
Longest Common Extensions via Fingerprinting

Philip Bille, Inge Li Gørtz, and Jesper Kristensen

Technical University of Denmark, DTU Informatics, Copenhagen, Denmark

Abstract. The longest common extension (LCE) problem is to prepro-
cess a string in order to allow for a large number of LCE queries, such
that the queries are e�cient. The LCE value, LCEs(i, j), is the length of
the longest common prefix of the pair of su�xes starting at index i and
j in the string s. The LCE problem can be solved in linear space with
constant query time and a preprocessing of sorting complexity. There are
two known approaches achieving these bounds, which use nearest com-
mon ancestors and range minimum queries, respectively. However, in
practice a much simpler approach with linear query time, no extra space
and no preprocessing achieves significantly better average case perfor-
mance. We show a new algorithm, Fingerprintk, which for a parameter
k, 1  k  dlog ne, on a string of length n and alphabet size �, gives
O(kn1/k) query time using O(kn) space and O(kn+ sort(n,�)) prepro-
cessing time, where sort(n,�) is the time it takes to sort n numbers
from �. Though this solution is asymptotically strictly worse than the
asymptotically best previously known algorithms, it outperforms them
in practice in average case and is almost as fast as the simple linear time
algorithm. On worst case input, this new algorithm is significantly faster
in practice compared to the simple linear time algorithm. We also look
at cache performance of the new algorithm, and we show that for k = 2,
cache optimization can improve practical query time.

1 Introduction

The longest common extension (LCE) problem is to preprocess a string in order
to allow for a large number of LCE queries, such that the queries are e�cient.
The LCE value, LCEs(i, j), is the length of the longest common prefix of the
pair of su�xes starting at index i and j in the string s. The LCE problem can
be used in many algorithms for solving other algorithmic problems, e.g., the
Landau-Vishkin algorithm for approximate string searching [6]. Solutions with
linear space, constant query time, and O(sort(n,�)) preprocessing time exist
for the problem [3, 2]. Here sort(n,�) is the time it takes to sort n numbers
from an alphabet of size �. For � = O(nc), where c is a constant, we have
sort(n,�) = O(n). These theoretically good solutions are however not the best
in practice, since they have large constant factors for both query time and space
usage. Ilie et al. [4] introduced a much simpler solution with average case constant
time and no space or preprocessing required other than storing the input string.
This solution has significantly better practical performance for average case input
as well as for average case queries on some real world strings, when compared to

2 P. Bille, I. L. Gørtz, and J. Kristensen

the asymptotically best known algorithms. However, this algorithm has linear
worst case query time, and is thus only ideal when worst case performance
is irrelevant. In situations where we need both average case and worst case
performance to be good, none of the existing solutions are ideal. An example
could be a firewall, which needs to do approximate string searching. The firewall
should not allow an attacker to significantly degrade its performance by sending
it carefully crafted packages. At the same time it must scan legitimate data
quickly. The main goal of this paper is to design a practical algorithm that
performs well in both situations, that is, achieves a good worst-case guarantee
while maintaining a fast average case performance.

Previous Results Throughout the paper let s be a string of length n over an
alphabet of size �. Ilie et al. [4] gave an algorithm, DirectComp, for solving
the LCE problem, which uses no preprocessing and has O(LCE(i, j)) query time.
For a query LCE(i, j), the algorithm simply compares s[i] to s[j], then s[i + 1]
to s[j + 1] and so on, until the two characters di↵er, or the end of the string is
reached. The worst case query time is thus O(n). However, on random strings
and many real-word texts, Ilie et al. [4] showed that the average LCE is O(1),
where the average is over all �nn2 combinations of strings and query inputs.
Hence, in these scenarios DirectComp achieves O(1) query time.

