Statistical data mining

Finn Årup Nielsen

Informatics and Mathematical Modelling Technical University of Denmark

February 3, 2004

Introduction

- "Statistical data mining".
- The goal is "knowledge" discovery in databases.
- Classic example is co-occurence in market-backets: Beer and diapers.
- Heterogeneous data analysis on text, numbers, images, ...
- Examples from Neuroinformatics (Neuroscience + informatics).

Example: Neuroinformatics databases

Figure 1: Screenshot of main window of Matlab program for data entry of scientific article, here (Jernigan et al., 1998).

Database containing data from scientific articles in "human brain mapping".

Bibliographic information: Title, author, abstract.

Three-dimensional coordinates, socalled Talairach coordinates, that are focal brain activations.

Experiment description: Brain scanner, stimulus, response.

Linked to other databases (PubMed, MeSH, fMRIDC, SenseLab)

G 🚆 🗖 📕 📑

N Netscape:											
File Edit View Go Communicator Help											
🚺 🛫 🎸 Bookmarks 🥠 - Netsite: [http://hendrix.imm.dtu.dk/proj 🏹 🍘 What's Related [1]											
8 8	Back Forward Balaad Home Search Notecone Brint Security										
8	Back Porward Reload Home Search Netscape Print Security										
BrainMap outliers											
(****					-	(·····		·		
#	Logiikeiihood	Paper	Exp.	LOC.	PMID	Full text	X	У	Z	Lobar Anatomy	
1	-int	207	4	1	8815903	<u>Full text</u>	-0.5	0.7	54.0	sma	
2	-254.98	29	10	8	8441008	-	4.5	-3.0	-5.4	superior parietal	
3	-213.37		10	8	8441008	-	4.5	-3.0	-3.4	panetal	
4	-212.65	141	1	10	<u>7953588</u>	-	3.3	15.0	2.8	prefrontal	
5	-126.26	249	1	<u>59</u>	-	-	-3.2	4.8	0.2	lobe	
0	-121.05	280	1	2	9576541	<u>Full text</u>	2.4	-7.0	-2.4	panetal	
7	-120.56	4	<u> </u>	<u></u>	3277066	-	-0.6	2.9	-0.9	cerebellum	
8	-99.99	141	1	10	7953588	-	3.5	15.0	2.8	dorsolateral	
9	-87.58	280	1	Z	<u>9576541</u>	Full text	3.8	2.4	-0.8	parietal	
10	-81.41	<u>249</u>	1	<u>29</u>	-	-	-0 .2	2.6	1.6	lobe	
11	-80.71	<u>280</u>	1	<u>9</u>	<u>9576541</u>	<u>Full text</u>	2.4	-7.0	-2.4	parietal cortex	
12	-78.84	277	<u>3</u>	<u>3</u>	<u>8799180</u>	Full text	-5.0	-4.2	-1.4	frontal	
13	-66.52	<u>115</u>	2	<u>5</u>	_	_	-3.8	5.4	0.0	middle temporal	
14	-61.98	<u>19</u>	2	<u>17</u>	<u>1985266</u>	_	2.2	-6.1	4.0	frontal	
15	-59.31	47	<u>4</u>	1	-	-	-3.6	3.2	2.8	lobe	
16	-55.56	<u>277</u>	<u>3</u>	<u>3</u>	<u>8799180</u>	<u>Full text</u>	-5.0	-4.2	-1.4	frontal gyrus	
17	-48.63	<u>115</u>	<u>2</u>	<u>5</u>	-	-	-3.8	5.4	0.0	temporal gyrus	
18	-47.57	<u>65</u>	<u>2</u>	<u>23</u>	<u>8130929</u>	-	5.7	2.6	4.5	cingulate	
19	-47.12	<u>115</u>	2	<u>5</u>	-	-	-3.8	5.4	0.0	temporal	
20	-46.31	<u>52</u>	1	2	-	-	3.6	-4.6	3.6	inferior frontal gyrus	
21	-46.04	277	<u>3</u>	<u>3</u>	<u>8799180</u>	<u>Full text</u>	-5.0	-4.2	-1.4	inferior frontal gyrus	
22	-44.82	<u>52</u>	1	1	-	-	-4.0	-3.4	0.4	frontal	
23	-42.35	<u>52</u>	1	2	-	-	3.6	-4.6	3.6	frontal	
24	-42.27	277	<u>3</u>	<u>3</u>	<u>8799180</u>	<u>Full text</u>	-5.0	-4.2	-1.4	inferior frontal	
25	-40.68	<u>61</u>	1	<u>12</u>	<u>8134341</u>	<u>Full text</u>	-2.4	4.2	0.4	temporal	
- 677 []											

Mining for novelty:

Automatic generated list with entries sorted according to novelty (outlierness/interestingness).

Comparing the "lobar anatomy" field and Talairach coordinates.

