

R̄(x0, x̄, ū) = 0 (A.15)

we use the implicit function theorem to find the sensitivities of the dependent variables
with respect to the indipendent ones

∂ x̄
∂ ū

=−∂ R̄
∂ x̄

−1
∂ R̄
∂ ū

(A.16a)

∂ x̄
∂x0

=−∂ R̄
∂ x̄

−1
∂ R̄
∂x0

. (A.16b)

The total derivatives of the cost function in (4.35) are given by

dJ
dū

(x0, x̄, ū) =
∂J
∂ ū

+
∂J
∂ x̄

∂ x̄
∂ ū

=
∂J
∂ ū
− ∂J

∂ x̄
∂ R̄
∂ x̄

−1
∂ R̄
∂ ū

(A.17a)

dJ
dx0

(x0, x̄, ū) =
∂J
∂x0

+
∂J
∂ x̄

∂ x̄
∂x0

=
∂J
∂x0
− ∂J

∂ x̄
∂ R̄
∂ x̄

−1
∂ R̄
∂x0

. (A.17b)

Introducing the adjoint variables λ as solution of

λ
T ∂ R̄

∂ x̄
=−∂J

∂ x̄
(A.18)

we can rewrite (A.17) as

∂ψ

∂ ū
=

dJ
dū

=
∂J
∂ ū

+λ
T ∂ R̄

∂ ū
(A.19a)

∂ψ

∂x0
=

dJ
dx0

=
∂J
∂x0

+λ
T ∂ R̄

∂x0
. (A.19b)
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A.4 Derivatives ∂R j,i
∂X j,l

.

∂R j,i

∂X j,l
=

(
∂g
∂x

(X j,l)−h jγ
∂ f
∂x

(X j,l , ũ j)

)
δli−

∂φ j,i

∂X j,l

∂φ j,i

∂X j,l
=
(
1−δli

)(∂g
∂x

(X j,1)δl1 +h jail
∂ f
∂x

(X j,l , ũ j)

) (A.20)

where δil is the Kronecker function.

∂R j,i

∂ ũ j
=−

∂φ j,i

∂ ũ j
−h jγ

∂ f
∂u

(X j,i, ũ j)

∂φ j,i

∂ ũ j
= h j

i−1

∑
l=1

ail
∂ f
∂u

(X j,l , ũ j)

(A.21)

∂J
∂uk

= ∑
j:u(t̃ j)≡uk

h j

s

∑
l=1

bl
∂Φ

∂u
(X j,l ,uk) (A.22)

∂J
∂x0

= h0b1
∂Φ

∂x0
(X0,1,u0) (A.23)

∂J
∂X j,i

= h jbi
∂Φ

∂x
(X j,i, ũ j) i ∈ {2, . . . ,s−1}, j ∈ {0, . . . , N̄−1} (A.24)

∂J
∂X j,s

= h jbs
∂Φ

∂x
(X j,s, ũ j)+h j+1b1

∂Φ

∂x
(X j+1,1, ũ j+1) j ∈ {0, . . . , N̄−2} (A.25)

∂J
∂XN̄−1,s

=
∂ Φ̂

∂XN̄−1,s
(∂XN̄−1,s)+hN̄−1bs

∂Φ

∂XN̄−1,s
(∂XN̄−1,s,uN) (A.26)
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A.5 Computation of the MV Objective and its Gradi-
ents

The mean-variance objective function for an ensemble is defined as

ψMV = λψ̂− (1−λ )σ2 (A.27)

with the mean and variances computed by

ψ̂ =
1
nd

nd

∑
i=1

ψ
i (A.28a)

σ
2 =

1
nd−1

nd

∑
i=1

(ψ i− ψ̂)2 (A.28b)

The gradient, ∇uk ψMV for k ∈N , is computed as

∇uk ψMV = λ∇uk ψ̂− (1−λ )∇uk σ
2 k ∈N (A.29)

with the gradient of the mean, ∇uk ψ̂ , computed as

∇uk ψ̂ =
1
nd

nd

∑
k=1

∇uk ψ
i (A.30)

The gradient of the variance, ∇uk σ2, is

∇uk σ
2 =

1
nd−1

nd

∑
i=1

[
∇uk

(
ψ

i− ψ̂
)2
]

=
2

nd−1

nd

∑
i=1

[(
ψ

i− ψ̂
)
∇uk

(
ψ

i− ψ̂
)]

=
2

nd−1

nd

∑
i=1

[
(ψ i− ψ̂)(∇uk ψ

i−∇uk ψ̂)
]

(A.31)

∇uk σ2 can be computed by (A.31). To compute ∇uk σ2 more efficiently we express
∇uk σ2 as

∇uk σ
2 =

2
nd−1

( nd

∑
i=1

[(
ψ

i− ψ̂
)
∇uk ψ

i
]
−

nd

∑
i=1

[(
ψ

i− ψ̂
)
∇uk ψ̂

])
(A.32)

and note that
nd

∑
i=1

((
ψ

i− ψ̂
)
∇uk ψ̂

)
=

(
nd

∑
i=1

(
ψ

i− ψ̂
))

∇uk ψ̂

=

(
nd

∑
i=1

ψ
i−ndψ̂

)
︸ ︷︷ ︸

=0

∇uk ψ̂ = 0
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Consequently, the gradient of the variance can be computed efficiently by

∇uk σ
2 =

2
nd−1

nd

∑
i=1

(ψ i− ψ̂)∇uk ψ
i (A.33)
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Solution of Constrained Optimal Control Problems
using Multiple Shooting and ESDIRK Methods

Andrea Capolei and John Bagterp Jørgensen

Abstract— In this paper, we describe a novel numerical algo-
rithm for solution of constrained optimal control problems of
the Bolza type for stiff and/or unstable systems. The numerical
algorithm combines explicit singly diagonally implicit Runge-
Kutta (ESDIRK) integration methods with a multiple shooting
algorithm. As we consider stiff systems, implicit solvers with
sensitivity computation capabilities for initial value problems
must be used in the multiple shooting algorithm. Traditionally,
multi-step methods based on the BDF algorithm have been
used for such problems. The main novel contribution of this
paper is the use of ESDIRK integration methods for solution
of the initial value problems and the corresponding sensitivity
equations arising in the multiple shooting algorithm. Com-
pared to BDF-methods, ESDIRK-methods are advantageous in
multiple shooting algorithms in which restarts and frequent
discontinuities on each shooting interval are present. The
ESDIRK methods are implemented using an inexact Newton
method that reuses the factorization of the iteration matrix for
the integration as well as the sensitivity computation. Numerical
experiments are provided to demonstrate the algorithm.

I. INTRODUCTION

Single-shooting (control vector parametrization) [1],
multiple-shooting [2]–[4], and full discretization (the si-
multaneous method or collocation) algorithms [5] are the
most common direct methods for numerical solution of
constrained optimal control problems. These algorithms are
widely used for solution of constrained optimal control
problems as they arise in Nonlinear Model Predictive Control
(NMPC) [6], [7].

The multiple-shooting algorithm has become a popular
choice in NMPC applications as it has stability properties
comparable to the full discretization method and can use
state-of-the-art ODE/DAE solvers. For non-stiff systems,
explicit Runge-Kutta solvers with sensitivity computation
capabilities are used within the multiple-shooting algorithm
[4]. For stiff systems, multi-step BDF based methods with
sensitivity computation capabilities are typically used [8]–
[11]. A one-step extrapolation method based on linearly
implicit Euler discretization [12] as well as an explicit
singly diagonally implicit Runge-Kutta (ESDIRK) [13], [14]
method have subsequently been suggested for integration and
sensitivity computation of stiff systems. Both these methods
are one-step methods and advantageous in single- as well
as multiple-shooting applications. Such applications have
frequent discontinuities due to the control parametrization.
Compared to multi-step methods, one-step methods have the

A. Capolei and J.B. Jørgensen are with the Department of Informatics
and Mathematical Modeling, Technical University of Denmark, DK-2800
Kgs. Lyngby, Denmark. E-mail: {acap,jbj}@imm.dtu.dk

advantage that they do not suffer from re-start computation
overhead at discontinuities.

In this paper, we describe a numerical algorithm for solu-
tion of constrained optimal control problems using multiple
shooting and ESDIRK methods with sensitivity capabilities.
ESDIRK methods are special implicit Runge-Kutta methods
that are computationally efficient and often constructed such
that they have an embedded error estimator and are both
A- and L-stable, i.e. implying that they can be used for stiff
systems, and are stiffly accurate [15]–[17]. ESDIRK methods
have been reported to outperform multi-step methods such
as BDF for problems in which medium- to high-accuracy
solutions are required [17]–[19]. [20] develops ESDIRK
methods of order 1-3 with embedded error estimators, i.e.
ESDIRK1(2), ESDIRK2(3) and ESDIRK3(4), that are A-
and L-stable as well as stiffly accurate. [13], [14] implement
the ESDIRK3(4) with approximate computation of the sen-
sitivities for ODEs and index-1 DAEs. [21] propose a novel
representation of systems of differential equations

d

dt
g(x(t)) = f(x(t), u(t)) x(t0) = x0 (1)

that are useful in describing systems arising in reservoir sim-
ulation. [21] also investigates simulation, step-size control,
and adjoint-based single-shooting optimal control of such
large-scale systems (1) using ESDIRK1(2), ESDIRK2(3),
and ESDIRK3(4).

The main novel contribution of this paper is exact numer-
ical computation of the sensitivities in differential equations
(1) based on ESDIRK1(2), ESDIRK2(3) and ESDIRK3(4).
The sensitivities are computed using the staggered corrector
approach [8], [13] and an efficient inexact Newton algorithm
that reuses the factorization of the iteration matrix. The
solution of the differential equation (1) and its sensitivities
are used within a multiple-shooting algorithm for constrained
optimal control. To facilitate use of the integrator within an
optimization algorithm the implemented ESDIRK methods
employ the internal numerical differentiation principle [22].

The paper is organized as follows. Section II defines the
constrained optimal control problem, the multiple-shooting
discretization, and the resulting discrete-time nonlinear pro-
gram. The ESDIRK algorithm for solution of the differential
equation systems and computation of the associated sensitivi-
ties is described in Section III. Section IV provides examples
to demonstrate the algorithm. Conclusions and ideas for
future work are presented in Section V.
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II. OPTIMAL CONTROL PROBLEM

We consider constrained optimal control problems in the
Bolza form

min
x(t),u(t)

J = Φ̂(x(tb)) +

∫ tb

ta

Φ(x(t), u(t))dt (2a)

subject to

x(ta) = x0 (2b)
d

dt
g
(
x(t)

)
= f(x(t), u(t)), t ∈ [ta, tb], (2c)

c(u(t)) ≥ 0 (2d)

x(t) ∈ Rnx is the state vector and u(t) ∈ Rnu is the
control vector. The time interval I = [ta, tb] as well as the
initial state, x0, are assumed to be fixed. (2c) represents the
dynamic model and includes systems described by index-
1 differential algebraic equations (DAE). (2d) represents
bounds on the input values and their variation in time. Path
constraints

η(x(t), u(t)) ≥ 0 (3)

may render the optimization problem infeasible. Therefore,
we include these constraints as soft constraints using the
following smooth approximation

χi(x(t), u(t)) =
1

2

(√
ηi(x(t), u(t)

2
+ βi

2)− ηi(x(t), u(t)

)
(4)

to the exact penalty function max(0,−ηi(x(t))) for i ∈
{1, . . . , nη} [23]. With this approximation of the path con-
straints, the resulting stage cost, Φ(x(t), u(t)), used in (2a)
consist of the inherent stage cost, Φ̃(x(t), u(t)), and terms
penalizing violation of the path constraints (3)

Φ(x, u) = Φ̃(x, u) + ‖χ(x, u)‖1,Q1
+

1

2
‖χ(x, u)‖22,Q2

(5)

A. Discretization

1) Control Parametrization: Let Ts denote the sample
time such that an equidistant mesh can be defined as

ta = t0 < . . . < tS < . . . < tN = tb (6)

with tj = ta + jTs for j = 0, 1, . . . , N . We use a
piecewise constant representation of the control function
on this equidistant mesh, i.e. we approximate the control
vector on every subinterval [tj , tj+1] by the zero-order-hold
parametrization

u(t) = uj , uj ∈ Rnu , tj 6 t < tj+1, j ∈ 0, . . . , N − 1 (7)

2) State Discretization: The key idea in solving the Initial
Value Problem (2c) using multiple shooting is to divide the
time interval [ta, tb] into W subintervals [tkS , t(k+1)S ] called
shooting windows. S denote the number of control vectors
in each shooting window and k is an index of shooting-
windows. uk = [ukS ; ukS+1; . . . ; u(k+1)S−1] represents

x(
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Fig. 1. An example of state and control discretization. Here we have
W = 2 shooting windows, N = 6 control vectors and S = 3 control
vectors for each shooting window. Also nx = nu = 1.

the control vectors in a shooting window. Accordingly, the
multiple-shooting algorithm solves independent IVPs

d

dt
g(x(t)) = f(x(t), u(t)), t ∈ Ik = [tkS , t(k+1)S ]

x(tkS) = sk, k ∈ 0, . . . ,W − 1
(8)

for each shooting window and determines the vectors sk and
uk in such a way that the function x pieced together by these
IVP solutions,

x(t) := xk(t; sk,uk) for t ∈ [tkS , t(k+1)S [ (9)

k ∈ {0, . . . ,W − 1} is continuous and hence represents
the solution of the differential equation (2c) in the interval
[ta, tb].

Define the augmented parameter vector y ∈ Rn with n =
Nnu + (W − 1)nx by

y =
[
u0; s1; u1; . . . ; sW−1; uW−1

]
(10)

such that the continuity equations can be expressed as

G(y) =


x0(tS , x0,u0)− s1
x1(t2S , s1,u1)− s2

...
xW−2(t(W−1)S , sW−2,uW−2)− sW−1

 = 0

(11)

where xk(t, sk,uk) denotes the solution of the IVP (8) in
Ik. Similarly, the multiple-shooting discretization yields the
following objective function, J = F (y):

F (y) = Φ̂(xW−1(tN , sW−1,uW−1))

+
W−1∑
k=0

Fk(sk,uk)
(12a)

Fk(sk,uk) =

∫ t(k+1)S

tkS

Φ(t, xk(t, sk,uk), u(t))dt (12b)
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3) Input Constraints: The input constraints (2d) include
bound constraints umin ≤ uk ≤ umax. In the discrete
problem using the zero-order-hold parametrization, we also
include rate of movement constraints in the form ∆umin ≤
∆uk ≤ ∆umax with ∆uk = uk − uk−1. These input con-
straints and rate of movement constraints may be represented
by the function

H(y) ≥ 0 (13)

B. NLP Problem

Using the zero-order-hold parametrization, the multiple-
shooting discretization, and the additions described in Sec-
tion II-A, the constrained optimal control problem (2) can
be approximated by the finite dimensional constrained opti-
mization problem

min
y

F (y) (14a)

s.t. G(y) = 0 (14b)
H(y) ≥ 0 (14c)

We solve (14) using a quasi-Newton implementation of
Powell’s Sequential Quadratic Programming (SQP) method
[24]. F is separable and the constraints, G and H , are
linearly coupled. Consequently, the associated Lagrangian
becomes partially separable. This property implies that the
Hessian of the Lagrangian is block structured and is exploited
in the BFGS approximation [2]. A full space sparse quadratic
program exploiting this structure is solved at each iteration.

III. ESDIRK METHODS

In this section, we describe our implementation of the
ESDIRK method for solution of the initial value problem
(8) and for computation of the associated sensitivities. The
sensitivities are needed when gradient based optimization
algorithms are used for the solution of (14).

Let t̃n denote the the integration times chosen by the
step size controller in the integrator (see Fig. 1). Since each
integration step, hn, is always smaller than or equal to the
sample time, Ts, the number of integration steps is always
larger or equal to the number of control steps, N .

A. Solution of the IVP by ESDIRK Methods

The numerical solution of the IVP (8) by an s-stage, stiffly
accurate, Runge-Kutta ESDIRK method with an embedded
error estimator, may in each integration step [t̃n, t̃n+1] be
denoted [20]

T1 = t̃n, Ti = t̃n + cihn (15a)
X1 = xn (15b)

φi({Xj}i−1j=1, u) = g(X1) + hn

i−1∑
j=1

aijf(Xj , u) (15c)

g(Xi) = φi({Xj}i−1j=1, u) + hnγf(Xi, u) (15d)

xn+1 = Xs (15e)

en+1 = hn

s∑
j=1

dif(Xj , u) (15f)

with i = 2, . . . , s. Xi denotes the numerical solution at time
Ti for i ∈ {1, . . . , s}. xn+1 is the numerical solution at time
t̃n+1 = t̃n+hn. en+1 is the estimated error of the numerical
solution, i.e. ‖en+1‖ ≈ ‖g(xn+1)− g(x(t̃n+1))‖.

The main computational effort in the ESDIRK method is
solution of the implicit equations (15d) using a Newton based
method. (15d) is solved by sequential solution of

Ri(Xi) := [g(Xi)− hnγf(Xi, u)]− φi({Xj}i−1j=1, u) = 0
(16)

for i = 2, . . . , s. (16) is solved using an inexact Newton
method. Each iteration in the inexact Newton method for
solution of (16) may be denoted

M∆X
[l]
i = −Ri(X [l]

i ) (17a)

X
[l+1]
i = X

[l]
i + ∆X

[l]
i (17b)

The iteration matrix, M , is an approximation

M ≈ J(X
[l]
i ) (18)

to the Jacobian of the residual function

Ji(Xi) =
∂Ri
∂Xi

(Xi) =
∂g

∂x
(Xi)− hnγ

∂f

∂x
(Xi, u) (19)

The iteration matrix, M , and its LU factorization is updated
adaptively by monitoring the convergence rate of the inexact
Newton iterations.

Convergence of the inexact Newton iteration is measured
by

‖Ri(X [l]
i )‖ = max

j∈1,...,nx

|(Ri(X [l]
i )j |

max{atolj , rtoljgj(X
[l]
i )}

< τ

(20)

where atol is the absolute tolerance and rtol is the relative
tolerance. Steps are accepted if this measure of the residual
is smaller than τ ≈ 0.1 [25]. In case of divergence or slow
convergence, the iterations are terminated, the step size, hn,
is decreased and the Jacobian of the iteration matrix is re-
evaluated and factorized [25].

B. Sensitivity Equations

The state sensitivity of (8) is defined as

Ssk(t) =
∂

∂sk
xk(t; sk,uk) (21)

and satisfies

Ssk(tkS) = I (22a)
∂

∂t

(
∂g

∂x
(x(t))Ssk(t)

)
=
∂f

∂x
(x(t), u(t))Ssk(t) (22b)

in the interval Ik with k ∈ {1, . . . ,W − 1}.
Similarly, the input sensitivity of (8) is defined as

Suj
(t) =

∂

∂uj
xk(t; sk,uk) (23)
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for j ∈ {kS, . . . , (k + 1)S − 1} and k = 0, 1, . . . , N − 1.
Suj

(t) satisfies

Suj
(tj) = 0 (24a)

∂

∂t

(
∂g

∂x
(x(t))Suj (t)

)
=
∂f

∂x
(x(t), u(t))Suj (t)

+
∂f

∂u
(x(t), u(t))

∂u

∂uj
(t)

(24b)

in the interval tj ≤ t ≤ t(k+1)S for j ∈ {kS, kS+1, . . . , (k+
1)S − 1} and

∂u

∂uj
(t) =

{
I tj ≤ t < tj+1

0 otherwise
(25)

(22) and (24) may be derived from (8) by taking the
derivatives with respect to sk and uj , by use of the chain
rule and the Schwartz theorem.

C. Discrete Sensitivity equations
The ESDIRK method is used in a staggered-corrector

fashion to integrate the sensitivity equations (22) and (24) at
the quadrature points also used for integration of the initial
value problem (8).

The state sensitivities are computed using the ESDIRK
method by solution of

S̄sk,1 = Ssk,n (26a)

Θx,i =
∂g

∂x
(X1)S̄sk,1 + hn

i−1∑
j=1

aij
∂f

∂x
(Xj , u)S̄sk,j (26b)

∂g

∂x
(Xi)S̄sk,i = Θx,i + hnγ

∂f

∂x
(Xi, u)S̄sk,i (26c)

Ssk,n+1 = S̄sk,s (26d)

for i = 2, . . . , s. The computationally expensive step in these
computations is solution of the linear system of equations
(26c)

Rx,i(S̄sk,i) = J(Xi)S̄sk,i −Θx,i = 0 (27)

with J(Xi) defined by (19).
Similarly, the parameter sensitivities are computed using

the ESDIRK method by solution of

S̄uj ,1 = Suj ,n (28a)

Θuj ,i =
∂g

∂x
(X1)S̄uj ,1

+ hn

i−1∑
l=1

ail

(
∂f

∂x
(Xl, u)S̄uj ,l +

∂f

∂u
(Xl, u)

∂u

∂uj
(Tl)

)
+ hnγ

∂f

∂u
(Xi, u)

∂u

∂uj
(Ti)

(28b)
∂g

∂x
(Xi)S̄uj ,i = Θuj ,i + hnγ

∂f

∂x
(Xi, u)S̄uj ,i (28c)

Suj ,n+1 = S̄uj ,s (28d)

for i = 2, . . . , s. The computationally expensive step in these
computations is the solution of the linear system of equations
(28c)

Ruj ,i(S̄uj ,i) = J(Xi)S̄uj ,i −Θuj ,i = 0 (29)

with J(Xi) defined by (19).
The linear system of equations (27) and (29) may be

solved in identical ways. Therefore, we only discuss the
solution of the state sensitivity equation (27) in the following.
It is implied that the parameter sensitivity equation (29) is
solved in a similar way.

(27) is solved using an inexact Newton method that
employs that the LU-factors of an approximation, M , of the
Jacobian matrix, J(Xi), are already available. The steps in
this inexact Newton procedure may be denoted

M∆S̄
[l]
sk,i

= −Rx,i(S̄[l]
sk,i

) (30a)

S̄
[l+1]
sk,i

= S̄
[l]
sk,i

+ ∆S̄
[l]
sk,i

(30b)

where M is the already factorized matrix (18). These factors
are used in the solution of (30a).

Convergence of the inexact Newton iteration is measured
by

‖Rx,i(S̄[l]
sk,i

)‖ < τ (31)

using the norm defined by (20) columnwise. The tolerances
specified for the differential equations (8) may be different
from the tolerances specified for the sensitivity equations.

D. Convergence- and Error-Control

The ESDIRK method computes the sensitivities using a
staggered-corrector approach [8]; the method solves for the
state equations and only when they have converged it solves
the sensitivity equations. The method is implemented such
that it satisfies the internal-numerical-differentiation principle
[22]. Satisfaction of this principle is achieved by converging
the discrete-time sensitivity equations (26) and (28) and
keeping the same step size as used in the state equations.
Consequently, no error estimation is needed in the sensitivity
computations.

The step size controller for the state equations (15) is
based on the error estimator embedded in the ESDIRK
method. We use a predictive step size controller [25]. The
convergence in the inexact Newton iterations is monitored
by observing the ratio

αl+1 =
‖Rl+1

i ‖
‖Rli‖

(32)

with Rli being the relevant residual at iteration l and ‖·‖ being
the norm defined by (20). In case of divergence (αl+1 > 1)
the step size is reduced and the computations at the current
step are repeated.

The initial guesses of the solution to the residual equations
are obtained using an explicit Euler step from either the
previous converged solution or the first stage value.

IV. EXAMPLES

In this section, we illustrate the ESDIRK-based multiple-
shooting algorithm for constrained optimal control problems
(2). The algorithms have been implemented in Matlab. We
demonstrate the algorithm using two examples. The first ex-
ample is a continuous stirred tank reactor with an exothermic
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reaction [13]. This system is stiff and operated around an un-
stable equilibrium. The second example is the quadruple tank
process [26]. We compare the computational performance
of ESDIRK1(2), ESDIRK2(3), and ESDIRK3(4) using an
absolute and relative tolerance of 10−5.

A. Continuous Stirred Tank Reactor (CSTR)

In a CSTR, a reactant A at temperature Tf is fed to a
stirred vessel with a cooling/heating jacket. The dynamic of
the constant volume CSTR is described by [13]

ẋ1(t) =
q

V

(
cA,f − x1(t)

)
− k0e

−E
Rx2(t)x1(t) (33a)

ẋ2(t) =
q

V

(
Tf − x2(t)

)
+

(−∆H)

ρCp
k0e

−E
Rx2(t)x1(t)

+
UA

V ρCp

(
u(t)− x2(t)

) (33b)

The system is to be operated around the unstable equilibrium
xs = [0.5; 350], us = 300 by manipulation of the jacket fluid
temperature, u(t). The jacket fluid temperature is determined
by solution of (2) using the cost-to-go and stage costs

Φ̂(x(tb)) =
1

2

(
x(tb)− xs

)′
P (x(tb)− xs

)
(34a)

Φ(x(t), u(t)) =

[(
x(t)− xs

)′
Q(x(t)− xs

)
+
(
u(t)− us

)′
R(u(t)− us

)] (34b)

with Q = [0, 0; 0, 2], R = 4, P = [99165, 2104; 2104, 73],
and tb = 10. The control and prediction horizon is N = 40
and the sample time is Ts = 0.25.

Fig. 2 shows the computed optimal solution trajectories
and Table I reports the computational statistics for ES-
DIRK1(2), ESDIRK2(3), and ESDIRK3(4). The major part
of the computational time is spend solving the initial value
problems and their sensitivities. All ESDIRK methods have
approximately the same number of SQP iterations, KKT-
factorizations in the QP-solver, and line-searches (call to
ESDIRK). Nevertheless, ESDIRK3(4) uses only a quarter
of the computational time of ESDIRK1(2). This difference
is due to the fact the higher order of ESDIRK3(4) allows it
to take longer step sizes than ESDIRK1(2).

B. Quadruple Tank Process

The quadruple tank process has been suggested as a
control benchmark problem and is modeled by the equations
[26]

ẋ1(t) = − a1
A1

√
2gx1 +

a3
A1

√
2gx3 +

γ1k1
A1

u1(t) (35a)

ẋ2(t) = − a2
A2

√
2gx2 +

a4
A2

√
2gx4 +

γ2k2
A2

u2(t) (35b)

ẋ3(t) = − a3
A3

√
2gx3 +

(1− γ2)k2
A3

u2(t) (35c)

ẋ4(t) = − a4
A4

√
2gx4 +

(1− γ1)k1
A4

u1(t) (35d)

Ai and ai represent the cross section area of the tanks
and holes respectively. γi describes the distribution of water

TABLE I
COMPUTATIONAL STATISTICS FOR THE CSTR SYSTEM AND THE

QUADRUPLE TANK PROCESS. THE ABSOLUTE AND RELATIVE

TOLERANCES ARE 10−5 . SQP: NUMBER OF ITERATIONS IN THE

SQP-ALGORITHM. QP: NUMBER OF KKT-MATRIX FACTORIZATIONS IN

THE INTERIOR-POINT QP-SOLVER. LS: NUMBER OF LINE SEARCHES

AND CALL TO THE ESDIRK ALGORITHM. TIME: RELATIVE TIME TO

SOLVE THE PROBLEM.