The LCE problem can also be solved with O(1) worst case query time, us-
ing O(n) space and O(sort(n,�)) preprocessing time. Essentially, two di↵erent
ways of doing this exists. One method, SuffixNca, uses constant time nearest
common ancestor (NCA) queries [3] on a su�x tree. The LCE of two indexes
i and j is defined as the length of the longest common prefix of the su�xes
s[i . . n] and s[j . . n]. In a su�x tree, the path from the root to Li has label
s[i . . n] (likewise for j), and no two child edge labels of the same node will have
the same first character. The longest common prefix of the two su�xes will
therefore be the path label from the root to the nearest common ancestor of
Li and Lj , i.e., LCEs(i, j) = D[NCAT (Li, Lj)]. The other method, LcpRmq,
uses constant time range minimum queries (RMQ) [2] on a longest common
prefix (LCP) array. The LCP array contains the length of the longest com-
mon prefixes of each pair of neighbor su�xes in the su�x array (SA). The
length of the longest common prefix of two arbitrary su�xes in SA can be
found as the minimum of all LCP values of neighbor su�xes between the two
desired su�xes, because SA lists the su�xes in lexicographical ordering, i.e.,
LCE(i, j) = LCP[RMQLCP(SA

�1[i] + 1,SA�1[j])], where SA�1[i] < SA�1[j].
Table 1 summarizes the above theoretical bounds.

Our Results We present a new LCE algorithm, Fingerprintk, based on multiple
levels of string fingerprinting. The algorithm has a parameter k in the range
1  k  dlog ne, which describes the number of levels used1. The performance
of the algorithm is summarized by the following theorem:

1 All logarithms are base two.

Longest Common Extensions via Fingerprinting 3

Algorithm Space Query time Preprocessing

SuffixNca O(n) O(1) O(sort(n,�))
LcpRmq O(n) O(1) O(sort(n,�))
DirectComp O(1) O(n) None

Fingerprintk* O(kn) O(kn1/k) O(sort(n,�) + kn)
k = dlog ne * O(n log n) O(log n) O(n log n)

Table 1. LCE algorithms with their space requirements, worst case query times and
preprocessing times. Average case query times are O(1) for all shown algorithms. Rows
marked with * show the new algorithm we present.

Theorem 1. For a string s of length n and alphabet size �, the Fingerprintk

algorithm, where k is a parameter 1  k  dlog ne, can solve the LCE problem in
O(kn1/k) worst case query time and O(1) average case query time using O(kn)
space and O(sort(n,�) + kn) preprocessing time.

By choosing k we can obtain the following interesting tradeo↵s.

Corollary 2. Fingerprint

1

is equivalent to DirectComp with O(n) space
and O(n) query time.

Corollary 3. Fingerprint

2

uses O(n) space and O(
p
n) query time.

Corollary 4. Fingerprintdlogne uses O(n log n) space and O(log n) query time.

The latter result is equivalent to the classic Karp-Miller-Rosenberg fingerprint
scheme [5]. To preprocess the O(kn) fingerprints used by our algorithm, we can
use Karp-Miller-Rosenberg [5], which takes O(n log n) time. For k = o(log n),
we can speed up preprocessing to O(sort(n,�) + kn) by using the SA and LCP
arrays.

In practice, existing state of the art solutions are either good in worst case,
while poor in average case (LcpRmq), or good in average case while poor in
worst case (DirectComp). Our Fingerprintk solution targets a worst case
vs. average case query time tradeo↵ between these two extremes. Our solution is
almost as fast as DirectComp on an average case input, and it is significantly
faster than DirectComp on a worst case input. Compared to LcpRmq, our
solution has a significantly better performance on an average case input, but its
worst case performance is not as good as that of LcpRmq. The space usage for
LcpRmq and Fingerprintk are approximately the same when k = 6.

For k = 2 we can improve practical Fingerprintk query time even further
by optimizing it for cache e�ciency. However for k > 2, this cache optimization
degrades practical query time performance, as the added overhead outweighs the
improved cache e�ciency.

Our algorithm is fairly simple. Though it is slightly more complicated than
DirectComp, it does not use any of the advanced algorithmic techniques re-
quired by LcpRmq and SuffixNca.

