
ar
X

iv
:c

s/0
60

81
24

v5
 [

cs
.D

S]
 1

8
Ja

n
20

11

The Tree Inclusion Problem: In Linear Space and Faster∗

Philip Bille† Inge Li Gørtz‡

Abstract

Given two rooted, ordered, and labeled trees P and T the tree inclusion problem is to determine
if P can be obtained from T by deleting nodes in T . This problem has recently been recognized as
an important query primitive in XML databases. Kilpeläinen and Mannila [SIAM J. Comput. 1995]
presented the first polynomial time algorithm using quadratic time and space. Since then several improved
results have been obtained for special cases when P and T have a small number of leaves or small depth.
However, in the worst case these algorithms still use quadratic time and space. Let nS, lS, and dS denote
the number of nodes, the number of leaves, and the depth of a tree S ∈ {P, T}. In this paper we show
that the tree inclusion problem can be solved in space O(nT) and time:

O



min







lPnT

lP lT log log nT + nT
nP nT
log nT

+ nT log nT











This improves or matches the best known time complexities while using only linear space instead of
quadratic. This is particularly important in practical applications, such as XML databases, where the
space is likely to be a bottleneck.

1 Introduction

Let T be a rooted tree. We say that T is labeled if each node is assigned a character from an alphabet Σ
and we say that T is ordered if a left-to-right order among siblings in T is given. All trees in this paper are
rooted, ordered, and labeled. A tree P is included in T , denoted P " T , if P can be obtained from T by
deleting nodes of T . Deleting a node v in T means making the children of v children of the parent of v and
then removing v. The children are inserted in the place of v in the left-to-right order among the siblings of
v. The tree inclusion problem is to determine if P can be included in T and if so report all subtrees of T
that include P .

Recently, the problem has been recognized as an important query primitive for XML data and has
received considerable attention, see e.g., [33, 34, 37, 39–41]. The key idea is that an XML document can
be viewed as a tree and queries on the document correspond to a tree inclusion problem. As an example
consider Figure 1. Suppose that we want to maintain a catalog of books for a bookstore. A fragment of the
tree, denoted D, corresponding to the catalog is shown in (b). In addition to supporting full-text queries,
such as find all documents containing the word ”John”, we can also utilize the tree structure of the catalog
to ask more specific queries, such as ”find all books written by John with a chapter that has something to
do with XML”. We can model this query by constructing the tree, denoted Q, shown in (a) and solve the
tree inclusion problem: is Q " D? The answer is yes and a possible way to include Q in D is indicated

∗An extended abstract of this paper appeared in Proceedings of the 32nd International Colloquium on Automata, Languages
and Programming, Lecture Notes in Computer Science, vol. 3580, pp. 66-77, Springer-Verlag, 2005.

†Technical University of Denmark, Department of Informatics and Mathematical Modelling. This work is part of the DSSCV
project supported by the IST Programme of the European Union (IST-2001-35443).

‡Corresponding author: Technical University of Denmark, Department of Informatics and Mathematical Modelling, Build-
ing 322, Office 124, DK-2800 Kongens Lyngby, Denmark. Phone: (+45) 45 25 36 73. Fax: (+45) 45 88 26 73. Email:
ilg@imm.dtu.dk.

1

http://arxiv.org/abs/cs/0608124v5

Q D catalog

book book

author chapter author chapter chapter

john XML name title section title

john databases XML queries

(a) (b)

catalog

book book

author chapter author chapter chapter

john XML name title section title

john databases XML queries

(c)

Figure 1: (a) The tree Q corresponding to the query. (b) A fragment of the tree D. Can the tree Q be
included in the tree D? It can and an embedding is given in (c).

by the dashed lines in (c). If we delete all the nodes in D not touched by dashed lines the trees Q and
D become isomorphic. Such a mapping of the nodes from Q to D given by the dashed lines is called an
embedding (formally defined in Section 3). We note that the ordering of the XML document, and hence the
left-to-right order of siblings, is important in many cases. For instance, in the above example, the relative
order of contents of the chapters is most likely important. Also, in biological databases, order is of critical
importance. Consequently, standard XML query languages, such as XPath [13] and XQuery [10], require
the output of queries to be ordered.

The tree inclusion problem was initially introduced by Knuth [27, exercise 2.3.2-22] who gave a sufficient
condition for testing inclusion. Motivated by applications in structured databases [24, 29] Kilpeläinen and
Mannila [25] presented the first polynomial time algorithm using O(nPnT) time and space, where nP and
nT is the number of nodes in P and T , respectively. During the last decade several improvements of the
original algorithm of [25] have been suggested [1, 11, 23, 32]. The previously best known bound is due to
Chen [11] who presented an algorithm using O(lPnT) time and O(lP ·min{dT , lT }) space. Here, lS and dS
denote the number of leaves and the depth of a tree S, respectively. This algorithm is based on an algorithm
of Kilpeläinen [23]. Note that the time and space is still Θ(nPnT) for worst-case input trees.

In this paper we present three algorithms which combined improve all of the previously known time and
space bounds. To avoid trivial cases we always assume that 1 ≤ nP ≤ nT . We show the following theorem:

Theorem 1 For trees P and T the tree inclusion problem can be solved in O(nT) space with the following

2

running time:

O



min







lPnT

lP lT log log nT + nT
nPnT

log nT
+ nT lognT











Hence, when P has few leaves we obtain a fast algorithm and even faster if both P and T have few leaves.
When both trees have many leaves and nP = Ω(log2 nT), we instead improve the previous quadratic time
bound by a logarithmic factor. Most importantly, the space used is linear. In the context of XML databases
this will likely make it possible to query larger trees and speed up the query time since more of the compu-
tation can be kept in main memory.

The extended abstract of this paper [9] contained an error. The algorithms in the paper [9] did not use
linear space. The problem was due to a recursive traversal of P which stored too many sets of nodes leading
to a worst-case space complexity of Ω(dP lT). In this paper we fix this problem by recursively visiting the
nodes such that the child with the largest number of descendant leaves is visited first, and by showing that
the size of the resulting stored node sets exponentially decrease. With these ideas we show that all of our
algorithms use O(nT) space. Additionally, our improved analysis of the sizes of the stored node sets also
leads to an improvement in the running time of the algorithm in the second case above. In the previous
paper the running time was O(nplT log lognT + nT).

1.1 Techniques

Most of the previous algorithms, including the best one [11], are essentially based on a simple dynamic
programming approach from the original algorithm of [25]. The main idea behind this algorithm is the
following: Let v be a node in P with children v1, . . . , vi and let w be a node in T . Consider the subtrees
rooted at v and w, denoted by P (v) and T (w). To decide if P (v) can be included in T (w) we try to find a
sequence w1, . . . , wi of left-to-right ordered descendants of w such that P (vk) " T (wk) for all k, 1 ≤ k ≤ i.
The sequence is computed greedily from left-to-right in T (w) effectively finding the leftmost inclusion of
P (v) in T (w). Applying this approach in a bottom-up fashion we can determine, if P (v) " T (w), for all
pairs of nodes v in P and w in T .

In this paper we take a different approach. The main idea is to construct a data structure on T supporting
a small number of procedures, called the set procedures, on subsets of nodes of T . We show that any such
data structure implies an algorithm for the tree inclusion problem. We consider various implementations
of this data structure which all use linear space. The first simple implementation gives an algorithm with
O(lPnT) running time. As it turns out, the running time depends on a well-studied problem known as
the tree color problem. We show a direct connection between a data structure for the tree color problem
and the tree inclusion problem. Plugging in a data structure of Dietz [16] we obtain an algorithm with
O(lP lT log lognT + nT) running time.

Based on the simple algorithms above we show how to improve the worst-case running time of the set
procedures by a logarithmic factor. The general idea used to achieve this is to divide T into small trees called
clusters of logarithmic size which overlap with other clusters in at most 2 nodes. Each cluster is represented
by a constant number of nodes in a macro tree. The nodes in the macro tree are then connected according to
the overlap of the cluster they represent. We show how to efficiently preprocess the clusters and the macro
tree such that the set procedures use constant time for each cluster. Hence, the worst-case quadratic running
time is improved by a logarithmic factor.

Our algorithms recursively traverse P top-down. For each node v ∈ V (P) we compute a set of nodes
representing all of the subtrees in T that include P (v). To avoid storing too many of these node sets the
traversal of P visits the child with the largest number of descendant leaves first. For the first two algorithms
this immediately implies a space complexity of O(lT log lP), however, by carefully analyzing the sizes of
stored node sets we are able to show that they decrease exponentially leading to the linear space bound. In
the last algorithm the node sets are compactly encoded in O(nT / lognT) space and therefore our recursive
traversal alone implies a space bound of O(nT / lognT · log lP) = O(nT).

3

Throughout the paper we assume a unit-cost RAM model of computation with word size Θ(lognT) and a
standard instruction set including bitwise boolean operations, shifts, addition, and multiplication. All space
complexities refer to the number of words used by the algorithm.

1.2 Related Work

For some applications considering unordered trees is more natural. However, in [25, 30] this problem was
proved to be NP-complete. The tree inclusion problem is closely related to the tree pattern matching problem
[14, 17, 22, 28]. The goal is here to find an injective mapping f from the nodes of P to the nodes of T
such that for every node v in P the ith child of v is mapped to the ith child of f(v). The tree pattern
matching problem can be solved in (nP +nT) log

O(1)(nP +nT) time. Another similar problem is the subtree
isomorphism problem [12, 35], which is to determine if T has a subgraph isomorphic to P . The subtree
isomorphism problem can be solved efficiently for ordered and unordered trees. The best algorithms for this

problem use O(n
1.5
P nT

lognP
+nT) time for unordered trees and O(nPnT

lognP
+nT) time for ordered trees [12,35]. Both

use O(nPnT) space. The tree inclusion problem can be considered a special case of the tree edit distance
problem [15,26,36,42]. Here one wants to find the minimum sequence of insert, delete, and relabel operations
needed to transform P into T . Currently the best algorithm for this problem uses O(nTn2

P (1 + log nT

nP
))

time [15]. For more details and references see the survey [8].

1.3 Outline

In Section 2 we give notation and definitions used throughout the paper. In Section 3 a common framework
for our tree inclusion algorithms is given. Section 4 presents two simple algorithms and then, based on these
results, we show how to get a faster algorithm in Section 5.

2 Notation and Definitions

In this section we define the notation and definitions we will use throughout the paper. For a graph G we
denote the set of nodes and edges by V (G) and E(G), respectively. Let T be a rooted tree. The root of T
is denoted by root(T). The size of T , denoted by nT , is |V (T)|. The depth of a node v ∈ V (T), depth(v), is
the number of edges on the path from v to root(T) and the depth of T , denoted dT , is the maximum depth
of any node in T . The parent of v is denoted parent(v) and the set of children of v is denoted child(v). We
define parent(root(T)) = ⊥, where ⊥ &∈ V (T) is a special null node. A node with no children is a leaf and
otherwise an internal node. The set of leaves of T is denoted L(T) and we define lT = |L(T)|. We say that
T is labeled if each node v is a assigned a character, denoted label(v), from an alphabet Σ and we say that
T is ordered if a left-to-right order among siblings in T is given. Note that we do not require that the size
of the alphabet is bounded by a constant. All trees in this paper are rooted, ordered, and labeled.

Ancestors and Descendants Let T (v) denote the subtree of T rooted at a node v ∈ V (T). If w ∈ V (T (v))
then v is an ancestor of w, denoted v ' w, and if w ∈ V (T (v))\{v} then v is a proper ancestor of w, denoted
v ≺ w. If v is a (proper) ancestor of w then w is a (proper) descendant of v. A node z is a common ancestor
of v and w if it is an ancestor of both v and w. The nearest common ancestor of v and w, nca(v, w), is the
common ancestor of v and w of greatest depth. The first ancestor of w labeled α, denoted fl(w,α), is the
node v such that v ' w, label(v) = α, and no node on the path between v and w is labeled α. If no such
node exists then fl(w,α) = ⊥.

Traversals and Orderings Let T be a tree with root v and let v1, . . . , vk be the children of v from left-
to-right. The preorder traversal of T is obtained by visiting v and then recursively visiting T (vi), 1 ≤ i ≤ k,
in order. Similarly, the postorder traversal is obtained by first visiting T (vi), 1 ≤ i ≤ k, in order and then
v. The preorder number and postorder number of a node w ∈ T (v), denoted by pre(w) and post(w), are the

4

v1 v2 v5 v6 v7

v3 v4

(a)

=S1 =S2 =S3 =S4

v1 v2 v5 v8 v9

v3 v4 v6 v7

(b)

Figure 2: In (a) we have {(v1, v2, v3, v6, v7), (v1, v2, v5, v6, v7), (v1, v4, v5, v6, v7), (v3, v4, v5, v6, v7)} =
Φ(S1, S2, S1, S3, S4) and thus mop(S1, S2, S1, S3, S4) = {(v3, v7)}. In (b) we have Φ(S1, S2, S1, S3, S4) =
{(v1, v2, v3, v5, v7), (v1, v2, v6, v8, v9), (v1, v2, v3, v8, v9), (v1, v2, v3, v5, v9), (v1, v4, v6, v8, v9), (v3, v4, v6, v8, v9)}
and thus mop(S1, S2, S1, S3, S4) = {(v1, v7), (v3, v9)}.

number of nodes preceding w in the preorder and postorder traversal of T , respectively. The nodes to the
left of w in T is the set of nodes u ∈ V (T) such that pre(u) < pre(w) and post(u) < post(w). If u is to the
left of w, denoted by u ! w, then w is to the right of u. If u ! w or u ' w or w ≺ u we write u " w. The
null node ⊥ is not in the ordering, i.e., ⊥ ! v for all nodes v.

Minimum Ordered Pairs A set of nodes X ⊆ V (T) is deep if no node in X is a proper ancestor of
another node in X . For k deep sets of nodes X1, . . . , Xk let Φ(X1, . . . , Xk) ⊆ (X1 × · · · ×Xk), be the set of
tuples such that (x1, . . . , xk) ∈ Φ(X1, . . . , Xk) iff x1 ! · · ·! xk. If (x1, . . . , xk) ∈ Φ(X1, . . . , Xk) and there is
no (x′

1, . . . , x
′
k) ∈ Φ(X1, . . . , Xk), where either x1!x′

1!x′
k"xk or x1"x′

1!x′
k!xk then the pair (x1, xk) is a

minimum ordered pair. Intuitively, (x1, xk) is a closest pair of nodes fromX1 and Xk in the left-to-right order
for which we can find x2, . . . , xk−1 such that x1! · · ·!xk. The set of minimum ordered pairs for X1, . . . , Xk

is denoted by mop(X1, . . . , Xk). Figure 2 illustrates these concepts on a small example. For any set of pairs
Y , let Y |1 and Y |2 denote the projection of Y to the first and second coordinate, that is, if (y1, y2) ∈ Y then
y1 ∈ Y |1 and y2 ∈ Y |2. We say that Y is deep if Y |1 and Y |2 are deep. The following lemma shows that
given deep sets X1, . . . , Xk we can compute mop(X1, . . . , Xk) iteratively by first computing mop(X1, X2)
and then mop(mop(X1, X2)|2, X3) and so on.

Lemma 1 For any deep sets of nodes X1, . . . , Xk, k > 2, we have, (x1, xk) ∈ mop(X1, . . . , Xk) iff there exists
a node xk−1 such that (x1, xk−1) ∈ mop(X1, . . . , Xk−1) and (xk−1, xk) ∈ mop(mop(X1, . . . , Xk−1)|2, Xk).

Proof. We start by showing that if (x1, xk) ∈ mop(X1, . . . , Xk) then there exists a node xk−1 such that
(x1, xk−1) ∈ mop(X1, . . . , Xk−1) and (xk−1, xk) ∈ mop(mop(X1, . . . , Xk−1)|2, Xk).

First note that (z1, . . . , zk) ∈ Φ(X1, . . . , Xk) implies (z1, . . . , zk−1) ∈ Φ(X1, . . . , Xk−1). Since (x1, xk) ∈
mop(X1, . . . , Xk) there must be a minimum node xk−1 such that the tuple (x1, . . . , xk−1) is in Φ(X1, . . . , Xk−1).
We have (x1, xk−1) ∈ mop(X1, . . . , Xk−1). We need to show that (xk−1, xk) ∈ mop(mop(X1, . . . , Xk−1)|2, Xk).
Since (x1, xk) ∈ mop(X1, . . . , Xk) there exists no node z ∈ Xk such that xk−1 ! z ! xk. If such a z existed
we would have (x1, . . . , xk−1, z) ∈ Φ(X1, . . . , Xk), contradicting that (x1, xk) ∈ mop(X1, . . . , Xk). Assume
there exists a node z ∈ mop(X1, . . . , Xk−1)|2 such that xk−1!z!xk. Since (x1, xk−1) ∈ mop(X1, . . . , Xk−1)
this implies that there is a node z′ # x1 such that (z′, z) ∈ mop(X1, . . . , Xk−1). But this implies that the
tuple (z′, . . . , z, xk) is in Φ(X1, . . . , Xk) contradicting that (x1, xk) ∈ mop(X1, . . . , Xk).

We will now show that if there exists a node xk−1 such that (x1, xk−1) ∈ mop(X1, . . . , Xk−1) and
(xk−1, xk) ∈ mop(mop(X1, . . . , Xk−1)|2, Xk) then the pair (x1, xk) ∈ mop(X1, . . . , Xk). Clearly, there exists
a tuple (x1, . . . , xk−1, xk) ∈ Φ(X1, . . . , Xk). Assume that there exists a tuple (z1, . . . , zk) ∈ Φ(X1, . . . , Xk)
such that x1 ! z1 ! zk " xk. Among the tuples satisfying these constraints let (y1, . . . , yk−1, yk) be the one
with maximum y1, minimum yk−1, and maximum yk. It follows that (y1, yk−1) ∈ mop(X1, . . . , Xk−1).

5

Since (x1, xk−1) ∈ mop(X1, . . . , Xk−1) we must have xk−1 ! yk−1. But this contradicts (xk−1, xk) ∈
mop(mop(X1, . . . , Xk−1)|2, Xk), since node yk−1 ∈ mop(X1, . . . , Xk−1)|2.

Assume that there exists a tuple (z1, . . . , zk) ∈ Φ(X1, . . . , Xk) such that x1 " z1 ! zk ! xk. Since
(x1, xk−1) ∈ mop(X1, . . . , Xk−1) we have xk−1 " zk−1 and thus xk−1 ! zk ! xk contradicting (xk−1, xk) ∈
mop(mop(X1, . . . , Xk−1)|2, Xk). $

The following lemma is the reverse of the previous lemma and shows that given deep sets X1, . . . , Xk we also
can compute mop(X1, . . . , Xk) iteratively from right to left. The proof is similar to the proof of Lemma 1.

Lemma 2 For any deep sets of nodes X1, . . . , Xk, k > 2, we have, (x1, xk) ∈ mop(X1, . . . , Xk) iff there
exists a node x2 such that (x2, xk) ∈ mop(X2, . . . , Xk) and (x1, x2) ∈ mop(X1,mop(X2, . . . , Xk)|1).

