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Asymmetrick-Center with Minimum Coverage

Inge Li Gørtz∗

Abstract

In this paper we give approximation algorithms and inapproximability results for various asym-
metrick-center with minimum coverage problems. In thek-center with minimum coverage problem,
each center is required to serve a minimum number of clients.These problems have been studied by
Lim et al. [Theor. Comput. Sci. 2005] in the symmetric setting.

In the q-all-coveragek-center problemeach center must serve at leastq vertices (including
itself). In the q-coveragek-center problemeach center must serve at leastq non-center nodes.
We provideO(log∗ n)-approximation algorithms for theasymmetricq-all-coverage andq-coverage
problems in both the unweighted and weighted case. This is optimal within a constant factor. Lim
et al. also study theq-coveragek-supplier problemand the priority version of all the mentioned
problems in the symmetric setting. We show that the asymmetric q-coveragek-supplier problem
and the priority versions of asymmetricq-coveragek-center and asymmetricq-all-coveragek-center
are inapproximable.

∗IT University of Copenhagen, Rued Langgaards Vej 7, DK-2300 Copenhagen S, Denmark. Fax: +45 72 18 50 01. Email:
inge@itu.dk
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1 Introduction

Imagine you have a delivery service. You want to place yourk delivery hubs at locations that minimize
the maximum distance between customers and their nearest hubs. This is thek-center problem—a
type of clustering problem that is similar to the facility location [18] andk-median [3] problems. The
motivation for theasymmetrick-center problem, in our example, is that traffic patterns or one-way
streets might cause the travel time from one point to another to differ depending on the direction of
travel. In thek-center with minimum coverage problemeach center is required to serve a minimum
number of clients. The motivation is to try to balance the workload between the centers, such that you
are not wasting resources on e.g. delivery hubs that are almost neverused because they are located in
isolated places. This problem has also been addressed by Charikaret al. [5]. They studied thek-center
problem with outliers, where a small subset of costumers may be denied service. Unfortunately, this
problem cannot be approximated in the asymmetric case unless P= NP [10]. Other examples where the
k-center problem with minimum coverage is useful is in planning location of hospitals. Requiring the
hospitals to serve at least a certain number of neighborhoods/patients allows for economies of scale and
specialization. A small hospital cannot have a specialist in every area, whereas a larger hospital can hire
more specialized people and also possibly be more effective. In this paperwe study asymmetric version
of k-center with minimum coverage problems.

Symmetry is a vital concept in graph approximation algorithms. Recently, thek-center problem
was shown to beΩ(log∗ n) hard to approximate [7, 8, 11], even though the symmetric version has a
factor 2 approximation. Facility location andk-median both have constant factor algorithms in the
symmetric case, but are provablyΩ(log n) hard to approximate without symmetry [1]. The traveling
salesman problem is a little better, in that no super-constant hardness is known, but without symmetry
no algorithm better than43 log n) [15] has been found either.

Definition 1.1 (k-Center). GivenG = (V, E), a complete graph with nonnegative (but possibly infinite)
edge costs, and a positive integerk, find a setS of k vertices, calledcenters, with minimum covering
radius. The covering radius of a setS is the minimum distanceR such that every vertex inV is within
distanceR of some vertex inS.

Kariv and Hakimi [16] showed that thek-center problem is NP-hard. Without the triangle inequality
the problem is NP-hard to approximate within any factor (there is a straightforward reduction from
the dominating set problem). We henceforth assume that the edge costs satisfy the triangle inequality.
Hsu and Nemhauser [14], using the same reduction, showed that the metrick-center problem cannot
be approximated within a factor of(2 − ε) unless P= NP. In 1985 Hochbaum and Shmoys [12]
provided a (best possible) factor2 algorithm for the metrick-center problem. In 1996 Panigrahy and
Vishwanathan [19, 21] gave the first approximation algorithm for the asymmetric problem, with factor
O(log∗ n). Archer [2] proposed twoO(log∗ k) algorithms based on many of the ideas of Panigrahy and
Vishwanathan. The complementaryΩ(log∗ n) hardness result [7,8,11] shows that these approximation
algorithms are asymptotically optimal.

