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Solution 10.1

Question 1.

The predictions are given - as always - by the conditional expectation

X̂(t0 + 1) = E[X(t0 + 1)|X(t0),X(t0 − 1), . . . ]

= E

[[

0.70 0.20
0.04 0.95

] [

Xi(t0)
Xm(t0)

]

+

[

0.8
0.02

]

Ur(t0)+

[

ǫ1(t0 + 1)
ǫ2(t0 + 1)

]

|X(t0),X(t0 + 1), . . .

]

=

[

0.70 0.20
0.04 0.95

] [

−3.0
−1.2

]

+

[

0.8
0.02

]

2 =

[

−0.74
−1.22

]

X̂(t0 + 2) =

[

0.70 0.20
0.04 0.95

] [

X̂i(t0 + 1)

X̂m(t0 + 1)

]

+

[

0.8
0.02

]

Ur(t0 + 1)

=

[

0.70 0.20
0.04 0.95

] [

−0.74
−1.22

]

+

[

0.8
0.02

]

2 =

[

0.84
−1.15

]

X̂(t0 + 3) =

[

0.70 0.20
0.04 0.95

] [

X̂i(t0 + 2)

X̂m(t0 + 2)

]

+

[

0.8
0.02

]

Ur(t0 + 2)

=

[

0.70 0.20
0.04 0.95

] [

0.84
−1.15

]

+

[

0.8
0.02

]

2 =

[

1.96
1.02

]

Since Ur(t) is a deterministic input to the system, the variance contribution
is only from ǫt and the variance of the ℓ-step prediction is given by Equation
(10.102), where

A =

[

0.70 0.20
0.04 0.95

]
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This gives the following variances

ℓ = 1: Σ1 = Σ =

[

0.04 0
0 0.01

]

ℓ = 2: Σ2 = Σ1 + AΣ1A
⊤

=

[

0.04 0
0 0.01

]

+

[

0.70 0.20
0.04 0.95

] [

0.04 0
0 0.01

] [

0.70 0.04
0.20 0.95

]

=

[

0.060 0.003
0.003 0.019

]

ℓ = 3: Σ3 = Σ1 + AΣ2A
⊤

=

[

0.04 0
0 0.01

]

+

[

0.70 0.20
0.04 0.95

] [

0.060 0.003
0.003 0.019

] [

0.70 0.04
0.20 0.95

]

=

[

0.071 0.007
0.007 0.028

]

Question 2.

At the new reference level holds

E[X(t)] =

[

E[Xi(t)]
E[Xm(t)]

]

=

[

µi

µm

]

= µ

Since the mean value of ǫ(t) is zero

µ = Aµ+ BUr

where

A =

[

0.70 0.20
0.04 0.95

]

and B =

[

0.8
0.02

]

Rewriting the above equation we get

µ = (I − A)−1
BUr

=

[

1 − 0.70 −0.20
−0.04 1 − 0.95

]−1 [

0.8
0.02

]

Ur =

[

7.14 28.6
5.71 42.9

] [

0.8
0.02

]

Ur

=

[

6.24
5.44

]

Ur =

[

12.56
10.88

]
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where Ur = 2. The old reference temperature was 21◦C, so the new reference
level will be 33.56◦C for the indoor temperature and 31.88◦C for the wall
temperature.
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Solution 10.2

Question 1.

[

1 − 0.8B 0.6B
−0.4B 1 − 0.7B

] [

X1,t

X2,t

]

=

[

1 0
0 1 − 0.4B

] [

ǫ1,t

ǫ2,t

]

⇔ (1)

[

X1,t

X2,t

]

−

[

0.8 −0.6
0.4 0.7

] [

X1,t−1

X2,t−1

]

=

[

ǫ1,t

ǫ2,t

]

−

[

0 0
0 0.4

] [

ǫ1,t−1

ǫ2,t−1

]

Or shorter
Xt − φXt−1 = ǫt − θǫt−1 (2)

The one-step prediction

Xt+1 − φXt = ǫt+1 − θǫt ⇒

X̂t+1|t = E[Xt+1|Xt, Xt−1, . . . ]

= φXt − θǫt

In order to be able to predict X̂t+1 we must know ǫt. An estimate of ǫt can
be obtained by taking a few steps back in the time series and here set ǫt = 0.
We can then predict X one step ahead and the prediction error can be used
as ǫt at the next prediction and so forth. By observing how the influence of
previous values ”dies out” we can determine how many steps back we need
to take. A rewriting of (1) to an AR-form shows that det(θ(B)) = 1− 0.4B.
I.e. the influence of previous X-values decays as 0.4k (1/ det(θ(B))). Since
0.43 ≃ 0.06 it is sufficient to go 3 steps back.
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t− 3 : ǫ′t−3 = 0 ⇒