ESDIRK SQP QP LS time
1(2) 25 119 35 1

CSTR 2(3) 21 101 29 0.26
3(4) 22 106 30 0.25
1(2) 340 44 26 1

Quadruple Tank Process 2(3) 331 43 26 0.23
3(4) 312 44 26 0.19
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Fig. 2. Optimal state trajectories and manipulated variables for the CSTR
process operated around an unstable equilibrium. The initial states are
x(0) = [1.0; 300] and the initial jacket fluid temperature is u(0−) = 350.

flows. ui is the flow rate from the pumps and xi are the
water level heights in the four tanks. Table II contains the
model parameters used in this study.

The aim of the control is to manipulate the flow rates
u(t) such that the system is brought to the steady state
(xs1, us1). Therefore, the cost-to-go and stage costs of (2)
are formulated as

Φ̂(x(tb)) =
0.1

2

(
x(tb)− xs1

)′
(x(tb)− xs1

)
(36a)

Φ(x(t), u(t)) =

[(
x(t)− xs1

)′
(x(t)− xs1

)
+
(
u(t)− us1

)′
(u(t)− us1

)] (36b)

with tb = 700, xs1 = [15; 20; 4.235; 7.635], and us1 =
[4.04; 3.279]. The sampling time is chosen as Ts = 700/40
and we use a control and prediction horizon of N = 40.
The constraints are 0 ≤ u(t) ≤ 20, −5.0 ≤ ∆uk ≤ 5.0, and
x3 ≤ 9.0.

TABLE II
MODEL PARAMETERS FOR THE QUADRUPLE-TANK PROCESS

a1, a3 7.1 · 10−2 cm2 A2, A4 3.2 · 10 cm2 γ1 0.45

a2, a4 5.7 · 10−2cm2 k1 3.14 cm3

V s γ2 0.4

A1, A3 2.8 · 10cm2 k2 3.29 cm3

V s g 981 cm
s2
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Fig. 3. Optimal trajectories and manipulated variables for the quadruple
tank process. The initial conditions are x(0) = [4.103; 6.608; 0.394; 0.557]
and the initial manipulated variables are u(0−) = [2; 2].

The computed solution is illustrated in Fig. 3. It should
be noted that the soft output constraint, x3(t) ≤ 9.0, is
satisfied. Also the computational statistics in Table I confirms
the observations for the CSTR case study; for this tolerance
level ESDIRK3(4) is the fastest of the three algorithms. This
is due to its ability to taker longer steps.

V. CONCLUSIONS AND FUTURE WORK

In this paper we address the solution of unstable and
stiff constrained optimal control problems. We present an
algorithm that combines multiple shooting with ESDIRK
integration methods. The ESDIRK implementation is based
on an efficient and accurate inexact Newton method to
compute the sensitivities that are required in the optimization
process.

The numerical examples demonstrated the convergence of
the algorithm to meaningful solutions. They also demon-
strated that ESDIRK3(4) is the fastest of the three algorithms
when medium to high accuracy of the solution is required.

The algorithm described in this paper has been imple-
mented in Matlab. Future work will include implementation
of the algorithms as efficient C++ code and comparison
with multiple-shooting algorithms based on SUNDIALS [9].
In addition, future work will address coordination of the
accuracy of the ESDIRK solution method with the required
precision of the optimization algorithm.
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Oil Reservoir Production Optimization
using Single Shooting and ESDIRK
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Abstract: Conventional recovery techniques enable recovery of 10−50% of the oil in an oil field.
Advances in smart well technology and enhanced oil recovery techniques enable significant larger
recovery. To realize this potential, feedback model-based optimal control technologies are needed
to manipulate the injections and oil production such that flow is uniform in a given geological
structure. Even in the case of conventional water flooding, feedback based optimal control
technologies may enable higher oil recovery than with conventional operational strategies. The
optimal control problems that must be solved are large-scale problems and require specialized
numerical algorithms. In this paper, we combine a single shooting optimization algorithm
based on sequential quadratic programming (SQP) with explicit singly diagonally implicit
Runge-Kutta (ESDIRK) integration methods and a continuous adjoint method for sensitivity
computation. We demonstrate the procedure on a water flooding example with conventional
injectors and producers.

Keywords: Optimal Control, Optimization, Numerical Methods, Oil Reservoir

1. INTRODUCTION

The growing demand for oil and the decreasing number
of newly discovered significant oil fields require more
efficient management of the existing oil fields. Oil fields are
developed in two or three phases. In the primary phase,
the reservoir pressure is large enough to make the oil flow
to the production wells. In the secondary phase, water
must be injected to maintain pressure and move the oil
towards the producers. In some cases, a tertiary phase
known as enhanced oil recovery is considered. Enhanced oil
recovery includes technologies such as in situ combustion,
surfactant flooding, polymer flooding, and steam flooding
(Thomas, 2008). After the secondary phase, typically the
oil recovery is somewhere between 10% and 50% (Chen,
2007; Jansen, 2011).

Optimal control technology and Nonlinear Model Predic-
tive Control have been suggested for improving the oil
recovery of the secondary phase (Jansen et al., 2008). In
such applications, the controller adjusts the water injection
rates and the bottom hole well pressures to maximize
oil recovery or a financial measure such as net present
value. In the oil industry, this control concept is also
known as closed-loop reservoir management (Jansen et al.,
2009). The controller in closed-loop reservoir management
consists of a state estimator for history matching and
an optimizer that solves a constrained optimal control
? This research project is financially supported by the Danish
Research Council for Technology and Production Sciences. FTP
Grant no. 274-06-0284

problem for the production optimization. The main dif-
ference of the closed-loop reservoir management system
from a traditional Nonlinear Model Predictive Controller
(Binder et al., 2001) is the large state dimension (106 is
not unusual) of an oil reservoir model. The size of the
problem dictates that the ensemble Kalman filter is used
for state estimation (history matching) and that single
shooting optimization algorithms compute gradient based
on adjoints (Jansen, 2011; Jørgensen, 2007; Sarma et al.,
2005; Suwartadi et al., 2011; Völcker et al., 2011).

In this paper, we propose a high order temporal integra-
tion method (Explicit Singly Diagonally Implicit Runge-
Kutta, ESDIRK) for forward computation of the initial
value problem and for backward solution of the associated
continuous-time adjoint. Conventional practice by com-
mercial reservoir simulators is limited to the use of first
order temporal implicit or semi-implicit integrators for
the initial value problem and the adjoints. Völcker et al.
(2010a,b, 2009) introduce high order ESDIRK methods
in two phase reservoir simulation. The high order scheme
allows larger steps and therefore faster solution of the
reservoir model equations. To compute the gradient of
the objective function in a single shooting optimization
method, Völcker et al. (2011) propose a method based on
adjoints for the discretized equations. Cao et al. (2002)
and Jansen (2011) provide an overview of gradient com-
putation using the adjoint. Brouwer and Jansen (2004)
and Sarma et al. (2005) explain and demonstrate gradient
computation by the adjoint equations based on the implicit
Euler discretization. Kourounis et al. (2010) suggest the

Proceedings of the 2012 IFAC Workshop on Automatic
Control in Offshore Oil and Gas Production, Norwegian
University of Science and Technology, Trondheim,
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continuous-time high order adjoint equations for gradient
computation in production optimization. Nadarajah and
Jameson (2007) compare gradients computed by discrete
and continuous adjoints for problems arising in aerody-
namics. They conclude that the gradients computed from
continuous adjoints is accurate enough to be used in
optimization algorithms. Since computation of gradients
based on continuous time adjoints is faster than gradients
based on discrete adjoints, this conclusion implies that
the gradient computations can be accelerated by using the
continuous time adjoint equations.

The novel contribution in this paper is an extension of the
adjoint based optimization method suggested by Völcker
et al. (2011) to include gradient computation based on the
continuous-time adjoint equation. Using a conventional oil
field as case study, we demonstrate the new single-shooting
optimization algorithm based on ESDIRK integration of
the initial value problem and ESDIRK integration of the
continuous-time adjoint equation. The case study illus-
trates the potential of optimal control for production opti-
mization of water flooded oil reservoirs by maximizing the
net present value. We do a parameter study to illustrate
the sensitivity of the optimal solution to the discount
factor.

The paper is organized as follows. Section 2 states the
general constrained optimal control problem using a novel
representation of the system dynamics. The ESDIRK al-
gorithm for solution of the differential equation systems is
described in Section 3, while Section 4 presents the con-
tinuous adjoint method. Section 5 describes the numerical
case study and discusses the sensitivity of the optimal
solution to the discount factor in the net present value.
Conclusions are presented in Section 6.

2. OPTIMAL CONTROL PROBLEM

In this section, we present the continuous-time constrained
optimal control problem and its transcription by the
single shooting method to a finite dimensional constrained
optimization problem. First we present the continuous-
time optimal control problem. Then we parameterize the
control function using piecewise constant basis functions,
and finally we convert the problem into a constrained
optimization problem using the single shooting method.

Consider the continuous-time constrained optimal control
problem in the Bolza form

min
x(t),u(t)

J = Φ̂(x(tb)) +

∫ tb

ta

Φ(x(t), u(t))dt (1a)

subject to

x(ta) = x0 (1b)

d

dt
g
(
x(t)

)
= f(x(t), u(t)), t ∈ [ta, tb], (1c)

u(t) ∈ U(t) (1d)

x(t) ∈ Rnx is the state vector and u(t) ∈ Rnu is the control
vector. The time interval I = [ta, tb] as well as the initial
state, x0, are assumed to be fixed. (1c) represents the
dynamic model and includes systems described by index-
1 differential algebraic equations (DAE). (1d) represents
constraints on the input values, e.g. umin ≤ u(t) ≤ umax,
c(u(t)) ≥ 0, and some constraints related to rate of move-
ment that are dependent on the input parametrization.

Path constraints

η(x(t), u(t)) ≥ 0 (2)

may render the optimization problem infeasible. For this
reason and due to computational efficiency considerations
when computing the sensitivities by the adjoint method
(Capolei and Jørgensen, 2012; Jørgensen, 2007), we in-
clude these constraints as soft constraints using the fol-
lowing smooth approximation

χi(x(t), u(t)) =
1

2

(√
ηi(x(t), u(t))

2
+ βi

2)− ηi(x(t), u(t)

)
(3)

to the exact penalty function max(0,−ηi(x(t))) for i ∈
{1, . . . , nη}.With this approximation of the path con-
straints, the resulting stage cost, Φ(x(t), u(t)), used in (1a)

consist of the inherent stage cost, Φ̃(x(t), u(t)), and terms
penalizing violation of the path constraints (2)

Φ(x, u) = Φ̃(x, u) + ‖χ(x, u)‖1,Q1 +
1

2
‖χ(x, u)‖22,Q2

(4)

2.1 Discretization

Control Parametrization Let Ts denote the sample time
such that an equidistant mesh can be defined as

ta = t0 < . . . < tS < . . . < tN = tb (5)

with tj = ta + jTs for j = 0, 1, . . . , N . We use a
piecewise constant representation of the control function
on this equidistant mesh, i.e. we approximate the control
vector on every subinterval [tj , tj+1] by the zero-order-hold
parametrization

u(t) = uj , uj ∈ Rnu , tj 6 t < tj+1, j ∈ 0, . . . , N − 1 (6)

Input Constraints The input constraints (1d) include
bound constraints umin ≤ uk ≤ umax. In the discrete
problem using the zero-order-hold parametrization, we
also include rate of movement constraints in the form
∆umin ≤ ∆uk ≤ ∆umax with ∆uk = uk − uk−1.

2.2 Single Shooting Optimization

For the single shooting approach (control vector parame-
trization), we introduce the function

ψ({uk}N−1k=0 , x0) ={
J =

∫ tb

ta

Φ(x(t), u(t))dt+ Φ̂(x(tb)) :

x(t0) = x0,

d

dt
g(x(t)) = f(x(t), u(t)), ta ≤ t ≤ tb,

u(t) = uk, tk ≤ t < tk+1, k = 0, 1, . . . , N − 1

}
(7)

such that (1) can be approximated with the finite dimen-
sional constrained optimization problem

min
{uk}N−1

k=0

ψ = ψ({uk}N−1k=0 , x0) (8a)

s.t. umin ≤ uk ≤ umax k ∈ N (8b)

∆umin ≤ ∆uk ≤ ∆umax k ∈ N (8c)

ck(uk) ≥ 0 k ∈ N (8d)

with N = {0, 1, . . . , N − 1}.
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3. ESDIRK METHODS

In this section, we describe our implementation of the
ESDIRK method for the computation of ψ({uk}N−1k=0 , x0)

in (7). Computation of ψ({uk}N−1k=0 , x0) consists of two
major operations: 1) For each integration step we first
compute the model states x(t) solving the initial value
problem (1c), 2) and then we compute, using the same
quadrature points, the value of the Lagrange term

ψ̄(t) :=

∫ t

ta

Φ(x(t), u(t))dt ta ≤ t ≤ tb. (9)

in the cost function (1a). Let t̃n denote the integration
times chosen by the step size controller in the integrator.
Each integration step size, hn, is chosen such that it is
smaller than or equal to the sample time, Ts. Therefore,
one sample interval contains many integration steps. The
numerical solution of the IVP (1c) by an s-stage, stiffly
accurate, Runge-Kutta ESDIRK method with an embed-
ded error estimator, may in each integration step [t̃n, t̃n+1]
be denoted (Capolei and Jørgensen, 2012; Völcker et al.,
2010a)

T1 = t̃n, Ti = t̃n + cihn (10a)

X1 = xn (10b)

φi({Xj}i−1j=1, u) = g(X1) + hn

i−1∑
j=1

aijf(Xj , u) (10c)

g(Xi) = φi({Xj}i−1j=1, u) + hnγf(Xi, u) (10d)

xn+1 = Xs (10e)

en+1 = hn

s∑
j=1

dif(Xj , u) (10f)

with i = 2, . . . , s. Xi denotes the numerical solution at
time Ti for i ∈ {1, . . . , s}. xn+1 is the numerical solution
at time t̃n+1 = t̃n + hn. en+1 is the estimated error of the
numerical solution, i.e. ‖en+1‖ ≈ ‖g(xn+1)− g(x(t̃n+1))‖.
Subsequent to solution of (10), we compute the numerical
solution of the cost function (9)

ψ̄(t̃n+1) = ψ̄(t̃n) + hn

s∑
i=1

biΦ(Xi, u) (11)

When t̃n+1 = tb, we add the Mayer term of (1a) such that

ψ({uk}N−1k=0 , x0) = ψ(tb) = ψ̄(tb) + Φ̂(x(tb)) (12)

The main computational effort in the ESDIRK method is
solution of the implicit equations (10d) using a Newton
based method. (10d) is solved by sequential solution of

Ri(Xi) := [g(Xi)− hnγf(Xi, u)]− φi({Xj}i−1j=1, u) = 0

(13)
for i = 2, . . . , s. (13) is solved using an inexact Newton
method. Each iteration in the inexact Newton method for
solution of (13) may be denoted

M∆X
[l]
i = −Ri(X [l]

i ) (14a)

X
[l+1]
i = X

[l]
i + ∆X

[l]
i (14b)

The iteration matrix, M , is an approximation

M ≈ J(X
[l]
i ) (15)

to the Jacobian of the residual function

Ji(Xi) =
∂Ri
∂Xi

(Xi) =
∂g

∂x
(Xi)− hnγ

∂f

∂x
(Xi, u) (16)

The iteration matrix, M , and its LU factorization is
updated adaptively by monitoring the convergence rate of
the inexact Newton iterations. Convergence of the inexact
Newton iteration is measured by

‖Ri(X [l]
i )‖ = max

j∈1,...,nx

|(Ri(X [l]
i )j |

max{atolj , rtoljgj(X
[l]
i )}

< τ (17)

where atol is the absolute tolerance and rtol is the relative
tolerance. Steps are accepted if this measure of the residual
is smaller than τ ≈ 0.1 In case of divergence or slow
convergence, the iterations are terminated, the step size,
hn, is decreased and the Jacobian of the iteration matrix
is re-evaluated and factorized. As explained in e.g. Völcker
et al. (2010b) and Capolei and Jørgensen (2012), the step
size controller adjust the temporal step sizes such that the
error estimate satisfies a norm similar to the norm used in
(17).

4. CONTINUOUS ADJOINT METHOD

Gradient based methods such as sequential quadratic
programming (SQP) methods for solution of (8) require
the gradient of the objective function (7) with respect
to the control vector parameters, i.e. ∂ψ/∂uk for k =
0, 1, . . . , N − 1. In this section, we describe a continuous-
time adjoint based method for computation of these gra-
dients.

Proposition 1. (Gradients based on Continuous Adjoint).

Consider the function ψ = ψ({uk}N−1k=0 ;x0) defined by (7).

The gradients, ∂ψ/∂uk, may be computed as

∂ψ

∂uk
=

∫ tk+1

tk

(
∂Φ

∂u
− λT ∂f

∂u

)
dt k = 0, 1, . . . , N − 1

(18)
in which x(t) is computed by solution of (1b)-(1c) and λ(t)
is computed by solution of the adjoint equations

dλT

dt

∂g

∂x
+ λT

∂f

∂x
− ∂Φ

∂x
= 0 (19a)

∂Φ̂

∂x
(x(tb)) + λT (tb)

∂g

∂x
(x(tb)) = 0 (19b)

Remark 2. (Computation using ESDIRK). x(t) is compu-
ted using the ESDIRK method applied to (1b)-(1c) and
integration forwards. This solution is stored. The same
ESDIRK method is applied for computation of λ(t) by
solving (19) integrating backwards in time.

Remark 3. (Gradients Computed by Continuous Adjoint).
The gradients computed using the continuous adjoints are
not the exact gradients, ∂ψ/∂uk, when the involved differ-
ential equations and integrals are computed by discretiza-
tion using the ESDIRK method. However, they can be
made sufficiently precise for the optimizer such that they
do not affect the convergence (Nadarajah and Jameson,
2007). The advantage of the continuous adjoint equations
(19) is that they can be solved faster than the adjoint
equations for the discretized system (10)-(12).

5. PRODUCTION OPTIMIZATION FOR A
CONVENTIONAL OIL FIELD

In this section, we apply our algorithm for constrained
optimal control problems to production optimization in a
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Fig. 1. The permeability field and the location of wells. A
circle indicates the location of an injector and a cross
indicates the location of a producer.

Table 1. Parameters for the two phase model
and the discounted state cost function (20).

Symbol Description Value Unit

φ Porosity 0.2 -
cr Rock compressibility 0 Pa−1

ρo Oil density (400 atm) 800 kg/m3

ρw Water density (400 atm) 1000 kg/m3

co Oil compressibility 10−5 1/atm
cw Water compressibility 10−5 1/atm
µo Dynamic oil viscosity 2 · 10−3 Pa · s
µw Dynamic water viscosity 1 · 10−3 Pa · s

Sor Residual oil saturation 0.1 -
Sow Connate water saturation 0.1 -
no Corey exponent for oil 1.5 -
nw Corey exponent for water 1.4 -

Pinit Initial reservoir pressure 400 atm
Sinit Initial water saturation 0.1 -

ro Oil price 100 USD/m3

rw Water production cost 20 USD/m3

conventional horizontal oil field that can be modeled as
two phase flow in a porous medium (Chen, 2007; Völcker
et al., 2009). The reservoir size is 450 m× 450 m× 10 m.
By spatial discretization this reservoir is divided into 25×
25×1 grid blocks. The configuration of injection wells and
producers as well as the permeability field is illustrated in
Fig. 1. As indicated in Fig. 1, the four injectors are located
in the corners of the field, while the single producer is
located in the center of the field. The specification of the
two phase oil model consists of the injector (i ∈ I) and the
producer (i ∈ P) location, the permeability parameters
indicated in Fig. 1, and the parameters listed in Table 1.
The initial reservoir pressure is 400 atm everywhere in the
reservoir. The initial water saturation is 0.1 everywhere in
the reservoir. This implies that initially the reservoir has
a uniform oil saturation of 0.9.

The inherent discounted stage cost function (see (4))

Φ̃(t) = Φ̃(x(t), u(t))

= − 1

(1 + b)t/365

∑
j∈P

(ro(1− fw)− fwrw) qj(t)
(20)

accounts for the value of the oil produced minus the pro-
cessing cost of the produced water. In this cost function, we
have neglected the processing cost of injected water as well
as the effect of pressure on injecting water. b is the discount
factor. The fractional flow of water, fw = λw/(λw + λo),
indicates the relative flow of water. λw = ρwkkrw/µw

and λo = ρokkro/µo are the water and oil mobilities,
respectively. In the problems considered, we do not have
any cost-to-go terms, i.e. Φ̂(tb) = 0. Neither do we have
any path constraints (2). Therefore, maximizing the net
present value of the oil field corresponds to minimization
of

J(tb) = −NPV(tb) =

∫ tb

ta

Φ(x(t), u(t))dt (21)

with Φ(x(t), u(t)) = Φ̃(x(t), u(t)). The optimizer maxi-
mizes the net present value by manipulating the injection
of water at the injectors and by manipulation of the
total fluid production (oil and water) at the producers.
Hence, the manipulated variable at time period k ∈ N
is uk = {{qw,i,k}i∈I , {qi,k}i∈P} with I being the set of
injectors and P being the set of producers. For i ∈ I,
qw,i,k is the injection rate (m3/day) of water in time period
k ∈ N at injector i. For i ∈ P, qi,k is the total flow rate
(m3/day) at producer i in time period k ∈ N . Therefore,
at producer i ∈ P, the water flow rate is qw,i,k = fwqi,k
and the oil flow rate is qo,i,k = (1− fw)qi,k.

The bound constraints (8b) appear in the production op-
timization problem because the water injected at injectors
and the production at the producers must both be positive
and because each production facility has a maximum flow
capacity. In the considered problem we have

|qi,k − qi,k−1| ≤ 5 i ∈ I ∪ P, k ∈ N (22a)

0 ≤ qi,k ≤ qmax i ∈ P, k ∈ N (22b)

The maximum flow capacity, qmax, is the same for all
injectors and producers in this case study. The rate of
change for all injectors and producers are |qi,k−qi,k−1| ≤ 5
for i ∈ I ∪ P and k ∈ N . Since the injection of oil is zero,
qo,i,k = 0 for i ∈ I, we get |qw,i,k − qw,i,k−1| ≤ 5 for i ∈ I
and k ∈ N . This leads to the rate of movement constraints
(8c). In addition we use a voidage replacement constraint
(Brouwer and Jansen, 2004; Jansen, 2011)∑

i∈I
qi,k =

∑
i∈I

qw,i,k =
∑
i∈P

qi,k k ∈ N (23)

and enforce a constant total injection,
∑
i∈I qw,i,k = qmax

for k ∈ N . This translates into constraints of the type
(8d). By the total injection constraint, the optimization
problem reduces to a problem of redistributing the flows
among the injectors.

The prediction and control horizon is tb = 4270 days and
the sampling period is Ts = 35. Hence the prediction and
control horizon corresponds to N = 122 periods. With a
total injection at each time period of qmax = 100 m3/day,
these specifications corresponds to injection of 1.05 pore
volume during operation of the reservoir. The prediction
horizon is optimal in the reference case for a total injection
of 100 m3/day.

The optimal water injection rates computed by solution of
the constrained optimal control problem (1) for different
discount factors, b, are illustrated in Fig. 2. In addition, a
base case with constant and equal water injection rates is
illustrated. It is evident that the optimal injection rates are
very sensitive to the discount factor, b. The corresponding
cumulative oil and water production are plotted in Fig. 3.
Independent of the discount factor value, the optimized
strategies produce more oil than the base case. For the high
discount factor case, b = 0.12, less oil is recovered than in
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(a) Discount factor b = 0.
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(b) Discount factor b = 0.06.

0 500 1000 1500 2000 2500 3000 3500 4000
0

0.5

1

1.5

2

2.5

3
x 10

5

TIME (DAY)

C
U

M
U

LA
T

IV
E

 P
R

O
D

U
C

T
IO

N
 (

m
3 )

 

 

opt oil
ref oil
opt water
ref water

(c) Discount factor b = 0.12.

Fig. 3. Cumulative oil and water productions for different discount factors, b.
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Fig. 4. The net present value (NPV), water cut (accumulated water production per produced fluid), and the water
fraction as function of time for the scenarios considered.

Table 2. Key indicators for the optimized cases. Improvements are compared to the base case.

b NPV ∆NPV Cum. Oil ∆Oil Cum. water ∆Water Oil Rec. factor ∆Oil Rec. factor
106 USD % 105 m3 % 105 m3 % % %-point

0 28.0 +8.7 3.05 +6.5 0.122 −13.2 83.7 +5.2
0.06 22.1 +5.6 3.01 +5.2 0.126 −10.5 82.6 +4.1
0.12 18.3 +4.8 2.98 +4.1 0.129 −8.2 81.7 +3.2
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Fig. 2. Optimal water injection rates for different discount
factors, b.

the low discount factor case, b = 0. However, the produced
oil is always above the reference case when b = 0.12. This
is not the case for b = 0 and b = 0.06. Fig. 4 illustrates the
net present value, the water cut and the water fraction for
the base case scenarios as well as the optimized scenarios.
The plot of NPV demonstrates that when b = 0, the NPV
is lower than the base case NPV at some time during the
production. At the end of the production the optimized

NPV is largest. In order to recover the maximum amount
of oil less oil must be produced at some times. This is
also confirmed by the water fraction curves. The results
are summarized in Table 2. Table 2 shows that most oil is
recovered in the case without discount (b = 0), while least
oil is recovered when the discount factor is high (b = 0.12).

Fig. 5 illustrates the evolution of the oil saturation for the
optimized case (b = 0) and the base case. The figures show
that initially, less oil is produced from the upper left corner
in the optimal case compared to the base case. This gives
a better sweep of the oil field and results ultimately in
higher oil recovery.

6. CONCLUSIONS

In this paper, we solve constrained optimal control prob-
lems using a single shooting method based on a quasi-
Newton implementation of Powell’s sequential quadratic
programming (SQP) algorithm. The system of differential
equations are formulated in a novel way to ensure mass
conservation and the resulting initial value problem (1c)
is solved with tailored ESDIRK integration methods. We
also introduce a high order continuous adjoint system for
efficient computation of the gradients. The algorithm is
implemented in Matlab.
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(a) Optimal solution (b = 0).