1.1 k-Center with Minimum Coverage

A number of variants of thek-center problem have been explored in the context of symmetric graphs [4–
6,13,17,20] and in the asymmetric setting [4,10].

In this paper we give approximation algorithms and inapproximability results forvarious asymmetric
k-center with minimum coverage problems. These problems have been studied by Lim et al. [17] in the
symmetric setting. Ink-center with minimum coverage, each center is required to serve a minimum
of clients. This problem is motivated by requirements to balance the workload of centers. Limet al.
studied the following problems:
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• Theq-all-coveragek-center problem, where each center must cover at leastq vertices (including
itself).

• Theq-coveragek-center problem, where each center must cover at leastq non-center nodes.

• The q-coveragek-supplier problem. HereV is divided into two disjoint subsetsS andC. The
object is to find a subsetU of S, |U | ≤ k, that minimizesR such thatU coversC within radiusR
and each center inU covers at leastq demands inC.

Furthermore, Limet al. studied both the weighted and the priority versions of these problems. In the
weightedk-center problem instead of a restriction on the number of centers we can use, each vertex has
a weight and we have a budgetk that limits the total weight of centers. In the priorityk-center problem
each vertex has a priority and the distance we try to minimize is the prioritized distance: Given vertexv
and centers the distance froms to v is d(s, v) · pv, wherepv is the priority ofv.

For theq-all-coveragek-center problem Limet al. gave an2-approximation algorithm, and an3-
approximation algorithm for the weighted and priority versions of the problem. For the q-coverage
k-center problem they gave an2-approximation algorithm, and an4-approximation algorithm for the
weighted and priority versions of the problem. For theq-coveragek-supplier problem they gave an
3-approximation algorithm for both the basic, the weighted, and the priority version.

Our Results We giveO(log∗ n)-approximation algorithms for theasymmetricq-all-coverage andq-
coverage problems in both the unweighted and weighted case. Of course,the algorithm for the weighted
case also works for the unweighted case (set all weights = 1), but the algorithm for the unweighted case
is simpler and the hidden constant inO(log∗ n) is smaller using this algorithm.

In [10] it is showed that the asymmetric priorityk-center and asymmetrick-supplier problems cannot
be approximated within any factor unless P= NP. Since theq-all-coveragek-center problem and theq-
coverk-center problem are generalizations of thek-center problem (setq = 1 andq = 0, respectively),
the priority version of these problems cannot be approximated within any factor in the asymmetric case
unless P= NP. Since theq-coveragek-supplier problem is a generalization of thek-supplier problem
(q = 0), it cannot be approximated within any factor in the asymmetric version unlessP = NP.

2 Definitions

To avoid any uncertainty, we note thatlog stands forlog2 by default, whileln stands forloge.

Definition 2.1. For every integeri > 1, logi x = log(logi−1 x), and log1 x = log x. We let log∗ x
represent the smallest integeri such thatlogi x ≤ 2.

The input to the asymmetrick-center problem is a distance functiond on everyorderedpair of
vertices—distances are allowed to be infinite—and a boundk on the number of centers. Note that we
assume that the edges aredirected.

Definition 2.2. Vertexc coversvertexv within r, or c r-coversv, if dcv ≤ r. We extend this definition
to a sets so that a setC r-covers a setA if for every a ∈ A there is somec ∈ C such thatc coversa
within r. Often we abbreviate “1-covers” to “covers”.

Many of the algorithms fork-center and its variants do not, in fact, operate on graphs with edge
costs. Rather, they consider bottleneck graphs [13], in which only thoseedges with distance lower than
some threshold are included, and they appear in the bottleneck graph with unit cost. Since the optimal
value of the covering radius must be one of then(n − 1) distance values, many algorithms essentially
run through a sequence of bottleneck graphs of every possible threshold radius in ascending order. This
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can be thought of asguessingthe optimal radiusROPT. The approach works because the algorithm
either returns a solution, within the specified factor of the current threshold radius, or it fails, in which
caseROPT must be greater than the current radius.

Definition 2.3 (Bottleneck GraphGr). For r > 0, define the bottleneck graphGr of the graphG =
(V, E) to be the graphGr = (V, Er), whereEr = {(i, j) : dij ≤ r} and all edges have unit cost.