4 P. Bille, I. L. Gørtz, and J. Kristensen

2 Preliminaries

Let s be a string of length n. Then s[i] is the i’th character of s, and s[i . . j] is
a substring of s containing characters s[i] to s[j], both inclusive. That is, s[1] is
the first character of s, s[n] is the last character, and s[1 . . n] is the entire string.
The su�x of s starting at index i is written su↵i = s[i . . n].

A su�x tree T encodes all su�xes of a string s of length n with alphabet
�. The tree has n leaves named L

1

to Ln, one for each su�x of s. Each edge is
labeled with a substring of s, such that for any 1  i  n, the concatenation of
labels on edges on the path from the root to Li gives su↵i. Any internal node
must have more than one child, and the labels of two child edges must not share
the same first character. The string depth D[v] of a node v is the length of the
string formed when concatenating the edge labels on the path from the root to
v. The tree uses O(n) space, and building it takes O(sort(n,�)) time [1].

For a string s of length n with alphabet size �, the su�x array (SA) is an
array of length n, which encodes the lexicographical ordering of all su�xes of
s. The lexicographically smallest su�x is su↵SA[1]

, the lexicographically largest
su�x is su↵SA[n], and the lexicographically i’th smallest su�x is su↵SA[i]. The

inverse su�x array (SA�1) describes where a given su�x is in the lexicographical
order. Su�x su↵i is the lexicographically SA�1[i]’th smallest su�x.

The longest common prefix array (LCP array) describes the length of longest
common prefixes of neighboring su�xes in SA. The length of the longest common
prefix of su↵SA[i�1]

and su↵SA[i] is LCP[i], for 2  i  n. The first element

LCP[1] is always zero. Building the SA, SA�1 and LCP arrays takes O(sort(n,�))
time [1].

The nearest common ancestor (NCA) of two nodes u and v in a tree is the
node of greatest depth, which is an ancestor of both u and v. The ancestors of
a node u includes u itself. An NCA query can be answered in O(1) time with
O(n) space and preprocessing time in a static tree with n nodes [3].

The range minimum of i and j on an array A is the index of a minimum
element in A[i, j], i.e., RMQA(i, j) = argmink2{i,...,j}{A[k]}. A range minimum
query (RMQ) on a static array of n elements can be answered in O(1) time with
O(n) space and preprocessing time [2].

The I/O model describes the number of memory blocks an algorithm moves
between two layers of a layered memory architecture, where the size of the inter-
nal memory layer is M words, and data is moved between internal and external
memory in blocks of B words. In the cache-oblivious model, the algorithm has
no knowledge of the values of M and B.

3 The Fingerprintk Algorithm

Our Fingerprintk algorithm generalizes DirectComp. It compares characters
starting at positions i and j, but instead of comparing individual characters, it
compares fingerprints of substrings. Given fingerprints of all substrings of length
t, our algorithm can compare two t-length substrings in constant time.

Longest Common Extensions via Fingerprinting 5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

a b b a a b b a b a b b a a b b

i
s = H0[i]

H1[i] 1 2 3 4 1 2 5 6 5 1 2 3 4 1 2 5

17 18 19 20 21 22 23 24 25 26 27

a b a b a a b a b a $

6 5 6 3 4 6 5 6 7 8 9

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 241 2 3H2[i]

Fig. 1. Fingerprintk data structure for s = abbaabbababbaabbababaababa$, n = 27,
k = 3, t

1

= n1/3 = 3 and t
2

= n2/3 = 9. All substrings bba are highlighted with their
3-length fingerprint 2.

3.1 Data Structure

Given a string s, the fingerprint Ft[i] is a natural number identifying the sub-
string s[i . . i+t�1] among all t-length substrings of s. We assign fingerprints such
that for any i, j and t, Ft[i] = Ft[j] if and only if s[i . . i+ t�1] = s[j . . j+ t�1].
In other words, if two substrings of s have the same length, they have the same
fingerprints if and only if the substrings themselves are the same.