Heavy Leaf Path Decomposition We construct a heavy leaf path decomposition of P as follows. We
classify each node as heavy or light. The root is light. For each internal node v we pick a child vj of v with
maximum lP (vj) and classify it as heavy. The remaining children of v are light. An edge to a light node is
a light edge, and an edge to a heavy node is a heavy edge. The heavy child of a node v is denoted heavy(v).
Let ldepth(v) denote the number of light edges on the path from v to root(P).

Note that a heavy leaf path decomposition is the same as the classical heavy path decomposition [21]
except that the heavy child is defined as the child with largest number of the descendant leaves and not
the child with the largest number of descendants. This distinction is essential for achieving the linear space
bound of our algorithms. Note that heavy path decompositions have previously been used in algorithms for
the related tree edit distance problem [26].

Lemma 3 For any tree P and node v ∈ V (P),

lP (v) ≤
lP

2ldepth(v)
.

Proof. By induction on ldepth(v). For ldepth(v) = 0 it is trivially true. Let ldepth(v) = ". Assume wlog.
that v is light. Let w be the unique light ancestor of v with ldepth(w) = "− 1. By the induction hypothesis
lP (w) ≤ lP /2!−1. Now v has a sibling heavy(parent(v)) and thus at most half of the leaves in P (parent(v))
can be in the subtree rooted at v. Therefore, lP (v) ≤ lP (w)/2 ≤ lP /2!. $

Corollary 1 For any tree P and node v ∈ V (P), ldepth(v) ≤ log lP .

Notation When we want to specify which tree we mean in the above relations we add a subscript. For
instance, v ≺T w indicates that v is an ancestor of w in T .

3 Computing Deep Embeddings

In this section we present a general framework for answering tree inclusion queries. As in [25] we solve the
equivalent tree embedding problem. Let P and T be rooted labeled trees. An embedding of P in T is an
injective function f : V (P) → V (T) such that for all nodes v, u ∈ V (P),

(i) label(v) = label(f(v)). (label preservation condition)

(ii) v ≺ u iff f(v) ≺ f(u). (ancestor condition)

(iii) v ! u iff f(v)! f(u). (order condition)

An example of an embedding is given in Figure 1(c).

Lemma 4 (Kilpeläinen and Mannila [25]) For any trees P and T , P " T iff there exists an embedding
of P in T .

6

We say that the embedding f is deep if there is no embedding g such that f(root(P)) ≺ g(root(P)). The
deep occurrences of P in T , denoted emb(P, T) is the set of nodes,

emb(P, T) = {f(root(P)) | f is a deep embedding of P in T}.

By definition the set of ancestors of nodes in emb(P, T) is exactly the set of nodes {u | P " T (u)}. Hence,
to solve the tree inclusion problem it is sufficient to compute emb(P, T) and then, using additional O(nT)
time, report all ancestors of this set. We note that Kilpeläinen and Mannila [25] used the similar concept
of left embeddings in their algorithms. A left embedding of P in T is an embedding such that the root of
P is mapped to the node in T with the smallest postorder number, i.e., the deepest node among the nodes
furthest to the left. Our definition of emb(P, T) only requires that the root is mapped to a deepest node.

In the following we show how to compute deep embeddings. The key idea is to build a data structure for
T allowing a fast implementation of the following procedures. For all X ⊆ V (T), Y ⊆ V (T) × V (T), and
α ∈ Σ define:

Parent(X): Return the set {parent(x) | x ∈ X}.

Nca(Y): Return the set {nca(y1, y2) | (y1, y2) ∈ Y }.

Deep(X): Return the set {x ∈ X | there is no z ∈ X such that x ≺ z}.

MopRight(Y,X): Return the set of pairs R such that for any pair (y1, y2) ∈ Y , (y1, x) ∈ R iff (y2, x) ∈
mop(Y |2, X).

MopLeft(X,Y): Return the set of pairs R such that for any pair (y1, y2) ∈ Y , (x, y2) ∈ R iff (x, y1) ∈
mop(X,Y |1).

Fl(X,α): Return the set Deep({fl(x, α) | x ∈ X}).

Collectively we call these procedures the set procedures. The proceduresParent andNca are self-explanatory.
Deep(X) returns the set of all nodes in X that have no descendants in X . Hence, the returned set is always
deep. MopRight and MopLeft are used to iteratively compute minimum ordered pairs. Fl(X,α) returns
the deep set of first ancestors with label α of all nodes in X . If we want to specify that a procedure applies
to a certain tree T we add the subscript T . With the set procedures we can compute deep embeddings.
The following procedure Emb(v), v ∈ V (P), recursively computes the set of deep occurrences of P (v) in T .
Figure 3 illustrates how Emb works on a small example.

7

Procedure Emb(v)

1 Let v1, . . . , vk be the sequence of children of v ordered from left to right. There are three cases:
2 case 1. k = 0 // v is a leaf
3 Compute R := Fl(L(T), label(v)).
4 case 2. k = 1
5 Recursively compute R1 := Emb(v1).
6 Compute R := Fl(Deep(Parent(R1)), label(v)).
7 case 3. k > 1
8 Let vj be the heavy child of v.
9 Recursively compute Rj := Emb(vj) and set Uj := {(r, r) | r ∈ Rj}.

10 for i := j + 1 to k do
11 Recursively compute Ri := Emb(vi) and set Ui := MopRight(Ui−1, Ri).
12 end
13 Set Uj := Uk.
14 for i := j − 1 downto 1 do
15 Recursively compute Ri := Emb(vi) and set Ui := MopLeft(Ri, Ui+1).
16 end
17 Compute R := Fl(Deep(Nca(U1)), label(v)).
18

19 if R = ∅ then
20 stop and report that there is no deep embedding of P (v) in T .
21 else
22 Return R.
23

To prove the correctness of the Emb procedure we need the following two propositions. The first propo-
sition characterizes for node v ∈ V (P) the set emb(v, T) using mop, nca, and fl. The second proposition
shows that the set U1 computed in case 3 of the Emb procedure is the set mop(Emb(v1), . . . ,Emb(vk)).

Proposition 1 Let v be a node in P and let v1, . . . , vk be the sequence of children of v ordered from
left to right, where k ≥ 2. For any node w ∈ emb(P (v), T), there exists a pair of nodes (w1, wk) ∈
mop(emb(P (v1), T), . . . , emb(P (vk), T)) such that w = fl(nca(w1, wk), label(v)).

Proof. Since w is the root of an occurrence of P (v) in T there must exist a set of disjoint occurrences of
P (v1), . . . , P (vk) in T (w) with roots w1 ! . . .!wk, such that w is an ancestor of w1, . . . , wk. Since the wi’s
are ordered w must be an ancestor of nca(w1, wk). Since w is the root of a deep occurrence of P (v) in T it
follows that w = fl(nca(w1, wk), label(v)).

It remains to show that we can assume (w1, wk) ∈ mop(emb(P (v1), T), . . . , emb(P (vk), T)). It follows
from the previous discussion that (w1, . . . , wk) ∈ Φ(emb(P (v1), T), . . . , emb(P (vk), T)). Assume for the sake
of contradiction that (w1, wk) is not a minimum ordered pair. Then there exists a set of disjoint occurrences
of P (v1), . . . , P (vk) in T (w) with roots u1! . . .!uk, such that either w1!u1!uk"wk or w1"u1!uk!wk,
and (u1, uk) ∈ mop(emb(P (v1), T), . . . , emb(P (vk), T)). Therefore u = fl(nca(u1, uk), label(v)) is an embed-
ding of P (v) in T . Now either w ≺ u contradicting the assumption that w is a deep embedding or w = u in
which case (u1, uk) satisfies the properties of the lemma (see also Figure 4(a)). $

Proposition 2 For j + 1 ≤ l ≤ k,

Ul = mop(Emb(vj), . . . ,Emb(vl)), (1)

For 1 ≤ l ≤ j − 1,
Ul = mop(Emb(vl), . . . ,Emb(vk)). (2)

8

P T

a1
a

b2 a4
b b a

a3
a a b a b

a

(a) (b)

a a

b b a b b a

a a b a b a a b a b

a a

(c) (d)

a a

b b a b b a

a a b a b a a b a b

a a

(e) (f)

Figure 3: Computing the deep occurrences of P into T depicted in (a) and (b) respectively. The nodes in P
are numbered 1–4 for easy reference. (c) Case 1 of Emb: The crossed nodes are the nodes in the set Emb(3).
Since 3 and 4 are leaves and label(3) = label(4) we have Emb(3) = Emb(4). (d) Case 2 of Emb: The black
nodes are the nodes in the set Emb(2). Note that the middle child of the root of T is not in the set since it
is not a deep occurrence. (e) and (f) illustrates the computation of Emb(1) and case 3 of Emb: (e) The two
minimal ordered pairs of the sets from (d) and (c). In the procedure R1 is the set from (d) and R2 is the
set from (c). The set U1 = {(v, v) | v ∈ R1} and the set U2 = MopRight(U1, R2) which corresponds to the
pairs shown in (e). The black nodes in the pairs are the nodes from R1 and the crossed nodes are the nodes
from R2. Since k = 2 we set U1 = U2. (f) The nearest common ancestors of both pairs shown in (e) is the
root node of T which is the only (deep) occurrence of P .

9

(b)

ww

(a)

w1
w1

w2

w2 w3

w3 w4

u

u1
u2

u3

Figure 4: (a) For all i, wi and ui are roots of occurrences of P (vi) in T , and w and u is the nearest common
ancestor of (w1, w3) and (u1, u3), respectively. Since w1 ! u1 and u3 ! w3 we cannot have u ≺ w. (b) For
all i, wi is an embedding of P (vi) in T , (w1, w4) is a minimum ordered pair, and w is the nearest common
ancestor of all the wi’s. The number of leaves in T (w) is at least

∑4
i=1 lT (wi) ≥

∑4
i=1 lP (vi).

Proof. We first show Equation (1) by induction on l. For l = j+1 it follows from the definition ofMopRight

that Ul is the set of minimum ordered pairs of Emb(vj) and Emb(vj+1), i.e., Ul = mop(Emb(vj),Emb(vl)).
Hence, assume that l > j + 1. By the induction hypothesis we have

Ul = MopRight(Ul−1,Emb(vl)) = MopRight(mop(Emb(vj), . . . ,Emb(vl−1)), Rl) .

By definition ofMopRight, Ul is the set of pairs such that for any pair (rj , rl−1) ∈ mop(Emb(vj), . . . ,Emb(vl−1)),
(rj , rl) ∈ Ul iff (rl−1, rl) ∈ mop(mop(Emb(vj), . . . ,Emb(vl−1))|2, Rl). By Lemma 1 it follows that (rj , rl) ∈
Ul iff (rj , rl) ∈ mop(Emb(vj), . . . ,Emb(vl)).

We can now similarly show Equation (2) by induction on j′ = j − l. By Equation (1) we have Uj =
mop(Emb(vj), . . . ,Emb(vk)) when we begin computing Uj−1. For j′ = 1 (l = j − 1) it follows from the
definition of MopLeft that Uj−1 = mop(Emb(vj−1),Emb(vj)). Hence, assume that j′ > 1. Using Lemma 2
the Equation follows similarly to the proof of Equation (1). $

By Proposition 2, U1 = mop(Emb(v1), . . . ,Emb(vk)). We can now show the correctness of procedure Emb.

Lemma 5 For trees P and T and node v ∈ V (P), Emb(v) computes the set of deep occurrences of P (v) in
T .

Proof. By induction on the size of the subtree P (v). If v is a leaf, emb(v, T) is the deep set of nodes in T
with label label(v). It immediately follows that emb(v, T) = Fl(L(T), label(v)) and thus case 1 follows.

Suppose that v is an internal node with k ≥ 1 children v1, . . . , vk. We show that emb(P (v), T) = Emb(v).
Consider cases 2 and 3 of the algorithm.

For k = 1 we have that w ∈ Emb(v) implies that label(w) = label(v) and there is a node w1 ∈ Emb(v1)
such that fl(parent(w1), label(v)) = w, that is, no node on the path between w1 and w is labeled label(v).
By induction Emb(v1) = emb(P (v1), T) and therefore w is the root of an embedding of P (v) in T . Since
Emb(v) is the deep set of all such nodes it follows that w ∈ emb(P (v), T). Conversely, if w ∈ emb(P (v), T)
then label(w) = label(v), there is a node w1 ∈ emb(P (v1), T) such that w ≺ w1, and no node on the path
between w and w1 is labeled label(v), that is, fl(w1, label(v)) = w. Hence, w ∈ Emb(v).

Next consider the case k > 1. By Proposition 2 and the induction hypothesis

U1 = mop(emb(P (v1), T), . . . , emb(P (vk), T)) .

We first show that w ∈ emb(P (v), T) implies that w ∈ Emb(v). By Proposition 1 there exists a pair of
nodes (w1, wk) ∈ mop(emb(P (v1), T), . . . , emb(P (vk), T)) such that w = fl(nca(w1, wk), label(v)). We have

10

(w1, wk) ∈ U1 and it follows directly from the implementation that w ∈ Emb(v). To see that we do not loose
w by taking Deep of Nca(U1) assume that w′ = nca(w1, wk) is removed from the set in this step. This
means there is a node u in Nca(U1) which is a descendant of w′ and which is still in the set. Since w is the
root of a deep occurrence we must have w = fl(w′, label(v)) = fl(u, label(v)).

Let w ∈ Emb(v). Then w is the first ancestor with label label(v) of a nearest common ancestor of a pair in
U1. That is, label(w) = label(v) and there exists nodes (w1, wk) ∈ mop(emb(P (v1), T), . . . , emb(P (vk), T))
such that w = fl(nca(w1, wk), label(v)). Clearly, w is the root of an embedding of P (v) in T . Assume for
contradiction that w is not a deep embedding, that is, w ≺ u for some node u ∈ emb(P (v), T). We have just
shown that this implies u ∈ Emb(v). Since Emb(v) is a deep set this contradicts w ∈ Emb(v). $

The set L(T) is deep and in all three cases of Emb(V) the returned set is also deep. By induction it follows
that the input to Parent, Fl, Nca, and MopRight is always deep. We will use this fact to our advantage
in the following algorithms.

4 A Simple Tree Inclusion Algorithm

In this section we a present a simple implementation of the set procedures which leads to an efficient tree
inclusion algorithm. Subsequently, we modify one of the procedures to obtain a family of tree inclusion
algorithms where the complexities depend on the solution to a well-studied problem known as the tree color
problem.

4.1 Preprocessing

To compute deep embeddings we require a data structure for T which allows us, for any v, w ∈ V (T), to
compute ncaT (v, w) and determine if v ≺ w or v !w. In linear time we can compute pre(v) and post(v) for
all nodes v ∈ V (T), and with these it is straightforward to test the two conditions. Furthermore,

Lemma 6 (Harel and Tarjan [21]) For any tree T there is a data structure using O(nT) space and pre-
processing time which supports nearest common ancestor queries in O(1) time.

Hence, our data structure uses linear preprocessing time and space (see also [2, 7] for more recent nearest
common ancestor data structures).

4.2 Implementation of the Set Procedures

To answer tree inclusion queries we give an efficient implementation of the set procedures. The idea is to
represent sets of nodes and sets of pairs of nodes in a left-to-right order using linked lists. For this purpose
we introduce some helpful notation. Let X = [x1, . . . , xk] be a linked list of nodes. The length of X , denoted
|X |, is the number of elements in X and the list with no elements is written []. The ith node of X , denoted
X [i], is xi. Given any node y the list obtained by appending y to X , is the list X ◦ y = [x1, . . . , xk, y]. If
for all i, 1 ≤ i ≤ |X | − 1, X [i] !X [i + 1] then X is ordered and if X [i]"X [i + 1] then X is semiordered.
Recall that X [i]"X [i+1] means that we can have X [i]!X [i+1] or either of the nodes can be an ancestor
of the other (X [i] !X [i + 1] or X [i] ' X [i + 1] or X [i] 0 X [i + 1]). A list Y = [(x1, zk), . . . , (xk, zk)] is a
node pair list. By analogy, we define length, append, etc. for Y . For a pair Y [i] = (xi, zi) define Y [i]1 = xi

and Y [i]2 = zi. If the lists [Y [1]1, . . . , Y [k]1] and [Y [1]2, . . . , Y [k]2] are both ordered or semiordered then Y
is ordered or semiordered, respectively.

The set procedures are implemented using node lists. All lists used in the procedures are either ordered
or semiordered. As noted in Section 3 we may assume that the inputs to all of the procedures, except Deep,
represent deep sets, that is, the corresponding node list or node pair list is ordered. We assume that the
input list given to Deep is semiordered and the output, of course, is ordered. Hence, the output of all the
other set procedures must be semiordered. In the following let X be a node list, Y a node pair list, and α a
character in Σ. The detailed implementation of the set procedures is given below. We show the correctness
in Section 4.3 and discuss the complexity in Section 4.4.

11

Y [i′]2
Y [i]2

X [j]

x

(a)

Y [i′]2

Y [i]2 x = X [j]

(b)

Figure 5: Case 1 and 2 from the implementation ofMopRight. (a) We have x!X [j] and therefore Y [i]2 ! x.
So (y, x) is inserted in R. (b) We have Y [i′]2 ! Y [i]2 ! x = X [j].

Procedure Parent(X)

1 Return the list [parent(X [1]), . . . , parent(X [|X |])].

Procedure Nca(Y)

1 Return the list [nca(Y [1]), . . . , nca(Y [|Y |])].

Procedure Deep(X)

1 Initially, set x := X [1] and R := [].
2 for i := 2 to |X | do
3 Compare x and X [i]. There are three cases:
4 case 1. x!X [i]
5 Set R := R ◦ x and x := X [i].
6 case 2. x ≺ X [i]
7 Set x := X [i].
8 case 3. X [i] ' x
9 Do nothing.

10

11 end
12 Return R ◦ x.

The implementation of procedure Deep takes advantage of the fact that the input list is semiordered. In
case 1 the node X [i] is to the right of our ”potential output node” x. Since any node that is a descendant
of x must also be to the left of X [i] it cannot appear later in the list X than X [i]. We can thus safely add
x to R at this point. In case 2 the node x is an ancestor of X [i] and thus x cannot be in Deep(X). In case
3 the node X [i] is an ancestor of x and can therefore not be in Deep(X).

In procedure MopRight we have a ”potential pair” (y, x) where y = Y [i′]1 for some i′ and Y [i′]2!x. In
case 1 we have x!X [j] and also Y [i′]2 ! Y [i]2 since the input lists are ordered and i′ < i (see Figure 5(a)).
Therefore, (y, x) is inserted into R. In case 2 we have x = X [j], i.e., Y [i]2!x, and as before Y [i′]2!Y [i]2 (see
Figure 5(b)). Therefore (y, x) cannot be in MopRight(Y,X), and we set (Y [i]1, x) to be the new potential
pair.

We can implement MopLeft(X,Y) similarly to MopRight replacing smallest by largest, ! by #, and
traversing the lists backwards:

12

Procedure MopRight(Y ,X)

1 Initially, set R := [].
2 Find the smallest j such that Y [1]2 !X [j] and set y := Y [1]1, x := X [j]. If no such j exists stop and
return R.

3 for i := 2 to |Y | do
4 until Y [i]2 !X [j] or j > |X | do
5 set j := j + 1.
6 if j > |X | then
7 stop and return R := R ◦ (y, x).
8 else
9 Compare X [j] and x. There are two cases:

10 case 1. x!X [j]
11 set R := R ◦ (y, x), y := Y [i]1, and x := X [j].
12 case 2. If x = X [j]
13 set y := Y [i]1.
14

15

16 end
17 Return R := R ◦ (y, x).