TIME: 1050 (Day)

x

y

 

 

200 400

100

200

300

400

0.2

0.4

0.6

0.8

TIME: 2135 (Day)

x

y

 

 

200 400

100

200

300

400

0.2

0.4

0.6

0.8

TIME: 3220 (Day)

x

y

 

 

200 400

100

200

300

400

0.2

0.4

0.6

0.8

TIME: 4270 (Day)

x

y

 

 

200 400

100

200

300

400

0.2

0.4

0.6

0.8

(b) Reference solution.

Fig. 5. Oil saturations at different times for the optimal solution and the reference solution.

The resulting algorithm is tested on a production opti-
mization problem for an oil reservoir with two phase flow.
For all cases considered, the dynamic optimization increase
the net present value of the oil field and give increased oil
production. However, the optimal injection rates are very
sensitive to the discount factor.
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High Order Adjoint Derivatives using ESDIRK
Methods for Oil Reservoir Production
Optimization
A. Capolei* (DTU), E.H. Stenby (DTU) & J.B. Jørgensen (DTU)

SUMMARY
In production optimization, computation of the gradients is the computationally expensive step. We
improve the computational efficiency of such algorithms by improving the gradient computation using
high-order ESDIRK (Explicit Singly Diagonally Implicit Runge-Kutta) temporal integration methods and
continuous adjoints . The high order integration scheme allows larger time steps and therefore faster
solution times. We compare gradient computation by the continuous adjoint  method to the discrete adjoint
method and the finite-difference method. The methods are implemented for a two phase flow reservoir
simulator. Computational experiments demonstrate that the accuracy of the sensitivities obtained by the
adjoint methods are comparable to the accuracy obtained by the finite difference method. The continuous
adjoint method is able to use a different time grid than the forward integration. Therefore, it can compute
these sensitivities much faster than the discrete adjoint method and the finite-difference method. On the
other hand, the discrete adjoint method produces the gradients of the numerical schemes, which is
beneficial for the numerical optimization algorithm. Computational experiments show that when the time
steps are controlled in a certain range, the continuous adjoint method produces gradients sufficiently
accurate for the optimization algorithm and somewhat faster than the discrete adjoint method.



Introduction

The growing demand for oil and the decreasing number of newlydiscovered significant oil fields require
more efficient management of the existing oil fields. Oil fields are developed in two or three phases.
In the primary phase, the reservoir pressure is large enoughto make the oil flow to the production
wells. In the secondary phase, water must be injected to maintain pressure and move the oil towards
the producers. In some cases, a tertiary phase known as enhanced oil recovery is considered. Enhanced
oil recovery includes technologies such as in situ combustion, surfactant flooding, polymer flooding,
and steam flooding (Thomas, 2008). After the secondary phase, typically the oil recovery is somewhere
between 10% and 50% (Chen, 2007; Jansen, 2011).

Optimal control technology and Nonlinear Model PredictiveControl have been suggested for improving
the oil recovery of the secondary phase (Jansen et al., 2008). In such applications, the controller ad-
justs the water injection rates and the bottom hole well pressures to maximize oil recovery or a financial
measure such as net present value. In the oil industry, this control concept is also known as closed-loop
reservoir management (Jansen et al., 2009). The controllerin closed-loop reservoir management con-
sists of a state estimator for history matching and an optimizer that solves a constrained optimal control
problem for the production optimization. The main difference of the closed-loop reservoir management
system from a traditional Nonlinear Model Predictive Controller (Binder et al., 2001) is the large state
dimension (106 is not unusual) of an oil reservoir model. The size of the problem dictates that the
ensemble Kalman filter is used for state estimation (historymatching) and that single shooting optimiza-
tion algorithms compute gradient based on adjoints (Jansen, 2011; Sarma et al., 2005; Jørgensen, 2007;
Capolei et al., 2012; Suwartadi et al., 2011; Völcker et al.,2011).

In this paper, we propose a high order temporal integration method (Explicit Singly Diagonally Implicit
Runge-Kutta, ESDIRK) for forward computation of the initial value problem and for backward solu-
tion of the associated continuous-time and discrete-time adjoints. Conventional practice by commercial
reservoir simulators is limited to the use of first order temporal implicit or semi-implicit integrators
for the initial value problem and the adjoints. Völcker et al. (2009, 2010, 2011) introduce high order
ESDIRK methods in two phase reservoir simulation and production optimization based on the discrete
adjoints. The high order scheme allows larger steps and therefore faster solution of the reservoir model
equations. To compute the gradient of the objective function in a single shooting optimization method,
Hager (1999) introduces the discrete adjoint of a generic Runge-kutta method to solve an optimal con-
trol problem governed by ODEs. Sandu (2006) shows that such discrete adjoint has the same order and
linear stability as the forward integrator. He also points out that the calculation of gradients by reverse
automatic differentiation leads to the discrete adjoint approach. Jansen (2011) provide an overview of
gradient computation using the discrete adjoint. Brouwer and Jansen (2004) and Sarma et al. (2005)
explain and demonstrate gradient computation by the adjoint equations based on the implicit Euler
discretization. Cao et al. (2002) describes the continuousadjoint method and studies the stability of
the continous adjoint system. Kourounis et al. (2010) suggest the continuous-time high order adjoint
equations for gradient computation in production optimization. Capolei et al. (2012) apply high order
continuous-time adjoint based on ESDIRK to a conventional oil field case study. Nadarajah and Jameson
(2007) compare gradients computed by discrete and continuous adjoints for problems arising in aerody-
namics. They conclude that the gradients computed from continuous adjoints is accurate enough to be
used in optimization algorithms. Since computation of gradients based on continuous time adjoints is
faster than gradients based on discrete adjoints, this conclusion implies that the gradient computations
can be accelerated by using the continuous time adjoint equations.

The novel contribution in this paper is an extension of the adjoint based optimization method suggested
by Capolei et al. (2012) to include gradient computation based on a high order discrete adjoint. Fur-
ther discrete and continuous adjoints are compared in performance using a conventional oil field as case
study. Computational experiments demonstrate that the accuracy of the sensitivities obtained by the
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adjoint methods are comparable to the accuracy obtained by the finite difference method. Using the ES-
DIRK method, the continuous adjoint method is able to use a different time grid respect to the forward
integration. So it can compute the sensitivities much faster than the discrete adjoint method and the
finite-difference method. On the other hand the discrete adjoint method produces the gradients of the
numerical schemes and this causes the optimizer to convergefaster. Computational experiments show
that when the time steps are controlled in a certain range, the continuous adjoint method produces gra-
dients sufficiently accurate for the optimization algorithm and somewhat faster than the discrete adjoint
method.

The Optimal Control Problem

In this section, we present the continuous-time constrained optimal control problem and its transcription
by the single shooting method to a finite dimensional constrained optimization problem. First we present
the continuous-time optimal control problem. Then we parametrize the control function using piecewise
constant basis functions, and finally we convert the probleminto a constrained optimization problem
using the single shooting method.

Consider the continuous-time constrained optimal controlproblem in the Bolza form

min
x(t),u(t)

J = Φ̂(x(tb))+
∫ tb

ta
Φ(x(t),u(t))dt (1a)

subject to

x(ta) = x0 (1b)

d
dt

g
(

x(t)
)

= f (x(t),u(t)), t ∈ [ta, tb], (1c)

u(t) ∈ U (t) (1d)

x(t) ∈ R
nx is the state vector andu(t) ∈ R

nu is the control vector. The time intervalI = [ta, tb] as well
as the initial state,x0, are assumed to be fixed. (1c) represents the dynamic model and includes systems
described by index-1 differential algebraic equations (DAE). (1d) represents constraints on the input
values, e.g.umin ≤ u(t) ≤ umax, c(u(t)) ≥ 0, and some constraints related to the rate of movement that
are dependent on the input parametrization.

Path constraints
η(x(t),u(t)) ≥ 0 (2)

may render the optimization problem infeasible. For this reason and due to computational efficiency
considerations when computing the sensitivities by the adjoint method (Capolei and Jørgensen, 2012;
Jørgensen, 2007), we include these constraints as soft constraints using the following smooth approxi-
mation

χi(x(t),u(t)) =
1
2

(
√

ηi(x(t),u(t)
2+βi

2)−ηi(x(t),u(t)

)

(3)

to the exact penalty function max(0,−ηi(x(t))) for i ∈ {1, . . . ,nη}.With this approximation of the path
constraints, the resulting stage cost,Φ(x(t),u(t)), used in (1a) consist of the inherent stage cost,Φ̃(x(t),u(t)),
and terms penalizing violation of the path constraints (2)

Φ(x,u) = Φ̃(x,u)+‖χ(x,u)‖1,Q1 +
1
2
‖χ(x,u)‖2

2,Q2
(4)
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Control Parametrization

Let Ts denote the sample time such that an equidistant mesh can be defined as

ta = t0 < .. . < tS< .. . < tN = tb (5)

with t j = ta+ jTs for j = 0,1, . . . ,N. We use a piecewise constant representation of the control function
on this equidistant mesh, i.e. we approximate the control vector for every subinterval[t j , t j+1] by the
zero-order-hold parametrization

u(t) = u j , u j ∈ R
nu, t j 6 t < t j+1, j ∈ 0, . . . ,N−1 (6)

Input Constraints

The input constraints (1d) include bound constraintsumin ≤ uk ≤ umax. In the discrete problem using
the zero-order-hold parametrization, we also include rateof movement constraints in the form∆umin ≤
∆uk ≤ ∆umax with ∆uk = uk−uk−1.

Single Shooting Optimization

For the single shooting approach (control vector parametrization), we introduce the function

ψ({uk}
N−1
k=0 ,x0) =

{

J =
∫ tb

ta
Φ(x(t),u(t))dt+ Φ̂(x(tb)) : x(t0) = x0,

d
dt

g(x(t)) = f (x(t),u(t)), ta ≤ t ≤ tb, u(t) = uk, tk ≤ t < tk+1, k= 0,1, . . . ,N−1

} (7)

such that (1) can be approximated with the finite dimensionalconstrained optimization problem

min
{uk}

N−1
k=0

ψ = ψ({uk}
N−1
k=0 ,x0) (8a)

s.t. umin ≤ uk ≤ umax k∈ N (8b)

∆umin ≤ ∆uk ≤ ∆umax k∈ N (8c)

ck(uk)≥ 0 k∈ N (8d)

with N = {0,1, . . . ,N−1}. We solve (8) using a quasi-Newton implementation of Powell’s Sequential
Quadratic Programming (SQP) method (Capolei and Jørgensen, 2012).

ESDIRK Methods

In this section, we describe our implementation of the ESDIRK method for the computation ofψ({uk}
N−1
k=0 ,x0)

in (7). Computation ofψ({uk}
N−1
k=0 ,x0) consists of two major operations: 1) For each integration step we

first compute the model statesx(t) solving the initial value problem (1c), 2) and then we compute, using
the same quadrature points, the value of the Lagrange term

ψ̄(t) :=
∫ t

ta
Φ(x(t),u(t))dt ta ≤ t ≤ tb. (9)

in the cost function (1a). Let̃tn denote the integration times chosen by the step size controller in the
integrator. Each integration step size,hn, is chosen such that it is smaller than or equal to the sample time,
Ts. Therefore, one sample interval contains many integrationsteps. We consider ESDIRK methods with
s stages that are designed to be stiffly accurate and with an embedded error estimator. The numerical
solution of the IVP (1c) by such ESDIRK method may in each integration step[t̃n, t̃n+1] be denoted
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(Capolei and Jørgensen, 2012; Völcker et al., 2010)

T1 = t̃n, Ti = t̃n+cihn (10a)

X1 = xn (10b)

φi({Xj}
i−1
j=1,u) = g(X1)+hn

i−1

∑
j=1

ai j f (Xj ,u) (10c)

g(Xi) = φi({Xj}
i−1
j=1,u)+hnγ f (Xi,u) (10d)

xn+1 = Xs (10e)

en+1 = hn

s

∑
j=1

di f (Xj ,u) (10f)

with i = 2, . . . ,s. Xi denotes the numerical solution at timeTi for i ∈ {1, . . . ,s}. xn+1 is the numerical
solution at timet̃n+1 = t̃n + hn. en+1 is the estimated error of the numerical solution, i.e.‖en+1‖ ≈
‖g(xn+1)−g(x(t̃n+1))‖.

Subsequent to solution of (10), we compute the numerical solution of the cost function (9)

ψ̄(t̃n+1) = ψ̄(t̃n)+hn

s

∑
i=1

biΦ(Xi,u) (11)

Whent̃n+1 = tb, we add the Mayer term of (1a) such that

ψ({uk}
N−1
k=0 ,x0) = ψ(tb) = ψ̄(tb)+ Φ̂(x(tb)) (12)

The main computational effort in the ESDIRK method is solution of the implicit equations (10d) using
a Newton based method. (10d) is solved by sequential solution of

Ri(Xi) := [g(Xi)−hnγ f (Xi ,u)]−φi({Xj}
i−1
j=1,u) = 0 (13)

for i = 2, . . . ,s. (13) is solved using an inexact Newton method. Each iteration in the inexact Newton
method for solution of (13) may be denoted

M∆X[l ]
i =−Ri(X

[l ]
i ) (14a)

X[l+1]
i = X[l ]

i +∆X[l ]
i (14b)

The iteration matrix,M, is an approximation

M ≈ J(X[l ]
i ) (15)

to the Jacobian of the residual function

Ji(Xi) =
∂Ri

∂Xi
(Xi) =

∂g
∂x

(Xi)−hnγ
∂ f
∂x

(Xi,u) (16)

The iteration matrix,M, and its LU factorization is updated adaptively by monitoring the convergence
rate of the inexact Newton iterations. Convergence of the inexact Newton iteration is measured by

‖Ri(X
[l ]
i )‖= max

j∈1,...,nx

|(Ri(X
[l ]
i ) j |

max{atolj , rtol jg j(X
[l ]
i )}

< τ (17)

where atol is the absolute tolerance and rtol is the relativetolerance. Steps are accepted if this measure
of the residual is smaller thanτ ≈ 10−2. In case of divergence or slow convergence, the iterations are
terminated, the step size,hn, is decreased, and the Jacobian of the iteration matrix is re-evaluated and
factorized. As explained in e.g. Völcker et al. (2010) and Capolei and Jørgensen (2012), the controller
adjusts the temporal step sizes such that the error estimatesatisfies a norm similar to the norm used in
(17).
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Continuous Adjoint Method

Gradient based methods such as Sequential Quadratic Programming (SQP) methods for solution of
(8) require the gradient of the objective function (7) with respect to the control vector parameters, i.e.
∂ψ/∂uk for k= 0,1, . . . ,N−1. In this section, we describe a continuous-time adjoint based method for
computation of these gradients.
Proposition 1 (Gradients based on Continuous Adjoints). Consider the functionψ = ψ({uk}

N−1
k=0 ;x0)

defined by (7).

The gradients,∂ψ/∂uk and∂ψ/∂x0, may be computed as

∂ψ
∂uk

=

∫ tk+1

tk

(

∂Φ
∂u

−λ T ∂ f
∂u

)

dt k= 0,1, . . . ,N−1

∂ψ
∂x0

=−λ T(ta)
∂g
∂x

(ta)

(18)

in which x(t) is computed by solution of (1b)-(1c) andλ (t) is computed by solution of the adjoint
equations

dλ T

dt
∂g
∂x

+λ T ∂ f
∂x

−
∂Φ
∂x

= 0 (19a)

∂ Φ̂
∂x

(x(tb))+λ T(tb)
∂g
∂x

(x(tb)) = 0 (19b)

Proof. See the Appendix .

Remark 2 (Computation using ESDIRK). x(t) is computed using the ESDIRK method applied to (1b)-
(1c) and integrating forwards. This gives an approximations xn ≈ x(tn). This solution is stored. The
same ESDIRK method is applied for computation ofλ (t) by solving (19) integrating backwards in time.
Remark 3 (Gradients Computed by Continuous Adjoints). The gradients computed using the continu-
ous adjoints are not the exact gradients,∂ψ/∂uk, when the involved differential equations and integrals
are computed by discretization using the ESDIRK method. However, they can be made sufficiently pre-
cise for the optimizer such that they do not affect the convergence (Nadarajah and Jameson, 2007). The
advantage of the continuous adjoint equations (19) is that they can be solved faster than the adjoint
equations for the discretized system (10)-(12).

Solving the Adjoint Equations

Usually, integration software is written to integrate forward in time. Our ESDIRK methods are also
implemented in that way. To integrate the linear equations (19), we introduce the change of variables

t = tb+ ta− t̄ (20)

λ̄ (t̄) = λ (tb+ ta− t̄) (21)

such that (19) becomes

A(t̄)
dλ̄
dt̄

−B(t̄)λ̄ +C(t̄) = 0 (22a)

D(ta)+A(ta)λ̄ (ta) = 0 (22b)

where

A(t̄) = ∇xg
(

x(tb+ ta− t̄)
)

(23)

B(t̄) = ∇x f
(

x(tb+ ta− t̄),u(tb+ ta− t̄)
)

(24)

C(t̄) = ∇xΦ
(

x(tb+ ta− t̄),u(tb+ ta− t̄)
)

(25)

D(t̄) = ∇xΦ̂
(

x(tb+ ta− t̄)
)

(26)
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We integrate this system (22) forward in̄t ∈ [ta, tb].
The solution of system (22) by ans-stage, stiffly accurate, Runge-Kutta ESDIRK method may in each
integration step[t̄n−1, t̄n] be denoted (Brenan et al., 1996)

A(t̄n−1)Ẏ1−B(t̄n−1)λ̄n−1+C(t̄n−1) = 0 (27a)

[

A(t̄n−1+cih̄n−1)− h̄n−1γB(t̄n−1+cih̄n−1)
]

Ẏi = B(t̄n−1+cih̄n−1)
[

λ̄n−1+ h̄n−1

i−1

∑
j=1

ai jẎj
]

+

−C(t̄n−1+cih̄n−1)

(27b)

with i = 2, . . . ,s. where

Ẏi ≈
dλ̄
dt̄

(t̄n−1+ci h̄n−1) (28)

Yi = λ̄n−1+ h̄n−1

s

∑
j=1

ai jẎj ≈ λ̄ (t̄n−1+cih̄n−1) (29)

λ̄n = λ̄n−1+ h̄n−1

s

∑
j=1

b jẎj ≈ λ̄ (t̄n) (30)

The main computational effort in solving the adjoint equations using the ESDIRK method is solving the
linear equations (27).

Continuous Extension

When we solve the system (22) using the ESDIRK solver, we needa numerical approximation of the
state vectorx(t) in temporal pointsT̄i that in general are not the same as the quadrature pointsTi of
the forward integration in (10). To compute this approximation we use a continuous extension. The
numerical approximation tox(t̃n+hnθ) for θ ∈ [0,1] is given by (Jørgensen et al., 2008)

x(t̃n+hnθ) = xn+hn

s

∑
i=1

b̄i(θ) f̄ (Xi,u) (31a)

Xi are the stage values of solving the system (10) int ∈ [t̃n, t̃n+1] and

f̄ (Xi,u) =
∂g
∂x

(Xi)
−1

f (Xi,u). (32)

b̄i(θ) is a matrix function given in Jørgensen et al. (2008). Further the continuous extension used is of
the same order as the forward integration method.

Discrete Adjoint Method

In this section, we describe a discrete adjoint based methodto compute the gradients of the cost function
with respect to the control vector parameters,∂ψ/∂uk for k= 0,1, . . . ,N−1 . In the following, we use
N̄ to indicate the total number of (forward) integration steps.
Let Xj,i denote thei-th stage values in the integration step[t̃ j , t̃ j+1], such that we have

X0,1 ≡ x0, t = t̃0
Xj,i , t ∈ [t̃ j , t̃ j+1]

Xj+1,1 ≡ Xj,s, t = t̃ j+1 ∀ j ∈ {0, . . . ,N̄−2}

XN̄−1,s, t = tb = t̃N̄.

(33)

With this notation, the ESDIRK discretization of (7) is

ψ({uk}
N−1
k=0 ,x0) =

{

J = Φ̂(XN̄−1,s)+
N̄−1

∑
j=0

s

∑
i=1

h jbiΦ(Xj,i , ū j) :

Rj,i({Xj,l}
i
l=1, ū j) = 0 j ∈ {0, . . . ,N̄−1}, i ∈ {2, . . . ,s}

}

(34)
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whereū j ≡ u(t̃ j) = uk for somek∈ {0, . . . ,N−1} and

Rj,i = g
(

Xj,i
)

−φ j,i({Xj,l}
i−1
l=1, ū j)−h jγ f (Xj,i , ū j)

φ j,i(Xj,1, . . . ,Xj,i−1, ū j) = g(Xj,1)+h j

i−1

∑
l=1

ail f (Xj,l , ū j).
(35)

Introduce the vectorsz∈ R
(N̄·(s−1))·nx, R̄∈R

(N̄·(s−1))·nx, andy∈R
N·nu by

z=



































X0,2
...

X0,s

X1,2
...

XN̄−2,s
XN̄−1,2

...
XN̄−1,s



































, y=











u0

u1
...

uN−1











, R̄=



































R0,2
...

R0,s

R1,2
...

RN̄−2,s
RN̄−1,2

...
RN̄−1,s



































, (36)

Then we can rewrite the problem (8) in the compact form

min
y

ψ(x0,y) =

{

J(x0,z,y) : R̄(x0,z,y) = 0

}

(37a)

s.t. y∈ U (37b)

R̄(x0,z,y) = 0 is the discretized dynamical model (1b-1c) in residual form. The relationR̄(x0,z,y) = 0
and the vectorsx0 andy determine the state vectorz.
This leads to the following proposition for computation of the discrete adjoints.
Proposition 4 (Gradients based on Discrete Adjoints). Consider the functionψ = ψ({uk}

N−1
k=0 ;x0) de-

fined in (37).

The gradients,∂ψ/∂y,∂ψ/∂x0, may be computed as

∂ψ
∂y

=
∂J
∂y

+λ T ∂ R̄
∂y

∂ψ
∂x0

=
∂J
∂x0

+λ T ∂ R̄
∂x0

(38)

in which z is computed by solution of (35) andλ is computed by solution of the discrete adjoint equations

λ T ∂ R̄
∂z

=−
∂J
∂z

(39a)

Proof. See Appendix .
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Solving the Discrete System

Due to the special block structure of∂ R̄
∂z , the solution of the discrete adjoint equations (39) is computed

backward. Define the vectorλ as

λ =



































λ0,2
...

λ0,s

λ1,2
...

λN̄−2,s
λN̄−1,2

...
λN̄−1,s



































(40)

We computeλ by computing its subvectors in the reverse order, i.e.λN̄−1,s, . . . ,λN̄−1,2, . . . ,λ0,2,λ0,0.
The last subvector,λN̄−1,s, is computed by

λ T
N̄−1,s ·

∂RN̄−1,s

∂XN̄−1,s
=−

∂J
∂XN̄−1,s

(41)

which is equivalent to the expression

λ T
N̄−1,s ·

(

∂g
∂x

(XN̄−1,s)−hN̄−1γ
∂ f
∂x

(XN̄−1,s,uN)

)

=−

(

∂ Φ̂
∂x

(XN̄−1,s)+hN̄−1bs
∂Φ
∂x

(XN̄−1,s,uN)

)

(42)

Subsequently, the remaining subvectors,λk, j andλk−1,s, are computed by marching backwards

λ T
k,s− j ·

∂Rk,s− j

∂Xk,s− j
=−

∂J
∂Xk,s− j

−
j

∑
i=1

λ T
k,s− j+i ·

∂Rk,s− j+i

∂Xk,s− j
(43a)

λ T
k−1,s ·

∂Rk−1,s

∂Xk−1,s
=−

∂J
∂Xk−1,s

−
s−1

∑
i=1

λ T
k,i+1 ·

∂Rk,i+1

∂Xk−1,s
(43b)

for k ∈ {N̄− 1, . . . ,1}, j ∈ {1, . . . ,s− 2}. Finally we solve (43a) fork = 0, j ∈ {1, . . . ,s− 2} to find
λ0,s−1, . . . ,λ0,2. Note that in case thats= 2 (as in ESDIRK12), we don’t solve the equation (43a). With
this notation (38) becomes

∂ψ
∂uk

= ∑
j:u(t̃ j )≡uk

(

h j

s

∑
l=1

bl
∂Φ
∂u

(Xj,l ,uk)+
s

∑
i=2

λ T
j,i

∂Rj,i

∂u
({Xj,r}

i
r=1,uk)

)

∂ψ
∂x0

= h0b1
∂Φ
∂x0

(x0,u0)+λ T
0,2

∂g
∂x0

(x0)

(44)

The derivatives,∂Rj,i

∂Xj,l
, are provided in the appendix.

Production Optimization for a Conventional Oil Field

In this section, we apply our algorithm for constrained optimal control problems to production opti-
mization in a conventional horizontal oil field that can be modeled as a slightly compressible two phase
flow in a porous medium (Völcker et al., 2009; Chen, 2007). This test case is taken from (Capolei et al.,
2012). The reservoir size is 450 m×450 m×10 m. By spatial discretization this reservoir is divided into
25×25×1 grid blocks. The configuration of injection wells and producers as well as the permeability
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Figure 1 Left: Permeability field with the location of the wells. A circle indicates the location of an
injector and a cross indicates the location of a producer.Right: The net present value (NPV) computed
using ESDIRK3(4) and the discrete adjoint.

field is illustrated in Fig. 1(a). As indicated in Fig. 1(a), the four injectors are located in the corners of
the field, while the single producer is located in the center of the field.

The specification of the two phase oil model consists of the injector (i ∈ I ) and the producer (i ∈ P)
location, the permeability parameters indicated in Fig. 1(a), and the parameters listed in Table 1. The
initial reservoir pressure is 400 atm everywhere in the reservoir. The initial water saturation is 0.1
everywhere in the reservoir. This implies that initially the reservoir has a uniform oil saturation of 0.9.