At the end of a string when i + t � 1 > n, we define Ft[i] by adding extra
characters to the end of the string as needed. The last character of the string
must be a special character $, which does not occur anywhere else in the string.

The Fingerprintk data structure for a string s of length n, where k is a
parameter 1  k  dlog ne, consists of k natural numbers t

0

, ..., tk�1

and k tables
H

0

, ..., Hk�1

, each of length n. For each ` where 0  `  k � 1, t` = ⇥(n`/k)
and table H` contains fingerprints of all t`-length substrings of s, such that
H`[i] = Ft` [i]. We always have t

0

= n0/k = 1, such that H
0

is the original string
s. An example is shown in Fig. 1. Since each of the k tables stores n fingerprints
of constant size, we get the following.

Lemma 5. The Fingerprintk data structure takes O(kn) space.

3.2 Query

The Fingerprintk query speeds up DirectComp by comparing fingerprints
of substrings of the input string instead of individual characters. The query
algorithm consists of two traversals of the hierarchy of fingerprints. In the first
traversal the algorithm compares progressively larger fingerprints of substrings
until a mismatch is found and in the second traversal the algorithm compares
progressively smaller substrings to find the precise point of the mismatch. The
combination of these two traversals ensures both a fast worst case and average
case performance.

The details of the query algorithm are as follows. Given the Fingerprintk

data structure, start with v = 0 and ` = 0, then do the following steps:

1. As long as H`[i+ v] = H`[j + v], increment v by t`, increment ` by one, and
repeat this step unless ` = k � 1.

2. As long as H`[i+ v] = H`[j + v], increment v by t` and repeat this step.

6 P. Bille, I. L. Gørtz, and J. Kristensen

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

a b b a a b b a b a b b a a b b

i
s = H0[i]

H1[i] 1 2 3 4 1 2 5 6 5 1 2 3 4 1 2 5

17 18 19 20 21 22 23 24 25 26 27

a b a b a a b a b a $

6 5 6 3 4 6 5 6 7 8 9

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 241 2 3H2[i]

Fig. 2. Fingerprintk query for LCE(3, 12) on the data structure of Fig. 1. The top
half shows how H`[i+ v] moves through the data structure, and the bottom half shows
H`[j + v].

3. Stop and return v when ` = 0, otherwise decrement ` by one and go to step
two.

An example of a query is shown in Fig. 2.

Lemma 6. The Fingerprintk query algorithm is correct.

Proof. At each step of the algorithm v  LCE(i, j), since the algorithm only
increments v by t` when it has found two matching fingerprints, and fingerprints
of two substrings of the same length are only equal if the substrings themselves
are equal. When the algorithm stops, it has found two fingerprints, which are
not equal, and the length of these substrings is t` = 1, therefore v = LCE(i, j).

The algorithm never reads H`[x], where x > n, because the string contains
a unique character $ at the end. This character will be at di↵erent positions
in the substrings whose fingerprints are the last t` elements of H`. These t`
fingerprints will therefore be unique, and the algorithm will not continue at level
` after reading one of them. ut

Lemma 7. The worst case query time for Fingerprintk is O(kn1/k), and the
average case query time is O(1).

Proof. First we consider the worst case. Step one takes O(k) time. In step
two and three, the number of remaining characters left to check at level `
is O(n(`+1)/k), since the previous level found two di↵ering substrings of that
length (at the top level ` = k � 1 we have O(n(`+1)/k) = O(n)). Since we can
check t` = ⇥(n`/k) characters in constant time at level `, the algorithm uses
O(n(`+1)/k)/⇥(n`/k) = O(n1/k) time at that level. Over all k levels, O(kn1/k)
query time is used.