By "manual investigation" one finds that some of the interesting are database entry errors.

How is this done?

Representing text

Figure 2: Bag-of-words matrix.

"Vector space model" or "bagof-words". A matrix $\mathbf{X}(N \times Q)$ with N documents and Qwords/terms. Represented in hash array.

A vector for each document containing the presence or frequency of words in the document.

The ordering of words is not relevant.

Modeling database items

Netscape: ile Edit	Differen View Go	t perceptual) Communi	tasks perf cator	ormed wit	h the same visu	al stim	ulus 🗐 🛛 🖏 Help
4		3	1	æ	mg.	4	N
Back F	Forward	Reload	Home	Search	Netscape	Print	Se ma
🌾 🕻 Bookr	narks 🤳	ocation: ht	tp://ric.	uthscsa.	edu:1234/ 🏹 🄇	🖓 🔭 Wr	nat's Related
🗶 Red Hat	Network	🧷 Training 🔒	🧷 Support	🧷 Softw	are 🥠 Hardwar	e 🥠 D	evelopers 🦼
ainMap Sea	ch and Vier	v: <u>Menu Hel</u> g	25				4
Different ctivate dif	perceptu Terent re	al tasks per gions of the	formed wit human br study	th the sar ain: A po	ne visual stim sitron emissio	ulus atti n tomoş	ribute graphy
 Paper: First a Citatio Experi Capsul Modalait Tracet Measu Omniba Task: O 	-Id: 72 uthor: Dup: n: Proceed ment Id: 1 e Descript ity: PET :: O -IS we'red Varial as significa Cognition, Perception Task stat # 1 Visual square 2 Visual	ont P ngs of the Nat ion: Discrimin ter ies: CBF ies: OS (chi- al Domain(s): Atrention ,Vision Stimulus Abstracts - -wave grating Abstracts -	ional Acades ate square)	my of Scier	x = 3.6 $Y = -7.6$ $Z = 1.2$ $Coordination$ $Press key for sa orientation - ord pairs$	10931 al	Notes -
• Magnit • n-Vah	ude: (*	-)	Locatio	n #1	10	occip	pital gyr
X=3.6 Y=-7.6 Z=1.2 Coordi A=3.0	n esin Ti i n esasr	alairach, 1988 eported in exp	space: eriment:				
Y=-7.0 Z=1.2 Corres Function Lobar Lobar Lobar	ponding B mal arc anatom outline ght-type: 1 t/estimate	odman's area	A: -				
• Point-	Type: -				111 334 0	10 -405	

Extraction of Talairach coordinate. Example: $\mathbf{x} = (3.6, -7.6, 1.2)$.

Extraction of each word and phrase from the field "Lobar anatomy".

Example "lateral superior parietal" $\rightarrow c \in \{$ "lateral", "superior", "parietal", "lateral superior", "superior parietal", "lateral superior parietal" $\}$.

Multiple data generated for one location.

Modeling Talairach coordinates

Regard the "locations" as being generated from a distribution $p(\mathbf{x})$, where \mathbf{x} is in 3D Talairach space.

Kernel methods (N kernels centered on each object: μ_n) with homogeneous Gaussian kernel in 3D Talairach space x

$$\hat{p}(\mathbf{x}) = \frac{(2\pi\sigma^2)^{-3/2}}{N} \sum_{n=1}^{N} e^{-\frac{1}{2\sigma^2}(\mathbf{x}-\boldsymbol{\mu}_n)^2}$$

 σ^2 fixed or optimized with leave-one-out cross-validation.

Condition on, e.g., anatomical label, behavioral domain c: $p(\mathbf{x}|c)$

Probability density for "cerebellum"

Condition on anatomical label: $p(\mathbf{x}|c = \text{cerebellum}).$

Evaluate each location with respect to its probability densities: its "novelty".

Robust estimate of $p(\mathbf{x})$ by excluding the 5% most extreme locations in a two-stage scheme.

Figure 3: Densities from cerebellum locations. Yellow glyphs are the original BrainMap locations. Grey wire-frame: Isosurface in the first level probability density estimate. Green surface: Isosurface in the second level.

Novelty detection by comparing all Talairach coordinates \mathbf{x}_n with their associated $p(\mathbf{x}|c)$.