Most of the following definitions apply tobottleneckgraphs.

Definition 2.4 (Power of Graphs). The tth power of a graphG = (V, E) is the graphGt = (V, E(t)),
t > 1, whereE(t) is the set of ordered pairs of distinct vertices that have a path of at mostt edges
between them inG.

Definition 2.5. For i ∈ N define

Γ+
i (v) = {u ∈ V | (v, u) ∈ Ei} ∪ {v}, Γ−

i (v) = {u ∈ V | (u, v) ∈ Ei} ∪ {v} ,

i.e., in the bottleneck graph there is a path of length at mosti from v to u, respectivelyu to v.

Notice that in a symmetric graphΓ+
i (v) = Γ−

i (v). We extend this notation to sets so thatΓ+
i (S) =

{u ∈ V | u ∈ Γ+
i (v) for somev ∈ S} , with Γ−

i (S) defined similarly. We useΓ+(v) andΓ−(v) instead
of Γ+

1 (v) andΓ−

1 (v).

Definition 2.6. For i ∈ N define

Υq(v) = {u | u ∈ Γ−(v) and deg(u) ≥ q},

i.e.,u coversv and has degree at leastq.

Note thatΥ0(v) = Γ−(v).

Definition 2.7 (Center Capturing Vertex (CCV)). A vertex v is a center capturing vertex(CCVq) if
Υq−1(v) ∈ Γ+(v), .i.e.,v covers every vertex of degreeq − 1 that coversv.

We use CCV instead ofCCV2. To get some intuition about the notion of CCV assume we have an
instance of theq-all-coveragek-center problem. In the graphGROPT

the optimum center that coversv
must lie inΥq(v); for a CCVq v, it lies in Γ+(v), hence the name. In symmetric graphs all vertices are
CCVs and this property leads to the2-approximation for the standardk-center problem.

The following two problems, related tok-center, are both NP-complete [9].

Definition 2.8 (Dominating Set). Given a graphG = (V, E), and a weight functionw : V → Q+ on
the vertices, find a minimum weight subsetD ⊆ V such that every vertexv ∈ V is covered byD, i.e.,
Γ+(D) = V .

Definition 2.9 (Set Cover). Given a universeU consisting ofn elements, a collectionS = {S1, . . . , Sk}
of subsets ofU , and a weight functionw : S → Q+, find a minimum weight sub-collection ofS that
includes all elements ofU .

3 Asymmetric k-Center Review

In this section we review theO(log∗ n)-approximation algorithm for the standard asymmetrick-center
problem by Panigrahy and Vishwanathan [19]. It forms a basis for ourapproximation algorithms for the
asymmetrick-center with minimum coverage problems. The algorithm by Panigrahy and Vishwanathan
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has two phases, thehalvephase, sometimes called thereducephase, and theaugmentphase. As de-
scribed above, the algorithm guessesROPT, and works in the bottleneck graphGROPT

. In the halve
phase we find a CCVv, include it in the set of centers, mark every vertex inΓ+

2 (v) as covered, and
repeat until no CCVs remain unmarked. The CCV property ensures that, as each CCV is found and
vertices are marked, the unmarked portion of the graph can be covered with one fewer center. Hence if
k′′ CCVs are obtained, the unmarked portion of the graph can be covered withk′ = k− k′′ centers. The
authors then prove that this unmarked portion, CCV-free, can be covered with onlyk′/2 centers if we
use radius5 instead of1. That is to say,k′/2 centers suffice in the graphG5

ROPT
.

The k-center problem in the bottleneck graph is identical to the dominating set problem. This is
a special case of set cover in which the sets are theΓ+ terms. In the augment phase, the algorithm
recursively uses the greedy set cover procedure. Since the optimal cover uses at mostk′/2 centers, the
first cover has size at mostk′

2 log 2n
k′ .

The centers in this first cover are themselves covered, using the greedyset cover procedure, then
the centers in the second cover, and so forth. AfterO(log∗ n) iterations the algorithm finds a set of at
mostk′ vertices that, together with the CCVs,O(log∗ n)-covers the unmarked portion, since the optimal
solution hask′/2 centers. Combining these with thek′′ CCVs, we havek centers covering the whole
graph withinO(log∗ n).