X̂t−2|t−3 = φXt−3 − θ · 0

=

[

0.8 −0.6
0.4 0.7

] [

2.9
1.8

]

=

[

1.24
2.42

]

t− 2 : ǫ′t−2 = Xt−2 − X̂t−2|t−3 =

[

−1.04
2.48

]

X̂t−1|t−2 = φXt−2 − θ · ǫ′t−2

=

[

0.8 −0.6
0.4 0.7

] [

0.2
4.9

]

−

[

0 0
0 0.4

] [

−1.04
2.48

]

=

[

−2.78
2.52

]

t− 1 : ǫ′t−1 = Xt−1 − X̂t−1|t−2 =

[

0.48
0.98

]

X̂t|t−1 = φXt−1 − θ · ǫ′t−1

=

[

0.8 −0.6
0.4 0.7

] [

−2.3
3.5

]

−

[

0 0
0 0.4

] [

0.48
0.98

]

=

[

−3.94
1.14

]

I.e.

ǫ′t = Xt − X̂t|t−1 =

[

0.54
0.66

]

The one-step prediction from week t is then

X̂t+1|t = φXt − θǫ′t

=

[

0.8 −0.6
0.4 0.7

] [

−3.4
1.8

]

−

[

0 0
0 0.4

] [

0.54
0.66

]

=

[

−3.80
−0.36

]

The two-step prediction from week t is

X̂t+2|t = E[Xt+2|Xt,Xt+1, . . . ]

= φX̂t+1|t =

[

0.8 −0.6
0.4 0.7

] [

−3.80
−0.36

]

=

[

−2.82
−1.77

]
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The variance is found by rewriting equation (2) into MA-form.

(2) ⇒ (I− φB)Xt = (I − θB)ǫt (I is the unity matrix)

⇓ Xt = (I − φB)−1(I− θB)ǫt

m Xt = (I + φB + φ2B2 + · · · )(I− θB)ǫt

m Xt = (I + (φ− θ)B + φ(φ− θ)B2 + φ2(φ− θ)B3 + · · · )ǫt

I.e. ψ1 = (φ− θ), which leads to the following estimates of the variances

V[1] = Σ =

[

2 −1
−1 2

]

V[2] = Σ + ψ1Σψ
⊤
1

=

[

2 −1
−1 2

]

+

[

0.8 −0.6
0.4 0.3

] [

2 −1
−1 2

] [

0.8 0.4
−0.6 0.3

]

=

[

4.96 −0.72
−0.72 2.26

]

Question 2.

We introduce the notation

Xt+1|Xt,Xt−1, · · · = Xt+1|Xt =

(

X1t+1

X2t+1

∣

∣

∣

∣

Xt

)

Furthermore we assume that Xt+1|Xt is normal distributed1. Previously
E[Xt+1|Xt] = X̂t+1|t and V [Xt+1|Xt] = V [1] were calculated. We wish to
determine

E[X1t+1|X2t+1,Xt] and V [X1t+1|X2t+1,Xt]

1The assumption about the normal distribution is not essential since the formulas

for the conditional expectation and the conditional variance holds, provided that the

conditional expectation is assumed to be linear in X2.
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They can be determined using Theorem 10.1 in Chapter 10 in the book.

E[X1t+1|X2t+1,Xt] = E[X1t+1|Xt]+

Cov[X1t+1|X2t+1,Xt]V
−1[X2t+1|Xt](X2t+1 −E[X2t+1|X ])

= −3.80 + (−1)
1

2
(−1.20 − (−0.36)) = −3.38

V [X1t+1|X2t+1,Xt] = V [X1t+1|Xt]−

Cov[X1t+1|X2t+1,Xt]V
−1[X2t+1|Xt]Cov[X1t+1|X2t+1,Xt]

= 2 − (−1)
1

2
(−1) = 1.5
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Solution 10.3

Question 1.

The system described by the system equation

Xt = Xt−1 + et

Since {et} is white noise {Xt} is a random walk (equation (5.126))

Question 2.