Procedure Fl(X ,α)

1 Initially, set L := X , Z := L.
2 while Z &= [] do
3 for i := 1 to |Z| do
4 case 1. label(Z[i]) = α
5 Delete Z[i] from Z (but keep it in L).
6 case 2. label(Z[i]) &= α and parent(Z[i]) &= ⊥
7 Replace Z[i] with parent(Z[i]) in both Z and L.
8 case 3. label(Z[i]) &= α and parent(Z[i]) = ⊥
9 Delete Z[i] from both Z and L.

10

11 end
12 Set (Z,L) := Deep∗(Z,L).
13 end
14 Return L.

The procedure Fl computes the set Deep({fl(x, α)|x ∈ X}) bottom up. The list Z contains ancestors of
the elements of X for which we have not yet found an ancestor with label α. In each step it considers each
node z in the list Z. If it has the right label then x ∈ Fl(X,α) and we remove it from Z but keep it in L.
Otherwise we replace it with its parent (unless it is the root). Thus L contains both the elements in Z and
the part of Fl(X,α) found until now.

To keep the running time down we wish to maintain the invariant that L is deep at the beginning of each
iteration of the outer loop. To do this procedure Fl calls an auxiliary procedure Deep∗(Z,L) which takes
two ordered lists Z and L, where Z ⊆ L, and returns two ordered lists representing the set Deep(L)∩Z and
Deep(L), i.e., Deep∗(Z,L) = ([z ∈ Z|"x ∈ L : z ≺ x],Deep(L)). If we use the procedure Deep to calculate
Deep∗ it takes time O(|Z|+ |L|) = O(|L|). Instead we will show how to calculate it in time O(|Z|) using a
linked list representation for Z and L. We will need this in the proof of Lemma 12, which shows that the
total running time of all calls to Fl from Emb takes time O(nT). Below we describe in more detail how to
implement Fl together with the auxiliary procedures.

13

Procedure MopLeft(X ,Y)

1 Initially, set R := [].
2 Find the largest j such that Y [|Y |]1 #X [j] and set y := Y [|Y |]2 and x := X [j]. If no such j exists
stop and return R.

3 for i := |Y | − 1 to 1 do
4 until Y [i]1 #X [j] or j < 1 do
5 set j := j − 1.
6 if j < 1 then
7 stop and return R := (x, y) ◦R.
8 else
9 compare X [j] and x. There are two cases:

10 case 1. x#X [j]
11 set R := (x, y) ◦R, y := Y [i]2, and x := X [j].
12

13 case 2. x = X [j]
14 set y := Y [i]2.
15

16 end
17 end
18 Return R := (x, y) ◦R.

We use a doubly linked list to represent L and extra pointers in this list to represent Z. Each element
in the list has pointers SuccL and PredL pointing to its predecessor and successor in L. Similarly, each
element in Z has pointers SuccZ and PredZ pointing to its predecessor and successor in Z (right after
the initialization these are equal to SuccL and PredL). In the for loop we use the SuccZ pointers to find
the next element in Z. To delete Z[i] from Z in case 1 we set SuccZ(PredZ(Z[i])) = SuccZ(Z[i]) and
PredZ(SuccZ(Z[i])) = PredZ(Z[i]). The L pointers stay the same. In case 2 we simply replace Z[i] with its
parent in the linked list. The Succ and Pred pointers stay the same. To delete Z[i] from both Z and L in
case 3 we set Succj(Predj(Z[i])) = Succj(Z[i]) and Predj(Succj(Z[i])) = Predj(Z[i]) for j ∈ {Z,L}. Finally,
to compute Deep∗(Z,L) walk through Z following the SuccZ pointers. At each node z compare PredL(z)
and SuccL(z) with z. If one of them is a descendant of z remove z from the doubly linked list Z and L as in
case 3. Note that instead of calling Deep∗(Z,L) this comparison can also be done directly in step 2, which
is the only place where we insert nodes that might be an ancestor of another node in L. We will show in the
next section that it is enough to compare z to its neighbors in the list L.

4.3 Correctness of the Set Procedures

Clearly, Parent and Nca are correct. The following lemmas show that Deep, Fl, and MopRight are
also correctly implemented. For notational convenience we write x ∈ X , for a list X , if x = X [i] for some i,
1 ≤ i ≤ |X |.

Lemma 7 Procedure Deep(X) is correct.

Proof. Let x be the variable in the procedure. We will first prove the following invariant on x:

Invariant At the beginning of each iteration of the for loop in line 2 we have x &≺ X [j] for any 1 ≤ j ≤ i− 1.

We prove the invariant by induction on i. The invariant obviously holds for the base case i = 2.
For the induction step let i ≥ 3. Let iteration k denote the iteration of the for loop when i = k. By the
induction hypothesis we have x &≺ X [j] for any 1 ≤ j ≤ i− 2 at the beginning of iteration i− 1.

14

Let x′ denote the value of the variable x at the beginning of iteration i−1. Consider the value of variable
x at the beginning of the iteration i. There are two cases:

1. If x = x′ then by the induction hypothesis x = x′ &≺ X [j] for any 1 ≤ j ≤ i − 2. Since x was not
changed in iteration i − 1 we have X [i − 1] ' x (case 3 of the procedure) and thus x &≺ X [j] for any
1 ≤ j ≤ i− 1.

2. If x &= x′ then x was set in either case 1 (x′ ! x) or case 2 (x′ ≺ x) in iteration i − 1. Therefore,
x = X [i− 1] and by the induction hypothesis x′ &≺ X [j] for any 1 ≤ j ≤ i− 2. There are two subcases:

(a) If x′ ≺ x it follows immediately from the induction hypothesis that x &≺ X [j] for any 1 ≤ j ≤ i−1,
since all descendants of x also are descendants of x′.

(b) If x′ ! x we note that x is the first node to the left of x′ occuring after x′ in X (otherwise x
would have been reset in case 1 of the procedure in an earlier iteration, contradicting that x′ is
the value of variable x at the beginning of iteration i− 1). Since X is semiordered no node X [j]
with smaller index in X than x′ can be to the right of x′. Thus no node X [j], 1 ≤ j < i− 2, can
be to the right of x′. Since all descendants of x must be to the right of x′ we have x &≺ X [j] for
any 1 ≤ j ≤ i− 1.

We are now ready to prove that y ∈ Deep(X) iff there exists no z ∈ X such that y ≺ z. We first argue
that if y ∈ Deep(X) then "z ∈ X such that y ≺ z. Let y be an element in Deep(X). Only elements
that have been assigned to x during the procedure are in the output. Consider the iteration where x = y is
appended to R. This only happens in case 1 of the procedure and thus y = x!X [i]. Since X is semiordered
this implies that x ! X [j] for i ≤ j ≤ |X |, and therefore y = x &≺ X [j] for i ≤ j ≤ |X |. By the above
invariant it follows that y = x &≺ X [j] for 1 ≤ j ≤ i− 1. Thus if y ∈ Deep(X) then "z ∈ X such that y ≺ z.

Let y ∈ X be an element such that X ∩ V (T (y)) = {y}. Let j be the smallest index such that X [j] = y.
When comparing y and x during the iteration where i = j we are in case 1 or 2, since j is the smallest index
such that X [j] = y (implying x &= y) and X ∩ V (T (y)) = {y} (implying y &≺ x). In either case x is set to y.
Since there are no descendants of y in X , the variable x remains equal to y until added to R. If y occurs
several times in X we will have x = y each time we meet a copy of y (except the first) and it follows from
the implementation that y will occur exactly once in R. $

To show that the implementation of MopRight is correct we will use the following proposition.

Proposition 3 Before the first iteration of the for loop in line 3 of MopRight we have y = Y [1]1, x = X [j]
and either X [j − 1]! Y [1]2 !X [j] (if j > 1) or Y [1]2 !X [j] if (j = 1).

At the end of each iteration of the for loop then, unless Y [i]2 &!X [|X |], we have y = Y [i]1, x = X [j] and
either X [j − 1]! Y [i]2 !X [j] (if j > 1) or Y [i]2 !X [j] if (j = 1).

Proof. The first statement (y = Y [1]1, x = X [j] and either X [j− 1]!Y [1]2!X [j] (if j > 1) or Y [1]2!X [j]
if (j = 1)) follows immediately from the implementation of the procedure line 2 and the fact that the input
lists are ordered.

We prove the second statement by induction on i. Base case i = 2. By the first statement we have
y = Y [1]1, x = X [j] and either X [j − 1] ! Y [1]2 ! X [j] (if j > 1) or Y [1]2 ! X [j] if (j = 1) before this
iteration. Let j′ be the value of j before this iteration. It follows immediately from the implementation that
y = Y [2]1 since y is set to this in both case 1 and 2. If Y [2]2 ! X [j′] then j = j′. Since Y is ordered it
follows that X [j − 1]! Y [1]2 ! Y [2]2 !X [j] (if j > 1) or Y [2]2 !X [j] if (j = 1). If Y [2]2 &!X [j′] then j is
increased until Y [2]2 !X [j] implying X [j − 1]! Y [2]2 !X [j] unless j > |X |, since X is ordered.

Induction step i > 2. It follows immediately from the implementation that y = Y [i]1 since y is set to
this in both case 1 and 2. By the induction hypothesis we have y = Y [i]1, x = X [j] and Y [i]2 !X [j] right
before this iteration. Let j′ be the value of j before this iteration. If Y [i]2 !X [j′] then j = j′. Since Y is
ordered it follows that X [j− 1]!Y [i− 1]2! Y [i]2 !X [j] (if j > 1) or Y [i]2 !X [j] if (j = 1). If Y [i]2 &!X [j′]
then j is increased until Y [i]2 !X [j] implying X [j − 1]! Y [i]2 !X [j] unless j > |X |. $

15

Lemma 8 Procedure MopRight(Y,X) is correct.

Proof. We want to show that for any 1 ≤ i′ ≤ |Y |, 1 ≤ j′ ≤ |X |:

(Y [i′]1, X [j′]) ∈ R ⇔ (Y [i′]2, X [j′]) ∈ mop(Y |2, X) .

Since Y |2 and X are ordered lists we have (Y [i′]2, X [j′]) ∈ mop(Y |2, X) if and only if

(1) argminj Y [i′]2 !X [j] = j′

(2) argmaxi Y [i]2 !X [j′] = i′

We will first show that (1) and (2) implies (Y [i′]2, X [j′]) ∈ R. We start by showing that when i is about
to be incremented to i′ + 1 then y = Y [i′]1 and x = X [j′]. There are two cases to consider.

• i′ = 1. After line 2 is executed, y is set to Y [1]1, j is set to j′ and x is set to X [j′].

• i′ > 1. Consider the step in the iteration when i = i′. At the beginning of this iteration, y = Y [i′ − 1]
and j is the minimal index such that Y [i′ − 1]!X [j]. By (1) this implies that j ≤ j′, and that after
line 4 and 5 are executed, j is set to j′. At the end of the iteration y = Y [i′] (y is assigned to Y [i′] in
both cases) and x = X [j′]. If j = j′ then x set to X [j′] in case 1, otherwise we had j = j′ (case 2) and
then x was set to X [j′] already).

We have established that when i is about to be incremented to i′ + 1 then y = Y [i′]1 and x = X [j′]. To
show that (Y [i′]2, X [j′]) ∈ R we consider the following two cases.

• i′ < |Y |. Consider the (i′+1)th iteration. By condition (2) X [j′]"Y [i′+1]2 and therefore j is increased
in line 5. So now j > j′. If j > |X | then (y, x) = (Y [i′]2, X [j′]) is added to R in line 7. Otherwise,
since X is ordered, x = X [j′]!X [j]. We are therefore in case 1 and (y, x) = (Y [i′]2, X [j′]) is added to
R.

• i′ = |Y |. Then (y, x) = (Y [i′]2, X [j′]) is added to R in line 15.

We will now show that (Y [i′]1, X [j′]) ∈ R implies (1) and (2). Since (Y [i′]1, X [j′]) ∈ R we had (y, x) =
(Y [i′]1, X [j′]) at some point during the execution. The pair (y, x) can be added to R only in the for loop
before changing the values of y and x or at the execution of the last line of the procedure. Therefore
(y, x) = (Y [i′]1, X [j′]) at the beginning of some execution of the for loop, or after the last iteration (i = |Y |).
It follows by Proposition 3 that X [j − 1]! Y [i]2 !X [j] if j > 1 or Y [i]2 !X [j] if j = 1. It remains to show
that X [j′]! Y [i′ + 1]2 for i′ < |Y |. It follows from the implementation that (y, x) only is added to R inside
the for loop if j is increased. Thus j was increased in the next iteration (i = i′+1) implying X [j′]!Y [i′+1]2.

$

Lemma 9 Procedure MopLeft(X,Y) is correct.

Proof. Similar to the proof of Lemma 8. $

To show that Fl is correct we need the following proposition.

Proposition 4 Let X be an ordered list and let x be an ancestor of X [i] for some i ∈ {1, . . . , k}. If x is an
ancestor of some node in X other than X [i] then x is an ancestor of X [i− 1] or X [i+ 1].

16

Proof. Recall that u!v iff pre(u) < pre(v) and post(u) < post(v). Since x ≺ X [i] we have pre(x) < pre(X [i])
and post(X [i]) < post(x). Assume there exists a descendant X [j] of x such that j &∈ {i − 1, i, i + 1}. If
j < i− 1 we have

pre(x) ≤ pre(X [j]) < pre(X [i− 1]),

where the first inequality follows from x ≺ X [j] and the second from X being ordered. And

post(X [i− 1]) < post(X [i]) ≤ post(x),

where the first inequality follows from X being ordered and the second from x ≺ X [i]. Thus x ≺ X [i− 1].
Similarly, for j > i + 1, we have pre(x) ≤ pre(X [i]) < pre(X [i + 1]) and post(X [i + 1]) < post(X [j]) ≤

post(x) implying that x ≺ X [i+ 1]. $

Proposition 4 shows that the doubly linked list implementation of Deep∗ is correct. Since all changes to
the list are either deletions or insertions of a parent in the place of its child, the list L (and thus also Z) is
ordered at the beginning of each iteration of the outer loop.

Lemma 10 Procedure Fl(X,α) is correct.

Proof. Let F = {fl(x, α) | x ∈ X}. We first show that Fl(X,α) ⊆ F . Consider a node x ∈ Fl(X,α). Since
x is in L after the final iteration, x was deleted from Z during some iteration. Thus label(x) = α. For any
y ∈ X we follow the path from y to the root and stop the first time we meet a node with label α or even
earlier since we keep the list deep. Thus x ∈ F .

The set Fl(X,α) is a deep set, and therefore Deep(F) ⊆ Fl(X,α) ⊆ F ⇒ Deep(F) = Fl(X,α). Hence,
it remains to show that Deep(F) ⊆ Fl(X,α). Let x be a node in Deep(F), let z ∈ X be a node such that
x = fl(z, α), and let z = x1, x2, . . . , xk = x be the nodes on the path from z to x. We will argue that after
each iteration of the algorithm we have xi ∈ L for some i. Since label(xi) &= α for i < k this is the same as
xi ∈ Z for i < k. Before the first iteration we have x1 ∈ X = Z. As long as i < k we replace xi with xi+1 in
case 2 of the for loop, since label(xi) &= α. When i = k we remove xk from Z but keep it in L. It remains
to show that we do not delete xi in the computation of Deep∗(Z,L) in any iteration. If xi is removed then
there is a node y ∈ L that is a descendant of xi and thus also a descendant of x. We argued above that
L \Z ⊆ F and thus y ∈ Z since x ∈ Deep(F). But since x ∈ Deep(F) no node on the path from y to x can
have label α and therefore xi will eventually be reinserted in Z. $

4.4 Complexity of the Set Procedures

For the running time of the node list implementation observe that, given the data structure described in
Section 4.1, all set procedures, except Fl, perform a single pass over the input using constant time at each
step. Hence we have,

Lemma 11 For any tree T there is a data structure using O(nT) space and preprocessing which supports
each of the procedures Parent, Deep, MopRight, MopLeft, and Nca in linear time (in the size of their
input).

The running time of a single call to Fl might take time O(nT). Instead we will divide the calls to Fl into
groups and analyze the total time used on such a group of calls. The intuition behind the division is that
for a path in P the calls made to Fl by Emb are done bottom up on disjoint lists of nodes in T .

Lemma 12 For disjoint ordered node lists X1, . . . , Xk and labels α1, . . . , αk, such that any node in Xi+1 is
an ancestor of some node in FlT (Xi, αi), 1 ≤ i < k, all of FlT (X1, α1), . . . ,FlT (Xk, αk) can be computed
in O(nT) time.

17

Proof. Let Z and L be as in the implementation of the procedure. Since Deep∗ takes time O(|Z|) and
each of the steps in the for loop takes constant time, we only need to show that the total length of the lists
Z—summed over all the calls—is O(nT) to analyze the total time usage. We will show that any node in T
can be in Z at the beginning of the while loop at most twice during all calls to Fl. The size of Z cannot
increase in the iterations of the for loop (line 3–10), and thus the size of Z when Deep∗ is called (line 11)
is at most the size of Z at the beginning of this iteration of the while loop.

Consider a single call to Fl. Except for the first iteration, a node can be in Z only if one of its children
were in Z in the last iteration. Note that Z is ordered at the beginning of each for loop. Thus if a node is
in Z at the beginning of the while loop none of its children are in Z and thus in one call to Fl a node can
be in Z only once.

Look at a node z the first time it appears in Z at the beginning of an execution of the while loop. Assume
that this is in the call Fl(Xi, αi).

• If z ∈ Xi then z cannot be in Z in any later calls, since no node in Xj where j > i can be a descendant
of a node in Xi.

• If label(z) &= αi then z is removed from Z in case 2 or case 3 of the procedure and cannot be in Z in
any of the later calls. To see this consider the time when z is removed from Z (case 2 or case 3). Since
the set L is deep at the beginning of the while loop and Z ⊆ L, no descendant of z will appear in Z
later in this call to Fl, and no node in the output from Fl(Xi, αi) can be a descendant of z. Since
any node in Xj , j > i, is an ancestor of some node in Fl(Xi, αi) neither z or any descendant of z can
be in any Xj , j > i. Thus z cannot appear in Z in any later calls to Fl.

• Now if label(z) = αi then we might have z ∈ Xi+1. In that case, z will appear in Z in the first iteration
of the procedure call Fl(Xi+1, αi), but not in any later calls since the lists are disjoint, and since no
node in Xj where j > i+1 can be a descendant of a node in Xi+1. If label(z) = αi and z &∈ Xi+1 then
clearly z cannot appear in Z in any later call.

Thus a node in T is in Z at the beginning of an execution of the while loop at most twice during all the calls. $

4.5 Complexity of the Tree Inclusion Algorithm

Using the node list implementation of the set procedures we get:

Lemma 13 For trees P and T the tree inclusion problem can be solved in O(lPnT) time.