We now know that this approximation algorithms is asymptotically optimal [7,8,11].

4 Approximation of q-All-Coveragek-Center

In this section we give aO(log∗ n)-approximation algorithm for the asymmetricq-all-coveragek-center
problem.

Definition 4.1 (q-All-Coveragek-Center). GivenG = (V, E), a complete graph with nonnegative (but
possibly infinite) edge costs, and a positive integerk, find a setS of k vertices, calledcenters, with
minimum covering radiusR, such that each center covers at leastq vertices within radiusR.

Our algorithm is based on Panigrahy and Vishwanathan’s technique for the asymmetrick-center
problem [19]. Just as their algorithm, our algorithm guessesROPT, and works in the bottleneck graph
GROPT

.
First we note that if we are in the right bottleneck graph any node either hasout-degree at leastq− 1

or is covered by a node with out-degree at leastq − 1.
In the halve phase we find a CCVq v, include it in the set of centers, mark every vertex inΓ+

2 (v) as
covered, and repeat until no CCVqs remain unmarked. The CCVq property ensures that, as each CCVq is
found and vertices are marked, the unmarked portion of the graph can becovered with one fewer center.
Hence ifk′′ CCVqs are obtained, the unmarked portion of the graph can be covered withk′ = k − k′′

centers.
We will prove that this unmarked portion, CCVq-free, can be covered with onlyk′/2 centers if we

use radius5 instead of1. That is to say,k′/2 centers suffice in the graphG5
ROPT

.
Panigrahy and Vishwanathan [19] show the following lemma.

Lemma 4.2 (Panigrahy and Vishwanathan [19]). Let G = (V, E) be a digraph with unit edge costs.
Then there is a subsetS ⊆ V , |S| ≤ |V |/2, such that every vertex with positive indegree is reachable in
at most2 steps from some vertex inS.

Henceforth call the vertices not yet covered/markedactive. Using Lemma 4.2 we can show that
after removing the CCVs from the graph, we can cover the active set with half the weight of an optimum
cover if we are allowed to use distance 5 instead of 1.
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v 6∈ Γ+
3 (C1) u 6∈ Γ+

4 (C1) w 6∈ Γ+
2 (C1) v 6∈ Γ+

3 (C1) u 6∈ Γ+
4 (C1)

(a) (b)

Figure 1: In (a)v is a center. Sincev 6∈ Γ+
3 (C1), v is not inC1, and thusv ∈ U . In (b) v is not a center.

Sincev 6∈ Γ+
3 (C1), v is in A, and thusv is covered by a centerw ∈ U .

Lemma 4.3. Consider a subsetA ⊆ V with the following properties: i) A has a cover consisting of
vertices of sizek, and each vertex in the cover covers at leastq vertices. ii) A contains no CCVqs.
Assume there exists a setC1 such thatC1 3-covers exactlyV \ A, and every vertex inC1 3-covers at
leastq vertices. Then there exists a set of verticesS of sizek/2 that, together withC1, 5-coversA, and
every vertex inS covers at leastq vertices.

Proof. Let U be a subset of the optimal centers that coversA. We callu ∈ U a nearcenter if it can be
reached in4 steps fromC1, and afar center otherwise. SinceC1 5-covers all of the nodes covered by
near centers, it suffices to chooseS to 4-cover the far centers, so thatS will 5-cover all the nodes they
cover. We also need to ensure that any vertex inS 5-covers at leastq vertices.

Define an auxiliary graphH on the (optimal) centersU as follows. There is an edge fromx to y
in H if and only if x 2-coversy in G (andx 6= y). The idea is to show that any far center has positive
indegree inH. As a result, Lemma 4.2 shows there exists a setS ∈ U with |S| ≤ k/2 such thatS
2-covers the far centers inH, and thus4-covers them inG. SinceS ⊆ U andU is the set of optimal
centers, all vertices inS covers at leastq vertices.