Next we consider the average case. At each step except step three, the al-
gorithm increments v. Step three is executed the same number of times as step
one, in which v is incremented. The query time is therefore linear in the number
of times v is incremented, and it is thereby O(v). From the proof of Lemma 6
we have v = LCE(i, j). By Ilie et al. [4] the average LCE(i, j) is O(1) and hence
the average case query time is O(1). ut

Average Case vs. Worst Case The first traversal in the query algorithm guar-
antees O(1) average case performance. Without it, i.e., if the query started with

Longest Common Extensions via Fingerprinting 7

Subst.
a
aba
abb
abb
ba
bab
bab
bba
bba

Hl[i]
1
2
3
3
5
6
6
8
8

i
9
4
6
1
8
3
5
7
2

Fig. 3. The first column lists all substrings of s = abbababba with length t` = 3. The
second column lists fingerprints assigned to each substring. The third column lists the
position of each substring in s.

` = k � 1 and omitted step one, the average case query time would be O(k).
However, the worst case bound would remain O(kn1/k). Thus, for a better prac-
tical worst-case performance we could omit the first traversal entirely. We have
extensively experimented with both variants and we found that in nearly all sce-
narios the first traversal improved the overall performance. In the cases where
performance was not improved the first traversal only degraded the performance
slightly. We therefore focus exclusively on the two traversal variant in the re-
mainder of the paper.

3.3 Preprocessing

The tables of fingerprints use O(kn) space. In the case with k = dlog ne levels,
the data structure is the one generated by Karp-Miller-Rosenberg [5]. This data
structure can be constructed in O(n log n) time. With k < dlog ne levels, KMR
can be adapted, but it still uses O(n log n) preprocessing time.

We can preprocess the data structure in O(sort(n,�) + kn) time using the
SA and LCP arrays. First create the SA and LCP arrays. Then preprocess each
of the k levels using the following steps. An example is shown in Fig. 3.

1. Loop through the n substrings of length t` in lexicographically sorted order
by looping through the elements of SA.

2. Assign an arbitrary fingerprint to the first substring.
3. If the current substring s[SA[i] . .SA[i]+t`�1] is equal to the substring exam-

ined in the previous iteration of the loop, give the current substring the same
fingerprint as the previous substring, otherwise give the current substring a
new unused fingerprint. The two substrings are equal when LCE[i] � t`.

Lemma 8. The preprocessing algorithm described above generates the data struc-
ture described in Sect. 3.1.

Proof. We always assign two di↵erent fingerprints whenever two substrings are
di↵erent, because whenever we see two di↵ering substrings, we change the fin-
gerprint to a value not previously assigned to any substring.

8 P. Bille, I. L. Gørtz, and J. Kristensen

We always assign the same fingerprint whenever two substrings are equal,
because all substrings, which are equal, are grouped next to each other, when
we loop through them in lexicographical order. ut

Lemma 9. The preprocessing algorithm described above takes O(sort(n,�)+kn)
time.

Proof. We first construct the SA and LCP arrays, which takes O(sort(n,�))
time [1]. We then preprocess each of the k levels in O(n) time, since we loop
through n substrings, and comparing neighboring substrings takes constant time
when we use the LCP array. The total preprocessing time becomes O(sort(n,�)
+ kn). ut

4 Experimental Results

In this section we show results of actual performance measurements. The mea-
surements were done on a Windows 23-bit machine with an Intel P8600 CPU
(3 MB L2, 2.4 GHz) and 4 GB RAM. The code was compiled using GCC 4.5.0
with -O3.

4.1 Tested Algorithms

We implemented di↵erent variants of the Fingerprintk algorithm in C++ and
compared them with optimized versions of the DirectComp and LcpRmq al-
gorithms. The algorithms we compared are the following:

DirectComp is the simple DirectComp algorithm with no preprocessing and
worst case O(n) query time.

Fingerprintk<tk�1

, ..., t
1

>ac is the Fingerprintk algorithm using k levels,
where k is 2, 3 and dlog ne. The numbers <tk�1

, ..., t
1

> describe the exact
size of fingerprinted substrings at each level.

RMQ<n, 1> is the LcpRmq algorithm using constant time RMQ.