Proof. By Lemma 11 we can preprocess T in O(nT) time and space. Let g(n) denote the time used by Fl

on a list of length n. Consider the time used by Emb(root(P)). We bound the contribution for each node
v ∈ V (P). If v is a leaf we are in case 1 of Emb. The cost of computing Fl(L(T), label(v)) is O(g(lT)), and
by Lemma 12 (with k = 1) we get O(g(lT)) = O(nT). Hence, the total cost of all leaves is O(lPnT). If v has
a single child w we are in case 2 of Emb, and by Lemma 11 the cost is O(g(|Emb(w)|)). If v has more than
one child the cost of MopRight, Nca, and Deep is bounded by

∑

w∈child(v) O(|Emb(w)|). Furthermore,
since the length of the output of MopRight (and thus Nca) is at most z = minw∈child(v) |Emb(w)| the cost
of Fl is O(g(z)). Hence, the total cost for internal nodes is,

∑

v∈V (P)\L(P)

O

(

g(min
w∈child(v)

|Emb(w)|) +
∑

w∈child(v)

|Emb(w)|
)

=
∑

v∈V (P)

O(g(|Emb(v)|)) . (3)

Next we bound (3). For any w ∈ child(v) we have that Emb(w) and Emb(v) are disjoint ordered lists.
Furthermore we have that any node in Emb(v) must be an ancestor of some node in Fl(Emb(w), label(v)).

18

Hence, by Lemma 12, for any leaf to root path δ = v1, . . . , vk in P , we have that
∑

u∈δ g(|Emb(u)|) = O(nT).
Let ∆ denote the set of all root to leaf paths in P . It follows that,

∑

v∈V (T)

g(|Emb(v)|) ≤
∑

p∈∆

∑

u∈p

g(|Emb(u)|) = O(lPnT) .

Since this time is the same as the time spent at the leaves the time bound follows. $

To analyze the space used by the algorithm we first bound the size of Emb(v) for each node v ∈ V (P). We
then use this to bound the total the size of embeddings stored in the recursion stack in the computation of
Emb(root(P)), i.e., the total size of embeddings stored by recursive calls during the computation.

Lemma 14 For any tree P we have ∀v ∈ V (P):

|EmbT (v)| ≤
lT

lP (v)
.

Proof. By Lemma 5 Emb(v) is the set of deep occurrences of P (v) in T . By the definition of deep the
occurrences are disjoint and no node in one occurrence can be an ancestor of a node in another occurrence.
Each occurrence has at least lP (v) descendant leaves and each of these leaves is an ancestor of at least one
distinct leaf in T (see also Figure 4(b)). Thus the number of occurrences is bounded by lT /lP (v). $

Lemma 15 The total size of saved embeddings on the recursion stack at any time during the computation
of Emb(root(P)) is at most O(lT).

Proof. Let node v be the node for which we are currently computing Emb. Let p be the path from the
root to v and let w0, . . . , w! be the light nodes on this path. Let " = ldepth(v). There is one embedding
on the stack for each light node on the path (see Figure 6): For the heavy nodes on the path there can be
no saved embeddings in the recursion as the algorithm always recurses on the heavy child first. For each
light node wi on the path p except the root w0 the stack will contain either Emb(heavy(parent(wi))), or
Uj = MopRight(Uj−1, Rj), where vj is wi’s left sibling, or Uj = MopLeft(Uj−1, Rj), where vj is wi’s right
sibling. The computation of Uj is a series of MopRight (or MopLeft) computations that started with the
pair of node lists (Emb(heavy(parent(wi))),Emb(heavy(parent(wi)))) as the first argument to MopRight

(orMopLeft). As the output ofMopRight (orMopLeft) can be no larger than the input to the procedure
we have |Uj| = O(|Emb(heavy(parent(wi))))| and thus the total space used at any time during the recursion
is

O
(

ldepth(v)
∑

i=1

|Emb(heavy(parent(wi)))|
)

.

By Lemma 14 we have

|Emb(heavy(parent(wi)))| ≤
lT

lP (heavy(parent(wi)))
,

and thus
ldepth(v)
∑

i=1

|Emb(heavy(parent(wi)))| ≤ lT

ldepth(v)
∑

i=1

1

lP (heavy(parent(wi)))
. (4)

By the definition of heavy the node heavy(parent(wi)) has more leaves in its subtree than wi, i.e.,

lP (wi) ≤ lP (heavy(parent(wi))) . (5)

Obviously, heavy(parent(wi)) has no more leaves in its subtree than its parent, i.e.,

lP (heavy(parent(wi))) ≤ lP (parent(wi)) . (6)

19

w0

heavy(parent(w1)) w1

heavy(parent(w2)) w2

w3 heavy(parent(w3))

heavy(parent(w4)) v = w4

Figure 6: Path from root to v. The heavy nodes are black and the light nodes are white. The heavy edges
are the thick edges and the light edges are thin.

Since wi is light it has at most half the number of leaves in its subtree as its parent, that is

lP (wi) ≤ lP (parent(wi))/2 . (7)

Combining this with the fact that wi is an ancestor of wi+1 and heavy(parent(wi+1)) we get,

lP (heavy(parent(wj)) ≤ lP (parent(wj)) by (6)

≤ lP (wj−1) since wj−1 is an ancestor of wj

≤ lP (parent(wj−1))/2 by (7)

≤ lP (wj−2)/2 since wj−2 is an ancestor of parent(wj−1)

≤ lP (heavy(parent(wj−2)))/2, by (5)

for any 2 < j ≤ ldepth(v). Let li = lP (heavy(parent(wi))) for all i. To bound the sum in (4) we will use that
li ≤ li−2/2, li < li−1, and lldepth(v) ≥ 1. We have

ldepth(v)
∑

i=1

1

li
≤ 2

ldepth(v)
∑

i=2,i odd

1

li
≤ 2 · 2 = 4,

since the li’s in the last sum are decreasing with a factor of 2. Combining this with Equation (4) we get

ldepth(v)
∑

i=1

|Emb(heavy(parent(wi)))| ≤ lT

ldepth(v)
∑

i=1

1

lP (heavy(parent(wi)))
≤ 4lT .

$

Theorem 2 For trees P and T the tree inclusion problem can be solved in O(lPnT) time and O(nT) space.

Proof. The time bound follows from Lemma 13. Next consider the space used by Emb(root(P)). The
preprocessing of Section 4.1 uses only O(nT) space. By Lemma 15 the space used for the saved embeddings
is O(lT) = O(nT). $

20

4.6 An Alternative Algorithm

In this section we present an alternative algorithm. Since the time complexity of the algorithm in the previous
section is dominated by the time used by Fl, we present an implementation of this procedure which leads to
a different complexity. Define a firstlabel data structure as a data structure supporting queries of the form
fl(v, α), v ∈ V (T), α ∈ Σ. Maintaining such a data structure is known as the tree color problem. This is
a well-studied problem, see e.g. [5, 16, 18, 31]. With such a data structure available we can compute Fl as
follows,

Fl(X,α): Return the list Deep([fl(X [1], α), . . . , fl(X [|X |], α)]).

Theorem 3 Let P and T be trees. Given a firstlabel data structure using s(nT) space, p(nT) preprocessing
time, and q(nT) time for queries, the tree inclusion problem can be solved in O(p(nT) + lP lT · q(nT)) time
and O(s(nT) + nT) space.

Proof. Constructing the firstlabel data structures uses O(s(nT)) space and O(p(nT)) time. The total cost
of the leaves is bounded by O(lplT · q(nT)), since the cost of a single leaf is O(lT · q(nT)). As in the proof
of Theorem 2 we have that the total time used by the internal nodes is bounded by

∑

v∈V (P) g(|Emb(v)|),
where g(n) is the time used by Fl on a list of length n, that is, g(n) ≤ n·q(nT). By Lemma 11 and Lemma 15
for any leaf to root path δ = v1, . . . , vk in P , we have that

∑

u∈δ |Emb(u)| ≤ O(lT). Let ∆ denote the set of
all root to leaf paths in P . It follows that,

∑

v∈V (P)

g(|Emb(v)|) ≤
∑

p∈∆

∑

u∈p

g(|Emb(u)|) ≤
∑

p∈∆

O(lT · q(nT)) ≤ O(lP lT · q(nT)).

Since this time is the same as the time spent at the leaves the time bound follows. $

Several firstlabel data structures are available, for instance, if we want to maintain linear space we have,

Lemma 16 (Dietz [16]) For any tree T there is a data structure using O(nT) space, O(nT) expected pre-
processing time which supports firstlabel queries in O(log log nT) time.

The expectation in the preprocessing time is due to perfect hashing. Since our data structure does not need
to support efficient updates we can remove the expectation by using the deterministic dictionary of Hagerup
et al. [20]. This gives a worst-case preprocessing time of O(nT lognT). However, using a simple two-level
approach this can be reduced to O(nT) (see e.g. [38]). Plugging in this data structure we obtain,

Corollary 2 For trees P and T the tree inclusion problem can be solved in O(lP lT log lognT +nT) time and
O(nT) space.

5 A Faster Tree Inclusion Algorithm

In this section we present a new tree inclusion algorithm which has a worst-case subquadratic running time.
As discussed in the introduction, the general idea is to divide T into clusters of logarithmic size which we
can efficiently preprocess and then use this to speed up the computation with a logarithmic factor.

5.1 Clustering

In this section we describe how to divide T into clusters and how the macro tree is created. For simplicity in
the presentation we assume that T is a binary tree. If this is not the case it is straightforward to construct
a binary tree B, where nB ≤ 2nT , and a mapping g : V (T) → V (B) such that for any pair of nodes
v, w ∈ V (T), label(v) = label(g(v)), v ≺ w iff g(v) ≺ g(w), and v ! w iff g(v) ! g(w). The nodes in the set
U = V (B)\{g(v) | v ∈ V (T)} are assigned a special label β &∈ Σ. It follows that for any tree P , P " T iff
P " B.

21

Let C be a connected subgraph of T . A node in V (C) adjacent to a node in V (T)\V (C) is a boundary
node. The boundary nodes of C are denoted by δC. We have root(T) ∈ δC if root(T) ∈ V (C). A cluster
of C is a connected subgraph of C with at most two boundary nodes. A set of clusters CS is a cluster
partition of T iff V (T) = ∪C∈CSV (C), E(T) = ∪C∈CSE(C), and for any C1, C2 ∈ CS, E(C1) ∩ E(C2) = ∅,
|E(C1)| ≥ 1. If |δC| = 1 we call C a leaf cluster and otherwise an internal cluster.

We use the following recursive procedure ClusterT (v, s), adopted from [6], which creates a cluster
partition CS of the tree T (v) with the property that |CS| = O(s) and |V (C)| ≤ 6nT /s7 for each C ∈ CS.
A similar cluster partitioning achieving the same result follows from [3, 4, 19].

ClusterT (v, s): For each child u of v there are two cases:

1. |V (T (u))|+1 ≤ 6nT /s7. Let the nodes {v}∪V (T (u)) be a leaf cluster with boundary
node v.

2. |V (T (u))| ≥ 6nT /s7. Pick a node w ∈ V (T (u)) of maximum depth such that
|V (T (u))|+2− |V (T (w))| ≤ 6nT /s7. Let the nodes V (T (u))\V (T (w))∪{v, w} be an
internal cluster with boundary nodes v and w. Recursively, compute ClusterT (w, s).

Lemma 17 Given a tree T with nT > 1 nodes, and a parameter s, where 6nT /s7 ≥ 2, we can build a cluster
partition CS in O(nT) time, such that |CS| = O(s) and |V (C)| ≤ 6nT /s7 for any C ∈ CS.

Proof. The procedure ClusterT (root(T), s) clearly creates a cluster partition of T and it is straightforward
to implement in O(nT) time. Consider the size of the clusters created. There are two cases for u. In case
1, |V (T (u))| + 1 ≤ 6nT /s7 and hence the cluster C = {v} ∪ V (T (u)) has size |V (C)| ≤ 6nT /s7. In case
2, |V (T (u))| + 2 − |V (T (w))| ≤ 6nT /s7 and hence the cluster C = V (T (u))\V (T (w)) ∪ {v, w} has size
|V (C)| ≤ 6nT /s7.

Next consider the size of the cluster partition. Let c = 6nT /s7. We say that a cluster C is bad if
|V (C)| ≤ c/2 and good otherwise. We will show that at least a constant fraction of the clusters in the cluster
partition are good. It is easy to verify that the cluster partition created by procedure Cluster has the
following properties:

(i) Let C be a bad internal cluster with boundary nodes v and w (v ≺ w). Then w has two children with
at least c/2 descendants each.

(ii) Let C be a bad leaf cluster with boundary node v. Then the boundary node v is contained in a good
cluster.

By (ii) the number of bad leaf clusters is at most twice the number of good internal clusters and by (i) each
bad internal cluster has two child clusters. Therefore, the number of bad internal clusters is bounded by the
number of leaf clusters. Let bi and gi denote the number of bad and good internal clusters, respectively, and
let bl and gl denote the number of bad and good leaf clusters, respectively. We have

bi ≤ bl + gl ≤ 2gi + gl,

and therefore the number of bad clusters is bounded by

bl + bi ≤ 2gi + gl + 2gi = 4gi + gl .

Thus the number of bad clusters is at most 4 times the number of good clusters, and therefore at most a
constant fraction of the total number of clusters. Since a good cluster is of size more than c/2, there can be
at most 2s good clusters and thus |CS| = O(s). $

Let C ∈ CS be an internal cluster with v, w ∈ δC. The spine path of C is the path between v, w excluding
v and w. A node on the spine path is a spine node. A node to the left and right of v or of any node on

22

v v

s(v, w)

l(v, w) r(v, w)

w w

(a) (b)

v v

l(v)

(c) (d)

Figure 7: The clustering and the macro tree. (a) An internal cluster. The black nodes are the boundary
nodes and the internal ellipses correspond to the boundary nodes, the right and left nodes, and spine path.
(b) The macro tree corresponding to the cluster in (a). (c) A leaf cluster. The internal ellipses are the
boundary node and the leaf nodes. (d) The macro tree corresponding to the cluster in (c).

the spine path is a left node and right node, respectively. If C is a leaf cluster with v ∈ δC then any proper
descendant of v is a leaf node.

Let CS be a cluster partition of T as described in Lemma 17. We define an ordered macro tree M .
Our definition of M may be viewed as an ”ordered” version of the macro tree defined in [6]. The node set
V (M) consists of the boundary nodes in CS. Additionally, for each internal cluster C ∈ CS with v, w ∈ δC,
v ≺ w, we have the nodes s(v, w), l(v, w) and r(v, w) and edges (v, s(v, w)), (s(v, w), l(v, w)), (s(v, w), w),
and (s(v, w), r(v, w)). That is, the nodes l(v, w), r(v, w) and w are all children of s(v, w). The nodes are
ordered so that l(v, w) ! w ! r(v, w). For each leaf cluster C, v ∈ δC, we have the node l(v) and edge
(v, l(v)). Since root(T) is a boundary node, M is rooted at root(T). Figure 7 illustrates these definitions.

With each node v ∈ V (T) we associate a unique macro node denoted c(v). Let u ∈ V (C), where C ∈ CS.

c(u) =































u if u is boundary node,

l(v) if u is a leaf node and v ∈ δC,

s(v, w) if u is a spine node, v, w ∈ δC, and v ≺ w,

l(v, w) if u is a left node, v, w ∈ δC, and v ≺ w,

r(v, w) if u is a right node, v, w ∈ δC, and v ≺ w.

Conversely, for any macro node i ∈ V (M) define the micro forest, denoted C(i), as the induced subgraph
of T of the set of nodes {v | v ∈ V (T), i = c(v)}. We also assign a set of labels to i given by label(i) =
{label(v) | v ∈ V (C(i))}. If i is a spine node or a boundary node the unique node in V (C(i)) of greatest
depth is denoted by first(i). Finally, for any set of nodes {i1, . . . , ik} ⊆ V (M) we define C(i1, . . . , ik) as the
induced subgraph of the set of nodes V (C(i1)) ∪ · · · ∪ V (C(ik)).

The following propositions state useful properties of ancestors, nearest common ancestor, and the left-
to-right ordering in the micro forests and in T . The propositions follow directly from the definition of the
clustering. See also Figure 8.

23

v′

v

w

w′

(a)

v′

v

w

w′

(b)

v′

v

w

(c)

v′

v

w

w′

(d)

v′

w

v

w′

(e)

v′

w

v

w′

(f)

v′

v

w′

w

(g)

Figure 8: Examples from the propositions. In all cases v′ and w′ are top and bottom boundary nodes of the
cluster, respectively. (a) Proposition 5(ii). Here c(v) = s(v′, w′) and c(w) = l(v′, w′) (solid ellipses). The
dashed ellipse corresponds to C(c(w), s(v′, w′), v′). (b) Proposition 6(i) and 7(ii). Here c(v) = c(w) = l(v′, w′)
(solid ellipse). The dashed ellipse corresponds to C(c(w), s(v′, w′), v′). (c) Proposition 6(ii) and 7(i). Here
c(v) = c(w) = l(v′) (solid ellipse). The dashed ellipse corresponds to C(c(v), v′). (d) Proposition 6(iii). Here
c(v) = l(v′, w′) and c(w) = s(v′, w′) (solid ellipses). The dashed ellipse corresponds to C(c(v), c(w), v′). (e)
Proposition 6(iv). Here c(v) = s(v′, w′) and c(w) = r(v′, w′) (solid ellipses). The dashed ellipse corresponds
to C(c(v), c(w), v′). (f) Proposition 7(iv). Here c(v) = l(v′, w′) and c(w) = r(v′, w′) (solid ellipses). The
dashed ellipse corresponds to C(c(v), c(w), s(v′, w′), v′). (g) Proposition 7(v). Here c(v) = l(v′, w′) (solid
ellipse) and w′ 'M c(w). The dashed ellipse corresponds to C(c(v), s(v′, w′), v′, w′)).

Proposition 5 (Ancestor relations) For any pair of nodes v, w ∈ V (T), the following hold

(i) If c(v) = c(w) then v ≺T w iff v ≺C(c(v)) w.

(ii) If c(v) &= c(w), and for some boundary nodes v′, w′ we have c(v) = s(v′, w′), and c(w) ∈ {l(v′, w′), r(v′, w′)},
then v ≺T w iff v ≺C(c(w),s(v′,w′),v′) w.

(iii) In all other cases, v ≺T w iff c(v) ≺M c(w).

Case (i) says that if v and w belong to the same macro node then v is an ancestor of w iff v is an ancestor
of w in the micro forest for that macro node. Case (ii) says that if v is a spine node and w is a left or right
node in the same cluster then v is an ancestor of w iff v is an ancestor of w in the micro tree induced by
that cluster (Figure 8(a)). Case (iii) says that in all other cases v is an ancestor of w iff the macro node v
belongs to is an ancestor of the macro node w belongs to in the macro tree.

Proposition 6 (Left-of relations) For any pair of nodes v, w ∈ V (T), the following hold

24

(i) If c(v) = c(w) ∈ {r(v′, w′), l(v′, w′)} for some boundary nodes v′, w′, then v!w iff v!C(c(v),v′,s(v′,w′))w.

(ii) If c(v) = c(w) = l(v′) for some boundary node v′, then v ! w iff v !C(c(v),v′) w.

(iii) If c(v) = l(v′, w′) and c(w) = s(v′, w′) for some boundary nodes v′, w′, then v!w iff v!C(c(v),c(w),v′)w.