Let u be any far center: note thatu ∈ A. SinceA contains no CCVqs, there existsv ∈ Υq(u) that is
not covered byu. Sinceu is a far centeru 6∈ Γ+

4 (C1), and thusv 6∈ Γ+
3 (C1). Therefore, we havev ∈ A,

since everything not3-covered byC1 is in A (see also Figure 1). Ifv ∈ U thenu is covered by another
center inU , and thus has positive indegree inH. If v is not a center, there exists a vertexw ∈ U that
coversv and therefore2-coversu, sincev is covered in the optimal solution. Sincev 6∈ Γ+(u), w 6= u.
Henceu has positive indegree inH.

In the augment phase we use the greedy set cover algorithm, which has approximation guarantee
1 + ln(n/k), wheren is the number of elements andk is the optimum number of sets. Only nodes that
have degree at leastq − 1 in the bottleneck graphGi before the removal of CCVs are possible centers.
It is easy to check wether it is possible to cover the graph with only these nodes. If not then we are not
in the right bottleneck graph.

We now show that the tradeoff between the covering radius and the optimal cover size leads to an
O(log∗ n) approximation.

Lemma 4.4. GivenA ⊆ V , such thatA has a cover of sizek, where all centers in the cover covers at
leastq vertices, and a setC1 ⊆ V that coversV \ A, where all centers inC1 covers at leastq vertices.
We can then find in polynomial time a set of centers of size at most2k that, together withC1, coversA
(and henceV ) within a radius ofO(log∗ n), such that all centers cover at leastq vertices.

Proof. We will apply the greedy set cover algorithm recursively. The initial set of centersS0 is con-
structed as follows. For any vertexv for which Γ+(v) ∩ A is non-empty, and which has out-degree at
leastq − 1 construct a set containingΓ+(v), identified byv.

The greedy algorithm set cover algorithm has approximation guaranteeO(log(n/k)), which is less
thanlog1.5(n/k) whenn ≥ 2k. Applying this algorithm thus results in a setS1 of centers (the identifiers
of the sets found by the algorithm) that coversA and has size at mostk · log1.5(n/k)), assumingn ≥ 2k.
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A3 A2 A1 A

Figure 2: Example of recursive application of the greedy set cover algorithm. In each step we get fewer
centers. The centers inA3 3-covers everything inA.

The setC1 coversS1 \ A, so we need only considerA1 = S1 ∩ A. We apply the greedy set cover
algorithm again to obtain a setS2 of size at most

k · (log1.5(|A1|/k)) = k · (log1.5(k log1.5(n/k)/k)) = k · (log1.5(log1.5(n/k))) ,

that coversA1. We continue this procedure and note that at theith iteration we have

|Si| ≤ k · log1.5(|Si−1|/k) .

By induction, afterO(log∗ n) iterations the size of our solution set,Si, is at most2k.

We can now combine Lemma 4.3 and Lemma 4.4 to get an approximation algorithm.

Theorem 4.5. Theq-all-coveragek-center problem can be approximated within a factor ofO(log∗ n)
in polynomial time.

Proof. Guess the optimum radius,ROPT, and work in the bottleneck graphGROPT
. Initially, the active

setA is V . Repeat the following as many times as possible: Pick a CCVq v in A, addv to our solution
set of centers, and remove the setΓ+

2 (u) from A. Sincev is covered by an optimum center inΓ−(v),
and this optimum center lies inΓ+(v), Γ+

2 (v) includes everything covered by it.
Let C1 be the centers chosen in this first phase. We know the remainder of the graph,A, has a cover

of total sizek′ = k − |C1|.
Lemma 4.3 shows that we can cover the remaining uncovered vertices with at most k′/2 centers

if we use covering radius5. Let the active setA be V \ Γ+
5 (C1), and recursively apply the greedy

algorithm as described in the proof of Lemma 4.4 on the graphG5
ROPT

. As a result, we have a set of size
2(k′/2) = k′ that coversA within radiusO(log∗ n).

5 Approximation of q-Coveragek-Center

Definition 5.1 (q-Coveragek-Center). Given G = (V, E), a complete graph with nonnegative (but
possibly infinite) edge costs, and a positive integerk, find a setS of k vertices, calledcenters, with
minimum covering radiusR, such that each centerR-covers at leastq vertices inV \ S.