N Netscape:											
File Edit View Go Communicator Help											
📗 🛫 🌮 Bookmarks 🧔 - Netsite: [http://hendrix.imm.dtu.dk/proj 🖓 🍘 Vhat's Related [1											
	Back Forw	/ard	Reloa	3	Home	e Sea	arch	Netsc	ape	Print Security	
Brain Map outliers											
(#	Loglikelihood	Paper	Exp.	Loc.	PMID	Full text	x	y	z	Lobar Anatomy	
1	–Inf	267	2	1	<u>8815903</u>	<u>Full text</u>	-0.5	0.7	54.0	sma	
2	-254.98	<u>29</u>	<u>10</u>	<u>8</u>	<u>8441008</u>	-	4.5	-3.6	-5.4	superior parietal	
3	-213.37	<u>29</u>	<u>10</u>	<u>8</u>	8441008	-	4.5	-3.6	-5.4	parietal	
4	-212.65	<u>141</u>	1	<u>10</u>	7953588	-	3.5	15.0	2.8	prefrontal	
5	-126.26	<u>249</u>	1	<u>59</u>	-	-	-3.2	4.8	0.2	lobe	
6	-121.05	<u>280</u>	1	<u>9</u>	<u>9576541</u>	Full text	2.4	-7.0	-2.4	parietal	
7	-120.56	<u>4</u>	<u>2</u>	Z	<u>3277066</u>	-	-0.6	2.9	-0.9	cerebellum	
8	-99.99	<u>141</u>	1	<u>10</u>	<u>7953588</u>	-	3.5	15.0	2.8	dorsolateral	
9	-87.58	<u>280</u>	1	Z	<u>9576541</u>	<u>Full text</u>	3.8	2.4	-0.8	parietal	
10	-81.41	<u>249</u>	1	<u>29</u>	-	-	-0 .2	2.6	1.6	lobe	
11	-80.71	<u>280</u>	1	<u>9</u>	<u>9576541</u>	Full text	2.4	-7.0	-2.4	parietal cortex	
12	-78.84	<u>277</u>	<u>3</u>	<u>3</u>	<u>8799180</u>	<u>Full text</u>	-5.0	-4.2	-1.4	frontal	
13	-66.52	<u>115</u>	2	<u>5</u>	-	-	-3.8	5.4	0.0	middle temporal	
14	-61.98	<u>19</u>	2	<u>17</u>	<u>1985266</u>	-	2.2	-6.1	4.0	frontal	
15	-59.31	<u>47</u>	<u>4</u>	1	-	-	-3.6	3.2	2.8	lobe	
16	-55.56	277	<u>3</u>	<u>3</u>	<u>8799180</u>	<u>Full text</u>	-5.0	-4.2	-1.4	frontal gyrus	
17	-48.63	<u>115</u>	2	<u>5</u>	-	-	-3.8	5.4	0.0	temporal gyrus	
18	-47.57	<u>65</u>	<u>2</u>	<u>23</u>	<u>8130929</u>	-	5.7	2.6	4.5	cingulate	
19	-47.12	<u>115</u>	2	<u>5</u>	-	-	-3.8	5.4	0.0	temporal	
20	-46.31	<u>52</u>	1	2	-	-	3.6	-4.6	3.6	inferior frontal gyrus	
21	-46.04	277	<u>3</u>	<u>3</u>	<u>8799180</u>	Full text	-5.0	-4.2	-1.4	inferior frontal gyrus	
22	-44.82	<u>52</u>	1	1	-	-	-4.0	-3.4	0.4	frontal	
23	-42.35	<u>52</u>	1	2	-	-	3.6	-4.6	3.6	frontal	
24	-42.27	277	<u>3</u>	<u>3</u>	<u>8799180</u>	Full text	-5.0	-4.2	-1.4	inferior frontal	
25	-40.68	<u>61</u>	1	<u>12</u>	<u>8134341</u>	Full text	-2.4	4.2	0.4	temporal	

Automatic generated list.

Entries sorted according to novelty.

2nd and 3rd entry: More information in a phrase than in a word.

By "manual investigation" one finds that some of the interesting are database entry errors.

8

Finding similar items

Related - positive correlated volumes

+2: 0.80010 (12) Buildings visual objects. Visual object stimuli: Building versus faces. WOEXP: 12. I Levy; U Hasson; G Avidan; T Hendler; R Malach. Center-periphery organization of human object areas. Mat Neurosci 4(5):533-9, 2001. PMID: 11319563. DOI: 10.1038/87490. WOBIB: 5.

+3: 0.49922 (<u>42</u>) Attention to musical instruments versus attention to consonant-vowels. Attend to sound and press a button when the target stimulus appeared. WOEXP: <u>42</u>. K. Hugdahl, I. Law; S. Kyllingsbek; K. Bronnick; A. Gade; O. B. Paulson. Effects of attention on dichotic listening: an ISO-PET study. Hum Brain Mapp 10(2):87-97, 2000. PMID: <u>10864233</u>. WOBIB: <u>14</u>.