(iv) If c(v) = s(v′, w′) and c(w) = r(v′, w′) for some boundary nodes v′, w′, then v!w iff v!C(c(v),c(w),v′)w.

(v) In all other cases, v ! w iff c(v)!M c(w).

Case (i) says that if v and w are both either left or right nodes in the same cluster then v is to the left of w iff
v is to the left of w in the micro tree induced by their macro node together with the spine and top boundary
node of the cluster (Figure 8(b)). Case (ii) says that if v and w are both leaf nodes in the same cluster then
v is to the left of w iff v is to the left of w in the micro tree induced by that leaf cluster (Figure 8(c)). Case
(iii) says that if v is a left node and w is a spine node in the same cluster then v is to the left of w iff v is to
the left of w in the micro tree induced by their two macro nodes and the top boundary node of the cluster
(Figure 8(d)). Case (iv) says that if v is a spine node and w is a right node in the same cluster then v is to
the left of w iff v is to the left of w in the micro tree induced by their two macro nodes and the top boundary
node of the cluster (Figure 8(e)). In all other cases v is to the left of w if the macro node v belongs to is to
the left of the macro node of w in the macro tree (Case (v)).

Proposition 7 (Nca relations) For any pair of nodes v, w ∈ V (T), the following hold

(i) If c(v) = c(w) = l(v′) for some boundary node v′, then ncaT (v, w) = ncaC(c(v),v′)(v, w).

(ii) If c(v) = c(w) ∈ {l(v′, w′), r(v′, w′)} for some boundary nodes v′, w′, then
ncaT (v, w) = ncaC(c(v),s(v′,w′),v′)(v, w).

(iii) If c(v) = c(w) = s(v′, w′) for some boundary nodes v′, w′, then ncaT (v, w) = ncaC(c(v))(v, w).

(iv) If c(v) &= c(w) and c(v), c(w) ∈ {l(v′, w′), r(v′, w′), s(v′, w′)} for some boundary nodes v′, w′, then
ncaT (v, w) = ncaC(c(v),c(w),s(v′,w′),v′)(v, w).

(v) If c(v) &= c(w), c(v) ∈ {l(v′, w′), r(v′, w′), s(v′, w′)}, and w′ 'M c(w) for some boundary nodes v′, w′,
then ncaT (v, w) = ncaC(c(v),s(v′,w′),v′,w′)(v, w

′).

(vi) In all other cases, ncaT (v, w) = ncaM (c(v), c(w)).

Case (i) says that if v and w are leaf nodes in the same cluster then the nearest common ancestor of v and w
is the nearest common ancestor of v and w in the micro tree induced by that leaf cluster (Figure 8(c)). Case
(ii) says that if v and w are both either left nodes or right nodes then the nearest common ancestor of v and
w is the nearest common ancestor in the micro tree induced by their macro node together with the spine
and top boundary node of the cluster (Figure 8(b)). Case (iii) says that if v and w are both spine nodes in
the same cluster then the nearest common ancestor of v and w is the nearest common ancestor of v and w in
the micro tree induced by their macro node. Case (iv) says that if v and w are in different macro nodes but
are right, left, or spine nodes in the same cluster then the nearest common ancestor of v and w is the nearest
common ancestor of v and w in the micro tree induced by that cluster (we can omit the bottom boundary
node) (Figure 8(f)). Case (v) says that if v is a left, right, or spine node, and the bottom boundary node
w′ of v’s cluster is an ancestor in the macro tree of the macro node containing w, then the nearest common
ancestor of v and w is the nearest common ancestor of v and w′ in the micro tree induced by the macro
node of v, the spine node, and the top and bottom boundary nodes of v’s cluster (Figure 8(g)). In all other
cases the nearest common ancestor of v and w is the nearest common ancestor of their macro nodes in the
macro tree (Case (vi)).

25

5.2 Preprocessing

In this section we describe how to preprocess T . First build a cluster partition CS of the tree T with clusters
of size s, to be fixed later, and the corresponding macro treeM in O(nT) time. The macro tree is preprocessed
as in Section 4.1. However, since nodes in M contain a set of labels, we now store a dictionary for label(v)
for each node v ∈ V (M). Using the deterministic dictionary of Hagerup et al. [20] all these dictionaries can
be constructed in O(nT lognT) time and O(nT) space. Furthermore, we extend the definition of fl such that
flM (v, α) is the nearest ancestor w of v such that α ∈ label(w).

Next we show how to preprocess the micro forests. For any cluster C ∈ CS, deep sets X,Y, Z ⊆ V (C),
i ∈ N, and α ∈ Σ define the following procedures.

size(X): Return the number of nodes in X .

left(i,X): Return the leftmost i nodes in X .

right(i,X): Return the rightmost i nodes in X .

leftof(X,Y): Return all nodes of X to the left of the leftmost node in Y .

rightof(X,Y): Return all nodes of X to the right of the rightmost node in Y .

match(X,Y, Z), where X = {m1! · · ·!mk}, Y = {v1! · · ·! vk}, and Z ⊆ Y . Return R := {mj | vj ∈ Z}.

mop(X,Y) Return the pair (R1, R2), where R1 = mop(X,Y)|1 and R2 = mop(X,Y)|2.

If we want to specify that a procedure applies to a certain cluster C we add the subscript C. In addition to
these procedures we also define the set procedures on clusters, that is, parent, nca, deep, and fl, as in
Section 3. Collectively, we will call these the cluster procedures. We represent the input and output sets in
the procedures as bit strings indexed by preorder numbers. Specifically, a subset X in a cluster C is given
by a bit string b1 . . . bs, such that bi = 1 iff the ith node in a preorder traversal of C is in X . If C contains
fewer than s nodes we set the remaining bits to 0.

The procedure size(X) is the number of ones in the bit string. The procedure left(i,X) corresponds
to setting all bits in X larger than the ith set bit to zero. Similarly, right(i,X) corresponds to setting all
bits smaller than the ith largest set bit to zero. Similarly, the procedures leftof(X,Y), rightof(X,Y),
mop(X,Y), and match(X,Y, Z) only depend on the preorder of the nodes and thus only on the bit string
and not any other information about the cluster.

Next we show how to implement the cluster procedures efficiently. We precompute the value of all
procedures, except fl, for all possible inputs and clusters. By definition, these procedures do not depend
on any specific labeling of the nodes in the cluster. Hence, it suffices to precompute the value for all rooted,
ordered trees with at most s nodes. The total number of these is less than 22s (consider e.g. an encoding
using balanced parenthesis). Furthermore, the number of possible input sets is at most 2s. Since at most
3 sets are given as input to a cluster procedure, it follows that we can tabulate all solutions using less
than 23s · 22s = 25s bits of memory. Hence, choosing s ≤ 1/10 logn we use O(2

1

2
log n) = O(

√
n) bits.

Using standard bit wise operations each solution is easily implemented in O(s) time giving a total time of
O(

√
n logn).

Since the procedure fl depends on the alphabet, which may be of size nT , we cannot efficiently apply
the same trick as above. Instead define for any cluster C ∈ CS, X ⊆ V (C), and α ∈ Σ:

ancestor(X): Return the set {x | x is an ancestor of a node in X}.

eqC(α): Return the set {x | x ∈ V (C), label(x) = α}.

Clearly, ancestor can be implemented as above. For eqC note that the total number of distinct labels in
C is at most s. Hence, eqC can be stored in a dictionary with at most s entries each of which is a bit string
of length s. Thus, (using again the result of [20]) the total time to build all such dictionaries is O(nT log nT).

26

By the definition of fl we have that,

flC(X,α) = deepC(ancestorC(X) ∩ eqC(α)).

Since intersection can be implemented using a binary and -operation, flC(X,α) can be computed in constant
time. Later, we will also need to compute union of sets represented as bit strings and we note that this can
be done using a binary or -operation.

To implement the set procedures in the following section we often need to “restrict” the cluster procedures
to work on a subtree of a cluster. Specifically, for any set of macro nodes {i1, . . . , ik} in the same cluster C
(hence, k ≤ 5), we will replace the subscript C with C(i1, . . . , ik). For instance, parentC(s(v,w),l(v,w))(X) =
{parent(x) | x ∈ X ∩ V (C(s(v, w), l(v, w))} ∩ V (C(s(v, w), l(v, w)). To implement all restricted versions of
the cluster procedures, we compute for each cluster C ∈ CS a bit string representing the set of nodes in each
micro forest. Clearly, this can be done in O(nT) time. Since there are at most 5 micro forests in each cluster
it follows that we can compute any restricted version using an additional constant number of and-operations.

Note that the total preprocessing time and space is dominated by the construction of deterministic
dictionaries which use O(nT lognT) time and O(nT) space.

5.3 Implementation of the Set Procedures

Using the preprocessing from the previous section we show how to implement the set procedures in sublinear
time. First we define a compact representation of node sets. Let T be a tree with macro tree M . For
simplicity, we identify nodes in M with a number almost equal to their preorder number, which we denote
their macro tree number : All nodes nodes except spine and left nodes are identified with their preorder
number. Spine nodes are identified with their preorder number + 1 if they have a left node as a child and
with their preorder number otherwise, and left nodes are identified with their preorder number - 1. Hence,
we swap the order of left and spine nodes in the macro tree numbering. We will explain the reason for using
macro tree numbers below. Note that the macro tree numbers are the same as the preorder numbers would
be if we had let l(v, w) and r(v, w) be children of v instead of children of s(v, w) in the definition of the
macro tree.

Let S ⊆ V (T) be any subset of nodes of T . A micro-macro node array (abbreviated node array) X
representing S is an array of size nM . The ith entry, denoted X [i], represents the subset of nodes in C(i),
that is, X [i] = V (C(i)) ∩ S. The set X [i] is encoded using the same bit representation as in Section 5.2. By
our choice of parameter in the clustering the space used for this representation is O(nT / lognT).

We can now explain the reason for using macro tree numbers to identify the nodes instead of preorder
numbers. Consider a node array representing a deep set. If a left node and the corresponding spine node
are both non-empty, then all nodes in the left node are to the left of the node in the spine node. Formally,

Proposition 8 Consider a node array X representing a deep set X . For any pair of nodes v, w ∈ X , such
that v ∈ X [i] and w ∈ X [j], i &= j, we have

v ! w ⇔ i < j .

Proof. By Proposition 6(v) the claim is true for i! j. The remaining cases are i = l(v′, w′) and j = s(v′, w′)
(Proposition 6 (iii)) and i = s(v′, w′) and j = r(v′, w′) (Proposition 6(iv)). In both cases i < j and it follows
immediately that v!w ⇒ i < j. For the other direction, it follows from the structure of the macro tree that
in both cases either v ! w or w ≺ v. But X is deep and thus v ! w. $

Thus, by using macro tree numbers we encounter the nodes in X according to their preorder number in the
original tree T . This simplifies the implementation of all the procedures except Deep, since they all get deep
sets as input.

We now present the detailed implementation of the set procedures on node arrays. As in Section 4 we
assume that the input to all of the procedures, except Deep, represent a deep set. Let X be a node array.

27

Implementation of Parent Procedure Parent takes a node array X representing a deep set as input.

Procedure Parent(X)

1 Initialize an empty node array R of size nM (R[i] := ∅ for i = 1, . . . nM) and set i := 1.
2 while i ≤ nM do
3 while X [i] = ∅ do i := i+ 1.
4 There are three cases depending on the type of i:
5 case 1. i ∈ {l(v, w), r(v, w)}
6 Compute N := parentC(i,s(v,w),v)(X [i]) .
7 foreach j ∈ {i, s(v, w), v} do
8 R[j] := R[j] ∪ (N ∩ V (C(j))).
9 end

10

11 case 2. i = l(v)
12 Compute N := parentC(i,v)(X [i]) .
13 foreach j ∈ {i, v} do
14 R[j] := R[j] ∪ (N ∩ V (C(j))).
15 end
16

17 case 3. i &∈ {l(v, w), r(v, w), l(v)}
18 Compute N := parentC(i)(X [i]) .
19 if N &= ∅ then
20 set R[i] := R[i] ∪N .
21 else if j := parentM (i) &= ⊥ then
22 set R[j] := R[j] ∪ {first(j)}.
23 end
24 Set i := i+ 1.
25 end
26 Return R.

Procedure Parent has three cases. Case 1 handles the fact that left or right nodes may have a node on
a spine or the top boundary node as parent. Since no left or right nodes can have their parent outside their
cluster there is no need to compute parents in the macro tree. Case 2 handles the fact that a leaf node may
have the boundary node as parent. Since no leaf node can have its parent outside its cluster there is no need
to compute parents in the macro tree. Case 3 handles boundary and spine nodes. In this case there is either
a parent within the micro forest or we can use the macro tree to compute the parent of the root of the micro
tree. Since the input to Parent is deep we only need to do one of the two things. If the computation of
parent in the micro tree returns a nonempty set, this set is added to the output (line 18). Otherwise (the
returned set is empty), we compute parent of i in the macro tree (line 19). If the computation of parent in
the macro tree returns a node j, this will either be a spine node or a boundary node. To take care of the
case where j is a spine node, we add the lowest node (first(j)) in j to the output (line 20). If j is a boundary
node this is just j itself.

Implementation of Nca We now give the implementation of procedure Nca. The input to procedure
Nca is two node arrays X and Y representing two subsets X ,Y ⊆ V (T), |X | = |Y| = k. The output is a
node array R representing the set Deep({nca(Xi,Yi) | 1 ≤ i ≤ k}), where Xi and Yi is the ith element of
X and Y, w.r.t. their preorder number in the tree, respectively. We also assume that we have Xi ! Yi for
all i (since Nca is always called on a set of minimum ordered pairs). Note, that Xl and Yl can belong to
different clusters/nodes in the macro tree, i.e., we might have Xl ∈ X [i] and Yl ∈ Y [j] where i &= j.

28

Procedure Nca(X ,Y)

1 Initialize an empty node array R of size nM , set i := 1 and j := 1.
2 while i ≤ nM and j ≤ nM do
3 while X [i] = ∅ do i := i+ 1.
4 while Y [j] = ∅ do j := j + 1.
5 Set n := min(size(X [i]), size(Y [j])), Xi := left(n,X [i]), and Yj := left(n, Y [j]).
6 Compare i and j. There are two cases:
7 case 1. i = j.
8 Set

S :=

{

C(i, v), if i = l(v),

C(i, s(v, w), v), if i ∈ {l(v, w), r(v, w)}.

9 Compute N := ncaS(Xi, Yj).
10 foreach macro node h = c(s) where s ∈ V (S) do
11 set R[h] := R[h] ∪ (N ∩ V (C(h))).
12 end
13

14 case 2. i &= j.
15 Compute h := ncaM (i, j). There are two subcases:
16 case (a) h is a boundary node
17 Set R[h] := 1.
18 case (b) h is a spine node s(v, w)
19 There are three subcases:
20 case i. i ∈ {l(v, w), s(v, w)} and j ∈ {s(v, w), r(v, w)}
21 Compute N := ncaC(i,j,s(v,w),v)(Xi, Yj).
22

23 case ii. i = l(v, w) and w ' j
24 Compute N := ncaC(i,s(v,w),v,w)(right(1, Xi), w).
25 case iii. j = r(v, w) and w ' i
26 Compute N := ncaC(j,s(v,w),w,v)(w, left(1, Yj)).
27

28 Set R[h] := R[h] ∪ (N ∩ V (C(h))) and R[v] := R[v] ∪ (N ∩ V (C(v))).
29

30 Set X [i] := X [i] \Xi and Y [j] := Y [j] \ Yj .
31 end
32 Return Deep(R).

In the main loop of procedure Nca (line 2–27) we first find the next non-empty entries in the node arrays
X [i] and Y [j] (line 3 and 4). We then compare the sizes of X [i] and Y [j] and construct two sets of equal
sizes Xi and Yj consisting of the min(size(X [i]), size(Y [j])) leftmost nodes from X [i] and Y [j] (line 5). In
Section 5.4 we prove the following invariant on Xi and Yj

left(1, Xi) = Xl and left(1, Yj) = Yl for some l .

The procedure has two main cases.

• If i = j (Case 1) then i is either a leaf, left, or right node due to the invariant and the assumption
on the input that Xl ! Yl (for a formal proof see Section 5.4). If i is a leaf node the nearest common
ancestors of all pairs in Xi and Yj are in the leaf node or the boundary node. If i is a left or right node
the nearest common ancestors of all the pairs are in i, on the spine, or in the top boundary node. In
line 9 we compute nca in the appropriate cluster depending on the type of i.

• If i &= j (Case 2) we first compute the nearest common ancestor h of i and j in the macro tree (line

29

14). Due to the structure of the macro tree h is either a spine node or a boundary node (left, right,
and leaf nodes have no descendants). If h is a boundary node all pairs in Xi and Yj have the same
nearest common ancestor, namely h (Case 2(a)). If h is a spine node there are three cases depending
on the types of i and j.

– In Case 2(b)i we have i = l(v, w) and j ∈ {s(v, w), r(v, w)} (see Figure 8(d) and (f)), or i =
s(v, w) and j = r(v, w) (see Figure 8(e)). In this case we compute nca in the cluster containing
i, j, s(v, w), v.

– In case 2(b)ii i is a left node l(v, w) and j is a (not necessarily proper) descendant of w (see
Figure 8(g)). In this case we compute nca on the rightmost node in Xi and w in the cluster
containing i, v, w, s(v, w). We can restrict the computation to right(1, Xi) because we always
run Deep on the output from Nca before using it in any other computation and all nearest
common ancestors of the pairs in Xi and Yj will be on the spine, and the deepest one will be the
nearest common ancestor of the rightmost nodes in Xi and Yj (see Section 5.4 for a formal proof).

– Case 2(b)iii is similar to Case 2(b)ii.

In the end of the iteration we have computed the nearest common ancestors of all the pairs in Xi and Yj

and the nodes from these pairs are removed from X [i] and Y [j].

Implementation of Deep The implementation ofDeep resembles the previous implementation, but takes
advantage of the fact that the input list is in macro tree order.

Procedure Deep(X)

1 Initialize an empty node array R of size nM .
2 Find the smallest j such that X [j] &= ∅. If no such j exists stop. Set i := j + 1.
3 while i ≤ nM do
4 while X [i] = ∅ do i := i+ 1.
5 Compare j and i. There are three cases:
6 case 1. j ! i.
7 Set

S :=











C(j, v), if j = l(v),

C(j, s(v, w), v), if j ∈ {l(v, w), r(v, w)},
C(j), otherwise.

8 Set R[j] := deepS(X [j]).
9 case 2. j ≺ i.

10 if j = s(v, w) and i = r(v, w) then
11 compute N := deepC(r(v,w),s(v,w),v)(X [i] ∪X [j]).
12 Set R[j] := X [j] ∩N .
13 end
14 case 3. i ≺ j (can happen if i = s(v, w) and j = l(v, w)).
15 Compute N := deepC(l(v,w),s(v,w),v)(X [i] ∪X [j]).
16 Set R[j] := X [j] ∩N , X [i] := X [i] ∩N .
17 Set j := i and i := i+ 1.
18 end
19 Set R[j] := deepS(X [j]), where S is set as in Case 1.
20 Return R.