We use the algorithm from the previous section to find a setS of centers for the(q +1)-all-coverage
k-center problem. First we note that the centers found in the halve phase allcover at leastq non-centers,
since when we pick a CCVq+1 asv a center we markΓ+

2 (v) as covered and thus none of these at leastq
vertices will later be picked as centers. The potentially problematic centers are the centers found in the
augment phase. These centers all coverq vertices, but they might not coverq non-centers.

Lemma 5.2. Let S be a set of centers covering all vertices, such that each center inS covers at least
q vertices. Then there is a setS′ ⊆ S of centers2 covering all vertices, such that each center inS′

2-covers at leastq vertices fromV \ S. Moreover,S′ can be found in polynomial time.
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Proof. Let P be the set of problematic centers, i.e., centers that do not coverq non-centers. To construct
the setS′ repeat the following as long asP is non-empty: Pick a centerv from P . Remove all vertices
Γ+(v) ∩ S exceptv from S (andP ), and remove all vertices inΓ−(v) ∩ P from P . WhenP is empty
setS′ = S′ ∪ S.

Let v be a center inS′. We need to show thatv 2-covers at leastq non-center vertices. Ifv was never
in P then clearlyv covers at leastq non-center vertices, asS′ ⊆ S. Assumev was initially in P . Then
eitherv was picked or some center inΓ+(v) was picked. Ifv was picked, then sincev covers at least
q vertices and all vertices covered byv now are non-centers,v covers at leastq non-centers. If some
centeru ∈ Γ+(v) was picked then asu covers at leastq non-centersv 2-covers at leastq non-centers.

We must now show thatS′ 2-covers all vertices. Assumev ∈ S was picked. Since all vertices in
Γ−(v) are removed fromP , v remains a center and thusv ∈ S′. Assumev ∈ S was not picked by the
procedure. Ifv 6∈ S′ then it must be the case that some vertexu ∈ Γ−(v) was picked. As just argued
u ∈ S′. All vertices inΓ+(v) are2-covered byu. Therefore,S′ 2-covers all vertices covered byS.

Using Lemma 5.2 together with Theorem 4.5 we get anO(log∗)-approximation algorithm for the
q-coveragek-center problem.

Theorem 5.3. Theq-coveragek-center problem can be approximated within factorO(log∗ n) in poly-
nomial time.

Proof. Apply the algorithm from the previous section to find a setS of centers for the(q + 1)-all-
coveragek-center problem. Letα be the actual approximation ratio obtained by the(q+1)-all-coverage
k-center algorithm on this instance.

Now apply the procedure from Lemma 5.2 onS in the graphGα
ROPT

. This gives us a set of centers
that2α-covers all the vertices, and all the centers2α-covers at leastq non-center vertices. Sinceα =
O(log∗ n) this gives anO(log∗ n)-approximation.

6 Weighted Versions

In [10] anO(log∗ n)-approximation algorithm for the asymmetric weighted set cover problem is given.
The algorithm works on bottleneck graphs and has a halve phase and an augment phase as the algorithm
for the standardk-center problem. In the halve phase, the algorithm recursively finds a CCV, v, picks
the lightest vertexu in Γ−(v) (which might bev itself) as a center, and mark everything inΓ+

3 (u) as
covered. It is shown that when there are no more CCVs left the unmarkedvertices can be49-covered by
a set of weight at most a quarter of the optimum. In the augment phase, a greedy procedure for weighted
sets and elements is applied recursivelyO(log∗ n) times.

We can approximate the weighted version of theq-all-coveragek-center problem and theq-coverage
k-center problem with a factor ofO(log∗ n) by adapting our algorithm for the weightedk-center problem
to the approaches in the previous sections.

6.1 Weightedq-all-coveragek-center

The halve phase proceeds as follows: Find a CCVq, pick the lightest vertexu in Υq(v) as a center, and
markΓ+

3 (u) as covered. We will show that we can cover the remaining graph with weightno more than
a quarter of the optimum if we use distance49 instead of1. We need the following lemma from [10].