The inherent discounted stage cost function (see (4))

Φ̃(t) = Φ̃(x(t),u(t)) =−
1

(1+b)t/365 ∑
j∈P

(ro(1− fw)− fwrw)q j(t) (45)

accounts for the value of the oil produced minus the processing cost of the produced water. In this cost
function, we have neglected the processing cost of injectedwater as well as the effect of pressure on
injecting water.b is the discount factor. The fractional flow of water,fw = λw/(λw+λo), indicates the
relative flow of water.λw = ρwkkrw/µw andλo = ρokkro/µo are the water and oil mobilities, respectively.
In the problems considered, we do not have any cost-to-go terms, i.e. Φ̂(tb) = 0. Neither do we have
any path constraints (2). Therefore, maximizing the net present value of the oil field corresponds to
minimization of

J(tb) =−NPV(tb) =
∫ tb

ta
Φ(x(t),u(t))dt (46)

with Φ(x(t),u(t)) = Φ̃(x(t),u(t)). The optimizer maximizes the net present value by manipulating the
injection of water at the injectors and by manipulation of the total fluid production (oil and water) at the
producers. Hence, the manipulated variable at time periodk∈ N is uk = {{qw,i,k}i∈I ,{qi,k}i∈P} with
I being the set of injectors andP being the set of producers. Fori ∈ I , qw,i,k is the injection rate
(m3/day) of water in time periodk ∈ N at injectori. For i ∈ P, qi,k is the total flow rate (m3/day) at
produceri in time periodk∈ N . Therefore, at produceri ∈ P, the water flow rate isqw,i,k = fwqi,k and
the oil flow rate isqo,i,k = (1− fw)qi,k.

The bound constraints (8b) appear in the production optimization problem because the water injected at
injectors and the production at the producers must both be positive and because each production facility
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Table 1 Parameters for the two phase model and the discounted state cost function (45).
Symbol Description Value Unit
φ Porosity 0.2 -
cr Rock compressibility 0 Pa−1

ρo Oil density (400 atm) 800 kg/m3

ρw Water density (400 atm) 1000 kg/m3

co Oil compressibility 10−5 1/atm
cw Water compressibility 10−5 1/atm
µo Dynamic oil viscosity 2·10−3 Pa· s
µw Dynamic water viscosity 1·10−3 Pa· s
Sor Residual oil saturation 0.1 -
Sow Connate water saturation 0.1 -
no Corey exponent for oil 1.5 -
nw Corey exponent for water 1.4 -
Pinit Initial reservoir pressure 400 atm
Sinit Initial water saturation 0.1 -
ro Oil price 100 USD/m3

rw Water production cost 20 USD/m3

has a maximum flow capacity. In the considered problem we have

|qi,k−qi,k−1| ≤ 5 i ∈ I ∪P, k∈ N (47a)

0≤ qi,k ≤ qmax i ∈ P, k∈ N (47b)

The maximum flow capacity,qmax, is the same for all injectors and producers in this case study. The
rate of change for all injectors and producers are|qi,k−qi,k−1| ≤ 5 for i ∈ I ∪P andk∈ N . Since the
injection of oil is zero,qo,i,k = 0 for i ∈I , we get|qw,i,k−qw,i,k−1| ≤ 5 for i ∈I andk∈N . This leads
to the rate of movement constraints (8c). In addition we use avoidage replacement constraint (Brouwer
and Jansen, 2004; Jansen, 2011)

∑
i∈I

qi,k = ∑
i∈I

qw,i,k = ∑
i∈P

qi,k k∈ N (48)

and enforce a constant total injection,∑i∈I qw,i,k = qmax for k ∈ N . This translates into constraints
of the type (8d). By the total injection constraint, the optimization problem reduces to a problem of
redistributing the flows among the injectors.

The prediction and control horizon istb = 4200 days and the sampling period isTs = 120. Hence the
prediction and control horizon corresponds toN = 35 periods. With a total injection at each time period
of qmax= 100 m3/day, these specifications corresponds to injection of 1.05pore volume during operation
of the reservoir. A reference case with a constant injectionof 25 m3/day from each injector is considered.
A prediction horizon of 4270 days is optimal in the referencecase for a total injection of 100 m3/day.
We consider the case of no discount, i.e.b= 0.

Fig. 1(b) illustrates the net present value for the base casescenarios as well as the optimized scenarios.
The plot of NPV demonstrates that the NPV is lower than the base case NPV at some time during the
production. At the end of the production, the optimized NPV increases with 7.2% compared to the
reference case.

Results

The ESDIRK methods that we refer to in this paper are ESDIRK1(2),ESDIRK2(3) and ESDIRK3(4).
They are first, second, and third order accurate methods, respectively. Their embedded error estimator is
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Figure 2 Gradient of the cost function∂ψ
∂uk

respect to the control vector. FD: Central Finite Difference,
RK34: ESDIRK34, cont.: continuous adjoint method, discr.:discrete adjoint method., h: forward step
size in days,̄h: adjoint step size in days

one order higher than the order of the advancing method. ESDIRK1(2) is the implicit Euler integration
scheme with an embedded error estimator of order two.
Firstly, we test the gradient computation using the continuous adjoint, the discrete adjoint and the central
finite differences. These methods produce gradients of comparable numerical values. We compare
the gradients computed by the continuous adjoint method andthe finite difference method to adjoints
computed by the discrete adjoint method. We do this by computing the relative error with respect to
the gradient computed by the discrete adjoint method. Finally, a table with the computational statistics
of ESDIRK3(4) is provided. It reveals that for increasing stepsizesh̄ of the adjoint integration, the
continuous adjoint method is significantly faster than the discrete adjoint method (which is based on a
fixed forward integration steph).
Secondly, we report the optimization results of the test case introduced in the previous section. We report
a table with the computational statistics. We find that thereis a benefit in using the continuous adjoint
method because the optimization algorithm requires less time and the value of the net present values
is comparable with the one obtained by using the discrete adjoint. Finally, the optimal trajectories are
compared.

In all the examples in this work, we use a fixed stepsize,h = 4 days, for the forward integration. We
tried also smaller stepsizesh= 0.5,1,2 days finding similar qualitative results. Using a bigger stepsize,
e.g.h= 5 days, was not possible because of a failure in the convergence of the equation solver (10). We
solve (10) using absolute and relative tollerances in (17) equal to 10−8. The perturbation used for the
central finite difference method isδu= 10−4.

Gradient Computation

Fig. 2 shows the gradients,∂ψ
∂uk

, computed using the different methods. The different gradients are com-
parable and by visual inspection we see no difference. Fig. 3reports the relative error of computing
the gradient∂ψ

∂uk
using the finite difference and the continuous adjoint methods with respect to the gra-

dients computed by the discrete adjoint method. In general,the error increases as the adjoint stepsizeh̄
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Figure 3 Relative error of the gradients,∂ψ
∂uk

, computed by the continuous adjoint method and the central
finite difference method with respect to the gradient computed by the discrete adjoint method using a
forward step size of h= 4 days. FD: Central Finite Difference, RK34: ESDIRK34, cont.: continuous
adjoint method, h: forward step size,h̄: adjoint step size

increases; this is particular noticeable for the last control step. Different injectors have different relative
errors. Injector 4 has the largest relative error, i.e. 80%.This error occurs in the last control step. Large
differences in the last control step was also noted in Kourounis et al. (2010). They computed the contin-
uous adjoint based on the implicit Euler method.

Table 2 reports computational statistics for gradient computations using ESDIRK3(4). We note that
using the continuos adjoint, the time,Tad j, spend for gradient computation is inversely proportionalto
the continuous adjoint step-size,h̄. Using the same step size,h= h̄, the continuous adjoint method uses
more computation time,tad j, than the discrete adjoint method. This is due to the increased time spend
in computing the continuous extension.

Using the others ESDIRK methods, 1(2)-3(4), we get similar tables. However there is an issue in our
implementation. Using the continuous ESDIRK1(2) adjoint method, we don’t need to solve both linear
systems in (27) in each step. It is enough to solve only (27b) as we don’t neeḋY1 to computeY2 = λ̄n

for ESDIRK1(2). This gives a penalty in using the continuousadjoint with ESDIRK1(2). In a future
implementation, we will tailor the method for ESDIRK1(2) such that we avoid this penalty.

Optimization Results

We use the following stopping criteria for our SQP algorithm. An optimal solution is reported if the
KKT conditions are satisfied to within a relative and absolute tolerance of 10−6. The current best but
non-optimal iterate is also returned in case of failure in the line search procedure, i.e. if the line search
uses more than 20 iterations. Finally, the current best but non-optimal iterate is also returned in case of a

ECMOR XIII – 13th European Conference on the Mathematics of Oil Recovery
Biarritz, France, 10-13 September 2012



Table 2 Computational statistics for the gradient computation. h:forward integration step size.̄h:
continuous adjoint stepsize. tad j: time to compute the gradient with the adjoint method scaledwith
respect to the forward integration time. Tad j: time to compute the gradient with the continuous adjoint
method scaled with respect to the time to compute the gradient with the adjoint method usinḡh= 4.

ESDIRK h[day] h̄[day] tad j Tad j

discrete adjoint 3(4) 4 – 1.37 –
continuous adjoint 3(4) 4 4 1.70 1

3(4) 4 12 0.58 0.33
3(4) 4 120 0.06 0.03

relative change in the cost function less than 10−10 or if the number of SQP iterations exceeds 100. For
the current case, we have never experienced that the SQP algorithm uses more than 100 iterations.

Table 3 reports computational statistics for the optimization process. We note that the NPVs computed
using ESDIRK3(4) are bigger than the ones computed using ESDIRK1(2). Also the NPVs computed by
the discrete adjoints are bigger than the ones computed using the continuous adjoint (with the same ES-
DIRK scheme). For both ESDIRK1(2)-3(4), we note that using the continuous adjoint with the biggest
stepsizēh= 20 days, the computation timeT/Tdiscr,RK12 is reduced by a factor of about three. Further-
more, we note that using the continuous adjoint based on ESDISRK3(4) withh̄= 20, the computation
time is halved when compared to using the ESDIRK1(2) method with the discrete adjoint gradient com-
putation. This is indicate byT/Tdiscr,RK12 in Table 3.

Fig. 4 and Fig. 5 report the optimal water injection rates using the different adjoint methods based on
ESDIRK1(2) and ESDIRK3(4), respectively. We note that whenh= h̄= 4, the trajectories agree for all
times and visually we see no differences. Increasingh̄ produces a change in the solution and this change
is more marked in the last control steps. This is in agreementwith the results of Fig. 3. We note that the
solutions computed using continuous adjoints are closer tothe solution computed by discrete adjoints
for EDSIRK3(4) than for ESDIRK1(2).

Fig. 6(a) and Fig. 6(b) report the NPVs as function of the SQP iteration number. We note that in general
the different methods converge to similar numerical values. As reported in Table 3, they converge with a
different rate (i.e. the use a different number of iterations). Increasing the step size,h̄, the NPV decreases
and this decrease is greater using ESDIRK1(2) compared to ESDIRK3(4).

Conclusions

We propose the use of high order continuous and discrete adjoint methods in a gradient based algorithm
for oil reservoir production optimization. The resulting algorithm is tested for a production optimization
problem of an oil reservoir with a slightly compressible twophase flow. For all cases considered, the
dynamic optimization increases the net present value of thefield and gives increased oil production.
Computational experiments demonstrate that the accuracy of the sensitivities obtained by the adjoint
methods are comparable to the accuracy obtained by the finitedifference method. Using the ESDIRK
method, the continuous adjoint method is able to use a time grid different from the time grid used for
forward integration. Therefore, it can compute these sensitivities much faster than the discrete adjoint
method and the finite-difference method. The discrete adjoint method produces the gradients of the
numerical schemes and this an advantage when the gradient isused in a numerical optimization algo-
rithm. Computational experiments show that when the time steps are controlled in a certain range, the
continuous adjoint method produces gradients sufficientlyaccurate for the optimization algorithm and
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Table 3 Computational statistics for the optimization process. h:forward integration stepsize.̄h: con-
tinuous adjoint stepsize. SQP: Number of iterations in the SQP-algorithm. QP: Number of KKT-matrix
factorizations in the interior-point QP-solver. LS: Number of line searches and call to the ESDIRK
algorithm.T/Tdiscr,RK12: time to compute the optimal solution scaled to the time to compute the optimal
solution using the ESDIRK1(2) discrete gradient. T/Tdiscr,RK34: time to compute the optimal solution
scaled to the time to compute the optimal solution using the ESDIRK3(4) discrete gradient.

ESDIRK Adjoint h[day] h̄[day] SQP QP LS T/Tdiscr,RK12 T/Tdiscr,RK34 NPV [$]
1(2) discr. 4 – 84 1248 111 1 – 27.661.373

cont. 4 4 62 894 129 0.94 – 27.661.351
cont. 4 12 42 552 74 0.50 – 27.659.895
cont. 4 120 25 272 45 0.27 – 27.598.463

3(4) discr. 4 – 66 938 92 1.42 1 27.672.877
cont. 4 4 66 945 134 1.85 1.30 27.672.870
cont. 4 12 69 998 106 1.32 0.93 27.672.875
cont. 4 120 38 507 58 0.57 0.40 27.667.576

somewhat faster than the discrete adjoint method.

Future work should investigate the use of a variable step-size in the forward integration. For basic simu-
lation tasks, our software is equipped with a PI stepsize controller, while the forward integration reported
in this paper is based on a fixed step size. In this work we didn’t report preliminary results of using the
adaptive step size controller as it is not clear yet how to setthe controller tollerances during the adjoint
integration. Fig. 3 suggests that relatively smaller step-sizes should be taken at the end of the horizon
when integrating backward with the continuous adjoint.
The algorithm described in this paper has been implemented in Matlab. Future work will include imple-
mentations of the algorithms as efficient C++ code and comparison with other simulators.
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Figure 5 Optimal water injection rates using different adjoint methods based on ESDIRK3(4). discr.:
discrete adjoint method., cont.: continuous adjoint method, h: forward step size in days,h̄: adjoint step
size in days.

Proof of Proposition 1.

The idea in the proof stems from Cao et al. (2002). Define

G(x, ẋ,u) =
d
dt

g(x(t))− f (x(t),u(t)) =
∂g
∂x

ẋ(t)− f (x(t),u(t)) = 0 (49)

and introducing the adjoint variable,λ (t), to define the augmented objective function as

JA = J+
∫ tb

ta
λ T(t)G(x, ẋ,u)dt (50a)

(49) implies that the derivative of the augmented objectivefunction,JA, can be expressed as

dJA

duk
=

dJ
duk

=
∂ Φ̂
∂x

∂x
∂uk

∣

∣

∣

∣

tb

+

∫ tb

ta

(

∂Φ
∂u

∂u(t)
∂uk

+
∂Φ
∂x

∂x(t)
∂uk

)

dt

+
∫ tb

ta
λ T(t)

(

∂G
∂u

∂u(t)
∂uk

+
∂G
∂x

∂x(t)
∂uk

+
∂G
∂ ẋ

∂ ẋ
∂uk

)

dt

(51)

where

∂u(t)
∂uk

=

{

I tk ≤ t < tk+1

0 otherwise
(52)

Integrating by part

∫ tb

ta
λ T(t)

∂G
∂ ẋ

∂ ẋ
∂uk

dt =

[

λ T ∂G
∂ ẋ

∂x(t)
∂uk

]
∣

∣

∣

∣

tb

ta

−
∫ tb

ta

d
dt

(

λ T ∂G
∂ ẋ

)

∂x
∂uk

dt (53)
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Figure 6 NPVs convergence using different methods. discr.: discrete adjoint method., cont.: continuous
adjoint method, RK12: ESDIRK12, RK34: ESDIRK34, h: forwardstep size in days,̄h: adjoint step size
in days.

and using∂x
∂uk

(ta) = 0 in our case, we can rearrange equation (51) as

dJ
duk

=
∫ tk+1

tk

(∂Φ
∂u

+λ T ∂G
∂u

)

dt+
∫ tk+1

tk

(

∂Φ
∂x

+λ T ∂G
∂x

−
d
dt

(

λ T ∂G
∂ ẋ

)

)

∂x
∂uk

dt

+

[(

∂ Φ̂
∂x

+λ T ∂G
∂ ẋ

)

∂x
∂uk

]
∣

∣

∣

∣

tb

(54)

This expression gives the derivativedJ/duk for any value (not just the optimal one) ofλ (t). We choose
λ (t) such that it satisfies

∂Φ
∂x

+λ T ∂G
∂x

−
d
dt

(

λ T ∂G
∂ ẋ

)

= 0 (55a)
[

∂ Φ̂
∂x

+λ T ∂G
∂ ẋ

]
∣

∣

∣

∣

tb

= 0 (55b)
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and gives a simple expression for evaluation ofdJ/duk

∂ψ
∂uk

=
dJ
duk

=

∫ tk+1

tk

(

∂Φ
∂u

−λ T ∂ f
∂u

)

dt (56)

(49) implies

∂G
∂x

=
d
dt

(

∂g
∂x

)

−
∂ f
∂x

(57a)

∂G
∂ ẋ

=
∂g
∂x

(57b)

such that (55) can be rearranged to

dλ T

dt
∂g
∂x

+λ T ∂ f
∂x

−
∂Φ
∂x

= 0 (58a)

∂ Φ̂
∂x

(x(tb))+λ T(tb)
∂g
∂x

(x(tb)) = 0 (58b)

Similarly we derive the expression fordJ/dx0

dJA

dx0
=

dJ
dx0

=
∂ Φ̂
∂x

∂x
∂x0

∣

∣

∣

∣

tb

+

∫ tb

ta

(

∂Φ
∂x

∂x(t)
∂x0

)

dt

+

∫ tb

ta
λ T(t)

(

∂G
∂x

∂x(t)
∂x0

+
∂G
∂ ẋ

∂ ẋ
∂x0

)

dt

(59)

Integrating by part

∫ tb

ta
λ T(t)

∂G
∂ ẋ

∂ ẋ
∂x0

dt =

[

λ T ∂G
∂ ẋ

∂x(t)
∂x0

]
∣

∣

∣

∣

tb

ta

−
∫ tb

ta

d
dt

(

λ T ∂G
∂ ẋ

)

∂x
∂x0

dt (60)

and using∂x
∂x0

(ta) = I in our case, we can rearrange equation (59) as

dJ
dx0

=

∫ tk+1

tk

(

∂Φ
∂x

+λ T ∂G
∂x

−
d
dt

(

λ T ∂G
∂ ẋ

)

)

∂x
∂x0

dt+

[(

∂ Φ̂
∂x

+λ T ∂G
∂ ẋ

)

∂x
∂x0

]
∣

∣

∣

∣

tb

−λ T(ta)
∂G
∂ ẋ

(ta) (61)

finally usingλ (t) computed in (55) we have

dJ
dx0

=−λ T(ta)
∂g
∂x

(ta) (62)

Proof of Proposition 4.

We follow the same adjoint formalism as in (Kraaijevanger etal., 2007; Oliver et al., 2008). This
is different, but equivalent to the more common one based on the Lagrange formalism (Brouwer and
Jansen, 2004; Sarma et al., 2005; Jørgensen, 2007) which make use of the augmented objective function
Ja = J−λ R̄. Adjoint formalism have a wider scope because adjoint variables are defined not only when
optimal conditions are satisfied. When optimal conditions are satisfied, the adjoint variables coincide
with Lagrange multipliers.

Starting from the discretized dynamical model in residual form (37)

R̄(x0,z,y) = 0 (63)
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we use the implicit function theorem to find the sensitivities of the dependent variables with respect to
the indipendent ones

∂z
∂y

=−
∂ R̄
∂z

−1∂ R̄
∂y

(64a)

∂z
∂x0

=−
∂ R̄
∂z

−1 ∂ R̄
∂x0

. (64b)

The total derivatives of the cost function in (37) are given by

dJ
dy

(x0,z,y) =
∂J
∂y

+
∂J
∂z

∂z
∂y

=
∂J
∂y

−
∂J
∂z

∂ R̄
∂z

−1∂ R̄
∂y

(65a)

dJ
dx0

(x0,z,y) =
∂J
∂x0

+
∂J
∂z

∂z
∂x0

=
∂J
∂x0

−
∂J
∂z

∂ R̄
∂z

−1 ∂ R̄
∂x0

. (65b)

Introducing the adjoint variablesλ as solution of

λ T ∂ R̄
∂z

=−
∂J
∂z

(66)

we can rewrite (65) as

∂ψ
∂y

=
dJ
dy

=
∂J
∂y

+λ T ∂ R̄
∂y

(67a)

∂ψ
∂x0

=
dJ
dx0

=
∂J
∂x0

+λ T ∂ R̄
∂x0

. (67b)

Derivatives ∂Rj,i
∂Xj,l

.

∂Rj,i

∂Xj,l
=

(

∂g
∂x

(Xj,l )−h jγ
∂ f
∂x

(Xj,l , ū j)

)

δli −
∂φ j,i

∂Xj,l

∂φ j,i

∂Xj,l
=

(

1−δli
)

(

∂g
∂x

(Xj,1)δl1+h jail
∂ f
∂x

(Xj,l , ū j)

) (68)

whereδil is the Kronecker function.

∂Rj,i

∂ ū j
=−

∂φ j,i

∂ ū j
−h jγ

∂ f
∂u

(Xj,i , ū j)

∂φ j,i

∂ ū j
= h j

i−1

∑
l=1

ail
∂ f
∂u

(Xj,l , ū j)

(69)

∂J
∂uk

= ∑
j:u(t̃ j )≡uk

h j

s

∑
l=1

bl
∂Φ
∂u

(Xj,l ,uk) (70)

∂J
∂x0

= h0b1
∂Φ
∂x0

(X0,1,u0) (71)
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∂J
∂Xj,i

= h jbi
∂Φ
∂x

(Xj,i , ū j) i ∈ {2, . . . ,s−1}, j ∈ {0, . . . ,N̄−1} (72)

∂J
∂Xj,s

= h jbs
∂Φ
∂x

(Xj,s, ū j)+h j+1b1
∂Φ
∂x

(Xj+1,1, ū j+1) j ∈ {0, . . . ,N̄−2} (73)

∂J
∂XN̄−1,s

=
∂ Φ̂

∂XN̄−1,s
(∂XN̄−1,s)+hN̄−1bs

∂Φ
∂XN̄−1,s

(∂XN̄−1,s,uN) (74)
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Abstract In conventional waterflooding of an oil field,
feedback based optimal control technologies may enable
higher oil recovery than with a conventional reactive
strategy in which producers are closed based on water
breakthrough. To compensate for the inherent geological
uncertainties in an oil field, robust optimization has been
suggested to improve and robustify optimal control strate-
gies. In robust optimization of an oil reservoir, the water
injection and production borehole pressures (bhp) are com-
puted such that the predicted net present value (NPV) of an
ensemble of permeability field realizations is maximized.
In this paper, we both consider an open-loop optimization
scenario, with no feedback, and a closed-loop optimization
scenario. The closed-loop scenario is implemented in a
moving horizon manner and feedback is obtained using an
ensemble Kalman filter for estimation of the permeability
field from the production data. For open-loop implementa-
tions, previous test case studies presented in the literature,
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show that a traditional robust optimization strategy (RO)
gives a higher expected NPV with lower NPV standard
deviation than a conventional reactive strategy. We present
and study a test case where the opposite happen: The reac-
tive strategy gives a higher expected NPV with a lower NPV
standard deviation than the RO strategy. To improve the RO
strategy, we propose a modified robust optimization strat-
egy (modified RO) that can shut in uneconomical producer
wells. This strategy inherits the features of both the reactive
and the RO strategy. Simulations reveal that the modified
RO strategy results in operations with larger returns and
less risk than the reactive strategy, the RO strategy, and the
certainty equivalent strategy. The returns are measured by
the expected NPV and the risk is measured by the stan-
dard deviation of the NPV. In closed-loop optimization, we
investigate and compare the performance of the RO strategy,
the reactive strategy, and the certainty equivalent strategy.
The certainty equivalent strategy is based on a single real-
ization of the permeability field. It uses the mean of the
ensemble as its permeability field. Simulations reveal that
the RO strategy and the certainty equivalent strategy give a
higher NPV compared to the reactive strategy. Surprisingly,
the RO strategy and the certainty equivalent strategy give
similar NPVs. Consequently, the certainty equivalent strat-
egy is preferable in the closed-loop situation as it requires
significantly less computational resources than the robust
optimization strategy. The similarity of the certainty equiv-
alent and the robust optimization based strategies for the
closed-loop situation challenges the intuition of most reser-
voir engineers. Feedback reduces the uncertainty and this is
the reason for the similar performance of the two strategies.

Keywords Robust optimization · Ensemble Kalman
filter · Oil reservoir · Production optimization · Automatic
history matching
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1 Introduction

In the oil industry, closed-loop reservoir management
(CLRM) has been suggested to maximize oil recovery or a
financial measure such as the net present value of a given
oil reservoir [1–12]. Fig. 1 illustrates the components in
closed-loop reservoir management. The controller consists
of model based data assimilation, also known as a param-
eter and state estimator, and a model based optimizer for
maximizing the oil recovery or some predicted financial
measure such as the net present value. The inputs to the
controller is production measurements, forecasts of the oil
price, the interest rate, and the operating unit costs. Based
on these inputs the controller computes water injection tra-
jectories as well as borehole pressure trajectories. Only the
first part of these trajectories are implemented in the real
oil reservoir. As new measurements become available, the
process is repeated. The parameters and the states of the
model are re-estimated using the data assimilation compo-
nent. These filtered states and parameters are used in the
model based optimization for computation of optimal tra-
jectories for the manipulated variables, and the first part of
the trajectories are implemented. This form of control is
also known as Nonlinear Model Predictive Control (NMPC)
[13–19]. A key difference of NMPC applied to reservoir
management and traditional process control applications is
the size of the model describing the system. In reservoir
management, spatial discretization of the partial differen-
tial equation (PDE) system describing the flow results in
a system of differential equations that is much larger than

Real Oil Reservoir

Reservoir models

Optimizer

Data assimilation

Measurements

Noise NoiseOutputInput

Control 
Input

Fig. 1 Closed-loop reservoir management

the systems typically encountered in process control appli-
cations. The large-scale nature of the closed-loop reservoir
management problem requires special numerical techniques
for the data assimilation [20] as well as the optimization
[21, 22].

In this paper, we study and discuss two closed-loop
approaches for real-time production optimization. Both of
the two closed-loop approaches consist of three key ele-
ments: 1) A gradient based optimization algorithm for
computation of the control input, 2) an ensemble Kalman
filter (EnKF) for model updating through data assimila-
tion (history-matching), and 3) use of the moving horizon
principle for data assimilation and implementation of the
computed control input.The first closed-loop approach is
a certainty equivalent strategy. In this strategy, the EnKF
is used to estimate permeabilities of each member of the
ensemble. The average of these permeabilities is used in the
optimization. The second closed-loop approach is a strategy
based on robust optimization. In this strategy, all members
of the ensemble are used to compute the mean net present
value for the optimization.