The procedure Deep has three cases. In case 1 node i is to the right of our ”potential output node” j.
Since any node l that is a descendant of j must be to the left of i (l < i) it cannot appear later in the list

30

X than i. We can thus safely add deepS(X [j]) to R at this point. To ensure that the cluster we compute
Deep on is a tree we include the top boundary node if j is a leaf node and the top and spine node if j is a
left or right node. We add the result to R and set i to be our new potential output node.

In case 2 node j is an ancestor of i and therefore no node from C(j) can be in the output list unless j is
a spine node and i is the corresponding right node. If this is the case we compute Deep of X [j] and X [i]
in the cluster containing i and j and add the result for j to the output and set i to be our new potential
output node.

In case 3 node i is an ancestor of j. This can only happen if j is a left node and i the corresponding
spine node. We compute Deep of X [j] and X [i] in the cluster containing i and j and add the result for j
to the output. We restrict X [i] to the nodes both in X [i] and the result N of the Deep computation, and
let i be our potential output node. The results for X [i] cannot be added directly to the input since there
might be nodes later in the input that are descendants of i. Since a left node has no children we can safely
add the result for j to the output.

After iterating through the whole node array X we add the last potential node j to the output after
computing Deep of it as in Case 1.

Implementation of MopRight We now give the implementation of procedure MopRight. Procedure
MopRight takes a pair of node arrays (X,Y) and another node array Z as input. The pair (X,Y) represents
a set of minimum ordered pairs, where the first coordinates are in X and the second coordinates are in Y .
To simplify the implementation of procedure MopRight it calls two auxiliary procedures MopSim and
Match defined below. Procedure MopSim computes mop of Y and Z, and procedure Match computes the
first coordinates from X corresponding to the first coordinates from the minimum ordered pairs of Y and Z
computed by MopSim.

Procedure MopRight((X ,Y),Z)

1 Compute M := MopSim(Y, Z).
2 Compute R := Match(X,Y,M |1).
3 Return (R,M |2).

Procedure MopSim takes two node arrays as input and computes mop of these.

31

Procedure MopSim(X ,Y)

1 Initialize two empty node arrays R and S of size nM .
2 Set i := 1, j := 1, (r1, r2) := (0, ∅), (s1, s2) := (0, ∅).
3 repeat
4 while X [i] = ∅ do set i := i+ 1.
5 There are four cases:
6 case I. i = l(v, w) for some v, w.
7 Until Y [j] &= ∅ and either i! j, i = j, or j = s(v, w) do set j := j + 1.
8 case II. i = s(v, w) for some v, w.
9 Until Y [j] &= ∅ and either i! j or j = r(v, w) do set j := j + 1.

10 case III. i ∈ {r(v, w), l(v)} for some v, w.
11 Until Y [j] &= ∅ and either i! j or i = j do set j := j + 1.
12 case IV. i is a boundary node.
13 Until Y [j] &= ∅ and i! j do set j := j + 1.
14

15 Compare i and j. There are two cases:
16 case 1. i! j.
17 if s1 < j then
18 set R[r1] := R[r1] ∪ r2, S[s1] := S[s1] ∪ s2, and (s1, s2) := (j, leftC(j)(1, Y [j])).
19 end
20 Set (r1, r2) := (i,rightC(i)(1, X [i])) and i = i+ 1.
21

22 otherwise // case 2.
23 Compute (r, s) := mopC(i,j,v)(X [i], Y [j]), where v is the top boundary node in the cluster i

and j belong to.
24 if r &= ∅ then
25 if s1 < j or if s1 = j and leftofC(i,j)(X [i], s2) = ∅ then
26 set R[r1] := R[r1] ∪ r2, S[s1] := S[s1] ∪ s2.
27 end
28 Set (r1, r2) := (i, r) and (s1, s2) := (j, s).
29 end
30 There are two subcases:
31 case (a) i = j, or i = l(v, w) and j = s(v, w).
32 Set X [i] := rightC(i)(1,rightofC(i)(X [i], r)) and j := j + 1.
33 case (b) i = s(v, w) and j = r(v, w).
34 if r = ∅ then set j := j + 1 else set i := j.
35

36 endsw
37 until i > nM or j > nM ;
38 Set R[r1] := R[r1] ∪ r2 and S[s1] := S[s1] ∪ s2.
39 Return (R,S).

Procedure MopSim is somewhat similar to the previous implementation of the procedure MopRight

from Section 4.2. As in the previous implementation we have a ”potential pair” ((r1, r2), (s1, s2)), where r1
and s1 are macro nodes, r2 ⊆ X [r1], s2 ⊆ Y [s1], where r2 = {r1! · · ·!rk} and s2 = {s1! · · ·!sk} such that
rl ! sl for l = 1, . . . k. Furthermore, for any l there exists no node y ∈ Y [j], for j < s1, such that rl ! y ! sl

and no node x ∈ X [i], for i < r1, such that rl ! x! sl.
We have the following invariant at the beginning of each iteration:

"x ∈ X [i], such that x" x′, for any x′ ∈ r2. (8)

We first find the next non-empty macro node i. We then have 4 cases depending on which kind of node

32

i is.

• In Case I i is a left node. Due to Proposition 6 we can have mop in i (case (i), see Fig. 8(b)), in the
spine (case (iii), see Fig. 8(d)), or in a node to the right of i (case(v)).

• In Case II i is a spine node. Due to Proposition 6 we can have mop in the right node (case (iv) , see
Fig. 8(e)) or in a node to the right of i (case(v)).

• In Case III i is a right node or a leaf node. Due to Proposition 6 we can have mop in i (case (i) and
(ii), see Fig. 8(b)-(c)) or in a node to the right of i (case(v)).

• In the last case (Case IV) i must be a boundary node and mop must be in a node to the right of i.

We then compare i and j. The case where i! j is similar to the previous implementation of the procedure.
We compare j with our potential pair (line 16). If s1 < j then s1 ! j since the input is deep, and we can
insert r2 and s2 into our output node arrays R and S, respectively. We also set s1 to j and s2 to the leftmost
node in Y [j] (if s1 = j we already have (s1, s2) = (j, leftC(j)(1, Y [j]))). Then—both if s1! j or s1 = j—we
set r1 to i and r2 to the rightmost node in X [i] (line 19). That we only need the rightmost node in X [i] and
the leftmost node in Y [j] follows from the definition of mop and the structure of the macro tree.

Case 2 (i ! j) is more complicated. In this case we first compute mop in the cluster i and j belong
to (line 21). If this results in any minimum ordered pairs (r &= ∅) we must update our potential pair (line
22–27). Otherwise we leave the potential pair as it is and only update i and j. If r &= ∅ we compare s1 and
j (line 23). As in Case 1 of the procedure we add our potential pair to the output and update the potential
pair with r and s if s1 < j, since this implies s1 ! j. If s1 = j and no nodes in X [i] are to the left of the
leftmost node in s2 we also add the potential pair to the output and update it. We show in the next section
that in this case |s2| = 1. Therefore we can safely add the potential pair to the output. In all other cases
the pair (r, s) &= (∅, ∅) shows a contradiction to our potential pair and we update the potential pair without
adding anything to the output.

Finally, in Case 2, we update X [i], i, and j (line 28–32). There are two cases depending on i and j. In
Case (a) either i = j or i is a left node and j is the corresponding spine node. In both cases we can have
nodes in X [i] that are not to the left of any node in Y [j]. These nodes could be in a minimum ordered
pair with nodes from another macro node. We show in the next section that this can only be true for the
rightmost node in X [i]. X [i] is updated accordingly. After this update all nodes in Y [j] are to the left of all
nodes in X [i] in the next iteration and therefore j is incremented. In Case (b) i is a spine node and j is the
corresponding right node. Since the input lists are deep, there is only one node in X [i]. If r = ∅ then no
node in Y [j] is to the right of the single node in X [i]. Since the input arrays are deep, no node later in the
array X can be to the left of any node in Y [j] and we therefore increment j. If r &= ∅ then (r1, r2) = (i,X [i])
and we update i. Instead of incrementing i by one we set i := j, this is correct since all macro nodes with
macro node number between i and j are descendants of i, and thus contains no nodes from X , since X is
deep.

When reaching the end of one of the arrays we add our potential pair to the output and return (line
35–36).

As in Section 4.2 we can implement MopLeft similarly to MopRight.

Recall that proceudre MopRight calls Match to find the first coordinates from X corresponding to the
first coordinates from the minimum ordered pairs computed by MopSim. Procedure Match takes three
node arrays X , Y , and Y ′ representing deep sets X , Y, and Y ′, where |X | = |Y|, and Y ′ ⊆ Y. The output
is a node array representing the set {Xj | Yj ∈ Y ′}.

33

Procedure Match(X ,Y ,Y ′)

1 Initialize an empty node array R of size nM .
2 Set XL := ∅, YL := ∅, Y ′

L := ∅, x := 0, y := 0, i := 1 and j := 1.
3 repeat
4 while X [i] = ∅ do set i := i+ 1.
5 while Y [j] = ∅ do set j := j + 1.
6 Set x := size(X [i]) and y := size(Y [j]).
7 Compare Y [j] and Y ′[j]. There are two cases:
8 case 1. Y [j] = Y ′[j]
9 Compare x and y. There are three subcases:

10 case (a) x = y.
11 Set R[i] := R[i] ∪X [i], i := i+ 1, and j := j + 1.
12

13 case (b) x < y.
14 Set R[i] := R[i] ∪X [i], Y [j] := right(y − x, Y [j]), Y ′[j] := Y [j], and i := i+ 1.
15

16 case (c) x > y.
17 Set XL := left(y,X [i]), R[i] := R[i] ∪XL, X [i] := X [i] \XL, and j := j + 1.
18

19 case 2. Y [j] &= Y ′[j]
20 Compare x and y. There are three subcases:
21 case (a) x = y.
22 Set R[i] := R[i] ∪ match(X [i], Y [j], Y ′[j]), i := i+ 1, and j := j + 1.
23

24 case (b) x < y.
25 Set YL := left(x, Y [j]), Y ′

L := Y ′[j] ∩ YL, R[i] := R[i] ∪ match(X [i], YL, Y ′
L),

26 Y [j] := Y [j] \ YL, Y ′[j] := Y ′[j] \ Y ′
L, and i := i+ 1.

27

28 case (c) x > y.
29 Set XL := left(y,X [i]), R[i] := R[i] ∪ match(XL, Y [j], Y ′[j]),
30 X [i] := X [i] \XL, and j := j + 1.
31

32

33 until i > nM or j > nM ;
34 Return R.

Procedure Match proceeds as follows. First we find the first non-empty entries in the two node arrays
X [i] and Y [j] (line 4–5). We then compare Y [j] and Y ′[j] (line 7).

If they are equal we keep all nodes in X with the same rank as the nodes in Y [j] (case 1). We do this by
splitting into three cases. If there are the same number of nodes X [i] and Y [j] we add all nodes in X [i] to
the output and increment i and j (case 1(a)). If there are more nodes in Y [j] than in X [i] we add all nodes
in X [i] to the output and update Y [j] and Y ′[j] to contain only the y−x leftmost nodes in Y [j] (case 1(b)).
We then increment i and iterate. If there are more nodes in X [i] than in Y [j] we add the first y nodes in
X [i] to the output, increment j, and update X [i] to contain only the nodes we did not add to the output
(case 1(c)).

If Y [j] &= Y ′[j] we call the cluster procedure match (case 2). Again we split into three cases depending
on the number of nodes in X [i] and Y [j]. If they have the same number of nodes we can just call match on
X [i], Y [j], and Y ′[j] and increment i and j (case 2(a)). If size(Y [j]) > size(X [i]) we call match with X [i]
the leftmost size(X [i]) nodes of Y [j] and with the part of Y ′[j] that are a subset of these leftmost size(X [i])
nodes of Y [j] (case 2(b)). We then update Y [j] and Y ′[j] to contain only the nodes we did not use in the
call to match and increment i. If size(Y [j]) < size(X [i]) we call match with the leftmost size(Y [j]) nodes

34

of X [i], Y [j], and Y ′[j] (case 2(c)). We then update X [i] to contain only the nodes we did not use in the
call to match and increment j.

Implementation of Fl Procedure Fl takes as input a node arrayX representing a deep set and a label α.

Procedure Fl(X , α)

1 q Initialize an empty node array R of size nM and two node lists L and S.
2 repeat
3 while X [i] = ∅ do set i := i+ 1.
4 There are three cases depending on the type of i:
5 case 1. i ∈ {l(v, w), r(v, w)}
6 Compute N := flC(i,s(v,w),v)(X [i], α).
7 if N &= ∅ then
8 foreach j ∈ {i, s(v, w), v} do set R[j] = R[j] ∪ (N ∩ V (C(j))).
9 else set L := L ◦ parentM (v).

10 case 2. i = l(v)
11 Compute N := flC(i,v)(X [i], α).
12 if N &= ∅ then
13 foreach j ∈ {i, v} do set R[j] := R[j] ∪ (N ∩ V (C(j))).
14 else set L := L ◦ parentM (v).
15 case 3. i &∈ {l(v, w), r(v, w), l(v)}
16 Compute N := flC(i)(X [i], α).
17 if N &= ∅ then
18 set R[i] := R[i] ∪N .
19 else set L := L ◦ parentM (i).
20

21 until i > nM ;
22 Compute the list S := flM (L, α).
23 foreach node i ∈ S do set R[i] := R[i] ∪ flC(i)(first(i), α)).
24 Return Deep(R).

The Fl procedure is similar to Parent. The cases 1, 2 and 3 compute Fl on a micro forest. If the result
is within the micro tree we add it to R and otherwise we store in a node list L the node in the macro tree
which contains the parent of the root of the micro forest. Since we always call Deep on the output from
Fl(X,α) there is no need to compute Fl in the macro tree if N is nonempty. We then compute Fl in the
macro tree on the list L, store the results in a list S, and use this to compute the final result.

Consider the cases of procedure Fl. In case 1 i is a left or right node. Due to Proposition 5 case (i)
and (ii) fl of a node in i can be in i or on the spine or in the top boundary node. If this is not the case
it can be found by a computation of Fl of the parent of the top boundary node of i’s cluster in the macro
tree (Proposition 5 case (iii)). In case 2 i is a leaf node. Then fl of a node in i must either be in i, in the
top boundary node, or can be found by a computation of Fl of the parent of the top boundary node of i’s
cluster in the macro tree. If i is a spine node or a boundary node (case 3), then fl of a node in i is either in
i or can be found by a computation of Fl of the parent of i in the macro tree.

5.4 Correctness of the Set Procedures

The following lemmas show that the set procedures are correctly implemented.

Lemma 18 Procedure Parent is correctly implemented.

Proof. We will prove that in iteration i the procedure correctly computes the parents of all nodes in the
macro node i. There are four cases depending on the type of i.

35

• Consider the case i ∈ {l(v, w), r(v, w)}, i.e., i is a left or right node. For all nodes x in C(i), parent(x)
is either in C(i), on the spine s(v, w), or is the top boundary node v. The parents of all input
nodes in C(i) is thus in N computed in Case 1 in the procedure. The last line in Case 1 (”For each
j ∈ {i, s(v, w), v}, . . .”) adds the set of parents to the appropriate macro node in the output array.

• If i is a leaf node l(v) then for any node x ∈ C(i), parent(x) is either in C(i) or is the boundary node
v. The parents of all input nodes in C(i) is thus in N computed in Case 2 in the procedure. The last
line in Case 2 (”For each j ∈ {i, v}, . . .”) adds the set of parents to the appropriate macro node in the
output array.

• If i is a spine node s(v, w) then the input contains at most one node in C(i), since the input to the
procedure is deep. For any x ∈ C(i), parent(x) is either a node on the spine or the top boundary
node v. This is handled by Case 3 in the procedure. Let x be the node in X [i]. If parent(x) = v,
then N = ∅, and we compute j, which is the parent v of i in the macro tree, and add j to the output
array (since j = v is a boundary node first(j) = v). If parent(x) is another node y on the spine, then
N = {y} &= ∅ and y is added to the output array.

• If i is a boundary node v, then parent(v) is either another boundary node v′, the bottom node on a
spine, or ⊥ if v is the root. This is handled by Case 3 in the procedure. In all three cases N = ∅
and we compute the parent j of i in the macro tree. If i is the root, then j = ⊥ and we do nothing.
Otherwise, we add first(j) to the output. If parent(v) is a boundary node then first(j) = j. If j is a
spine node then first(j) is the bottom node on j.

In each iteration of the procedure we might add nodes to the output, but we never delete anything written
to the output in earlier iterations. Procedure Parent thus correctly computes the parents of all nodes in X .
$

Before proving the correctness of procedure Nca we will prove the following invariant on the variables
Xi and Yj in the procedure.

Lemma 19 In procedure Nca we have the following invariant of Xi and Yj:

left(1, Xi) = Xl and left(1, Yj) = Yl for some l .

Proof. The proof is by induction on the number of iterations of the outer loop. After the while loop on
X in the first iteration (line 3), i is the smallest integer such that X [i] &= ∅. Due to the macro tree order
of the array X , X [i] contains the first nodes from X w.r.t. the preorder of the original tree (Proposition 8).
Similarly, Y [j] contains the leftmost node in Y. The invariant now follows immediately from the assignment
of Xi and Yj .

For the induction step consider iteration m and let i′ and j′ be the values of i and j after the while loops
in the previous iteration, i.e, after line 4. By the induction hypothesis left(1, Xi′) = Xl and left(1, Yj′) =
Yl for some l. Let n′ = min(size(X [i′]), size(Y [j′])). Then Xi′ contains Xl, . . . ,Xl+n′ and Yj′ contains
Yl, . . . ,Yl+n′ . We will show that left(1, Xi) = Xl+n′+1. In the end of the previous iteration we removed
Xi′ from X [i′] (line 26). There are two cases depending on wether X [i′] is empty or not at the beginning of
iteration m.

• If X [i′] &= ∅ then it clearly contains Xl+n′+1 as its leftmost node. Since a spine node can only contain
one node from X , i′ cannot be a spine node. Thus i = i′, when we get to line 5 in the current iteration
It follows that left(1, Xi) = Xl+n′+1.

• X [i′] = ∅. It follows from the macro tree order of X that X [i] contains Xl+n′+1 as its leftmost node.

It follows by a similar argument that left(1, Yj) = Yl+n′+1. $

36

Lemma 20 Let X and Y be two node arrays representing the deep sets X and Y, |X | = |Y| = k, and let
Xi and Yi denote the ith element of X and Y, w.r.t. their preorder number in the tree, respectively. For all
i = 1, . . . , k, assume Xi ! Yi. Procedure Nca(X,Y) correctly computes Deep({nca(Xi,Yi)|1 ≤ i ≤ k}).

Proof. We are now ready to show that the procedure correctly takes care of all possible cases from
Proposition 7. The proof is split into two parts. First we will argue that some of the cases from the
proposition cannot occur during an iteration of the outer loop of Nca. Afterwards we prove that the
procedure takes care of all the cases that can occur.

Case (iii) cannot happen since if i = j is a spine node then Xl is either a descendant or an ancestor of
Yl contradicting the assumption on the input that Xl ! Yl. Case (vi) can only happen if i &= j: If i = j and
we are in case (vi) then i = j is a boundary node, and this would imply that C(i) only consists of one node,
i.e., Xl = X [i] = Y [j] = Yl contradicting the assumption on the input that Xl ! Yl. Due to this assumption
on the input we also have that in case (iv) of the proposition i is either a left node or a spine node and j is a
spine node or a right node. For case (v) either i is a left node and j is a descendant of the bottom boundary
node of i’s cluster or j is a right node and i is a descendant of the bottom boundary node of j’s cluster. All
the other cases from case (v) would contradict the assumption that Xl ! Yl.