Lemma 6.1([10]). LetG = (V, E) be a digraph with weighted vertices, but unit edge costs. Then there
is a subsetS ⊆ V , w(S) ≤ w(V )/2, such that every vertex with positive indegree is reachable in at
most 3 steps from some vertex inS.

We can now show a lemma analog to Lemma 4.3. The proof is similar to that of Lemma 4.3.
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Lemma 6.2. Consider a subsetA ⊆ V with the following properties: i) A has a cover consisting of
vertices of total weightW , and each vertex in the cover covers at leastq vertices. ii) A contains no
CCVqs. Assume there exists a setC1 such thatC1 3-covers exactlyV \ A, and every vertex inC1 3-
covers at leastq vertices. Then there exists a set of verticesS of weightW/2 that, together withC1,
7-coversA, and every vertex inS covers at leastq vertices.

We will use the following greedy heuristic for the dominating set problem in weighted graphs to
complete the algorithm: All vertices with outdegree at leastq− 1 are potential members of the dominat-
ing set (i.e. centers). Pick the mostefficientvertex, i.e., the vertex that maximizesw(A∩ Γ+(v))/w(v).
In [10] it is shown that this algorithm has an approximation guarantee of2 + ln(w(A)/w∗, wherew∗ is
the weight of an optimum solution. This is less thanlog1.5(w(A)/w∗) whenw(A) ≥ 4w∗. We can now
show the following lemma.

Lemma 6.3. GivenA ⊆ V , such thatA has a cover of weightW , where all centers in the cover covers
at leastq vertices, and a setC1 ⊆ V that coversV \A, where all centers inC1 covers at leastq vertices.
We can then find in polynomial time a set of centers of total weight at most2W that, together withC1,
coversA (and henceV ) within a radius ofO(log∗ n), such that all centers cover at leastq vertices.

Proof. We will apply the greedy set cover algorithm recursively. The initial set of centersS0 is con-
structed as follows. For any vertexv with w(v) ≤ W for whichΓ+(v)∩A is non-empty, and which has
out-degree at leastq − 1 construct a set containingΓ+(v). The total weight of these centers is at most
nW . Applying the greedy dominating set algorithm thus results in a setS1 that coversA and has weight
at most

w(S1) ≤ W log1.5(
nW

W
) = W log1.5 n ,

assumingn ≥ 4. The setC1 coversS1 \ A, so we need only considerA1 = S1 ∩ A. We continue
this procedure and note that at theith iteration we have|Si| ≤ k · log1.5(|Si−1|/k). By induction, after
O(log∗ n) iterations the size of our solution set,Si, is at most4W .

Combining Lemma 6.2 and Lemma 6.3 we get,

Theorem 6.4. We can approximate the asymmetricq-all-coverage weightedk-center problem within
factorO(log∗ n) in polynomial time.

Proof. Guess the optimum radius,ROPT, and work in the bottleneck graphGROPT
. Initially, the active

setA is V . Repeat the following as many times as possible: Pick a CCVq v in A, add the lightest vertex
u in Υ−(v) to our solution set of centers, and remove the setΓ+

3 (u) from A. Sincev is covered by an
optimum center inΥ−(v), u is no heavier than this optimum center. Moreover, since the optimum center
lies inΓ+(v), Γ+

3 (u) includes everything covered by it.
Let C1 be the centers chosen in this first phase. We know the remainder of the graph,A, has a cover

of total weightW ′ = W − w(C1), because of our choices based on CCV and weight.
Lemma 6.2 shows that we can cover the remaining uncovered vertices with weight no more than

W ′/2 if we use covering radius7. Applying the lemma again, we can cover the remaining vertices with
weightW ′/4 centers if we allow radius49. So let the active setA beV \Γ+

49(C1), and recursively apply
the greedy algorithm as described in the proof of Lemma 6.3 on the graphG49

ROPT
. As a result, we have

a set of sizeW ′ that coversA within radiusO(log∗ n).

6.2 Weightedq-coveragek-center

Using Theorem 6.4 and Lemma 5.2 we get the following theorem.

Theorem 6.5. We can approximate the asymmetric weightedq-coveragek-center problem within factor
O(log∗ n) in polynomial time.

The proof is similar to the proof of Theorem 5.3.
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