We know from finance that strategies which attempt to
increase returns are often accompanied by an increased
uncertainty [23]. The robust strategy typically reduces
the uncertainty of the expected outcome compared to a
non-robust strategy and one would consequently expect a
decrease in return [24, 25]. Figure 2 sketches this phe-
nomenon. For the test cases used in the oil industry to
test robust optimization strategies, this phenomenon has not
been reported [26]. Due to the large-scale nature of an oil
reservoir model, we cannot compute the entire distribu-
tion of the net present value for the closed-loop system.
Accordingly, the ambition in this paper is in a computational
tractable way, using a few realizations, to demonstrate the
closed-loop performance of the certainty equivalent and the
robust optimization strategy.
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Fig. 2 Conceptual sketch of the distribution of the net present value
for two strategies in finance. A robust strategy has lower variance and
typically also lower mean value than non-robust strategies such as a
certainty equivalent strategy
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Data assimilation by the EnKF is a popular method for
history matching as well as closed-loop reservoir manage-
ment [1, 3, 4, 6, 27]. In [28], different data assimilation and
optimization methods are tested on the synthetic ”Brugge
field” to maximize its NPV. The three best results are all
obtained by methods using an EnKF for data assimilation.
The EnKF method is a Monte Carlo implementation of the
Kalman filter [29]. The literature available on the EnKF
in petroleum engineering is rather large and mature. Data
assimilation using the ensemble Kalman filter has been
reviewed by [30–32] and [20, 33, 34] provide overviews
of filtering techniques. A review of various issues of the
EnKF, including sampling error because of small ensem-
bles, covariance localization (limiting the influence of the
observations to the state variables that are located spatially
close to them), filter divergence, and model error, is given
in [31] and [30]. [35] describes the necessity of introduc-
ing a confirming step to ensure consistency of the updated
static and dynamic variables with the flow equations, while
[30] discusses the reduction of the ensemble size with a
resampling scheme. The problem of ensemble collapse is
discussed in [36]. [37] considers a way to handle model
constraints within the EnKF. [38] investigates an update
step that preserves multi-point statistics and not only two
point-statistics.

In the model based optimization part of CLRM, a tra-
ditional choice is to use methods based on one realization,
usually the ensemble mean from the EnKF. To reduce the
risk arising from uncertainty in the geological description,
[26] proposes to optimize the expectation of net present
value over a set of reservoir models using a gradient based
method. This procedure is referred to as robust optimization
(RO). In open-loop simulations, [26] compares the results
of the RO procedure to two alternative approaches: a nomi-
nal optimization (NO) and a reactive control approach. They
find that RO yields a much smaller variance than the alter-
natives. Moreover the RO strategy significantly improves
the expected NPV over the alternative methods (on aver-
age 9.5 % higher than using reactive-control and 5.9 %
higher than the average of NO strategies). [27, 39, 40] do
closed-loop reservoir management using an EnKF for data
assimilation and robust optimization with a gradient-free
ensemble based optimization scheme for the model based
optimization. [39] reports that an ensemble based optimiza-
tion results in a NPV improvement of 22 % compared to a
reactive strategy. However, they do not compare the closed-
loop robust strategy to a closed-loop certainty equivalent
strategy.

To our knowledge, there is no closed-loop application
of the gradient-based robust optimization strategy as imple-
mented in [26] available in the literature. Furthermore,
the CLRM literature misses an open-loop as well as a
closed-loop comparison of the performance of an ensem-

ble based optimization scheme [39] or a gradient-based
robust optimization scheme [26] with a certainty equivalent
optimization strategy based on the ensemble mean. In this
work we partially fill this gap and do CLRM comparing
a RO strategy [26] to three alternative approaches: a reac-
tive strategy, a nominal strategy, and a certainty equivalent
strategy. By using feedback, the ensemble of permeability
fields converge to a point such that the RO strategy becomes
equivalent to the certainty equivalent strategy based on the
ensemble mean. The RO is more expensive computationally
than the certainty equivalent strategy. In this paper, we use
a case study to compare the RO strategy in closed-loop to
other strategies.

The paper is organized as follows. Section 2 defines the
reservoir model. Section 3 states the constrained optimal
control problem and describes the robust optimization strat-
egy. The ensemble Kalman filter for data assimilation is
described in Section 4. Section 5 describes the numerical
case study and conclusions are presented in Section 6.

2 Reservoir model

In this work, we assume that the reservoirs are in the sec-
ondary recovery phase where the pressures are above the
bubble point pressure of the oil phase. Therefore, two-phase
immiscible flow, i.e. flow without mass transfer between
the two phases, is a reasonable assumption. We focus on
water-flooding cases for two-phase (oil and water) reser-
voirs. Further, we assume incompressible fluids and rocks,
no gravity effects or capillary pressure, no-flow boundaries,
constant porosity, and finally isothermal conditions. The
state equations in an oil reservoir �, with boundary ∂�

and outward facing normal vector n, can be represented by
pressure and saturation equations. The pressure equation is
described as

v = −λtK∇p, ∇ · v = q in �

v · n = 0 on ∂� (1)

v is the Darcy velocity (total velocity), K is the permeability,
p is the pressure, q is the volumetric well rate, and λt is the
total mobility, which in this setting is the sum of the water
and oil mobility functions,

λt = λw(s) + λo(s) = krw(s)/μw + kro(s)/μo (2)

The saturation equation is given by

φ
∂

∂t
Sw + ∇ · (fw(Sw)v

) = qw

ρw

(3)

φ is the porosity, s is the saturation, fw(s) is the water frac-
tional flow which is defined as λw

λt
, and qw is the volumetric

water rate at the well. We use the MRST [41] reservoir
simulator to solve the pressure and saturation equations,
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(1) and (3), sequentially. Wells are implemented using the
Peaceman well model [42]

qi = −λtWIi

(
pi − pBHP

i

)
(4)

qi is the flow rate into grid block i, pBHP
i is the wellbore

pressure, and WIi is the Peaceman well-index.

3 Production optimization

Production optimization aims at maximizing a performance
index, net present value or oil recovery, for the life time of
the oil reservoir. Spatial and temporal discretization of the
model equations and the performance index yield a finite
dimensional nonlinear constrained optimization problem on
a time horizon from 0 to N that can be formulated as

max
{xk}Nk=0,{uk}N−1

k=0

J =
N−1∑

k=0

Jk(xk, xk+1, uk) (5a)

subject to

x0 = x̄0 (5b)

gk(xk, xk+1, uk; θ) = 0 k ∈ N := {0, 1, . . . , N − 1}
(5c)

c
(
{uk}N−1

k=0

)
≤ 0 (5d)

x̄0 is the initial states, θ is a parameter vector in an uncer-
tain space � (in our case the permeability field), xk is the
state vector, uk is a piecewise constant control vector, gk

is the discretization of the dynamical model, (1) and (3),

and c
(
{uk}N−1

k=0

)
are linear bounds on the control vector. In

our formulations we do not allow nonlinear state or output
constraints, see e.g. [43].

3.1 Objective function

The optimizer maximizes the net present value by manipu-
lating the well bhps. Hence, the manipulated variable at time

period k ∈ N is uk =
{
{pbhp

i,k }i∈I , {pbhp

i,k }i∈P

}
with I

being the set of injectors and P being the set of producers.
For i ∈ I , p

bhp
i,k is the bhp (bar) in time period k ∈ N at

injector i. For i ∈ P , p
bhp

i,k is the bhp (bar) at producer i in
time period k ∈ N .

The stage cost, Jk , in the objective function for a net
present value (NPV) maximization can be expressed as

Jk = − �tk

(1 + d)
tk+1

τ

[
∑

i∈P

ro qk+1
o,i (uk, xk+1)

−
∑

i∈P

rwp qk+1
w,i (uk, xk+1)+

∑

l∈I

rwi qk+1
l (uk, xk+1)

]

(6)

ro, rwp, and rwi represent the oil price, the water separation
cost, and the water injection cost, respectively. The water
flow rate (bbl/day) in producer i at time period k is qk

w,i =
fwqk

i and the oil flow rate is qk
o,i = (1 − fw)qk

i . qk
i is the

flow rate at producer i as given by (4). The well rates at
the injector wells are denoted by ql (only water is injected).
Note that from the well model (4), it follows that the flow
rates q are negative for the producer wells and positive for
the injector wells. d is the discount factor, �tk is the time
interval, and N is the number of control steps. Note that in
the special case when the discount factor is zero (d = 0) and
the water injection and separation costs are zero as well, the
NPV is equivalent to the quantity of produced oil.

3.2 Control and constraints

We control the bhp of the wells and assume that these con-
trol inputs are piecewise constant functions. The bhps are
constrained by well and reservoir conditions. To maintain
the two phase situation we require the pressure to be above
the bubble point pressure (290 bar). To avoid fracturing the
rock, the pressure must be below the fracture pressure of
the rock (350 bar). To maintain flow from the injectors to
the producers, the injection pressure is maintained above
310 bar and the producer pressures are kept below 310
bar. With these bounds we did not experience that the flow
was reversed. Without these pressure bounds, however, state
constraints, like bounds on flow rates (4), must be applied
to avoid flow reversion.

3.3 Single-shooting optimization

We use a single shooting algorithm [11, 44] for solu-
tion of (5a). Alternatives are multiple-shooting [45, 46]
and collocation methods [47]. Despite the fact that the
multiple shooting and the collocation methods offer bet-
ter convergence properties than the single-shooting method
[45–47], their application in production optimization is
restricted by the large state dimension of such prob-
lems. The use of multiple-shooting is prevented by the
need for computation of state sensitivities. The colloca-
tion method do not allow for adaptive time stepping and
would need to solve huge-scale optimization problems. In
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the single shooting optimization algorithm, we define the
function

ψ = ψ
(
{uk}N−1

k=0 ; x̄0, θ
)

=
{
J =

N−1∑

k=0

Jk(xk, xk+1, uk) :

x0 = x̄0, gk(xk, xk+1, uk; θ) = 0, k ∈ N

}
(7)

such that (5a) can be expressed as the optimization problem

max
{uk}N−1

k=0

ψ = ψ
(
{uk}N−1

k=0 ; x̄0, θ
)

s.t. c
(
{uk}N−1

k=0

)
≤ 0 (8)

Gradient based optimization algorithms for solving (8)

require evaluation of ψ = ψ
(
{uk}N−1

k=0 ; x̄0, θ
)

, ∇ukψ for

k ∈ N , c
(
{uk}N−1

k=0 , and ∇uk c
(
{uk}N−1

k=0

)
for k ∈ N . The

constraint function is in the cases considered linear bounds
such that evaluation of these constraint functions and their
gradients is trivial. Given an iterate, {uk}N−1

k=0 , ψ is com-
puted by solving (7) marching forwards. ∇ukψ for k ∈ N
is computed by the adjoint method [9, 11, 43, 48–51]. In
this method, the gradients {∇ukψ}N−1

k=0 are computed using
Algorithm 1 with

∇xk gk = ∇xk gk(xk, xk+1, uk; θ) k ∈ N (9a)

∇xk+1gk = ∇xk+1gk(xk, xk+1, uk; θ) k ∈ N (9b)

∇ukgk = ∇ukgk(xk, xk+1, uk; θ) k ∈ N (9c)

∇xk Jk = ∇xk Jk(xk, xk+1, uk) k ∈ N \ {0} (9d)

∇xk+1Jk = ∇xk+1Jk(xk, xk+1, uk) k ∈ N (9e)

∇ukJk = ∇ukJk(xk, xk+1, uk) k ∈ N (9f)

that are computed and stored during the forward solution
of (7).

Algorithm 1 Adjoint method for computing {∇ukψ}N−1
k=0 .

Solve for λN in ∇xN
gN−1λN = ∇xN

JN−1
fork = N − 1,N − 2, . . . , 1 do

Compute ∇uk
ψ = ∇uk

Jk − ∇uk
gkλk+1

Solve for λk in ∇xk
gk−1λk = ∇xk

Jk−1 +∇xk
Jk −∇xk

gkλk+1
end for
Compute ∇u0ψ = ∇u0J0 − ∇u0g0λ1

To solve (8), we use two commercial optimization
software packages: Knitro [52] and Matlab’s fmincon
function [53]. Knitro as well as fmincon, allows us to
use an interior point or an active-set methods. We use
up to 10 different initial guesses when running the opti-
mizations and we find similar qualitative results with both
software packages. Further, similar results are found with
interior point and active-set methods. When using Knitro
as well as fmincon, we select an interior point method
since we experience the lowest computation times with this
method. A local optimal solution is reported if the KKT
conditions are satisfied to within a relative and absolute tol-
erance of 10−6. The current best but non-optimal iterate is
also returned in cases when the optimization algorithm uses
more than 100 iterations. Similarly, the current best, but
non-optimal, iterate is also returned in the case of a relative
cost function or step size change less than 10−8. Further-
more, in our simulations we noted that normalizing the cost
function improved the convergence.

3.4 Certainty-equivalent and robust optimization

In certainty equivalent optimization, (8) is solved using the
expected value for the parameters, η = E[θ ], such that the
objective used in (8) is

ψCE = ψ
(
{uk}N−1

k=0 ; x̄0, η
)

(10)

[26] introduces robust optimization to reduce the effect
of geological uncertainties in the field development phase.
Robust optimization uses a set of realizations that reflect
the range of possible geological structures honoring the
statistics of the geological uncertainties. In reservoir mod-
els, geological uncertainty is generally profound because of
the noisy and sparse nature of seismic data, core samples,
and borehole logs. The consequence of a large number of
uncertain model parameters (θ ) is the broad range of pos-
sible models that may satisfy the seismic and core-sample
data. Nevertheless, in many cases, a single reservoir model
is adopted in which the uncertain parameters, θ , are con-
verted to deterministic parameters η by taking their expected
values (i.e. η = E[θ ]). However, because the NPV is
used as our measure of performance, we are more inter-
ested in the expected NPV over the uncertainty space, �

(spanned by the uncertain parameters θ ), than the mean
of the parameters. The expected NPV over the uncertainty
space, �, is in general not the same as the NPV com-
puted using the expected values of the uncertain parameters,
η = E[θ ], as NPV is a nonlinear function of the parameters,
θ . Consequently

Eθ

[
ψ
(
{uk}N−1

k=0 ; x̄0, θ
)]

�= ψ
(
{uk}N−1

k=0 ; x̄0, Eθ [θ ]
)

, θ ∈ � (11)
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Consider a discretization, �d = {θ1, . . . , θnd }, of the
uncertainty space, �, such that expected NPV may be
approximated by

Eθ

[
ψ
(
{uk}N−1

k=0 ; x̄0, θ ∈ �
)]

≈ Eθ

[
ψ
(
{uk}N−1

k=0 ; x̄0, θ ∈ �d

)]
(12)

This approximation of the expected NPV is a better approx-
imation than the NPV computed using the expected param-
eters, η. In the special case of equiprobable realizations, the
right-hand side of (12) is the arithmetic average

Eθ

[
ψ
(
{uk}N−1

k=0 ; x̄0, θ ∈ �d

)]

= 1

nd

nd∑

i=1

ψ
(
{uk}N−1

k=0 ; x̄0, θ
i
)

(13)

The robust optimization method uses the ensemble average
as its objective function in (8)

ψ rob = 1

nd

nd∑

i=1

ψ
(
{uk}N−1

k=0 ; x̄0, θ
i
)

= 1

nd

nd∑

i=1

ψ i (14)

The corresponding gradients may be computed by

∇ukψ rob = 1

nd

nd∑

i=1

∇ukψ
(
{uk}N−1

k=0 ; x̄0, θ
i
)

k ∈ N

(15)

Compared to a certainty-equivalent computation, the com-
putation of the robust cost function (14) and its gradient (15)
results in an increased computational effort by a factor nd .
As the addends in these computations are decoupled, they
can be computed in parallel.

3.5 Permeability field

In our study, the uncertainty lies in the permeability field.
We generate 100 permeability field realizations of a 2D
reservoir in a fluvial depositional environment with a known
vertical main-flow direction, see Fig. 3. To generate the per-
meability fields we started by creating a set of 100 binary
(black and white) training images by using the sequential
Monte Carlo algorithm ’SNESIM’ [54]. Then a Kernel PCA
[55] procedure is used to preserves the channel structures
and smooths the original binary images. The realizations so
obtained are quite heterogeneous with permeabilities in the
range 6 − 2734 mD.

4 Ensemble Kalman filter

We use the Ensemble Kalman filter (EnKF) for estimating
the permeability field based on production data measure-
ments. The EnKF is a Monte Carlo implementation of the

Kalman filter [13, 56–58] using an ensemble of nd realiza-
tions to represent the necessary first and second moments
(means and covariances). In this section we describe the
EnKF.

Consider the discrete time system

xk+1 = F(xk,uk,θ ) (16a)

yk = G(xk,uk ) + vk vk ∼ N(0, R) (16b)

The dynamic equation (16a) is a representation of the model
dynamics (5c) in explicit form. It should be noted that in this
representation we do not consider stochastic model errors
(process noise) [20]. The uncertain parameters θ are the log-
arithm of the permeability field, θ = log(K). The states
are the pressure and water saturation in each grid block,
x = [P ; Sw]. The initial states, x0, can also be consid-
ered uncertain. However, in this work we fix them to their
average value. uk is the control input which represents the
borehole pressures.

The measurements, y, are the fractional flow for each pro-
ducer well and the water injection rate for each injector well.
In the measurement equation (16b), G(xk, uk) includes the
Peaceman well model (4) as well as the equations relat-
ing fractional flow to pressures and water saturations. vk is
measurement noise that we assume is normally distributed.

4.1 Basic Ensemble Kalman filter

(16a) includes the states, x, and the parameters, θ . There-
fore, we form the augmented state space model

xk+1 = F(xk, uk, θk) (17a)

θk+1 = θk (17b)

and apply the EnKF to the dynamic equation (17a) and the
measurement equation (16b). In the EnKF all means and
covariances are represented by samples of the stochastic
variables. Therefore, the initial mean and covariance of the
augmented states, [xk, θk], are represented by

{xi
0|0, θ

i
0|0}nd

i=1 =
{
x0, θ

i
0|0
}nd

i=1
(18)

It should be noted that the initial states, x0, in our case are
assumed to be known exactly. Only the parameters, θ , are
uncertain. Index i refers to each of the nd members of the
ensemble, i.e. each realization.

In the following we describe the algorithm for discrete
time instant k = 1, 2, . . .. In general, at discrete time instant
k, both the states and the parameters from the previous
instant, k − 1, are uncertain. This is denoted
{
xi
k−1|k−1, θ

i
k−1|k−1

}nd

i=1
k = 1, 2, . . . (19)
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Fig. 3 A selection of realizations from the ensemble of 100 permeability fields. The realizations are quite heterogeneous, values are in the range
6 − 2734 mD

In the EnKF, the one-step prediction step is conducted by
passing each ensemble member through the dynamics (17a)
such that for i = 1, 2, . . . , nd

xi
k|k−1 = F

(
xi
k−1|k−1, uk−1, θ

i
k−1|k−1

)
, (20a)

θ i
k|k−1 = θ i

k−1|k−1, (20b)

where the previous input, uk−1, is known. Then the output,
zi
k|k−1, and the measurement, yi

k|k−1, at discrete time k may
be computed as

zi
k|k−1 = G

(
xi
k|k−1, uk−1

)
i = 1, 2, . . . , nd (21a)

yi
k|k−1 = zi

k|k−1 + vi
k i = 1, 2, . . . , nd (21b)

To obtain the correct covariances of the state estimates in the
EnKF, it is important that each ensemble member, yi

k|k−1,

contain measurement noise, vi
k|k−1 [59]. It should also be

noted that uk−1 is used in the evaluation of G in (21a). The
explanation for the use of uk−1 is that we use a zero-order-
hold representation of u(t), i.e. u(t) = uk−1 for tk−1 ≤ t <

tk , and that we assume the measurement is conducted at time
t−k = limt<tk t . Then, at time tk , the EnKF and optimal con-
trol computations are conducted infinitely fast such the next
decisions, u(t) = uk for tk ≤ t < tk+1, can be implemented
at time tk .

The innovation, ei
k , for each ensemble member is com-

puted using the actual measurement, yk , and the predicted
measurement

εi
k = zi

k|k−1 − yk i = 1, 2, . . . , nd (22a)

ei
k = yk − yi

k|k−1 = −εi
k − vi

k i = 1, 2, . . . , nd (22b)

In these equations, yk is the actual measurement and there-
fore a deterministic variable. In the EnKF, the realized
trajectory of the system and an ensemble of different
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Table 1 Parameters for the
two phase model, the
discounted state cost function
(6), and the measurement noise

Symbol Description Value Unit

φ Porosity 0.2 −
cr Rock compressibility 0 Pa−1

ρo Oil density (300 bar) 700 kg/m3

ρw Water density (300 bar) 1000 kg/m3

μo Dynamic oil viscosity 3 · 10−3 Pa · s

μw Dynamic water viscosity 0.3 · 10−3 Pa · s

Sor Residual oil saturation 0.1 −
Sow Connate water saturation 0.1 −
no Corey exponent for oil 2 −
nw Corey exponent for water 2 −
Pinit Initial reservoir pressure 300 bar

Sinit Initial water saturation 0.1 −
ro Oil price 120 USD/bbl

rwp Water production cost 20 USD/bbl

rwi Water injection cost 10 USD/bbl

d Discount factor 0 −
R Cov. matrix for measurements noises Diag( 5 · 10−3, 5 · 10−3, 5 · 10−3, 5 · 10−3, 30 )

state trajectories are considered. In the derivation of the
standard Kalman filter [13, 57, 58], it is the other way
around. A (infinite) number of system realizations are con-
sidered, while the filter is represented by one deterministic
trajectory (the mean).

The optimal linear estimator conditioned on the innova-
tions are [57]

xi
k|k = xi

k|k−1 + Kx,ke
i
k i = 1, 2, . . . , nd (23a)

θ i
k|k = θ i

k|k−1 + Kθ,ke
i
k i = 1, 2, . . . , nd (23b)

with the Kalman filter gains computed as

Kx,k = 〈xk|k−1, ek〉〈ek, ek〉−1 (24a)

Kθ ,k = 〈θk|k−1, ek〉〈ek, ek〉−1 (24b)

using the covariances

〈xk|k−1, ek〉 = 〈xk|k−1, εk〉 (25a)

〈θk|k−1, ek〉 = 〈θk|k−1, εk〉 (25b)

〈ek, ek〉 = 〈εk, εk〉 + 〈vk, vk〉 ≈ 〈εk, εk〉 + R (25c)

The Kalman gains may be based on direct computation of
the empirical estimates (〈xk|k−1, ek〉, 〈θk|k−1, ek〉, 〈ek, ek〉)
or the relations in (25a). We choose to base the computations

on (25a), the approximate first moments (means) computed
as

ẑk|k−1 = E{ẑk|k−1} ≈ 1

nd

nd∑

i=1

zi
k|k−1

ε̂k = E{εk} ≈ 1

nd

nd∑

i=1

εi
k = ẑk|k−1 − yk

x̂k|k−1 = E{xk|k−1} ≈ 1

nd

nd∑

i=1

xi
k|k−1

θ̂k|k−1 = E{θk|k−1} ≈ 1

nd

nd∑

i=1

θ i
k|k−1

log10(K) [Darcy]
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Fig. 4 Permeability mean, θ̂0|0, of the ensemble given in Fig. 3
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Table 2 Key indicators for the
open-loop optimized cases.
Improvements are relative to
the nominal case

NO Reactive Certainty equivalent RO RO modified

106 USD 106 USD, % 106 USD, % 106 USD, % 106 USD, %

Eθ [ψ] 33.84 56.47, +66.9 42.72, +26.2 44.11, +30.3 58.18, +71.9

Std. dev. 26.35 6.05 18.27 13.19 6.25

and the approximate second moments (covariances) com-
puted by

〈xk|k−1, εk〉 ≈ 1

nd − 1

nd∑

i=1

(
xi
k|k−1 − x̂k|k−1

) (
εi

k − ε̂k

)′

〈θk|k−1, εk〉 ≈ 1

nd − 1

nd∑

i=1

(
θ i

k|k−1 − θ̂k|k−1

)(
εi

k − ε̂k

)′

〈εk, εk〉 ≈ 1

nd − 1

nd∑

i=1

(
εi

k − ε̂k

) (
εi

k − ε̂k

)′

The result of (23a) in this procedure is an ensemble
{
xi
k|k, θ

i
k|k
}nd

i=1
k = 1, 2, . . . (28)

representing the states and parameters at time k given mea-
surements up until time k. Using this ensemble, a robust
optimization may be performed or various statistics such as
the mean may be computed.

(23a) may result in non-physical updates. Therefore, we
modify the EnKF such that the ensemble (28) satisfies
physical constraints, e.g. that the permeabilities are in cer-
tain ranges. To mitigate such effects, we clip the solution
according to the constraints

θ i
k|k :=

⎧
⎪⎨

⎪⎩

θmin θ i
k|k < θmin

θ i
k|k θmin ≤ θ i

k|k ≤ θmax

θmax θ i
k|k > θmax

(29)

and compute the filtered states, x̂i
k|k , by solving the dynamic

model equations

xi
j+1|k = F

(
xi
j |k, uj , θ

i
k|k
)

, xi
0|k = x0,

j = 0, 1, . . . , k − 1 (30)

for each ensemble member, i ∈ {1, . . . , nd }, using the
clipped parameter estimates computed by (29). In this way,

state updates consistent with the model is guaranteed [35].
In particular, this eliminates the possibility of nonphysical
states (nonphysical pressures and saturations). The compu-
tational load can potentially be reduced by only doing the
initial-value simulation when the estimated saturation and
pressure changes passes a certain threshold [39]. The mod-
ifications (29) and (30) provides the ensemble (28) that is
used for the optimal control computations and for the initi-
ation of the EnKF at the next time step. Finally, the choice
of the ensemble size nd in the EnKF is a topic of research
itself [60]. It affects the performance of the filter. In reser-
voir engineering an ensemble’s size of 100 is a common
choice based on experience [4], [61]. However, this number
is problem dependent and in some cases good results can
also be obtained using ensembles with fewer members [61].

4.2 Performance metrics

To measure the convergence of the Kalman filter estimates,
we consider the mean standard deviation

σk =
√√√√ 1

np

(
1

nd − 1

nd∑

i=1

∥∥∥θ i
k|k − θ̂k|k

∥∥∥
2

2

)

(31)

of the parameters in the parameter vector, θk|k . σk mea-
sures the ensemble spread. We also consider the root-mean-
square-error of the parameter estimates compared to the true
parameters, θ0:

RMSEk =
∥∥
∥θ̂k|k − θ0

∥∥
∥

2√
np

(32)

θk can be computed for real as well as synthetic cases, while
RMSEk can only be computed for synthetic cases in which
the true parameters, θ0, are available.