4.2 Test Inputs and Setup

We have tested the algorithms on di↵erent kinds of strings:

Average case strings These strings have many small LCE values, such that
the average LCE value over all n2 query pairs is less than one. We use results
on these strings as an indication average case query times over all input pairs
(i, j) in cases where most or all LCE values are small on expected input
strings. We construct these strings by choosing each character uniformly at
random from an alphabet of size 10

Worst case strings These strings have many large LCE values, such that the
average LCE value over all n2 query pairs is n/2. We use results on these
strings as an indication of worst case query times, since the query times for
all tested algorithms are asymptotically at their worst when the LCE value
is large. We construct these strings with an alphabet size of one.

Longest Common Extensions via Fingerprinting 9

 1e-08

 1e-07

 1e-06

 10 100 1000 10000 100000 1e+06 1e+07

Q
ue

ry
 ti

m
e

in
 s

ec
on

ds
/q

ue
ry

string length

Average case strings

DirectComp
Fingerprint2<sqrt n>ac
Fingerprint3<n2/3;n1/3>ac
Fingerprintlog nac
RMQ<n;1>

 1e-08

 1e-07

 1e-06

 1e-05

 10 100 1000 10000 100000 1e+06 1e+07

Q
ue

ry
 ti

m
e

in
 s

ec
on

ds
/q

ue
ry

string length

Worst case strings

DirectComp
Fingerprint2<sqrt n>ac
Fingerprint3<n2/3;n1/3>ac
Fingerprintlog nac
RMQ<n;1>

 1e-08

 1e-07

 1e-06

 1e-05

 10 100 1000 10000 100000 1e+06 1e+07

Q
ue

ry
 ti

m
e

in
 s

ec
on

ds
/q

ue
ry

string length

Medium LCE-size strings

DirectComp
Fingerprint2<sqrt n>ac
Fingerprint3<n2/3;n1/3>ac
Fingerprintlog nac
RMQ<n;1>

Fig. 4. Comparison of our new Fingerprintk algorithm for k = 2, k = 3 and k =
dlog ne versus the existing DirectComp and LcpRmq algorithms.

Medium LCE value strings These strings have an average LCE value over
all n2 query pairs of n/2r, where r = 0.73n0.42. These strings where con-
structed to show that there exists input strings where Fingerprintk is
faster than both DirectComp and LcpRmq at the same time. The strings
consist of repeating substrings of r unique characters. The value of r was
found experimentally.

Each measurement we make is an average of query times over a million
random query pairs (i, j). For a given string length and string type we use the
same string and the same million query pairs on all tested algorithms.

4.3 Results

Fig. 4 shows our experimental results on average case strings with a small average
LCE value, worst case strings with a large average LCE value, and strings with
a medium average LCE value.

On average case strings, our new Fingerprintk algorithm is approximately
20% slower than DirectComp, and it is between than 5 and 25 times faster
than LcpRmq. We see the same results on some real world strings in Table 2.

On worst case strings, the Fingerprintk algorithms are significantly better
thanDirectComp and somewhat worse than LcpRmq. Up until n = 30, 000 the

10 P. Bille, I. L. Gørtz, and J. Kristensen

File n � DC FP
2

FP
3

FP
logn RMQ

book1 0.7 · 220 82 8.1 11.4 10.6 12.0 218.0
kennedy.xls 1.0 · 220 256 11.9 16.0 16.1 18.6 114.4
E.coli 4.4 · 220 4 12.7 16.5 16.6 19.2 320.0
bible.txt 3.9 · 220 63 8.5 11.3 10.5 12.6 284.0
world192.txt 2.3 · 220 93 7.9 10.5 9.8 12.7 291.7

Table 2. Query times in nano seconds for DirectComp (DC), Fingerprintk (FPk)
and LcpRmq (RMQ) on the five largest files from the Canterbury corpus.

three measured Fingerprintk algorithms have nearly the same query times. Of
the Fingerprintk algorithms, the k = 2 variant has a slight advantage for small
strings of length less than around 2, 000. For longer strings the k = 3 variant
performs the best up to strings of length 250, 000, at which point the k = dlog ne
variant becomes the best. This indicates that for shorter strings, using fewer
levels is better, and when the input size increases, the Fingerprintk variants
with better asymptotic query times have better worst case times in practice.