The procedure first constructs two sets Xi and Yj containing the elements Xl, . . . ,Xl+n and Yl, . . . ,Yl+n

for some l, respectively, where n = min(size(X [i]), size(Y [j])). The procedure Nca has two main cases
depending on whether i = j or not. Case 1 (i = j) takes care of cases (i)–(ii) from Proposition 7. Case 2
(i &= j) takes care of the remaining cases from Proposition 7 (iv)–(vi) that can occur.

First consider Case 1: We compute nearest common ancestors N of the n nodes in Xi and Yj in a cluster
S depending on what kind of node i is. We need to show that Case 1 handles Case (i) and (ii) from the
Proposition correctly.

• Case (i). i = j is a leaf node. By the Proposition the nearest common ancestors of the pairs in
(Xl,Yl), . . . , (Xl+n,Yl+n) from Xi and Yj is either in c(i) or in the boundary node, i.e., in C(i, v).

• Case (ii). i = j is a left or right node. By the Proposition the nearest common ancestors of the pairs
in {(Xl,Yl), . . . , (Xl+n,Yl+n)} from Xi and Yj is either in c(i), on the spine, or in the top boundary
node, i.e., in C(i, s(v, w), v).

Thus S is correctly set in both cases. After the computation of N in line 9 the output is then added to the
entries in the output array R for each of the macro nodes belonging to nodes in V (S) (line 10–12). Case 1
thus handles Case (i)-(ii) (and only these two cases) from Proposition 7.

Next consider Case 2 (i &= j). We first compute the nearest common ancestor h of i and j in the macro
tree. The macro node h is either a boundary node or a spine node due to the structure of the macro tree
(see also Proposition 7). We will show that Case 2 takes care of the remaining cases.

• Case (iv). From the above discussion it follows that we have one of the three following cases. i = l(v, w)
and j = s(v, w), i = l(v, w) and j = r(v, w), or i = s(v, w) and j = r(v, w). All three cases are handled
in Case 2(b)i of the procedure. It follows from the proposition that nca is computed in the correct
cluster.

• Case (v). It follows from the discussion above that either i = l(v, w) and w ' j, or j = r(v, w)
and w ' i. These two cases are handled by Case 2(b)ii and 2(b)iii of the procedure. It follows
from the Proposition that nca is computed in the correct cluster. We need to argue that we can
restrict the computation of nca to the pair (right(1, Xi), w) instead of computing nca for all nodes
in {Xl, . . . ,Xl+n}. Consider the case where i = l(v, w) and w ' j (Case 2(b)ii of the procedure). Since
w ' Yr for all r = l, . . . l + n, and Xl ! Xl+1 ! . . . ! Xl+n, then nca(Xr,Yr) ' nca(Xl+n,Yl+n) for
all r = l, . . . l + n. Thus we do not need to compute nca(Xr,Yr) for r &= n + l, since the output of
the procedure is Deep({nca(Xi,Yi)|1 ≤ i ≤ k}). A similar argument shows that we can restrict the
computation to (w, left(1, Yj)) in Case 2(b)iii.

37

• Case (vi). It follows from the discussion above and the proposition that i &= j and i and j are in
different clusters, and we are not in any of the cases from (iv) and (v). Thus h must be a boundary
node and all the pairs {(Xl,Yl), . . . , (Xl+n,Yl+n)} have the same nearest common ancestor, namely h.
This is handled by Case 2(a).

We have now argued that the procedure correctly takes care of all possible cases from Proposition 7. It
remains to show that all pairs from {nca(Xi,Yi)|1 ≤ i ≤ k} are considered during the computation. It
follows from the invariant that we only consider pairs from the input. In the last lines we remove the nodes
from the input that we have computed the ncas of in this iteration. It follows from the proof of the invariant
that no entry in the input arrays is left nonempty. Thus all pairs are taken care of. $

To prove that procedure Deep is correctly implemented we will use the following fact about preorder
and postorder numbers in the macro tree.

Proposition 9 Let i and j be nodes in the macro tree identified by their macro tree number such that i < j.
For all x ∈ C(i), y ∈ C(j) we have

1. pre(x) < pre(y) unless i = l(v, w) and j = s(v, w).

2. post(y) > post(x) unless i = s(v, w) and j = r(v, w).

Proposition 10 Let x1, . . . , xn be nodes from the macro tree associated with their macro tree number such
that x1 < x2 < · · · < xn. If xi ! xj for some i and j then xi ! xk for all xk > xj.

Proof. From xi ! xj we have pre(xi) < pre(xj) and post(xi) < post(xj). Since xk > xj we have
pre(xj) < pre(xk) unless xk = s(v, w) and xj = l(v, w). In that case, pre(xk) + 1 = pre(xj) > pre(xi). Since
xi ! xj we have xi &= xj and thus pre(xk) > pre(xi).

It remains to show that post(xi) < post(xk). Assume for the sake of contradiction that post(xk) <
post(xi) < post(xj). This implies xi ≺ xk and xj ≺ xk contradicting xi ! xj . $

We will first prove the following invariants on i and j in procedure Deep.

Lemma 21 In line 5 of procedure Deep we have the following invariant on i and j: For all l such that
j < l < i we have X [l] = ∅.

Proof. Let i′ be the value of i in line 5 of the previous iteration of the outer loop (line 3–18). Then i is the
smallest index greater than i′ such that the corresponding entry in X is nonempty. This is true since i was
set to i′ + 1 in the end of the previous iteration (line 17), and in line 4 of this iteration i was incremented
until we found a nonempty entry. Since j = i′ (this was also set in line 17 of the previous iteration), i is the
first nonempty entry greater than j and the claim follows. $

Lemma 22 At the beginning of each iteration of the main loop of procedure Deep (line 3) we have the
following invariant on j: For all nodes x ∈ X [j] and y ∈ X [l], where 1 ≤ l < j, we have x &≺ y.

Proof. Recall that x ≺ y ⇔ pre(x) < pre(y) and post(y) < post(x). By Proposition 9 the only case where
we can have pre(x) < pre(y) is if l = l(v, w) and j = s(v, w) for some v, w. Assume this is the case. If
X [l] = ∅ the claim follows trivially. Otherwise, let i′ and j′ be the values of i and j in the previous iteration,
respectively (since l < j and X [l] &= ∅ there must be such an iteration). We have j = l + 1, i′ = j = s(v, w)
and j′ = l = l(v, w). Thus in the previous iteration the procedure entered case 3, where X [i′] was set to
X [i′] ∩ deepC(l(v,w),s(v,w),v)(X [i′] ∪ X [j′]), and thus X [j] contains no nodes that are ancestors of nodes in
X [j′] = X [l].

$

38

Lemma 23 Procedure Deep is correctly implemented.

Proof. We will prove that x ∈ Deep(X) iff x ∈ X and there exists no y ∈ X such that x ≺ y.
Assume x ∈ Deep(X). Consider the iteration when x is assigned to the output. There are three cases

depending on which case we are in when x is added to the input. If j ! i (Case 1 of the procedure) then
x ∈ DeepS(X [j]) and it follows from the invariant on j (Lemma 22) that x has no descendants in any nodes
y ∈ X [l], l < j. For j < l < i the claim follows directly from Lemma 21. It remains to show that x has
no descendants in X [l] for l ≥ i. By Proposition 10 we have j ! l for all l > i and the claim follows from
Proposition 5.

If j ≺ i (Case 2 of the procedure) then j is a spine node s(v, w) and i is the corresponding right
node r(v, w), and we compute N := DeepC(r(v,w),s(v,w),v)(X [i] ∪ X [j]). Since x ∈ Deep(X) we have
x ∈ R[j] = X [j] ∩ N . It follows from the invariant (Lemma 22) and the computation of N that x has no
descendants in X [l] for any l ≤ j. For l > j it follows from the structure of the macro tree that for any l > i
we have j! l. For j < l < i the claim follows directly from Lemma 21. The claim follows from Proposition 5.
For j < l < i the claim follows directly from Lemma 21.

If i ≺ j (Case 3 of the procedure) then i is a spine node s(v, w) and j is the corresponding left node l(v, w),
and we computeN := DeepC(l(v,w),s(v,w),v)(X [i]∪X [j]). Since x ∈ Deep(X) we have x ∈ R[j] = X [j]∩N . It
follows from the computation of N that x has no descendants in X [i]∪X [j]. Since l(v, w) has no descendants
in the macro tree it follows from Proposition 5 that x has no descendants in X [l] for any l &= j.

If x is assigned to the output in line 19 then it follows from the invariant on j (Lemma 22) and the
computation of DeepS(X [j]) that x has no descendants in X .

For the other direction let x ∈ X be a node such that X ∩ V (T (x)) = {x}. Let l be the index such that
x ∈ X [l]. All nonempty entries in X are i in line 5 at some iteration. Consider the iteration when i = l.
Unless i = l(v, w) and j = s(v, w) (Case 3 of the procedure) X [i] is not changed in this iteration. If we are
in Case 3, then N is computed and X [i] is set to X [i]∩N . Since x has no descendants in X we have x ∈ N
and thus x ∈ X [i] after the assignment. At the end of this iteration j is set to i. Consider the next iteration
when j = l. If j ! i or i > nM then x ∈ DeepS(X [j]) = R[j]. If j ≺ i we have j = s(v, w) and i = r(v, w)
since x has no descendants in X . For the same reason we have x ∈ N and thus x ∈ X [j]∩N = R[j]. If i ≺ j
we have i = s(v, w) and j = l(v, w). Again x ∈ N and thus x ∈ X [j] ∩N = R[j]. $

We now consider procedures MopSim and Match.

Lemma 24 Let ((r1, r2), (s1, s2)) be as defined in procedure MopSim. Then r1 and s1 are macro nodes,
r2 ⊆ X [r1], s2 ⊆ Y [s1], where r2 = {r1 ! · · ·! rk} and s2 = {s1 ! · · ·! sk}. For any l = 1, . . . , k we have

1. rl ! sl,

2. for all j ≤ s1 there exists no node y ∈ Y [j] such that rl ! y ! sl,

3. for all i ≤ r1 there exists no node x ∈ X [i] such that rl ! x! sl.

Proof. It follows immediately from the code that r1 and s1 are macro nodes and that r2 ⊆ X [r1], s2 ⊆ Y [s1],
where r2 = {r1 ! · · ·! rk1} and s2 = {s1 ! · · ·! sk2}. Due to the macro tree order of the tree and the fact
that X represents a deep set, no node in X [i] can be to the right of any node in X [r1] for i < r1. To prove
condition 3 it is thus enough to prove it for i = r1. We proceed by induction on the number k of iterations
of the outer loop (line 3–34). We consider the time right after the kth iteration of the loop, i.e., right before
the (k + 1)th iteration. The base case (k = 0) is trivially satisfied.

For the induction step let i∗ and j∗ be the values of i and j at line 14 in iteration k. Let r′i and s′i for
i = 1, 2 be the values of ri and si, respectively, after the (k − 1)th round. There are 3 cases:

1. r′2 = r2 and s′2 = s2: the claim follows directly from the induction hypothesis.

2. r′2 &= r2 and s′2 = s2: condition 2 from the lemma follows directly from the induction hypothesis. Since
s2 and thus also s1 were not changed, r2 was set in case 1 of the procedure and j∗ = s1. Therefore,
i∗! j∗, r1 = i∗, and |r2| = 1. Let r2 = {r1} and s2 = {s1}. We have r1 = i∗! j∗ = s1 and thus r1 ! s1

39

satisfying condition 1 from the lemma. To prove condition 3 is satisfied we only have to consider the
case i = r1. Since r2 was set in case 1 of the procedure, r1 is the rightmost node in X [r1] and it follows
immediately that there exists no node x ∈ X [r1] such that r1 ! x! s1.

3. r′2 &= r2 and s′2 &= s2: We first prove condition 1 and 3. If the potential pair was set in case 1
(line 15–19) of the procedure then r1 = i∗ ! j∗ = s1 and |r2| = 1 implying r1 ! s1 (condition
1). The node r1 is the rightmost node in X [r1] (line 19) and it follows that there exists no node
x ∈ X [r1] such that r1 ! x! s1 proving condition 3. If the potential pair was set in case 2 then both
condition 1 and 3 follows from the correctness of the implementation of mop and the computation
(r, s) = mopC(i,j,v)(X [i∗], Y [j∗]) = mopC(i,j,v)(X [i∗], Y [s1]) in line 21.

Let y ∈ Y [j], for j ≤ s1, be a node such that y &∈ s2. To prove condition 2 is satisfied we will show
that rl is not to the left of y. There are two cases

• j = s1. Since s′2 &= s2 there are two cases depending on which case of the procedure the potential
pair was set in. If the potential pair was set in case 2 of the procedure the claim follows from the
correctness of the implementation of mop and the computation (r, s) = mopC(i,j,v)(X [i∗], Y [j∗]) =
mopC(i,j,v)(X [i∗], Y [s1]) in line 21.

If the potential pair was set in case 1, then r1 = i∗ ! j∗ = s1. Since s2 &= s′2, s2 was changed in
the kth iteration and is therefore the leftmost node in Y [s1] (line 17). The claim follows.

• j < s1. We will use that we just proved the claim for j = s1. Assume for the sake of contradiction
that there exists a y ∈ Y [j] such that rl ! y. Since Y is representing a deep set and due to the
macro tree order of Y this implies rl ! y! y′ for all y′ ∈ Y [s1] contradicting that the claim is true
for j = s1.

$

Lemma 25 We have the following invariant at the beginning of each iteration of the main loop (line 3) of
MopSim:

"x ∈ X [i], such that x" x′, for any x′ ∈ r2.

Proof. By induction on the number of iterations of the outer loop. In the base case r2 = ∅ and the condition
is trivially satisfied. Note that X is representing a deep set and thus either x! x′ or x′ ! x for all x ∈ X [i].
For the induction step let i′, j′, and r′2 be the values of i, j, and r2 respectively in the iteration before this.
By the induction hypothesis x′!x for all x ∈ X [i′] and x′ ∈ r′2. Due to the macro tree order of X and the fact
that X represents a deep set, all nodes in X [i′] are to the left of all nodes in X [i]. Thus, if r2 = r′2 it follows
from the induction hypotheses that x′ ! x for all x ∈ X [i] and x′ ∈ r′2 = r2. For r′2 &= r2 there are two cases:
If i′! j′ then r2 = rightC(i′)(1, X [i′]) and i > i′ and thus the condition is satisfied. Otherwise r2 was set in
case 2 of the procedure. Since r2 &= r′2 we have r2 = r ⊆ X [i′] and r &= ∅. There are two subcases: If i = j or
i = l(v, w) and j = s(v, w) (Case 2(a) of the procedure) then X [i] either contains a single node, which is the
rightmost of the nodes in X [i′] that are to the right of all nodes in r2 or if there are no such nodes X [i] = ∅. In
both cases the condition is satisfied. If i = s(v, w) and j = r(v, w) then i > i′ and the condition is satisfied. $

Lemma 26 Procedure MopSim is correctly implemented.

Proof. Let X and Y be the sets represented by X and Y , respectively. Let R = MopSim(X,Y)|1 and
S = MopSim(X,Y)|2. For simplicity we will slightly abuse the notation and write (x, y) ∈ MopSim(X,Y)
iff there exists an i such that x ∈ R[i] and y ∈ S[i]. We want to show that

(x, y) ∈ MopSim(X,Y) ⇔ (x, y) ∈ mop(X ,Y) .

40

Assume (x, y) ∈ MopSim(X,Y). Consider the round where x and y were added to R and S, respectively.
We have x = rl ∈ r2 and y = sl ∈ s2. We want to show that there is no node x′ ∈ X [i] for any i such that
x ! x′ ! y and no node y′ ∈ Y [j] for any j such that x ! y′ ! y. By Lemma 24 this is true for i ≤ r1 and
j ≤ s1. By the macro tree order of Y we have that y! y′ for any y′ ∈ Y [j] when j > s1. Let i′ be the value
of i in the round where x and y is added to the output. We will show that no node in X [i′] is to the left
of any node in s2. Due to the macro tree order of X this implies that no node in X [i] is to the left of any
node in s2 for any i ≥ i′. If i′ = r1 then it follows directly from Lemma 24. If i′ > r1 it follows from the
implementation of the procedure that i′ is the first non-empty entry in X greater than r1. Thus the claim
follows for any j. We now return to show that no node in X [i′] is to the left of any node in s2. There are
two cases depending on whether j = s1 or j > s1. If j > s1 then j was changed either in one of the four
cases I–IV, or in the previous iteration in case 2. If j was equal to s1 at the beginning of this iteration then
j was incremented in one of the four cases I–IV. Thus none of the cases applied to s1. By Proposition 6 no
node in X [i′] can be to the left of a node in X [s1]. Since s2 ⊆ X [s1] the claim follows. If j = s1 it follows
from case 2 that left(X [i′], s2) = ∅ (otherwise the potential pairs would not have been added to the output
in this iteration) and the claim follows immediately.

Now assume (x, y) ∈ mop(X ,Y). We will deal with each of the cases from Proposition 6 separately.

1. Case (i): c(x) = c(y) = r(v, w).

2. Case (i): c(x) = c(y) = l(v, w).

3. Case (ii): c(x) = c(y) = l(v).

4. Case (iii): c(x) = l(v, w) and c(y) = s(v, w).

5. Case (iv): c(x) = s(v, w) and c(y) = r(v, w).

6. Case (v): c(x) = l(v, w) and c(y) = r(v, w).

7. Case (v): c(x)! c(y) and c(x) and c(y) belong to different clusters.

Note that if c(x) ! c(y) then x is the rightmost node in X [c(x)] and y is the leftmost node in Y [c(y)]. We
first show that in all cases we will have x = rl ∈ r2 and y = sl ∈ s2 for some l at some iteration. Consider
the first iteration where either x ∈ X [i] or y ∈ Y [j]. Let i′ and j′ be the values of i and j, respectively, in
this iteration. There are three cases:

(a) x ∈ X [i′] and y ∈ Y [j′]. For case 1–5 the procedure goes into case 2. From the correctness of mop we
get x ∈ r and y ∈ s. Thus r &= ∅ and we set (r1, r2) = (i′, r) and (s1, s2) = (j′, s) and the claim follows.
For case 6–7 the procedure goes into case 1. Since this iteration is the first where y ∈ Y [j] we have
j′ > s1 and we set (r1, r2) = (i′,rightC(i′)(1, X [i′])) and (s1, s2) = (j′, leftC(j′)(1, Y [j′])). Since x is
the rightmost node in X [i′] and y is the leftmost node in Y [c(j′)] the claim follows.

(b) x ∈ X [i′] and y &∈ Y [j′]. Since (x, y) ∈ mop(X ,Y) this implies j′ < c(y) and there exists no node
y′ ∈ Y [j′] such that x ! y′. Assume that there existed such a y′. Then x ! y′ ! y due to the macro
tree order of Y contradicting (x, y) ∈ mop(X ,Y). Thus i′ &! j′. From case I–IV of the procedure it
follows that either i′ = j′, i′ = l(v, w) and j′ = s(v, w), or i′ = s(v, w) and j′ = r(v, w). From this and
j′ < c(y) it follows that we are in case 4 or 7 from above.