Fig. 5 log10 K [D] of the first
two realizations of the ensemble
in Fig.3 and their ensemble
mean θ̂0|0
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In the ideal case, the spread (31) should converge to
a number related to the measurement noise and the root-
mean-square-error (32) should converge to 0. In practice,
(32) will not converge to zero due to e.g. factors like
model-plant mismatch. Cases with divergence of the root-
mean-square-error may indicate that the ensemble is too
small to represent the true uncertainty.

5 Case study

We consider a conventional horizontal oil field that can be
modeled as a two phase flow in a porous medium [62–64].
The reservoir size is 450 m × 450 m × 10 m. By spatial dis-
cretization this reservoir is divided into 45 × 45 × 1 grid
blocks. The permeability field is uncertain. We assume that
the ensemble in Fig. 3 represents the range of possible geo-
logical uncertainties. The configuration of injection wells
and producers is illustrated in Fig. 5(1). As indicated in
Fig. 5(1), the four producers are located in the corners of
the field, while the single injector is located in the center of
the field.

The reservoir’s petrophysical parameters are listed in
Table 1. The initial reservoir pressure is 300 bar every-
where in the reservoir. The initial water saturation is 0.1
everywhere in the reservoir. This implies that initially,
the reservoir has a uniform oil saturation of 0.9. The
manipulated variables are the bhp of the five wells (four
producers, one injector) over the life of the reservoir.
In this study, we consider a zero discount factor d in
the cost function (6). This means that we maximize NPV
at the final time, without caring about the shorter horizon
[11].

The case study is divided into an open-loop optimiza-
tion part and a closed-loop optimization part. In open-loop
optimization, we compute the control strategy without using
measurement feedback to update the parameters, i.e. the
ensemble in Fig. 3 is fixed in time. In closed-loop opti-
mization, we use production measurements and the EnKF
to estimate the permeability field parameters. To simulate
the reservoir and create production data, the first realization
of the permeability field, θ1

0|0, in Fig. 3 is used. This per-
meability field represents the true permeability field of the
reservoir.

In reality, we never know the true model when perform-
ing data assimilation with EnKF. We can only implicitly
assume that we can generate a reasonable approxima-
tion of the true reservoir. Since we focus on the opti-
mizer formulation and separate the effects of the qual-
ity in data assimilation from the quality of CE, RO and
reactive strategies as much as possible, we assume that
the true reservoir is contained in the ensemble of initial
guesses.
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Fig. 6 Profit evolutions for open-loop optimization of the two ensem-
ble case. The optimal trajectories computed using the true permeability
fields give the highest possible profit. The profit of the RO strategy
is below the profit of the reactive strategy for the first permeability
realization and slightly above the second permeability realization. On
average the RO strategy gives less profit than the reactive strategy. The
modified RO strategy produces for all cases a higher profit than the
reactive strategy

5.1 Open-loop optimization

We consider a prediction horizon of tN = 4 · 365 = 1460
days divided in N = 60 control periods (i.e. a control
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Fig. 7 Control trajectories for open-loop optimization of the two
ensemble case. The control trajectories for the considered optimization
strategies are very different

period Ts ≈ 24 days). We control the reservoir using five
different strategies that we call: the reactive strategy, the
nominal strategy (NO), the certainty equivalent strategy, the
robust optimization strategy (RO), and the modified robust
optimization strategy (modified RO).

The reactive strategy develops the field at the maximum
production rate (setting the producers at the lowest allowed
value of 290 bar and the injector at the maximum allowed
value of 350 bar) and subsequently shut-in each production
well when it is no longer economical. From the values in
Table 1, we observe that a producer well becomes uneco-
nomical when the fractional flow fw is above the value
120/(120 + 20) = 0.857. The nominal strategy is based
on a single realization. For each realization in the ensemble
we compute the optimal control trajectory. Then we apply
each of these 100 optimal control trajectories to each of
the ensemble members obtaining 100 NPV values for each
control trajectory. The certainty equivalent strategy is based
on solving problem (5a) using the certainty equivalent cost
function ψCE (10). It uses the mean of the ensemble as its
permeability field. Figure 4 illustrates the mean of the per-
meability field ensemble given in Fig. 3. The RO strategy is
based on solving problem (5a) using the robust cost func-
tion ψ rob (5a) and the robust gradient ∇ukψ rob (15). The
modified robust optimization is the RO strategy with an
added reactive strategy, i.e. we solve problem (5a) using
(14) and (15) but we shut in a producer well when it is non
economical. This means that when we solve the flow equa-
tions (5c), the number of active producer wells can change.
This in turn means that once a well is shut-in, its later con-
tribution to the NPV and its gradient will be zero. We could
say that for each realization we manipulate producer wells
bhps as long as they are profitable. Further, this strategy
stops the production of a reservoir when all wells are non-
economical. To our knowledge, there exist no extension of
robust optimization that includes reactive control. However,
the idea of adding reactive control has been used to improve
the NPV of a single reservoir model. In [65] they consider
production optimization in the absence of uncertainty by
including a watercut constraint on the well completions.
This results in increased NPV and a faster convergence of
the optimizer.

Simulations reveal that for the present case, the RO strat-
egy yields an higher expected NPV Eθ [ψ] and a lower
standard deviation of the NPV (see Table 2) compared to
the certainty equivalent strategy. However, both the RO and
the certainty equivalent strategies are worse than the reac-
tive strategy because of a much lower expected NPV Eθ [ψ]
with a much higher NPV standard deviation. The modified
RO strategy has a NPV standard deviation comparable to
the reactive strategy, but a higher expected NPV Eθ [ψ]. It is
important to stress that the results concerning the merits of
the different strategies are particular to this case study and
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Fig. 8 Profit evolution for open-loop optimization in the hundred
ensemble case

not universal. [26] presents a case in which the RO strat-
egy provides higher expected NPV and lower NPV standard
deviation than the reactive strategy. In making a compari-
son with [26], there are a number of things we should stress.
First of all, in [26] they are controlling directly the liquid
rates of 12 wells with no direct control on the bhp values. In
our test case, we control the bhp values of only 5 wells with
no direct control on the liquid rates. In [26], all the realiza-
tions are giving positive NPV for all the control strategies.
Further, they find that the reactive strategy is the worst to
use. In our test case, the NO strategy is the worst to use,
and it gives a substantial negative NPV contribution. Hence,
it seems like the test case in [26] facilitates optimal con-
trol strategies. In our case, however, the heterogeneities in
the ensemble realizations make it hard for optimal control
strategies to improve on a reactive strategy. To summarize,
the problems treated in [26] and in this paper have quite
different characteristics. Hence, different preferences with
respect to open-loop strategies is not necessarily surprising.

The results in our paper indicates the value of feedback.
The reactive strategy as well as the modified robust strategy
both use a simple form of feedback. The nominal strategy,
the certainty equivalent strategy, and the robust optimiza-
tion strategy are pure open-loop strategies that do not use
feedback.

To illustrate the results in a tutorial way, we split the
discussion of the open-loop optimization into a two ensem-
ble case and a hundred ensemble case. In the two ensemble
case, we present the results of open-loop optimization using
an ensemble of two realizations. Figure 5 illustrates the
two realizations of the uncertain permeability field for this
case. In the case with hundred ensemble members, we use
the entire ensemble in Fig. 3 to represent the uncertain
permeability field.

5.1.1 Case - ensemble with two members

In this subsection, we describe the performance of the RO
strategy for the case with an ensemble consisting of the two
permeability field realizations illustrated in Fig. 5. We com-
pare the results of the RO control strategy with the results
of the reactive, the modified RO and the optimal control
strategies. By the optimal control strategies for the two real-
izations in Fig. 5, we mean the optimal control strategies,
{uk}N−1

k=0 , that are computed by solving the optimization
problem (8) using the true permeability fields. These are

ψ = ψ
(
{uk}N−1

k=0 ; x̄0, θ
1
)

= ψ1

ψ = ψ
(
{uk}N−1

k=0 ; x̄0, θ
2
)

= ψ2

The NPVs computed using these optimal control strategies
act as an upper bound for the NPVs computed using the
other control strategies. To choose the two realizations to
use, we first compute optimal control trajectories for the
realizations in the ensemble of Fig. 3. Then we choose two
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Fig. 9 Profit evolution of the open-loop RO strategy and the open-loop modified RO-strategy for each realization of the permeability field. Some
scenarios in the RO strategy gives negative profits while the modified RO strategy avoids that by shutting in uneconomical producer wells



Comput Geosci

realizations with large differences in the optimal production
strategies.

Figures 6(1), 6(2) and 6(3) show the terms ψ1, ψ2 and
Eθ [ψ] (13) for the reactive strategy, the RO strategy, and
the modified RO strategy, respectively. As expected, the
NPVs computed using the optimal control strategies give
the highest values for ψ1 and ψ2. Compared to the reactive
strategy, the RO strategy gives a lower NPV, ψ1, for realiza-
tion 1, and a higher NPV,ψ2, for realization 2. As illustrated
in Fig. 6(3), this results in a lower NPV mean, Eθ [ψ],
for the RO strategy compared to the reactive strategy. The

modified RO control strategy gives the highest NPVs for all
the realizations.

Furthermore, it is interesting to observe the difference
in production times for the different strategies. For the RO
strategy, the production continue for the entire time horizon
(1460 days) considered. In the reactive strategy, the produc-
tion lasts 949 days in the first realization (ψ2) and 1119
days in the second realization (ψ2). So there is an important
difference in the field developing time of the two realiza-
tions. In the modified RO strategy, the production lasts 1289
days in the first realization and 1240 days in the second
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Fig. 10 Saturation profiles of the first realization for the open-loop optimization strategies in the hundred ensemble case
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Fig. 11 Saturation profiles of the second realization for the open-loop optimization strategies in the hundred ensemble case

realization. We note that with the modified RO strategy, the
production time is longer than the production time of the
reactive strategy.

Figure 7 shows the control trajectories of the RO, the
modified RO and the optimal strategies. We note that
because of the heterogeneity between the realizations, the
resulting optimal control trajectory of one realization can be
very different and conflicting with the optimal control tra-
jectory for the other realization. To find a common optimal
control that takes all these differences into account can be
difficult if not impossible. Especially if we don’t allow for
changes in the configuration of active wells, e.g. producer
number 4 is producing at its minimum (310 bar) in the solu-
tion for ensemble 1 and at its maximum (290 bar) in the

solution for ensemble 2. The RO and modified RO solutions
for the producer number 4 stay in between the two optimal
trajectories.

In conclusion, the two-ensemble case demonstrates that
the optimizer produces the maximal profit for the optimal
cases. Therefore, the optimizer works well and the lower
profit of the RO strategy is not the result of lack of conver-
gence in the optimizer, but rather the result of heterogeneous
permeability fields giving conflicting control trajectories.

5.1.2 Case - ensemble with hundred members

In this subsection, we describe the results for the case
in which we do open-loop optimization using the entire



Comput Geosci

0 200 400 600 800 1000 1200 1400
294

296

298

300

302

304

306

308

310

bh
p 

(b
ar

)

Producer 1

0 200 400 600 800 1000 1200 1400
294

296

298

300

302

304

306

308

310

bh
p 

(b
ar

)

Producer 2

0 200 400 600 800 1000 1200 1400
294

296

298

300

302

304

306

308

310

bh
p 

(b
ar

)

Producer 3

0 200 400 600 800 1000 1200 1400
294

296

298

300

302

304

306

308

310

bh
p 

(b
ar

)

Producer 4

0 200 400 600 800 1000 1200 1400
310

315

320

325

330

335

340

345

350

bh
p 

(b
ar

)

time (days)

Injector1

RO
modified RO
Certainty equivalent

Fig. 12 Control trajectories for open-loop optimization in the hundred
ensemble case
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ensemble of 100 realizations in Fig. 3. Figure 4 illu-
strates the mean permeability field for the ensemble of per-
meability fields in Fig. 3. Figure 8 shows the profit evolution
in the case of an ensemble consisting of 100 permeabil-
ity fields for the certainty equivalent strategy, the reactive
strategy, the RO strategy, and the the modified RO strategy.

Table 2 reports the corresponding key performance indi-
cators (expected NPV Eθ [ψ] and standard deviation of the
NPV). As in the two ensemble case, the reactive strategy
yields both a larger expected NPV and a smaller standard
deviation for the NPV compared to the certainty equiva-
lent and the the RO strategies. The reasons for the inferior
performance of the RO strategy should be searched in the
conflicting controls required for the different realizations.
Figure 9(1) shows that the RO strategy cannot avoid that
some ψ i gives a negative contribution to the expected NPV
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Fig. 14 Profit evolution for the closed-loop optimization strategies.
The profit evolution of the true model controlled by different strategies
based on the ensemble in Fig. 3. Both the RO and the certainty equiv-
alent strategies give a higher NPV than the the reactive strategy. The
optimal control strategy represents the best possible solution. By using
the RO strategy and the certainty equivalent strategy we get profits
close to the maximum possible profit
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Table 3 Key indicators for the closed-loop optimized cases. Improvements are relative to the reactive case

Meas. noise Reactive Certainty equivalent RO Optimal

106 USD 106 USD, % 106 USD, % 106 USD, %

5 · R 51.24 59.13, +15.4 58.34, +13.9 60.41, +17.3

R 51.24 59.79, +16.7 59.09, +15.3 60.41, +17.3

5−1 · R 51.24 59.84, +16.8 59.52, +16.2 60.41, +17.3

5−2 · R 51.24 59.95, +17.0 59.56, +16.2 60.41, +17.3

Eθ [ψ]. In contrast, as illustrated in Fig. 9(2), the modi-
fied RO strategy does not produce realizations with negative
profit. Furthermore, each realization of the modified RO
strategy seems to increase the profit compared to the RO
strategy. The reactive strategy performs better than both the
RO and ceratinty equivalent strategies because it can shut in
a well when it is no longer profitable to operate the well.
The modified RO strategy inherits the ability of the reac-
tive strategy to shut in unprofitable wells. This is in essence
a simple feedback mechanism. Figures 10 and 11 show the
saturation profiles of the first two realizations for the open-
loop strategies. We note that the reactive strategy and the
modified strategy inject a higher water quantity and displace
the oil more uniformly compared to the RO and the certainty
equivalent strategies.

Figures 12 shows the control trajectories of the RO, the
modified RO and the certainty equivalent strategies. Com-
pared to the the trajectories in Fig. 7, for the two ensemble
case, it seems that the RO and certainty equivalent strategies
include some averaging (smoothing) in the resulting con-
trol trajectories that limits their effectiveness. The result is
a control trajectory that produces less oil than the modified
RO strategy that can shut in uneconomical producer wells.

As indicated by Fig. 7, the RO control trajectories may be
the average of conflicting control trajectories and therefore
inefficient for the uncertain system.

Figure 13 shows the cumulative distribution function for
the different control strategies, i.e. the probability to get a
NPV � x. These curves are similar to the ones reported
in [26] with the difference that the NO and the certainty
equivalent strategies have a positive probability of giving
negative NPVs. Figure 13 confirms that the modified RO
strategy is superior to the other open-loop strategies.

5.2 Closed-loop optimization

The closed-loop optimization strategies are implemented
using the moving horizon principle. In this method, each
time new measurements from the real or simulated reservoir
are available, the EnKF uses these measurements to update
the estimates of the permeability field, and an open-loop
optimization problem is solved using the updated perme-
ability field. Only the first part of the resulting optimal
control trajectory is implemented. As new measurements
becomes available, the procedure is repeated. The sampling
time for the system is Ts = 146 days, i.e. the data assim-
ilation and optimization is performed every 146 days. The
open-loop optimization uses a prediction and control hori-
zon of 4 · 365 = 1460 days that is divided into N = 60
periods (the same as for the open-loop optimization strate-
gies). With this parametrization, the control steps for the
first six periods are implemented to the system, and then
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we receive new measurements to do new data assimilation
and optimization computations for a shifted time window. In
this paper, we consider 35 of these steps such that the total
production horizon is 146 · 35 = 5110 days.

We compare three closed-loop optimization strategies:
A reactive strategy, a certainty equivalent strategy, and a
RO strategy. We did not implement a modified RO strategy
because that would be complicated by the need to manage

Fig. 16 Saturation profiles of
the true field for the closed-loop
optimization strategies
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Fig. 17 Control trajectories for the closed-loop optimization
strategies

situations with a variable number of active wells and mea-
surements for different ensemble realizations. Further, it
would require a strategy to replace ensemble realizations
when all the producing wells are shut-in.

Figure 14 shows the NPV ψ
(
{uk}N−1

k=0 ; x0, θ
1
0|0
)

for the

reactive strategy, the closed-loop RO strategy, the closed-
loop certainty equivalent strategy, the optimal control strat-
egy, and the open-loop strategies introduced in the previous
section. The optimal control strategy is obtained solving
the optimization problem (7) using the true permeabil-
ity field (the first realization of the permeability field in
Fig. 3). The NPV computed by the optimal control strat-
egy represents the best possible operation of the reservoir.
Table 3 reports key indicators (expected NPV and improve-
ments compared to the reactive strategy) for the closed-
loop strategies at different levels of measurement noise.
Figure 14 and Table 3 shows that for all investigated cases,
both the closed-loop certainty equivalent strategy and the
closed-loop RO strategy yields significantly higher NPV
than the reactive strategy. As is also evident from Fig. 14
and Table 3, the closed-loop certainty equivalent strategy
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Fig. 18 Convergence measures for the EnKF with various levels of
measurement noise for the closed-loop certainty equivalent strategy.
(1) shows that the EnKF does not converge to the true parameters.
However, the estimate captures enough features to be useful. (2) illus-
trates that the parameter uncertainty decreases as more production data
is assimilated in the estimates
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Fig. 19 Estimates of the mean
permeability field as function of
time for the closed-loop
certainty equivalent strategy.
The initial estimate is a four
channel structure. The estimates,
θ̂k|k−1, converge towards the
true two-channel structure as
more measurements are
assimilated
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yields higher NPV than the closed-loop RO strategy. Fur-
thermore, the NPV of the closed-loop certainty equivalent
strategy is very close to the NPV of the optimal strategy.
Consequently, the closed-loop certainty equivalent strategy
is preferable over the closed-loop RO strategy as it yields
higher NPV and requires significantly less computational
effort. This observation is also confirmed when using the
second realization in Fig. 3 as the permeability field.

From Fig. 14 we note also that the modified RO is the
best open-loop strategy and that the closed-loop strategies
CE and RO provide better results compared to the modi-
fied RO starting from the assimilation steps 13 (t ≈ 1898
days) and 16 (t ≈ 2336 days), respectively. Figure 15 shows
the cumulative water injection and the cumulative oil pro-
duction for different strategies. The slope of the curves is
the reservoir injection/production rate. In general, we note
that the closed-loop strategies are injecting at a lower rate
compared to the open-loop strategies. This happens since
we use a zero discount factor, i.e. we focus on long term
behaviour. Moreover, there are no direct bounds on the liq-
uid rates. We note that the open-loop strategies, so as the
optimal strategy, have an upward concavity. This means
that the water injection rate is increasing with time: these
strategies increase the injection at the final time to exploit
the high oil-to-water price ratio. The closed-loop strategies,
instead, have a downward concavity. At the beginning (first
300 days) the closed-loop strategies are injecting at a sim-
ilar pace as their open-loop counterparts (same slope in
the initial part of the curves). However, as the data assim-
ilation proceed, and a better estimate of the true field is
given, the closed-loop strategies try to inject/produce as
much as the optimal strategy (black curves in figure). This
explains the change in concavity of the closed-loop strate-
gies i.e. why the closed-loop strategies reduce the water
injection rate with time. Figure 16 illustrates the satura-
tion profiles of the true field for the closed-loop strategies.
We note that they have similar field sweep at the final
time. Figure 17 shows the corresponding control trajec-
tories of the different closed-loop control strategies. It is
evident that the control trajectories of the optimal control
strategy are very different from the control trajectories for
the closed-loop certainty equivalent and the closed-loop RO
strategies.

Figure 18 illustrates the RMSE (32) and the ensemble
spread (31) of the EnKF when applied together with the
certainty equivalent strategy. The RMSE indicates whether
the permeability parameter estimate of the EnKF converges
toward the true permeability parameters. The ensemble
spread indicates the uncertainty in the estimated perme-
ability parameters. The RMSE and the ensemble spread
sequences are computed for different levels of measure-
ment noise, i.e. different values of R in (16b). Figure 18(2)
indicates that decreasing levels of measurements noise, R,

decrease the ensemble spread (31). This decrease does not
always results in a lower RMSE (32) value. However, as is
evident from Fig. 18(2), in most of the cases, lower mea-
surement noise levels reduce the RMSE. In this case study
there is no ensemble collapse. In fact, Fig. 20 shows that
the ensemble realizations have different distances at the last
assimilation time, this is an index of the variability in the
ensemble of realizations.
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(3) the final ensemble with a measurement noise of R/5. We note that
also in the case with the lowest measurement noise, the ensemble is
not collapsing
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In the EnKF, at each data assimilation step, we update
the estimated permeability field for each ensemble mem-
ber. Figure 19 illustrates the time evolution of the mean,
θ̂k|k−1, of these estimated permeability field ensembles for
the closed-loop certainty equivalent optimization strategy.
Figure 19 indicates that the estimated mean permeability
field captures the main features of the true permeability
field. We start out with a mean permeability field having
four channel structures and converge towards the correct
two channel structure. Figure 20 illustrates the associated
uncertainty with this permeability estimate.

6 Conclusions

In this paper, we demonstrate the open-loop and the closed-
loop performance of the certainty equivalent strategy and
the RO strategy. For the open-loop case we present a mod-
ified RO strategy that performs significantly better than the
other open-loop strategies. In the closed-loop situation for
the case studied, we arrive at the surprising conclusion that
the certainty equivalent strategy is slightly better than the
RO strategy.

For the case presented, the open-loop RO strategy yields
3 % higher expected NPV and 28 % lower NPV standard
deviation than the open-loop certainty equivalent strategy.
Yet, the reactive strategy performed even better than the
open-loop RO strategy. Simulations indicate that the infe-
rior performance of the open-loop RO strategy compared to
the reactive strategy is due to the inability of the RO strategy
to efficiently encompass ensembles with very different and
conflicting optimal control trajectories. We propose a mod-
ified RO strategy that allow shut in of uneconomical wells.
The modified RO strategy performs significantly better than
the other open-loop strategies and the reactive strategy. The
modified RO optimization strategy yields an expected NPV
that is 36 % higher than the expected NPV of the open-
loop certainty equivalent strategy and 3 % higher than the
expected NPV for the reactive strategy. The NPV standard
deviation of the modified RO strategy is similar to the NPV
standard deviation of the reactive strategy. These observa-
tions are non-trivial, as previous literature suggests that the
open-loop RO strategy performs better than the reactive
strategy [26]. The improved economic performance of the
open-loop modified RO strategy justifies the computational
effort used in determining the trajectories for this strategy.

The simulations for the closed-loop strategies, reveal
that the RO strategy and the certainty equivalent strategy
yields significantly higher NPV than the reactive strat-
egy. Surprisingly, the closed-loop certainty equivalent strat-
egy yields a higher NPV than the closed-loop RO strat-
egy for the case studied. The uncertainty reduction of
the permeability field estimate due to data assimilation

explains the good performance of the closed-loop certainty
equivalent optimization strategy. Consequently, in closed-
loop, the increased computational effort of the RO strategy
compared to the certainty equivalent strategy is not justified
for the particular case studied in this paper.

Future work will include a test of the strategies discussed
in this paper on a more complex scenario (many wells,
3D grid, state/output constraints, spurious correlations), and
we plan to work on the “Brugge field” [28]. In open-loop
simulations, we expect that the modified RO strategy will
improve the RO strategy as seen here. This result is in some
way anticipated in [65], where, despite they do not con-
sider uncertainty in the reservoir parameters, they get an
increased NPV for the ”Brugge field” by adding a reac-
tive control to an optimal control strategy. In closed-loop
simulations, we expect to obtain similar results for the RO
and the CE strategies provided the data assimilation con-
verges properly, as in the case showed in this paper. Finally,
the optimization strategies presented in this paper and to
our knowledge all literature on closed-loop reservoir man-
agement deals with optimization of the expected NPV. The
approaches only implicitly considers risk and variance of
the NPV. Future approaches should more directly include
risk and variance of the NPV in the optimization.
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17. Findeisen, R., Allgöwer, F., Biegler, L.T. (eds.): Assessment and
future directions of nonlinear model predictive control. Lecture
Notes in Control and Information Sciences, vol. 358, Springer,
Heidelberg (2007)

18. Magni, L., Raimondo, D.M., Allgöwer, F. (eds.) : Nonlinear
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Abstract

In this paper we introduce a mean-variance criterion for production optimization of oil reservoirs and suggest the Sharpe ratio as a
systematic procedure to optimally trade-off risk and return. We demonstrate by open-loop simulations of a two-phase synthetic oil
field that the mean-variance criterion is able to mitigate the significant inherent geological uncertainties better than the alternative
certainty equivalent and robust optimization strategies that have been suggested for production optimization. In production opti-
mization, the optimal water injection profiles and the production borehole pressures are computed by solution of an optimal control
problem that maximizes a financial measure such as the Net Present Value (NPV). The NPV is a stochastic variable as the reservoir
parameters such as the permeability field is stochastic. In certainty equivalent optimization the mean value of the permeability
field is used in the maximization of the NPV of the reservoir over its lifetime. This approach neglects the significant uncertainty
in the NPV. Robust optimization maximizes the expected NPV over an ensemble of permeability fields to overcome this short-
coming of certainty equivalent optimization. Robust optimization reduces the risk compared to certainty equivalent optimization
because it considers an ensemble of permeability fields instead of just the mean permeability field. This is an indirect mechanism
for risk mitigation as the risk does not enter the objective function directly. In the mean-variance bi-criterion objective function
risk appears directly, it also considers an ensemble of reservoir models, and has robust optimization as a special extreme case. The
mean-variance objective is common for portfolio optimization problems in finance. Markowitz’s portfolio optimization problem is
the original and simplest example of a mean-variance criterion for mitigating risk. Risk is mitigated in oil production by including
both the expected NPV (mean of NPV) and the risk (variance of NPV) for the ensemble of possible reservoir models. With the
inclusion of the risk in the objective function, the Sharpe ratio can be used to compute the optimal water injection and production
borehole pressure trajectories that give the optimal return-risk ratio. By simulation, we investigate and compare the performance
of production optimization by mean-variance optimization, robust optimization, certainty equivalent optimization, and the reactive
strategy. The optimization strategies are simulated in open-loop without feedback while the reactive strategy is based on feedback.
The simulations demonstrate that certainty equivalent optimization and robust optimization are risky strategies. At the same com-
putational effort as robust optimization, mean-variance optimization is able to reduce risk significantly at the cost of slightly smaller
return. In this way, mean-variance optimization is a powerful tool for risk management and uncertainty mitigation in production
optimization.