For the given system and observation equation C = A = 1, V1 = 1 and
V2 = 2. Since ΣXX

0|0 = 1

Σxx
1|0 = 1 + 1 = 2

Σyy

1|0 = 1 · 2 · 1 + 2 = 4

K(1) = 2 · 1 ·
1

4
=

1

2

Σxx
1|1 = 2 −

1

2
· 4 ·

1

2
= 1 = ΣXX(0|0)

In general we get

Σxx
t|t = 1

Σxx
t+1|t = 2

Σyy

t+1|t = 4

K(t) =
1

2

Which leads to

X̂t+1|t = X̂t|t−1 −
1

2

(

Yt − X̂t|t−1

)

(3)

Question 3.
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Equation (3) can be written as

X̂t+1|t =
1

2

(

Yt + X̂t|t−1

)

=
1

2
Yt +

(

1

2

)2

Yt−1 +

(

1

2

)2

X̂t−1|t−2

=
t

∑

j=1

(

1

2

)j

Yt+1−j +

(

1

2

)t

X̂0|0

which is seen to be exponential smoothing.
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Solution 10.4

Question 1.

(1 − φ1B)(1 − φ4B
4)Xt = (1 − θb)ǫt ⇔

Xt − φ1Xt−1 − φ4Xt−4 + φ1φ4Xt−5 = ǫt − θǫt−1

On state space form












X1(t)
X2(t)
X3(t)
X4(t)
X5(t)













=













φ1 1 0 0 0
0 0 1 0 0
0 0 0 1 0
φ4 0 0 0 1

−φ1φ4 0 0 0 0

























X1(t− 1)
X2(t− 1)
X3(t− 1)
X4(t− 1)
X5(t− 1)













+













1
−θ
0
0
0













ǫt

X(t) =
[

1 0 0 0 0
]













X1(t)
X2(t)
X3(t)
X4(t)
X5(t)













Question 2.

X1(t) = −φ1X1(t− 1) +X2(t− 1) + e(t)
X2(t) = −φ2X1(t− 1) − θ1e(t)

}

⇒

X1(t) = −φ1X1(t− 1) − φ2X1(t− 2) + e(t) − θ1e(t− 1)

Since

Y (t) =
[

1 0
]

[

X1(t)
X2(t)

]

= X1(t)

we get
Y (t) + φ1Y (t− 1) + φ2Y (t− 2) = e(t) − θ1e(t)

I.e. {Y (t)} can be described by an ARMA(2,1)-process.

Question 3.
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Determination of the auto-covariance function of {X1(t)}

X1(t) = 0.8X1(t− 1) + e(t) ⇒ (4)

X1(t)X1(t− k) = 0.8X1(t− 1)X1(t− k) + e(t)X1(t− 1)

Taking the expected values leads to

γX1
(k) = 0.8γX1

(k − 1) (k ≥ 1) (5)

Furthermore by multiplying (4) by X1(t) we get

X1(t)X1(t) = 0.8X1(t− 1)X1(t) + e(t)X1(t) ⇒ (6)

γX1
(0) = 0.8γX1

(1) + σ2

e

By using (5) for k = 1 we get

γX1
(0) =

1

1 − 0.82
σ2

e =
σ2

e

0.36
(7)

and

γX1
(k) =

0.8k

0.36
σ2

e (8)

Determination of the auto-covariance function of {Y (t)}

γY (k) = Cov[Y (t), Y (t+ k)]

= Cov[X1(t) + v(t), Xt(t+ k) + v(t+ k)]

=

{

γX1
(0) + σ2

v (k = 0)
γX1

(k) (k 6= 0)
(9)

From equation (8) and (9) we get the auto-correlation

ρY (k) =
γY (k)

γY (0)

=







0.8
k

0.36
σ2

e

σ2
e

0.36
+σ2

v

= 0.8k

1+0.36
σ2

v

σ2
e

(k 6= 0)

1 (k 6= 0)

In figure 1 the auto-correlation function is plotted for σ2
v/σ

2
e = 0 and for

σ2
v/σ

2
e = 1 in figure 2. In the latter case it is observed that the exponential

sequence is not starting in 1, but from a point further down the y-axis. The
placement of the point depends on the relationship between the variance of
the measurement noise σ2

e and the variance of the process noise σ2
v . In figure

3 the auto-correlation is shown for σ2
v/σ

2
e = ∞
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Figure 1: Auto-correlation function for σ2
v/σ

2
e = 0.
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Figure 2: Auto-correlation function for σ2
v/σ

2
e = 1.
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Figure 3: Auto-correlation function for σ2
v/σ

2
e = ∞.
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