+4: 0.45377 (<u>97</u>) **Visual object decision**. Visual object decision with novel and chimeric, natural and artefact line drawings versus pattern discrimination. WOEXP: <u>96</u>. C. Gerlach; I. Law; A. Gade; O. B. Paulson. Perceptual differentiation and category effects in normal object recognition: a PET study...Brain **122** (**Pt**)

C. Gerlach; I. Law; A. Gade; O. B. Paulson. Perceptual differentiation and category effects in normal object recognition: a PET study. Brain 1: 11):2159–70, 1999. PMID: <u>10545400</u>. WOBIB: <u>29</u>. Each experiment a volume: $p(\mathbf{x}|\text{experiment} = "89") \equiv \mathbf{z}_{89}$ sampled on a fixed 8mm grid

Similarity as a raw correlation coefficient between two volumes

$$\mathbf{s} = \frac{\mathbf{z}_1' \mathbf{z}_2}{\sqrt{\mathbf{z}_1' \mathbf{z}_1} \sqrt{\mathbf{z}_2' \mathbf{z}_2}}$$

Sorted list of similar volumes.

Image-based indices: ICA

Independent component analysis of the $X(experiment \times voxel)$ data matrix: X = AS + U. A is the mixing matrix, S the sources.

ICA components: hand movement, visuospatial, words/verbs, audition, visual motion.

Figure shows both ends of the third to sixth source images s_3, \ldots, s_6 . Data from Brede.

Image-based indices: Asymmetry

Left dominate	Asymmetry	Right dominate
	0.99902	[WOEXP 185] Spatial neglect. Patients with spatial neglect and right brain damage from infarct or haemorrhage versus right brain damage patients without spatial neglect. WOEXP: <u>185</u> .
[<u>WOEXP 5</u>] Visual artefact object. Decision or categorization of visual artefact. WOEXP: <u>5</u> .	-0.99219	
[WOEXP 114] Categorization of artefacts. Categorization of visually presented artefacts versus categorization of natural objects, naming of artefacts and pattern discrimination. WOEXP: <u>114</u> .	-0.99219	
[WOEXP 137] Names versus occupation. Retrieval and whispering of names from presented photographs of faces. Conjunction between newly learned face and famous face. WOEXP: <u>137</u> .	-0.99219	

"Experiment" left/right asymmetry: Count the number of locations in the left side X

$$P_{\mathsf{Bin}} = \sum_{0}^{X} \left(\begin{array}{c} N\\ X \end{array}\right) 0.5^{N}. \quad (1)$$

Normalize the value to [-1; +1] range with $a = 1 - 2P_{Bin}$

When conditioning on anatomical labels:

- Left dominate (-1): 'motor', 'area', ..., 'broca s area'.
- Right dominate (+1): 'anterior cerebellum',

Summary

Statistical data mining.

Heterogeneous data: text, and point sets (Talairach coordinates).

Transform the data to vectorial form.

Use statistical method to mine for knowledge.

References

Allison, T., McCarthy, G., Nobre, A., Puce, A., and Belger, A. (1994). Human extrastriate visual cortex and the perception of faces, words, numbers, and colors. *Cerebral Cortex*, 4(5):544–554. PMID: 7833655.

Balslev, D., Nielsen, F. Å., Frutiger, S. A., Sidtis, J. J., Christiansen, T. B., Svarer, C., Strother, S. C., Rottenberg, D. A., Hansen, L. K., Paulson, O. B., and Law, I. (2002). Cluster analysis of activity-time series in motor learning. *Human Brain Mapping*, 15(3):135–145. http://www3.interscience.wiley.com/cgi-bin/abstract/89011762/. ISSN 1097-0193 [bibliotek.dk].

Drevets, W. C., Videen, T. O., MacLeod, A. K., Haller, J. W., and Raichle, M. E. (1992). PET images of blood flow changes during anxiety: Correction. *Science*, 256(5064):1696. PMID: 1609283. A previous functional neuroimaging study found correlation between anxiety and the temporopolar region. This study finds that it is more likely muscle signal from teeth-clenching.

Epstein, R. and Kanwisher, N. (1998). A cortical representation of the local visual environment. *Nature*, 392(6676):598–601. PMID: 9560155. DOI: 10.1038/33402. ISSN 0028-0836 [bibliotek.dk].

Inoue, K., Kawashima, R., Sugiura, M., Ogawa, A., Schormann, T., Zilles, K., and Fukuda, H. (2001). Activation in the ipsilateral posterior parietal cortex during tool use: a PET study. *NeuroImage*. PMID: 11707103. DOI: 10.1006/nimg.2001.0942. WOBIB: 48.

Jernigan, T. L., Ostergaard, A. L., Law, I., Svarer, C., Gerlach, C., and Paulson, O. B. (1998). Brain activation during word identification and word recognition. *NeuroImage*, 8(1):93–105. PMID: 9698579. WOBIB: 35.

Reiman, E. M., Fusselman, M. J., Fox, P. T., and Raichle, M. E. (1989). Neuroanatomical correlates of anticipatory anxiety. *Science*, 243(4894 Part 1):1071–1074. PMID: 2784226.