Keywords: Robust Optimization, Risk Management, Oil Production, Optimal Control, Mean-Variance Optimization, Uncertainty
Quantification

1. Introduction

In conventional water flooding of an oil field, feedback based
optimal control technologies may enable higher oil recovery
than with a conventional reactive strategy in which produc-
ers are closed based on water breakthrough (Chierici, 1992;
Ramirez, 1987).

Optimal control technology and Nonlinear Model Predictive
Control (NMPC) have been suggested for improving the oil re-
covery during the water flooding phase of an oil field (Jansen
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et al., 2008). In such applications, the controller adjusts the wa-
ter injection rates and the bottom hole well pressures to max-
imize oil recovery or a financial measure such as the NPV. In
the oil industry, this control concept is also known as closed-
loop reservoir management (CLRM) (Foss, 2012; Jansen et al.,
2009). The controller in CLRM consists of a state estimator for
history matching (state and parameter estimation) and an opti-
mizer that solves a constrained optimal control problem for the
production optimization. Each time new measurements from
the real or simulated reservoir are available, the state estimator
uses these measurements to update the reservoir’s models and
the optimizer solves an open loop optimization problem with
the updated models (Capolei et al., 2013). Only the first part of
the resulting optimal control trajectory is implemented. As new
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measurements become available, the procedure is repeated. The
main difference of the CLRM system from a traditional NMPC
is the large state dimension (106 is not unusual) of an oil reser-
voir model (Binder et al., 2001). The size of the problem dic-
tates that the ensemble Kalman filter is used for state and pa-
rameter estimation (history matching) and that single shooting
optimization is used for computing the solution of the optimal
control problem (Capolei et al., 2013; Jansen, 2011; Jørgensen,
2007; Sarma et al., 2005a; Suwartadi et al., 2012; Völcker et al.,
2011).

In this paper, we focus on the formulation of the optimiza-
tion problem in the NMPC for CLRM. In the study of different
optimization formulations, we leave out data assimilation (his-
tory matching) as well as the effect of feedback from a moving
horizon implementation and consider only the predictions and
computations of the manipulated variables in the open-loop op-
timization of NMPC. This can be regarded as an optimal con-
trol study. The reason for this is twofold. First, in the initial
development of a field, no production data would be available
and the production optimization would be an open-loop optimal
control problem. Secondly, the ability of different optimization
strategies to mitigate the effect of the significant uncertainties
present in reservoir models is better understood if investigated
in isolation.

In conventional production optimization, the nominal net
present value (NPV) of the oil reservoir is maximized (Brouwer
and Jansen, 2004; Capolei et al., 2013, 2012b; Foss, 2012; Foss
and Jensen, 2011; Nævdal et al., 2006; Sarma et al., 2005b;
Suwartadi et al., 2012). To compute the nominal NPV, nominal
values for the model’s parameters are used. In certainty equiva-
lent production optimization, the expected reservoir model pa-
rameters are used in the maximization, while robust production
optimization uses an ensemble of reservoir models to maximize
the expected NPV (Capolei et al., 2013; Van Essen et al., 2009).
The purpose of the robust production optimization is to (indi-
rectly) mitigate the effect of the significant uncertainties in the
parameters of the reservoir model. However, by the certainty
equivalent and the robust production optimization methods, the
trade-off between return (expected NPV) and risk (variance of
the NPV) is not addressed directly. Fig. 1 illustrates risk versus
expected return (mean) for different optimization and operation
strategies. This is a sketch that shows the qualitative behav-
ior of the results in this paper. As is evident in the sketch, a
significant risk is typically associated with the certainty equiv-
alent optimization and the RO strategy. The implication is that
the RO strategy may improve current operation, but you can-
not be sure due to the significant risk arising from the uncer-
tain reservoir model. This is probably one of the reasons that
NMPC for CLRM has not been widely adopted in the operation
of oil reservoirs. The optimization problem in production opti-
mization can be compared in some sense to Markowitz portfolio
optimization problem in finance (Markowitz, 1952; Steinbach,
2001) or to robust design in topology optimization (Beyer and
Sendhoff, 2007; Lazarov et al., 2012). The key to mitigate risk
is to optimize a bi-criterion objective function including both
return and risk for the ensemble of possible reservoir models.
In this way, we can use a single parameter to compute an ef-

Certainty equivalent optimization 

Risk  

Ex
pe

ct
ed

 R
et

ur
n Robust Optimization 

Tangency point:  
solution with the highest 
return vs risk ratio  

Market solution 

Reactive strategy 

Efficient frontier 

Figure 1: A sketch of the trade-off between risk and expected
return in different optimization methods implemented in the op-
timizer for model based production optimization.

ficient frontier (the blue Pareto curve in Fig. 1) of risk and
expected return. The robust optimization is one limit of the ef-
ficient frontier and the other limit is the minimum risk minimum
return solution. By proper balancing the risk and the return in
the bi-criterion objective function, we can tune the optimizer
in the controller such that an optimal ratio of return vs risk is
obtained; such a solution is called the market solution and is
illustrated in Fig. 1.

The mean-variance optimization is based on a bi-criterion
objective function. Previously in the oil literature, multi-
objective functions have been used in production optimization
to trade-off long- and short-term NPV (Van Essen et al., 2011),
to robustify a non-economic objective function (Alhuthali et al.,
2008), and to trade-off oil production, water production and wa-
ter injection using a combination of mean value and standard
deviation for each term (Yasari et al., 2013). These approaches
pointed to the fact that a multi-objective function may be used
to trade-off risk for performance, but did not explicitly address
the risk-return relationship studied in the present paper using
a mean-variance optimization strategy. Furthermore, these pa-
pers did not provide a systematic method for selection of the
risk adverse parameter. The main contribution of the present
paper is to demonstrate, that a return-risk bi-criterion objective
function is a valuable tool for the profit-risk trade-off and pro-
vide a systematic method for selection the risk-return trade-off

parameter. We do this for the open loop optimization and do
not consider the effect of feedback.

The paper is organized as follows. Section 2 defines the
reservoir model. Section 3 states the constrained optimal
control problem and describes the mean-variance optimization
strategy. The computation of economical and production key
performance indicators is explained in Section 4 . Section 5 de-
scribes the numerical case study. Conclusions are presented in
Section 6.
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2. Reservoir Model

We assume that the reservoirs are in the secondary recov-
ery phase where the pressures are above the bubble point pres-
sure of the oil phase. Therefore, two-phase immiscible flow,
i.e. flow without mass transfer between the two phases, is a
reasonable assumption. We focus on water-flooding cases for
two-phase (oil and water) reservoirs. Further, we assume in-
compressible fluids and rocks, no gravity effects or capillary
pressure, no-flow boundaries, and isothermal conditions. The
state equations in an oil reservoir Ω, with boundary ∂Ω and
outward facing normal vector n, can be represented by pressure
and saturation equations. The pressure equation is described as

v = −λtK∇p, ∇ · v =
∑

i∈I,P
qi · δ(r − ri) r ∈ Ω (1a)

v · n = 0 r ∈ ∂Ω (1b)

r is the position vector, ri is the well position, v is the Darcy
velocity (total velocity), K is the permeability, p is the pressure,
qi is the volumetric well rate in barrels/day, δ is the Dirac’s delta
function, I is the set of injectors, P is the set of producers, and
λt is the total mobility. The total mobility, λt, is the sum of the
water and oil mobility functions

λt = λw(s) + λo(s) = krw(s)/µw + kro(s)/µo (2)

The saturation equation is given by

φ
∂

∂t
S w + ∇ · ( fw(S w)v

)
=

∑

i∈I,P
qw,i · δ(r − ri) (3)

φ is the porosity, s is the saturation, fw(s) is the water fractional
flow which is defined as λw

λt
, and qw,i is the volumetric water

rate at well i. We use the MRST reservoir simulator to solve the
pressure and saturation equations, (1) and (3), sequentially (Lie
et al., 2012). Specifically, MRST first computes the total mo-
bility using the initial water saturation. Secondly, the pressure
equation is solved explicitly using the initial water saturation
and the computed total mobility value. Thirdly, with the ob-
tained pressure solution, the velocity is computed and is used
in an implicit Euler method to solve the saturation equation.
This procedure is repeated until the final time is reached. Wells
are implemented using the Peaceman well model (Peaceman,
1983)

qi = −λtWIi(pi − pbhp
i ) (4)

pBHP
i is the wellbore pressure, and WIi is the Peaceman well-

index. The volumetric water flow rates at injection and produc-
tion wells are

qw,i = qi i ∈ I (5a)
qw,i = fwqi i ∈ P (5b)

The volumetric oil flow rates at production wells are

qo,i = (1 − fw)qi i ∈ P (6)

3. Optimal Control Problem

In this section, we present the continuous-time constrained
optimal control problem and its transcription by the single
shooting method to a finite dimensional constrained optimiza-
tion problem. First we present the continuous-time optimal
control problem; then we parameterize the control function us-
ing piecewise constant basis functions; and finally we convert
the problem into a constrained optimization problem using the
single shooting method.

Consider the continuous-time constrained optimal control
problem in the Lagrange form

max
x(t),u(t)

J =

∫ tb

ta
Φ(x(t), u(t))dt (7a)

subject to

x(ta) = x0, (7b)
d
dt

g
(
x(t)

)
= f (x(t), u(t), θ), t ∈ [ta, tb], (7c)

u(t) ∈ U(t). (7d)

x(t) ∈ Rnx is the state vector, u(t) ∈ Rnu is the control vector,
and θ is a parameter vector in an uncertain space Θ (in our case
the permeability field). The time interval I = [ta, tb] as well
as the initial state, x0, are assumed to be fixed. (7c) represents
the dynamic model and includes systems described by index-1
differential algebraic equations (DAE) (Capolei et al., 2012a,b;
Völcker et al., 2009). (7d) represents linear bounds on the input
values, e.g. umin ≤ u(t) ≤ umax. In our formulations we do
not allow nonlinear state or output constraints. Suwartadi et al.
(2012) provide a discussion of output constraints.

3.1. Production Optimization
Production optimization aims at maximizing the net present

value (NPV) or oil recovery, for the life time of the oil reser-
voir. The stage cost, Φ, in the objective function for a NPV
maximization can be expressed as

Φ(x(t), u(t)) =
−1

(1 + d
365 )τ(t)

[∑

l∈I
rwi ql(u(t), x(t))

+
∑

i∈P

(
ro qo,i(u(t), x(t)) − rwp qw,i(u(t), x(t))

)] (8)

ro, rwp, and rwi represent the oil price, the water separation cost,
and the water injection cost, respectively. qw,i and qo,i are the
volumetric water and oil flow rate at producer i; ql is the volu-
metric well injection rate at injector l; d is the annual interest
rate and τ(t) is the integer number of days at time t. The dis-
count factor (1+ d

365 )−τ(t) accounts for a daily compounded value
of the capital. Note that from the well model (4), it follows that
the flow rates q are negative for the producer wells and positive
for the injector wells. Hence, the negative sign in front of the
square bracket in the stage cost Φ. Note that in the special case
when the discount factor is zero (d = 0) and the water injection
and separation costs are zero as well, the NPV is equivalent to
the quantity of produced oil.
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3.2. Control Vector Parametrization

Let Ts denote the sample time such that an equidistant mesh
can be defined as

ta = t0 < . . . < tS < . . . < tN = tb (9)

with t j = ta + jTs for j = 0, 1, . . . ,N. We use a piecewise con-
stant representation of the control function in this equidistant
mesh, i.e. we approximate the control vector in every subinter-
val [t j, t j+1] by the zero-order-hold parametrization

u(t) = u j, u j ∈ Rnu , t j 6 t < t j+1, j ∈ 0, . . . ,N − 1 (10)

The optimizer maximizes the net present value by manipulat-
ing the well bhps. A common alternative, is to use the in-
jection rates as manipulated variables (Capolei et al., 2012b).
The manipulated variables at time period k ∈ N are uk =

{{pbhp
i,k }i∈I, {pbhp

i,k }i∈P} with I being the set of injectors and P be-

ing the set of producers. For i ∈ I, pbhp
i,k is the bhp (bar) in time

period k ∈ N at injector i. For i ∈ P, pbhp
i,k is the bhp (bar) at

producer i in time period k ∈ N .

3.3. Single-Shooting Optimization

We use a single shooting algorithm for solution of (7)
(Capolei et al., 2012b; Schlegel et al., 2005). Alterna-
tives are multiple-shooting (Bock and Plitt, 1984; Capolei
and Jørgensen, 2012) and collocation methods (Biegler, 1984,
2013). Despite the fact that the multiple shooting and the col-
location methods offer better convergence properties than the
single-shooting method (Biegler, 1984; Bock and Plitt, 1984;
Capolei and Jørgensen, 2012), their application in production
optimization is restricted by the large state dimension of such
problems. The use of multiple-shooting is prevented by the
need for computation of state sensitivities. Application of the
collocation method is challenging due to the state vector’s high
dimension and requires advances in iterative methods for solu-
tion of large-scale KKT systems to be computationally attrac-
tive. Heirung et al. (2011) apply the collocation method for
production optimization of a small-scale reservoir.

In the single shooting optimization algorithm, we define the
function

ψ({uk}N−1
k=0 , x0, θ) =

{
J =

∫ tb

ta
Φ(x(t), u(t))dt :

x(t0) = x0,

d
dt

g(x(t)) = f (x(t), u(t), θ), ta ≤ t ≤ tb,

u(t) = uk, tk ≤ t < tk+1, k = 0, 1, . . . ,N − 1
}

(11)

such that (7) can be expressed as the optimization problem

max
{uk}N−1

k=0

ψ = ψ({uk}N−1
k=0 ; x̄0, θ) (12a)

s.t. c({uk}N−1
k=0 ) ≤ 0 (12b)

Gradient based optimization algorithms for solution of (12) re-
quire evaluation of ψ = ψ({uk}N−1

k=0 ; x̄0, θ), ∇ukψ for k ∈ N ,
c({uk}N−1

k=0 , and ∇uk c({uk}N−1
k=0 ) for k ∈ N . For the cases studied in

this paper, the constraint function defines linear bounds. Con-
sequently, the evaluation of these constraint functions and their
gradients is trivial. Given an iterate, {uk}N−1

k=0 , ψ is computed by
solving (7c) marching forwards. ∇ukψ for k ∈ N is computed
by the adjoint method (Capolei et al., 2012a,b; Jansen, 2011;
Jørgensen, 2007; Sarma et al., 2005a; Suwartadi et al., 2012;
Völcker et al., 2011).

To solve (12), we use Matlab’s fmincon function (MAT-
LAB, 2011). fmincon provides an interior point and an active-
set solver. We use the interior point method since we experi-
enced the lowest computation times with this method. An op-
timal solution is reported if the KKT conditions are satisfied
to within a relative and absolute tolerance of 10−6. The cur-
rent best but non-optimal iterate is also returned in cases when
the optimization algorithm uses more than 200 iterations. The
current best, non-optimal iterate is returned in case of a rela-
tive change less than 10−8 in the cost function or the step size.
Furthermore, the cost function is normalized to improve con-
vergence. We use 4 different initial guesses when running the
optimizations. These initial guesses are constant bhp trajec-
tories with the bhp close to the maximal bhp for the injectors
and the bhp close to the minimal bhp for the producers. About
half of the simulations ended because they exceeded the maxi-
mum number of iterations but without satisfying the KKT con-
ditions at the specified tolerance level. In these cases, the rela-
tive changes in the cost function and step size were of the order
of 10−6. Even if these solutions do not reach our specified tol-
erances for the KKT conditions, the solutions are sufficiently
close to optimality to demonstrate qualitatively the behavior of
the mean-variance (MV) optimization. This closeness to opti-
mality is assessed by re-simulation of some of these scenarios
with a tolerance limit of 10−8. In these cases, the optimizer
converged to a KKT point in about 300 iterations; and we did
not observe important differences in these control trajectories
compared to the already computed control trajectories.

3.4. Control Constraints

The bhps are constrained by well and reservoir conditions.
To maintain the two phase situation, we require the pressure to
be above the bubble point pressure (290 bar). To avoid fractur-
ing the rock, the pressure must be below the fracture pressure
of the rock (350 bar). To maintain flow from the injectors to the
producers, the injection pressure is maintained above 310 bar
and the producer pressures are kept below 310 bar. With these
bounds, we did not experience that the flow was reversed. With-
out these pressure bounds, state constraints must be included to
avoid flow reversion.

3.5. Certainty-Equivalent, Robust, and Mean-Variance Opti-
mization

In reservoir models, geological uncertainty is generally pro-
found because of the noisy and sparse nature of seismic data,
core samples, and borehole logs. The consequence of a large
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number of uncertain model parameters (θ) is the broad range of
possible models that may satisfy the seismic and core-sample
data. Obviously, the optimal controls, {uk}N−1

k=0 = {uk(x0, θ}N−1
k=0 ,

computed as the solution of the finite dimensional optimization
problem (12) with the objective function (11) depend on the
values of the uncertain parameters, θ. In practice, the initial
states, x0, will also be uncertain, but in this paper we assume
that all uncertainty is contained within θ. When θ is determinis-
tic, the objective function ψ = ψ({uk}N−1

k=0 ; x0, θ) is deterministic
and the optimization problem (12) is well defined. In contrast,
when θ is stochastic, ψ = ψ({uk}N−1

k=0 ; x0, θ) is stochastic and the
optimization problem (12) is not well defined. To define the op-
timization problem (12) for the stochastic case, a deterministic
objective function for (12) must be constructed. The Certainty
Equivalent (CE) optimization obtains a deterministic objective
function by using the expected value of the uncertain parame-
ters

ψCE = ψ({uk}N−1
k=0 ; x0, Eθ[θ]) (13)

The MV optimization strategy is obtained by using the bi-
criterion function

ψMV = λEθ[ψ] − (1 − λ)Vθ[ψ] λ ∈ [0, 1] (14)

as the objective function in (12). The term Eθ[ψ] is related to
maximizing return while the term Vθ[ψ] is related to minimizing
risk.

Van Essen et al. (2009) introduce Robust Optimization (RO)
for production optimization to reduce the effect of geological
uncertainties compared to the CE optimization. The RO objec-
tive is

ψRO = Eθ[ψ] (15)

The RO objective, ψRO, is a special case of the MV objective,
ψMV , i.e. ψRO = ψMV for λ = 1.

We use a Monte Carlo approach for computation of the ex-
pected value of parameters, Eθ[θ]. The expected value of the
return,Eθ[ψ], and the variance of the return, Vθ[ψ], are also
computed by the Monte Carlo approach. A sample is a set of
realizations of the stochastic variables, θ:

Θd =

{
θ1, θ2, . . . , θnd

}
=

{
θi
}nd

i=1
(16)

This sample is also called an ensemble and is generated by the
Monte Carlo method. The objective function values, ψi, corre-
sponding to this ensemble are

ψi = ψ({uk}N−1
k=0 ; x0, θ

i) i = 1, . . . , nd (17)

The sample estimators of the means and the variance are

θ̂ =
1
nd

nd∑

i=1

θi (18a)

ψ̂ =
1
nd

nd∑

i=1

ψi (18b)

σ2 =
1

nd − 1

nd∑

i=1

(
ψi − ψ̂)2 (18c)

θ̂ is an estimator for Eθ[θ] and ψ̂ is an estimator for Eθ[ψ]. σ2

is an unbiased estimate of Vθ[ψ]. Therefore, σ is an unbiased
estimator of the standard deviation σθ[ψ] =

√
Vθ[ψ].

The CE objective function, ψCE , is computed using the sam-
ple estimator θ̂ ≈ Eθ[θ], i.e.

ψCE = ψ({uk}N−1
k=0 ; x0, θ̂) (19)

Similarly, the MV objective function, ψMV , is computed using
the sample estimators ψ̂ ≈ Eθ[ψ] and σ2 ≈ Vθ[ψ], i.e.

ψMV = λψ̂ − (1 − λ)σ2 λ ∈ [0, 1] (20)

ψMV is computed by computation of ψi for each parameter,
i = 1, . . . , nd, and subsequent computation of the sample esti-
mators, ψ̂ and σ2. The gradient based optimizer used in this
paper needs the objective, ψMV , and the gradients, ∇ukψMV

for k ∈ N . Appendix A provides an explicit derivation of
these gradients. The computation of the objectives and the

gradients, ψi,
{
∇ukψMV

}N−1

k=0
, can be conducted in parallel for

i = 1, 2, . . . , nd. The RO objective based on the sample estima-
tor, ψ̂ ≈ Eθ[ψ], is

ψRO = ψ̂ (21)

The computational effort in computing ψMV is similar to the
computational effort in computing ψRO. Therefore, no compu-
tational penalty is adopted by using the MV approach rather
than the RO approach. The CE optimization needs one func-
tion and gradient evaluation in each iteration, while the MV
optimization needs nd function and gradient evaluations in each
iteration. However, these nd function and gradient evaluations
can be conducted in parallel.

4. Key Performance Indicators

In this section, we present the key performance indicators
(KPIs) used to evaluate the optimal control strategies. The KPIs
are divided into economic KPIs and production related KPIs.

4.1. Profit, Risk and Market Solution

Given a control sequence, {uk}N−1
k=0 , computed by some strat-

egy, the NPV may be computed for each realization of the en-
semble, ψi = ψ({uk}N−1

k=0 ; x0, θ
i) for i = 1, . . . , nd. This gives a set

of NPVs, {ψi}nd
i=1. By itself, these NPVs and their distribution

is of interest. Economic KPIs such as NPV mean, NPV stan-
dard deviation, ratio of NPV mean to NPV standard deviation,
and the minimum and maximum NPV in the finite set are used
to summarize and evaluate the performance of a given control
strategy, {uk}N−1

k=0 . Given {ψi}nd
i=1, the expected mean NPV may

be approximated using (18b), Eθ[ψ] ≈ ψ̂. Similarly, the stan-
dard deviation of the mean may be approximated using (18c),
σθ[ψ] ≈ σ. The ratio of return and risk is called the Sharpe
ratio and is defined as (Sharpe, 1994)

S h =
Eθ[ψ]
σθ[ψ]

≈ ψ̂

σ
(22)
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The ensemble, {ψi}nd
i=1, is finite. Therefore, the minimum and

maximum NPV may be computed by

ψmin = min {ψi}nd
i=1 (23a)

ψmax = max {ψi}nd
i=1 (23b)

Given an optimal control sequence, {uk}N−1
k=0 , ψmin is the low-

est NPV in the ensemble of permeability fields and ψmax is the
highest NPV in the ensemble of permeability fields.

The economic KPIs,
{
ψ̂, σ, S h, ψmin, ψmax

}
, provide a set of

values that may be used to quickly evaluate and compare dif-
ferent control strategies, {uk}N−1

k=0 , in terms of return and risk.
Subsequently, selected solutions, {uk}N−1

k=0 , may be evaluated in
detail by inspection of the distribution of {ψi}nd

i=1 and by in-
spection of the solution trajectories, {uk}N−1

k=0 . The idea in the
mean-variance model is to compute the optimal solution for dif-
ferent values of the return-risk trade-off parameter, λ ∈ [0, 1],
and select the parameter λ to obtain the best trade-off between
return and risk (Markowitz, 1952; Steinbach, 2001). As part
of the mean-variance optimization, the NPV of each realiza-
tion of the ensemble is computed for various values of λ in
the mean-variance objective function (20). This gives {ψi(λ)}nd

i=1
and {uk(λ}N−1

k=0 for a range of values of the mean-variance trade-
off parameter, λ ∈ [0, 1]. For each value of λ, the set of en-
semble NPVs and (18b) are used to approximate the expected
NPV as function of λ, Eθ[ψ(λ)] ≈ ψ̂(λ). Similarly, the set of
ensemble NPVs and (18c) are used to approximate the standard
deviation of the NPV as function of λ, σθ[ψ(λ)] ≈ σ(λ). The
expected NPV, Eθ[ψ(λ)], and the risk σθ[ψ(λ)], may be plotted
and tabulated as a function of λ. This gives some overview of
the behaviour of key economic performance indicators such as
expected profit and risk as a function of λ. Also a phase plot

of risk versus return,
{
σθ[ψ(λ)], Eθ[ψ(λ)]

}
for λ ∈ [0, 1], illus-

trates the risk-return relationship of the mean-variance model.
The efficient frontier is the curve that yields the maximal return
as function of risk. By itself, the efficient frontier does not pro-
vide a unique solution to the production optimization problem.
The efficient frontier provides only efficient pairs of return and
risk; the preferred solution depends on the risk preferences of
the decision maker. One way to choose a solution among the
efficient risk-return pairs is to choose the solution that maxi-
mizes the Sharpe ratio (22) (Sharpe, 1994). The solution that
maximizes the Sharpe ratio is called the market solution.

4.2. Cumulative Productions Indicators

In addition to the economic KPIs, we also consider produc-
tion related KPIs. The production related KPIs are the expected
cumulative oil production, the expected cumulative water injec-
tion, and the production efficiency.

The cumulative oil production, Qo(t), and the cumulative wa-

ter injection, Qw,in j(t), at time t are given by

Qo(t) =

∫ t

0


∑

i∈P
qo,i

 dt (24a)

Qw,in j(t) =

∫ t

0


∑

i∈I
qi

 dt (24b)

We approximate the cumulative oil production (24a) and wa-
ter injection (24b) at final time tb by using the right rectangle
(implicit Euler) integration method

Qo = Qo(tb) =

N−1∑

k=0


∑

i∈P
qo,i(xk+1, uk)

 ∆tk (25a)

Qw,in j = Qw(tb) =

N−1∑

k=0


∑

i∈I
qi(xk+1, uk)

 ∆tk (25b)

and we compute the expected values of the cumulative produc-
tions (25a)-(25b) as the sample averages

Eθ[Qo] =
1
nd

nd∑

i=1

Qi
o (26a)

Eθ[Qw,in j] =
1
nd

nd∑

i=1

Qi
w,in j (26b)

Superscript i refers to the quantity computed using realization
i. The production efficiency, ξ, is defined and computed as the
volumetric ratio of the produced oil and the injected water

ξ =
Eθ[Qo]

Eθ[Qw,in j]
(27)

5. Simulated Test Cases

The mean-variance optimization strategy is studied for two
test cases. The same reservoir permeability fields and petro-
physical parameters are used for the two test cases. Fig. 2 il-
lustrates the ensemble of permeability fields used to represent
the uncertain reservoir. Fig. 3 illustrates the mean permeabil-
ity field of the ensemble of permeability fields. As illustrated
by Fig. 4 and reported in Table 1, the difference between the
two test cases are the well configurations and the economical
parameters. Test Case I contains more injector wells than Test
Case II. Furthermore, the water injection costs and the water
separation costs are higher in Test Case I than in Test Case II.
This implies that a reactive strategy that injects water at a max-
imal rate is penalized in Test Case I due to the high water injec-
tion and water separation costs. Test Case I is used to illustrate a
complicated well configuration benefitting from intelligent co-
ordination of wells and penalizing conventional reactive strate-
gies. Test Case II is simpler and the value of feedback becomes
more important than predictive coordination of the wells. This
means that in Test Case II a feedback based reactive strategy
will be able to do better than a model based open loop strategy.
Combined, the two test cases illustrates that the shape and ge-
ometry of the efficient frontier is case dependent, that the value

6



Table 1: Petro-physical and economical parameters for the two
phase model and the discounted state cost function used in the
case studies. TC I = Test Case I. TC II = Test Case II.