On the plot of strings with medium average LCE values, we see a case where
our Fingerprintk algorithms are faster than bothDirectComp and LcpRmq.

We conclude that our new Fingerprintk algorithm achieves a tradeo↵ be-
tween worst case times and average case times, which is better than the existing
best DirectComp and LcpRmq algorithms, yet it is not strictly better than
the existing algorithms on all inputs. Fingerprintk is therefore a good choice
in cases where both average case and worst case performance is important.

LcpRmq shows a significant jump in query times around n = 1, 000, 000 on
the plot with average case strings, but not on the plot with worst case strings.
We have run the tests in Cachegrind, and found that the number of instructions
executed and the number of data reads and writes are exactly the same for both
average case strings and worst case strings. The cache miss rate for average case
strings is 14% and 9% for the L1 and L2 caches, and for worst case strings the
miss rate is 17% and 13%, which is the opposite of what could explain the jump
we see in the plot.

4.4 Cache Optimization

The amount of I/O used by Fingerprintk is O(kn1/k). However if we structure
our tables of fingerprints di↵erently, we can improve the number of I/O opera-
tions to O(k(n1/k/B+1)) in the cache-oblivious model. Instead of storing Ft` [i]
at H`[i], we can store it at H`[((i� 1) mod t`) · dn/t`e+ b(i� 1)/t`c+ 1]. This
will group all used fingerprints at level ` next to each other in memory, such that
the amount of I/O at each level is reduced from O(n1/k) to O(n1/k/B).

The size of each fingerprint table will grow from |H`| = n to |H`| = n + t`,
because the rounding operations may introduce one-element gaps in the table
after every n/t` elements. We achieve the greatest I/O improvement when k is

Longest Common Extensions via Fingerprinting 11

 1e-08

 1e-07

 1e-06

 10 100 1000 10000 100000 1e+06 1e+07

Q
ue

ry
 ti

m
e

in
 s

ec
on

ds
/q

ue
ry

string length

Average case strings

Fingerprint2<sqrt n>ac
Fingerprint2<sqrt n>accache-horizontal-shift
Fingerprint2<sqrt n>accache-horizontal-mult

 1e-08

 1e-07

 1e-06

 1e-05

 10 100 1000 10000 100000 1e+06 1e+07

Q
ue

ry
 ti

m
e

in
 s

ec
on

ds
/q

ue
ry

string length

Worst case strings

Fingerprint2<sqrt n>ac
Fingerprint2<sqrt n>accache-horizontal-shift
Fingerprint2<sqrt n>accache-horizontal-mult

 1e-08

 1e-07

 1e-06

 1e-05

 10 100 1000 10000 100000 1e+06 1e+07

Q
ue

ry
 ti

m
e

in
 s

ec
on

ds
/q

ue
ry

string length

Medium LCE-size strings

Fingerprint2<sqrt n>ac
Fingerprint2<sqrt n>accache-horizontal-shift
Fingerprint2<sqrt n>accache-horizontal-mult

 1e-08

 1e-07

 1e-06

 10 100 1000 10000 100000 1e+06 1e+07

Q
ue

ry
 ti

m
e

in
 s

ec
on

ds
/q

ue
ry

string length

Average case strings, alphabet size 2

Fingerprint2<sqrt n>ac
Fingerprint2<sqrt n>accache-horizontal-shift
Fingerprint2<sqrt n>accache-horizontal-mult

Fig. 5. Query times of Fingerprint
2

with and without cache optimization.

small. When k = dlog ne, this cache optimization gives no asymptotic di↵erence
in the amount of I/O.