The procedure enters case 2 in this iteration. If we are in case 4 then i′ = l(v, w) = j′ and c(y) = s(v, w).
If r = ∅ then i = i′, X [i′] is unchanged, and j = j′ + 1 = s(v, w) = c(y) at the end of this iteration.
If r &= ∅ then x must be to the right of all nodes in x′ ∈ r. Assume that there is a x′ ∈ r such
that x ! x′. Since x′ ∈ r there exists a node y′ ∈ s such that x′ ! y′ ! y. That y′ ! y follows from
y′ ∈ l(v, w) and y ∈ s(v, w) and the assumption that Y is deep. Thus x ! x′ ! y′ ! y contradicting
that (x, y) ∈ mop(X ,Y). Therefore, i = i′, x ∈ X [i′] and j = j′ + 1 = s(v, w) = c(y) at the end of
this iteration. From case I of the procedure and the analysis of case (a) it follows that x = rl ∈ r2 and
y = sl ∈ s2 for some l.

41

Now assume we are in case 7. By the same argument as before i = i′, x ∈ X [i], and j > j′ at the end
of this iteration. Unless i′ = l(v, w) = j′ this implies that i ! j at line 14 (”Compare i and j”) in the
next iteration. If i′ = l(v, w) = j′ then either i ! j after the first loop in the next iteration (line 7),
and the claim follows as before, or i = l(v, w) and j = s(v, w). In the last case we get into case (b)
again, but it follows from the analysis that in the iteration after the next we will have i ! j = c(y).
The claim follows from the analysis of case (a).

(c) x &∈ X [i′] and y ∈ Y [j′]. It follows by inspection of the cases that unless we are in case 1 we have i′! j′.
If we are in case 1 (j′ = c(x) = r(v, w) = c(y)) we have either i′ ! j′ or i′ = s(v, w). First we consider
the cases 2–7. Since i′ ! j′ the procedure enters case 1 in this iteration. Thus i is incremented and j
stays the same. This happens until i = c(x). Now consider case 1. If i′ ! j′ the procedure enters case
1 in this iteration. Thus i is incremented and j stays the same. In the next iteration either the same
happens or i′ = s(v, w). If i′ = s(v, w) the procedure enters case 2. Since i′ is a spine node and X is
deep, X [i] contains only one node x′. By the structure of the macro tree and the assumption that X
is deep x′ ! x. Since x ! y ∈ Y [j′] this implies r &= ∅. It follows from case 2(b) of the procedure that
i is incremented while j stays the same. At line 14 (”Compare i and j”) in the next iteration we will
have j = i = r(v, w) since all entries in X between j′ and r(v, w) are empty due to the assumption
that X is deep. The claim follows from the analysis in case (a).

It remains to show that once x = rl ∈ r2 and y = sl ∈ s2 they will stay this way until added to the output.
Consider the iteration where x and y are assigned to r2 and s2. At the end of this iteration either i or j
or both are incremented. Assume j is incremented while the potential pairs are still unchanged. Since j is
incremented we have s1 < j until s1 is changed. It follows from case 1 and 2 of the procedure that in this
case (r1, r2) is only changed if at the same time (s1, s2) are changed and right before that (r1, r2) and (s1, s2)
are added to the output.

Consider first case 1–3. If i is incremented then j is incremented in one the cases I–V in the next iteration
since i′ = j′. By the above argument x and y are added to the output. For case 4 j is incremented (case 2(a)
of the procedure) and the claim follows as before. For case 5–7 first note that r2 and s2 contain only one node
each, i.e., x = r2 and y = s2. For case 5 i is incremented (case 2(b) of the procedure). Since X is deep we
have i ≥ r(v, w) = j′ at line 14 (”Compare i and j”) in the next iteration. If i > r(v, w) then j > j′ and the
claim follows. If i = r(v, w) the procedure enters case 2. If r = ∅ then j is incremented and the claim follows.
If r &= ∅ then s1 = j and (x, y) ∈ mop(X ,Y) implies leftC(i,j)(X [i], s2) = leftofC(i,j)(X [i], y) = ∅. Thus
(r1, r2) and (s1, s2) are added to the output. If we are in case 6 and 7, i is incremented. Consider case 6.
Since (x, y) ∈ mop(X ,Y) all entries in X between l(v, w) and r(v, w) are empty. Thus at line 14 (”Compare
i and j”) in the next iteration i ≥ r(v, w). The proof is equivalent to the one for case 5. Consider case 7.
If j is a boundary node then all entries in X between c(x) and j are empty. Thus j is incremented in the
second loop of the next iteration. For all other cases for j the proof is similar to the proof of case 5. $

Lemma 27 In procedure Match we have the following invariant of X [i] and Y [j] in line 6:

left(1, X [i]) = Xl and left(1, Y [j]) = Yl for some l .

Proof. Induction on the number of iterations of the outer loop. Base case: In the first iteration X [i] and
Y [j] are the first nonempty entries in X and Y and thus left(1, X [i]) = X1 and left(1, Y [j]) = Y1. For
the induction step let i′ and j′ be the values of i and j in the previous iteration. By the induction hypothesis
left(1, X [i′]) = Xl′ and left(1, Y [j′]) = Yl′ . If x = |X [i′]| = |Y [j′]| both i and j were incremented and
left(1, X [i]) = Xl′+x and left(1, Y [j]) = Yl′+x. If x = |X [i′]| < |Y [j′]| then i was incremented implying
left(1, X [i]) = Xl′+x. In that case j = j′ and Y [j] = left(x, Y [j′]) implying left(1, Y [j]) = Yl′+x. Sim-
ilarly, if |X [i′]| > |Y [j′]| = y we have left(1, X [i]) = Xl′+y. In that case j = j′ and left(1, Y [j]) = Yl′+y. $

Lemma 28 Procedure Match is correctly implemented.

42

Proof. We need to show that for all 1 ≤ k ≤ |X |: Xk ∈ Match(X,Y, Y ′) ⇔ Xk ∈ {Xj|Yj ∈ Y}. Consider
the iteration where Xk ∈ X [i] and Yk ∈ Y [j]. By Lemma 27 such an iteration exists. If Y [j] = Y [j′] then
Yk ∈ Y ′ implying Xk ∈ {Xj |Yj ∈ Y}. It follows from the implementation of case 1(a) and 1(b) that if x ≤ y
all nodes in X [i] are added to the output and thus Xk ∈ Match(X,Y, Y ′). If x > y then Xk ∈ left(y,X [i])
since Yk ∈ Y [j] and thus Xk ∈ Match(X,Y, Y ′).

If Y [j] &= Y ′[j] the procedure calls match with some subset of X [i], Y [j], and Y ′[j] depending on the
size of x and y. By Lemma 27 and the correctness of match it follows that Xk ∈ Match(X,Y, Y ′) ⇔ Xk ∈
{Xj |Yj ∈ Y}. $

Lemma 29 Procedure MopRight is correctly implemented.

Proof. Follows from the correctness of MopSim (Lemma 26) and Match (Lemma 28). $

Finally, we consider correctness of the Fl procedure.

Lemma 30 Procedure Fl is correctly implemented.

Proof. Let X denote the set represented by X and let F = {fl(x, α)|x ∈ X}. To show Fl(X,α) ⊆ F we will
first show that for any node x added to R during the computation x ∈ F . Consider a node x ∈ R[i] for some
i. Either x was added directly to R after a computation of N in one of the three cases of the procedure or
it was added after the computation of S. In the first case x ∈ F follows from the correctness of FlC . If x
was added after the computation of S it follows from the correctness of FlM that x ∈ C(i) for some i ∈ S.
Due to the correctness of FlC we have x ∈ F .

To show Deep(F) ⊆ Fl(X,α) we use Proposition 5. Let x be a node in Deep(F) and let x′ be a node
in X such that fl(x′, α) = x. We have x′ ∈ X [i] for some i. If i is a left or right node then according to
Proposition 5 x can be in i (case (i)), on the spine (case (ii)), in the top boundary node (case (ii)), or in an
ancestor of i in the macro tree (case (iii)). If x is in the same cluster as x′ then it follows from the correctness
of FlC that x ∈ N . Thus x is added to R and due to the correctness of Deep we have x ∈ Fl(X,α). If c(x) is
in a different cluster than c(x′) then c(x) is an ancestor of c(x′) in the macro tree due to Proposition 5. Since
x ∈ Deep(F) we have N = ∅ and thus parent(v) ≺M c(x′) is added to L. It follows from the correctness of
FlM that c(x) ∈ S. Due to the structure of the macro tree c(x) is either a boundary node or a spine node
and thus x = flC(c(x))(first(c(x)), α) = FlC(c(x))(first(c(x)), α). The last equality follows from the correctness
of FlC . That x ∈ Fl(X,α) now follows from the above analysis showing that only nodes from F are added
to R and the correctness of Deep.

If i is a leaf node then x can be in i (case (i)), in the top boundary node (case (iii)), or in an ancestor
of i in the macro tree (case (iii)). The correctness follows by an analysis similar to the one for the previous
case. If i is a spine node or a boundary node, then x is either in i (case (i)) or in an ancestor of i in the
macro tree (case (iii)). The correctness follows by an analysis similar to the one for the first case. $

5.5 Complexity of the Tree Inclusion Algorithm

To analyze the complexity of the node array implementation we first bound the running time of the above
implementation of the set procedures. All procedures scan the input from left-to-right while gradually
producing the output. In addition to this procedure Fl needs a call to a node list implementation of Fl on
the macro tree. Given the data structure described in Section 5.2 it is easy to check that each step in the
scan can be performed in O(1) time giving a total of O(nT / lognT) time. Since the number of nodes in the
macro tree is O(nT / lognT), the call to the node list implementation of Fl is easily done within the same
time. Hence, we have the following lemma.

Lemma 31 For any tree T there is a data structure using O(nT) space and O(nT lognT) preprocessing time
which supports all of the set procedures in O(nT / lognT) time.

43

Next consider computing the deep occurrences of P in T using the procedureEmb of Section 3 and Lemma 31.
The following lemma bounds the space usage.

Lemma 32 The total size of the saved embeddings at any time during the computation of Emb(root(P)) is
O(nT).

Proof. Let v be the node for which we are currently computing Emb. Let p be the path from the root to v
and let w0, . . . , wl be the light nodes on this path. We have l = ldepth(v). As in the proof of Lemma 15 it
suffices to bound |Emb(heavy(parent(wi)))| for all i. Assume that lP ≤ lT (otherwise we can check this in
linear time and conclude that P cannot be included in T). Each of the node arrays use O(nT / lognT) space

and therefore by Corollary 1 we have that
∑l

i=1 |Emb(heavy(parent(wi)))| = O(n/ lognT · log lP) = O(nT).
$

For the time complexity note that during the computation of Emb(root(P)) each node v ∈ V (P) con-
tributes a constant number of calls to the set procedures. Hence, the total time used by the algorithm is
O(nPnT / lognT + nT lognT). Thus we have shown the following.

Theorem 4 For trees P and T the tree inclusion problem can be solved in O(nPnT / lognT + nT lognT)
time and O(nT) space.

Combining the results in Theorems 2, 4 and Corollary 2 we have the main result of Theorem 1.

6 Conclusion

We have presented three algorithms for the tree inclusion problem, which match or improve the best known
time complexities while using only linear space. We believe that some of the new ideas are likely to be
of both practical and theoretical value in future work. From a practical perspective, space is a common
bottleneck for processing large data sets and hence reducing the space can significantly improve performance
in practice. From a theoretical perspective, we have introduced several non-trivial algorithms to manipulate
sets of nodes in trees that may have applications to other problems. For instance, the Nca procedure from
Section 5 computes multiple nearest common ancestor queries in time sublinear in the size of input sets.

Acknowledgments

We would like to thank the anonymous reviewers of earlier drafts of this paper for many valuable comments
that greatly improved the quality of the paper. We would also especially like to thank the reviewer who
discovered the error in the space complexity of the original draft.

References

[1] L. Alonso and R. Schott. On the tree inclusion problem. Acta Inf., 37(9):653–670, 2001.

[2] S. Alstrup, C. Gavoille, H. Kaplan, and T. Rauhe. Nearest common ancestors: A survey and a new
algorithm for a distributed environment. Theory of Comput. Syst., 37:441–456, 2004.

[3] S. Alstrup, J. Holm, K. de Lichtenberg, and M. Thorup. Minimizing diameters of dynamic trees. In
Proceedings of the 24th International Colloquium on Automata, Languages and Programming, pages
270–280, 1997.

[4] S. Alstrup, J. Holm, and M. Thorup. Maintaining center and median in dynamic trees. In Proceedings
of the 7th Scandinavian Workshop on Algorithm Theory, pages 46–56, 2000.

[5] S. Alstrup, T. Husfeldt, and T. Rauhe. Marked ancestor problems. In Proceedings of the 39th Symposium
on Foundations of Computer Science, pages 534–543, 1998.

44

[6] S. Alstrup and T. Rauhe. Improved labeling schemes for ancestor queries. In Proceedings of the 13th
Symposium on Discrete Algorithms, pages 947–953, 2002.

[7] M. A. Bender and M. Farach-Colton. The LCA problem revisited. In Proceedings of the 4th Latin
American Symposium on Theoretical Informatics, pages 88–94, 2000.

[8] P. Bille. A survey on tree edit distance and related problems. Theoret. Comput. Sci., 337(1-3):217–239,
2005.

[9] P. Bille and I. L. Gørtz. The tree inclusion problem: In optimal space and faster. In Proceedings of
the 32nd International Colloquium on Automata, Languages and Programming, volume 3580 of Lecture
Notes in Computer Science, pages 66–77. Springer-Verlag, 2005.

[10] S. Boag, D. Chamberlin, M. Fernandez, D. Florescu, J. Robie, J. Siméon, and M. Stefanescu. XML
query language (XQuery), available as http://www.w3.org/TR/xquery, 2001.

[11] W. Chen. More efficient algorithm for ordered tree inclusion. J. Algorithms, 26:370–385, 1998.

[12] M. J. Chung. O(n2.5) algorithm for the subgraph homeomorphism problem on trees. J. Algorithms,
8(1):106–112, 1987.

[13] J. Clark and S. DeRose. XML path language (XPath), available as http://www.w3.org/TR/xpath,
1999.

[14] R. Cole, R. Hariharan, and P. Indyk. Tree pattern matching and subset matching in deterministic
O(nlog3n)-time. In Proceedings of the 10th Symposium on Discrete Algorithms, pages 245–254, 1999.

[15] E. D. Demaine, S. Mozes, B. Rossman, and O. Weimann. An optimal decomposition algorithm for
tree edit distance. In Proccedings of the 34th International Colloquium on Automata, Languages and
Programming, volume 4596 of Lecture Notes in Computer Science, pages 146–157. Springer, 2007.

[16] P. F. Dietz. Fully persistent arrays. In Proceedings of the Workshop on Algorithms and Data Structures,
pages 67–74, 1989.

[17] M. Dubiner, Z. Galil, and E. Magen. Faster tree pattern matching. In Proceedings of the 31st Symposium
on the Foundations of Computer Science, pages 145–150, 1990.

[18] P. Ferragina and S. Muthukrishnan. Efficient dynamic method-lookup for object oriented languages. In
Proceedings of the 4th European Symposium on Algorithms, pages 107–120, 1996.

[19] G. N. Frederickson. Ambivalent data structures for dynamic 2-edge-connectivity and k smallest spanning
trees. SIAM J. Comput., 26(2):484–538, 1997.

[20] T. Hagerup, P. B. Miltersen, and R. Pagh. Deterministic dictionaries. J. Algorithms, 41(1):69–85, 2001.

[21] D. Harel and R. E. Tarjan. Fast algorithms for finding nearest common ancestors. SIAM J. Comput.,
13(2):338–355, 1984.

[22] C. M. Hoffmann and M. J. O’Donnell. Pattern matching in trees. J. ACM, 29(1):68–95, 1982.

[23] P. Kilpeläinen. Tree Matching Problems with Applications to Structured Text Databases. PhD thesis,
University of Helsinki, Department of Computer Science, November 1992.

[24] P. Kilpeläinen and H. Mannila. Retrieval from hierarchical texts by partial patterns. In Proceedings of
the 16th Conference on Research and Development in Information Retrieval, pages 214–222, 1993.

[25] P. Kilpeläinen and H. Mannila. Ordered and unordered tree inclusion. SIAM J. Comput., 24:340–356,
1995.

45

[26] P. Klein. Computing the edit-distance between unrooted ordered trees. In Proceedings of the 6th
European Symposium on Algorithms, pages 91–102, 1998.

[27] D. E. Knuth. The Art of Computer Programming, Volume 1. Addison-Wesley, 1969.

[28] S. R. Kosaraju. Efficient tree pattern matching. In Proceedings of the 30th Symposium on the Founda-
tions of Computer Science, pages 178–183, 1989.

[29] H. Mannila and K. J. Räihä. On query languages for the p-string data model. Information Modelling
and Knowledge Bases, pages 469–482, 1990.

[30] J. Matoušek and R. Thomas. On the complexity of finding iso- and other morphisms for partial k-trees.
Discrete Math., 108:343–364, 1992.

[31] S. Muthukrishnan and M. Müller. Time and space efficient method-lookup for object-oriented programs.
In Proceedings of the 7th Symposium on Discrete algorithms, pages 42–51, 1996.

[32] T. Richter. A new algorithm for the ordered tree inclusion problem. In Proceedings of the 8th Symposium
on Combinatorial Pattern Matching, pages 150–166, 1997.

[33] T. Schlieder and H. Meuss. Querying and ranking XML documents. J. Am. Soc. Inf. Sci. Technol.,
53(6):489–503, 2002.

[34] T. Schlieder and F. Naumann. Approximate tree embedding for querying XML data. In Proceedings of
the Workshop On XML and Information Retrieval, 2000.

[35] R. Shamir and D. Tsur. Faster subtree isomorphism. J. of Algorithms, 33:267–280, 1999.

[36] K.-C. Tai. The tree-to-tree correction problem. J. ACM, 26:422–433, 1979.

[37] A. Termier, M. Rousset, and M. Sebag. Treefinder: a first step towards XML data mining. In Proceedings
of the 2nd International Conference on Data Mining, page 450, 2002.

[38] M. Thorup. Space efficient dynamic stabbing with fast queries. In Proceedings of the 33rd Symposium
on Theory of Computing, pages 649–658, 2003.

[39] H. Yang, L. Lee, and W. Hsu. Finding hot query patterns over an XQuery stream. The VLDB Journal,
13(4):318–332, 2004.

[40] L. H. Yang, M. L. Lee, and W. Hsu. Efficient mining of XML query patterns for caching. In Proceedings
of the 29th Conference on Very Large Data Bases, pages 69–80, 2003.

[41] P. Zezula, G. Amato, F. Debole, and F. Rabitti. Tree signatures for XML querying and navigation. In
Proceedings of the 1st International XML Database Symposium, pages 149–163, 2003.

[42] K. Zhang and D. Shasha. Simple fast algorithms for the editing distance between trees and related
problems. SIAM J. Comput., 18:1245–1262, 1989.

46