Description Value Unit
φ Porosity 0.2 -
cr Rock compressibility 0 Pa−1

ρo Oil density (300 bar) 700 kg/m3

ρw Water density (300 bar) 1000 kg/m3

µo Dynamic oil viscosity 3 · 10−3 Pa · s
µw Dynamic water viscosity 0.3 · 10−3 Pa · s
S or Residual oil saturation 0.1 -
S ow Connate water saturation 0.1 -
no Corey exponent for oil 2 -
nw Corey exponent for water 2 -
Pinit Initial reservoir pressure 300 bar
S init Initial water saturation 0.1 -
ro Oil price 120 USD/bbl
rwp Water separation cost (TC I) 25 USD/bbl
rwp Water separation cost (TC II) 20 USD/bbl
rwi Water injection cost (TC I) 15 USD/bbl
rwi Water injection cost (TC II) 10 USD/bbl
d Discount factor 0

of feedback in a reactive strategy compared to an open-loop op-
timization strategy is dependent on the well configuration, and
that the mean-variance objective formulation is an efficient way
to trade off risk and return.

5.1. Uncertain Parameters

In our study, the permeability field is the uncertain parame-
ters. We generate 100 permeability field realizations of a 2D
reservoir in a fluvial depositional environment with a known
vertical main-flow direction. Fig. 2 illustrates such an ensem-
ble of permeability fields. These permeability realizations are
equal to the permeabilities used by Capolei et al. (2013). To
generate the permeability fields, we first create a set of 100 bi-
nary (black and white) training images by using the sequential
Monte Carlo algorithm ’SNESIM’ (Liu, 2006). Then a Kernel
PCA procedure is used to preserve the channel structures and to
smooth the original binary images (Schölkopf et al., 1998). The
realizations obtained by this procedure are quite heterogeneous.
The values of the permeabilities are in the range 6 − 2734 mD.

5.2. Description of the Test Cases

We consider a conventional horizontal oil field that can be
modeled as two phase flow in a porous medium (Chen, 2007).
The reservoir size is 450 m × 450 m × 10 m. By spatial dis-
cretization this reservoir is divided into 45× 45× 1 grid blocks.
The permeability field is uncertain, θ = ln K. We assume that
the ensemble in Fig. 2 represents the range of possible geolog-
ical uncertainties.

Table 1 lists the reservoir’s petro-physical and economical
parameters. The initial reservoir pressure is 300 bar everywhere

in the reservoir. The initial water saturation is 0.1 everywhere
in the reservoir. This implies that initially, the reservoir has a
uniform oil saturation of 0.9. The manipulated variables are the
bhps over the life of the reservoir. In this study, we consider a
zero discount factor, d, in the cost function (8). This means that
we maximize NPV at the final time without short term produc-
tion considerations (Capolei et al., 2012b).

In both test cases, we consider a prediction horizon of tN =

4 · 365 = 1460 days divided in N = 60 control periods (i.e.
the control period is Ts ≈ 24 days). We control the reservoir
using three strategies: a reactive strategy, a CE strategy, and
a MV strategy. The RO strategy is considered a special MV
strategy with λ = 1. In the reactive strategy, we develop the
field at the maximum production rate by setting the producers
at the lowest allowed bhp value (290 bar) and the injectors at
the maximum allowed bhp value (350 bar). When a production
well is no longer economical it is shut in. A production well is
uneconomical when the value of the produced oil is less than
the separation cost of the produced water. The CE strategy is
based on solving problem (12) using the CE cost function ψCE

(19). It uses the mean (Fig. 3) of the ensemble (Fig. 2) as its
permeability field. The MV strategy is based on solving prob-
lem (12) using the cost function ψMV (20) for different values
of the parameter λ.

5.3. Test Case I
Fig. 4a illustrates the well configuration for Test Case I. Test

Case I has 9 injection wells and 4 producer wells. Table 1 con-
tains the petro-physical as well as the economic parameters.
From the oil price and the water separation cost for Test Case I,
it is apparent that a producer well becomes uneconomical when
the fractional flow, fw, exceeds ro/(ro +rwp) = 120/(120+25) =

0.828.
Fig. 5 shows the optimal bhp trajectories for the producer

wells while Fig. 6 shows the optimal bhp trajectories for the in-
jector wells. These trajectories are computed using the reactive,
the MV, the RO, and the CE optimization strategy. λ = 0.59
gives the market solution for this case, and this value of λ is
used in the MV strategy. Compared to the RO and the market
MV strategy, the CE trajectories do not contain sudden large
changes in the bhp. This is due to the fact that the mean perme-
ability field used by the CE strategy does not have sharp edges.
It is also apparent that the bhp trajectories of the RO strategy
have larger sudden changes than the trajectories of the market
MV strategy. For some realizations of the permeability field,
the RO trajectories would perform very well because they uti-
lize the sharp channel structure in the permeability field. How-
ever, sudden large changes in the manipulated variables is an
indication of solutions that are sensitive to process noise and
model uncertainties. As sensitivity to noise is related to high
risk, the trajectories of the bore hole pressures indicate that the
RO strategy is more risky than the market MV strategy. Fig. 7
confirms this observation.

Fig. 7 illustrates the profit, ψi, for each realization of the
permeability field using the reactive strategy as well as the CE,
the RO, and the market MV optimal control strategies. The
average profit over the realizations is a measure of the expected
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Figure 2: Plots of the permeability fields used to describe the uncertain reservoir. An ensemble of 100 realizations is used. The
realizations are quite heterogeneous. The permeability values are in the range 6 − 2734 mD. The logarithm of the permeability is
plotted for better visualization.
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Figure 3: A plot of the mean permeability field for the ensemble
of permeability fields in Fig. 2. The mean is a smoothed ver-
sion of the ensembles. Due to the heterogenous nature of the
ensembles, the mean does not necessarily reflect the channel
structure of any of the ensemble members.

return, while the fluctuations are a measure of risk. For each
control strategy, the bigger the fluctuations in profit, the bigger
the related risk. It is evident that the CE strategy has the lowest
expected return and the biggest risk. The CE strategy also has
the lowest worst case return. The reactive strategy has a mean
return that is higher than the mean return of the CE strategy but
lower than the mean returns of the RO and the MV strategies.
The risk for the reactive strategy is lower than the risk for the
CE strategy but higher than the risks for the RO and the MV
strategies. Comparing the market MV and the RO strategies,
the RO strategy has a slightly higher mean profit than the market
MV strategy but at the price of a significantly higher risk.

Table 2 reports KPIs for each control strategy. The econom-
ical KPIs are the expected NPV, the standard deviation NPV,
the Sharpe ratio, and the minimum and maximum NPV for
the ensemble. The production related KPIs are the mean oil
production, the mean water injection, and the production effi-
ciency (27) for the ensemble. The mean oil production and the
mean water injection are scaled by the pore volume of the reser-
voir. Interestingly, the MV market strategy (λ = 0.59) has the
highest minimum ensemble NPV value, ψmin. This means that
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Table 2: Key Performance Indicators (KPIs) for Test Case I. The economic KPIs are the expected profit, the standard deviation of
the profit, the Sharpe ratio, and the minimum and maximum profit for the ensemble. The reported production related KPIs are the
expected oil production, the expected water injection, and the production efficiency, ξ. The productions are normalized by the pore
volume. All improvements are relative to the reactive strategy.

Strategy ψ̂ σ S h ψmin ψmax Eθ[Qo] Eθ[Qw,in j] ξ

106 USD, % 106 USD, % 106 USD, % 106 USD, % , % , % %
Reactive 39.04, / 9.01, / 4.34 17.62, / 60.47, / 0.39, / 1.04, / 37.8
CE 28.57, −26.8 18.93, +110.2 1.51 -23.86, −235.4 60.25, −0.40 0.32, −18.4 0.88, −15.3 36.4
MV
λ = 1 (RO) 50.40, +29.1 8.17, −9.3 6.17 28.11, +67.2 69.90, +15.6 0.26, −34.0 0.44, −57.4 58.5
λ = 0.75 48.00, +25.0 6.13, −32.0 7.83 34.68, +96.8 64.52, +6.7 0.24, −38.9 0.39, −62.5 61.6
λ = 0.59 47.09, +20.6 4.89, −45.7 9.63 35.44, +101 57.747, −4.5 0.23, −40.9 0.38, −63.6 61.5
λ = 0.5 45.58, +16.7 5.15, −42.8 8.85 33.13, +88.0 57.84, −4.3 0.23, −41.0 0.39, −62.4 59.3
λ = 0.25 45.09, +15.5 4.76, −47.1 9.47 32.39, +83.8 56.3, −6.9 0.22, −42.5 0.37, −64.0 60.3
λ = 0.125 44.00, +12.7 4.61, −48.8 9.54 31.73, +80.1 54.67, −9.6 0.22, −44.1 0.36, −65.1 60.5
λ = 0 41.57, +6.5 5.02, −44.2 8.28 29.47, +67.2 52.40, −13.3 0.21, −45.6 0.36, −64.9 58.6
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(a) Test Case I

p2
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(b) Test Case II

Figure 4: The well configuration for Test Case I and II. The
permeability field in this plot is the permeability field in the
upper left corner of Fig. 2. Producer wells are indicated by
the letter p, and injector wells are indicated by the letter i. In
addition to the injector and producer wells in Test Case II, Test
Case I has a number of injector wells at the boundary of the
field.

in this case, the market solution has a better worst case profit,
ψmin, compared to all other control strategies including the MV
strategies with lower standard deviation. Compared to the CE
strategy and the reactive strategy, all MV control trajectories
give higher expected NPV and lower NPV standard deviation.
In that sense, the MV solutions are said to dominate the CE so-
lution and the solution given by the reactive strategy. The RO
solution has the highest maximum NPV and also the highest
expected NPV. However, among the MV solutions, it is also the
solution with the lowest minimum NPV. This implies that the
RO solution is very risky and this is confirmed by its high NPV
standard deviation. Among the MV solutions, the RO solution
has the highest NPV standard deviation. Fig. 8 summarizes
the economic KPIs of the MV solutions. Fig. 8a shows the
expected NPV as well as the worst and best NPV for the en-
semble as function of the mean-variance trade-off parameter, λ.

It is easily observed that the market MV solution, coinciden-
tally, is also the max-min solution, i.e. the solution yielding the
highest worst case NPV. Similarly, the high risk of the RO solu-
tion is evident. Fig. 8b illustrates the standard deviation of the
NPV as function the mean-variance trade-off parameter, λ. The
standard deviation of the NPV is a measure of risk. The risk is
a non-monotonous function of the mean-variance trade-off pa-
rameter, λ. Measured by NPV standard deviation, the minimum
risk solution is obtained for λ = 0.125. However, this solution
is inferior to the market MV solution, as the market MV solu-
tion has a higher worst case NPV, a higher mean NPV, and a
higher best case NPV (see Fig. 8a). Fig. 8c plots the Sharpe
ratio as function of the mean-variance trade-off parameter, λ.
This plot indicates that the maximal Sharpe ratio, i.e. the mar-
ket solution, is obtained for λ = 0.59. The Sharpe ratio is not
a concave function of λ in this case. Another local maximum
with almost the same Sharpe ratio as the global maximum is
obtained for λ = 0.125, i.e. for the minimum risk solution. As
we noted previously, this solution is inferior to the market so-
lution. Also note that the RO solution has the lowest Sharpe
ratio. Fig. 8d illustrates the risk-return relations for the differ-
ent MV strategies as well as the CE, the RO (MV with λ = 1),
and the reactive strategy. This figure clearly illustrates the supe-
riority of the market MV strategy over the reactive strategy and
the CE strategy. It also shows the reduced risk of the market
MV strategy compared to the RO strategy at the cost of slightly
reduced mean profit. The risk-return curve for the MV opti-
mization strategies has two arcs. The efficient frontier arc is the
blue curve in Fig. 8d; the red curve is the inefficient frontier.
In the efficient frontier, an increased risk is associated with an
increased mean return. The MV strategy contains some risk-
return points that are feasible but not on the efficient frontier,
i.e. points that for a given risk level does not produce the maxi-
mal expected return.

For Test Case I, the production related KPIs in Table 2
demonstrate that the reactive strategy produces much more oil
compared to the other control strategies. However, it also in-
jects and produces much more water, i.e. Eθ[Qo] = 0.39 pore
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Figure 5: Test Case I. Trajectories of the bhp at producer wells using different optimization strategies. In the reactive strategy, the
producer wells are shut in when production becomes uneconomical. The shut in time is different for each realization and is not
indicated in the plot.

volume and Eθ[Qw,in j] = 1.04 pore volume. From a pure pro-
duction point of view, the most efficient MV solution does
not coincide with the market solution nor with the RO solu-
tion. It occurs for λ = 0.75 and has a production efficiency of
ξ = 61.6%, i.e. 61.6 barrels of oil is produced for 100 barrels
of injected water.

5.4. Test Case II

Fig. 4b indicates the well configuration of Test Case II. Table
1 reports the petro-physical and economical parameters used
for the simulations. The economic parameters imply that a pro-
ducer well becomes non-economical when the fractional water
flow, fw, exceeds ro/(ro +rwp) = 120/(120+20) = 0.857. Com-
pared to Test Case I, Test Case II has fewer injection wells and
the water separation cost is lower.

Fig. 9 and Table 3 report the economic KPIs for Test Case II.
They summarize and provide an overview of the performance

of different control strategies for Test Case II. The Sharpe ratio
curve in Fig. 9c indicates that the market MV solution is ob-
tained for λ = 0.125. As illustrated by the efficient frontier in
the risk-return plot in Fig. 9d, the RO solution and the CE so-
lution both have higher expected return as well as significantly
higher risk (NPV standard deviation) than the MV market solu-
tion. Comparing with the sketch in Fig. 1, the efficient frontier
illustrated in Fig. 9d is a textbook example of the relation be-
tween risk and return. At the price of a low reduction in the
expected return, the MV market solution decreases the risk sig-
nificantly compared to the RO solution and the CE solution.
Also the worst case NPV is much higher for the MV market
solution than the corresponding values for the RO solution and
the CE solution. The worst case NPV, ψmin, is even negative for
the CE solution.

Test Case II has been included to demonstrate the value of
information and feedback. While the optimization based strate-
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Figure 6: Test Case I. Trajectories of bhp for injector wells using different optimization strategies.

gies studied in this paper are open-loop strategies that do not
use feedback, the reactive strategy is a feedback controller. As
reported in Fig. 9d and Table 3, the reactive strategy has both
a higher expected NPV and a lower risk (NPV standard devi-
ation) than the RO solution as well as the CE solution. Con-
sequently, the reactive solution is superior to the open-loop CE
and RO strategies. Furthermore, the worst case NPV of the re-
active strategy is higher than the worst case NPVs of the CE so-
lution and the RO solution. The worst case NPV of the reactive
strategy is even better than the mean NPV of the CE strategy.
Fig. 9d illustrates that the reactive strategy has a significantly
higher return than the MV market solution. However, the reac-
tive strategy also has a higher risk measured by the NPV stan-
dard deviation. Nevertheless, the reactive strategy is still supe-
rior to the MV market solution as the worst case NPV of the
reactive strategy is larger than the best case NPV of the market
MV solution. This illustrates that even though a control strat-
egy may have a larger standard deviation than another control
strategy, it may still be superior as all its possible profits are

larger than the profits of the other control strategy.
Interestingly and perhaps surprising, Fig. 9a as well as Table

3 indicate that the Market MV solution is in some sense inferior
to the MV solution obtained for λ = 0.25. The MV solution for
λ = 0.25 has a worst case NPV, a mean NPV, and a best case
NPV, that are all higher than the corresponding values for the
market solution. Even though the market solution has lower
risk in terms of standard deviation of the NPV, this becomes
in some sense irrelevant as both the mean NPV and the worst
case NPV of the MV solution with λ = 0.25 are higher than the
corresponding values of the market solution. A more detailed
comparison of the two MV strategies would require the distri-
bution of the NPVs for the two strategies and not only the just
discussed statistics.

In addition to economic KPIs, Table 3 also reports the pro-
duction related KPIs. The reactive strategy has the highest oil
recovery but also the highest water injection such that its pro-
duction efficiency, ξ, is the lowest among all strategies. The
most efficient solution measured by the production efficiency,
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Figure 7: Test Case I. The net present value (NPV) of the optimal solution for each realization of the ensemble. The optimal
solution is computed using a CE objective, a RO objective, and a MV objective with a mean-variance trade-off corresponding to
the market solution (λ = 0.59). We also show the NPVs for the reactive strategy.

ξ, would be the minimum variance solution obtained for λ = 0.
This solution would have a production efficiency of ξ = 81.9%.
In economic terms, this solution would still be inferior to the
reactive strategy.

5.5. Discussion

Using two test cases, we demonstrated production optimiza-
tion of an uncertain oil reservoir by open-loop optimal control
using a mean-variance objective function. We compared opti-
mal control using a mean-variance objective function to open-
loop optimal control with a CE objective function and an RO
objective function, respectively. For uncertain reservoirs, the
market solution of the mean-variance objective provides bet-
ter and more well-behaved bhp trajectories with less risk (stan-
dard deviation) of the NPV. This reduced risk typically comes
at the price of reduced profit. The simulations revealed that for
the reservoirs in this paper, the reduction in expected NPV is
modest compared to the risk reduction. Risk mitigation by the
mean-variance objective can be regarded as a regularization of
the RO objective and has the same regularizing effect on the so-
lution, i.e. the bhp trajectories, as the effect of e.g. a Tikhonov
regularizer in least squares problems (Hansen, 1998).

The analysis, evaluation and discussion of control perfor-
mance in uncertain oil reservoirs is facilitated by Fig. 8 and

Fig. 9. In practice a dash board of risk-return relations sim-
ilar to Fig. 8 and Fig. 9 will be very valuable for reservoir
management and risk mitigation. A closed-loop reservoir man-
agement system, should compute MV optimal control solutions
for λ ∈ [0, 1]. This would give the expected NPV, the NPV
standard deviation, the Sharpe ratio, and the efficient frontier
in a risk-return diagram. The range of possible NPVs are sub-
sequently computed by simulating each of the optimal control
solutions for each of the permeability fields in the ensemble.
Reservoir engineers and managers could then analyze the dia-
grams as well as selected bhp trajectories. Based on this anal-
ysis, they should select a mean-variance trade-off parameter, λ.
This could be the market solution, but it could also be another
value. A set of optimal injector and producer well bhp trajecto-
ries corresponds to the selected value of λ. The bhp values in
the first control period are implemented in the reservoir. Test
Case II demonstrated the importance of feedback. To incorpo-
rate measurements obtained one control period later, a history
matching procedure should be used to update the ensemble of
permeability fields. Based on this updated ensemble of per-
meability fields, the mean-variance open-loop optimal control
computations are repeated and the first part of the selected op-
timal bhps are implemented (Capolei et al., 2013).

In the analysis and discussion of the performance of different
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(d) A risk-return plot. The expected NPV vs standard deviation of NPV.

Figure 8: Mean-variance relations for Test Case I. Profit (a), risk (b), and Sharpe Ratio (c) for different mean-variance trade-offs,
λ. (d) is a phase plot of expected profit vs risk measured as the standard deviation of profit. The blue curve is the efficient frontier.
The red curve is tje inefficient frontier. Also the CE solution and the reactive solution are indicated.

control strategies, worst case analysis is beneficial and infor-
mative. In this study, we analyzed worst case performance by
simulation using a bhp trajectory obtained by open-loop MV
optimization; i.e. as part of solving the mean-variance opti-
mal control problem, we computed the NPV, ψi, for each mem-
ber of the ensemble, and the set {ψi}nd

i=1 was used to determine
ψmin = min {ψi}nd

i=1 and ψmax = max {ψi}nd
i=1. In a future study,

it would be interesting to compare the MV solution to a max-
min solution, i.e. to compute the optimal control trajectories by
solution of

max
{uk}N−1

k=0

min
i∈{1,2,...,nd}

ψ = ψ({uk}N−1
k=0 ; x0, θ

i) (28a)

s.t. c({uk}N−1
k=0 ) ≤ 0 (28b)

Subsequently, KPIs such as the mean, the standard deviation,
and the Sharpe ratio may be computed. These KPIs can be used

to evaluate and compare the max-min solution to the mean-
variance solutions.

6. Conclusions

In this paper, we describe a mean-variance approach to risk
mitigation in production optimization by open-loop optimal
control. The mean-variance approach to risk mitigation is well
known in finance and design optimization, but have to our
knowledge not been used previously for production optimiza-
tion of oil reservoirs. By simulation, we demonstrate a com-
putationally tractable method for mean-variance optimal con-
trol calculations of a reservoir model consisting of an ensem-
ble of permeability fields. Compared to the RO strategy and
the CE strategy, the MV strategy based on the market value of
the mean-variance trade-off parameter, λ, is able to reduce risk
significantly. This comes at the price of slightly reduced mean
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Figure 9: Mean-variance relations for Test Case II. Profit (a), risk (b), and Sharpe Ratio (c) for different mean-variance trade-offs,
λ. (d) is a phase plot of expected profit vs risk measured as the standard deviation of profit. The blue curve is the efficient frontier.
Also the CE and reactive strategy are indicated.

profits. In Test Case II we indicated the importance of feedback.
Therefore, future studies should investigate the mean-variance
optimal control strategy in a moving horizon closed-loop fash-
ion. Implemented in closed-loop using the moving horizon
principle, the optimal control problem for production optimiza-
tion of an oil reservoir is an example of an Economic Nonlinear
Model Predictive Controller (Economic NMPC). Therefore, we
believe that the mean-variance objective function introduced in
this paper will be of interest to not only production optimization
for closed-loop reservoir management but also for Economic
NMPC in general. In the future, the mean-variance approach
for production optimization should be compared to other meth-
ods for stochastic optimization, e.g. conditional-value-at-risk
and two-stage stochastic programming, as well as the modified
MV strategy that can shut in uneconomical wells (Capolei et al.,
2013).
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Appendix A. Computation of the MV Objective and its
Gradients

The mean-variance objective function for an ensemble is de-
fined as

ψMV = λψ̂ − (1 − λ)σ2 (A.1)
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Table 3: Key Performance Indicators (KPIs) for Test Case II. The economic KPIs are the expected profit, the standard deviation of
the profit, the Sharpe ratio, and the minimum and maximum profit for the ensemble. The reported production related KPIs are the
expected oil production, the expected water injection, and the production efficiency, ξ. The productions are normalized by the pore
volume. All improvements are relative to the reactive strategy.

Strategy ψ̂ σ S h ψmin ψmax Eθ[Qo] Eθ[Qw,in j] ξ

106 USD, % 106 USD, % 106 USD, % 106 USD, % , % , % %
Reactive 56.47, / 6.05, / 9.33 43.92, / 70.104, / 0.35, / 0.86, / 39.5
CE 42.72, −24.35 18.27, +202.0 2.34 -38.40, −187.4 72.21, +3.01 0.26, −26.0 0.64, −27.4 40.3
MV
λ = 1 (RO) 44.11, −21.9 13.19, +118.0 3.34 9.28, −78.9 67.14, −4.2 0.23, −34.9 0.47, −45.8 47.5
λ = 0.75 42.52, −24.7 8.58, +41.8 4.96 17.93, −59.2 59.16, +15.6 0.19, −44.9 0.33, −61.9 57.2
λ = 0.5 39.62, −29.8 6.39, +5.6 6.20 21.24, −51.6 51.82, −26.1 0.17, −52.0 0.26, −70.6 64.6
λ = 0.25 35.97, −36.3 4.81, −20.5 7.48 22.46, −48.9 46.45, −33.7 0.15, −58.0 0.21, −76.3 70.0
λ = 0.125 32.64, −42.2 4.32, −28.7 7.56 21.29, −51.5 42.46, −39.4 0.13, −62.5 0.18, −79.6 72.7
λ = 0 26.23, −53.5 3.99, −34.0 6.57 17.37, −60.5 36.38, −48.1 0.10, −71.2 0.12, −86.1 81.9

with the mean and variances computed by

ψ̂ =
1
nd

nd∑

i=1

ψi (A.2a)

σ2 =
1

nd − 1

nd∑

i=1

(ψi − ψ̂)2 (A.2b)

The gradient, ∇ukψMV for k ∈ N , is computed as

∇ukψMV = λ∇uk ψ̂ − (1 − λ)∇ukσ
2 k ∈ N (A.3)

with the gradient of the mean, ∇uk ψ̂, computed as

∇uk ψ̂ =
1
nd

nd∑

k=1

∇ukψ
i (A.4)

The gradient of the variance, ∇ukσ
2, is

∇ukσ
2 =

1
nd − 1

nd∑

i=1

[
∇uk

(
ψi − ψ̂)2

]

=
2

nd − 1

nd∑

i=1

[(
ψi − ψ̂)∇uk

(
ψi − ψ̂)

]

=
2

nd − 1

nd∑

i=1

[
(ψi − ψ̂)(∇ukψ

i − ∇uk ψ̂)
]

(A.5)

∇ukσ
2 can be computed by (A.5). To compute ∇ukσ

2 more effi-
ciently we express ∇ukσ

2 as

∇ukσ
2 =

2
nd − 1

( nd∑

i=1

[(
ψi − ψ̂)∇ukψ

i
]
−

nd∑

i=1

[(
ψi − ψ̂)∇uk ψ̂

])

(A.6)

and note that
nd∑

i=1

((
ψi − ψ̂)∇uk ψ̂

)
=


nd∑

i=1

(
ψi − ψ̂

)∇uk ψ̂

=


nd∑

i=1

ψi − ndψ̂


︸            ︷︷            ︸

=0

∇uk ψ̂ = 0

Consequently, the gradient of the variance can be computed ef-
ficiently by

∇ukσ
2 =

2
nd − 1

nd∑

i=1

(ψi − ψ̂)∇ukψ
i (A.7)
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