We have implemented two cache optimized variants. One as described above,
and one where multiplication, division and modulo is replaced with shift opera-
tions. To use shift operations, t` and dn/t`e must both be powers of two. This
may double the size of the used address space.

Fig. 5 shows our measurements for Fingerprint
2

. On average case strings
the cache optimization does not change the query times, while on worst case
strings and strings with medium size LCE values, cache optimization gives a
noticeable improvement for large inputs. The cache optimized Fingerprint

2

variant with shift operations shows an increase in query times for large inputs,
which we cannot explain. The last plot on Fig. 5 shows a variant of average
case where the alphabet size is changed to two. This plot shows a bad case
for cache optimized Fingerprint

2

. LCE values in this plot are large enough
to ensure that H

1

is used often, which should make the extra complexity of
calculating indexes into H

1

visible. At the same time the LCE values are small
enough to ensure, that the cache optimization has no e↵ect. In this bad case
plot we see that the cache optimized variant of Fingerprint

2

has only slightly
worse query time compared to the variant, which is not cache optimized. Fig. 6
shows the measurements for Fingerprint

3

. Unlike Fingerprint

2

, the cache

12 P. Bille, I. L. Gørtz, and J. Kristensen

 1e-08

 1e-07

 1e-06

 10 100 1000 10000 100000 1e+06 1e+07

Q
ue

ry
 ti

m
e

in
 s

ec
on

ds
/q

ue
ry

string length

Average case strings

Fingerprint3<n2/3;n1/3>ac
Fingerprint3<n2/3;n1/3>accache-horizontal-shift
Fingerprint3<n2/3;n1/3>accache-horizontal-mult

 1e-08

 1e-07

 1e-06

 1e-05

 10 100 1000 10000 100000 1e+06 1e+07

Q
ue

ry
 ti

m
e

in
 s

ec
on

ds
/q

ue
ry

string length

Worst case strings

Fingerprint3<n2/3;n1/3>ac
Fingerprint3<n2/3;n1/3>accache-horizontal-shift
Fingerprint3<n2/3;n1/3>accache-horizontal-mult

Fig. 6. Query times of Fingerprint
3

with and without cache optimization.

optimized variant is slightly slower than the unoptimized variant. Hence, our
cache optimization is e↵ective for k = 2 but not k = 3.

5 Conclusions

We have presented the Fingerprintk algorithm achieving the theoretical bounds
of Thm. 1. We have demonstrated that the algorithm is able to achieve a balance
between practical worst case and average case query times. It has almost as good
average case query times as DirectComp, its worst case query times are sig-
nificantly better than those of DirectComp, and we have shown cases between
average and worst case where Fingerprintk is better than both DirectComp

and LcpRmq. Fingerprintk gives a good time space tradeo↵, and it uses less
space than LcpRmq when k is small.

References

1. Farach-Colton, M., Ferragina, P., Muthukrishnan, S.: On the sorting-complexity of
su�x tree construction. J. ACM 47(6), 987–1011 (2000)

2. Fischer, J., Heun, V.: Theoretical and practical improvements on the rmq-problem,
with applications to LCA and LCE. In: Proc. 17th Symp. on Combinatorial Pattern
Matching. Lecture Notes in Computer Science, vol. 4009, pp. 36–48 (2006)

3. Harel, D., Tarjan, R.E.: Fast algorithms for finding nearest common ancestors. SIAM
J. Comput. 13(2), 338–355 (1984)

4. Ilie, L., Navarro, G., Tinta, L.: The longest common extension problem revisited and
applications to approximate string searching. J. Disc. Alg. 8(4), 418 – 428 (2010)

5. Karp, R.M., Miller, R.E., Rosenberg, A.L.: Rapid identification of repeated patterns
in strings, trees and arrays. In: Proc. 4th Symp. on Theory of Computing. pp. 125–
136 (1972)

6. Landau, G.M., Vishkin, U.: Introducing e�cient parallelism into approximate string
matching and a new serial algorithm. In: Proc. 18th Symp. on Theory of Computing.
pp. 220–230 (1986)

