
i

Transport
A Domain Description

Dines Bjørner

Technical University of Denmark

Fredsvej 11, DK-2840 Holte

bjorner@gmail.com – www.dtu.dk/˜db

June 12, 2025: 16:47

A First “Final” Draft

ii June 12, 2025 Dines Bjørner

DRAFT iii

Transport
A Domain Description

Dines Bjørner

June 12, 2025: 16:47

iv June 12, 2025 Dines Bjørner

• Warning: Many formulas need being type checked, etc., etc. !

• I began writing this document February 22, 2025.

• In my 87th year !

• I think about it and write “on” it, every day 7/7.

• Often twice a a day, 1-2 hours.

• More than that – and I get tired.

• A first draft June 10, 2025.

– Now, as from June 10, 2025, I will

∗ Go through the entire document.

∗ Check that all index references to formulas are “correct”.

∗ Etcetera, et cetera !

– I will release this and forthcoming versions to the Internet:

https://www.imm.dtu.dk/~dibj/2025/transport/main.pdf

• Section A.3 (pages 133–141) presents an index to all formulas !

• You may find, in the version of this report, that You are now perusing, that there are some “mysterious”
vertical [i.e., line] spacing.

They are there in order for the index entries to refer to pages (π) where both the (item ι) enumerated
narrative and formal entries are on the same page !

• Pls. see Sect. 26.4 on page 126.

• Pls. refer to Appendix Chapter B on page 143 for a summary of main formal entities.

DRAFT v

Prelude

This is an engineering report.
We analyze and describe a conceptual domain of transport in all its forms: passenger and goods, road,

rail, water (navigable rivers and lakes as well as the open sea), and air. From the basis of an abstract notion
of graphs with labeled nodes and edges, we define a notion of routes of graphs: sequences of node and edge
labels. Nodes are then interpreted a street intersections, bus stops, railway stations, harbours and airports and
edges as links between neighbouring nodes: street segments, bus routes, rail lines, sea lanes, and air routes.
And from there it goes ! We expand the treatment to cover customers, [sending and receiving] merchandises,
conveyor companies and logistics companies.

© Dines Bjørner

June 12, 2025: 16:47

vi June 12, 2025 Dines Bjørner

Contents

1 Introduction 1

1.1 On A Notion of ‘Infrastructure’ . 1
1.2 Domain Models . 1
1.3 A Dichotomy . 2
1.4 The Dichotomy Resolved . 2
1.5 A [Planned] Series of Infrastructure Domain Models . 2

I A SIMPLE BEGINNING 5

2 Kinds of Transports 7

2.1 Informal Outline . 7
2.2 Narrative & Formalization . 7

3 Overall “Single-Mode” Transport Endurants 9

3.1 Endurant Sorts & Observers . 9
3.2 Unique Identification . 10

4 Graphs: Transport Nets 11

4.1 The Endurant Sorts and Observers . 11
4.2 Unique Identifiers . 13
4.3 Mereology . 14
4.4 Paths of a Graph . 15
4.5 Attributes . 18

5 Conveyors, I 21

5.1 Conveyor Endurant Sorts & Observers . 21
5.2 Unique Identifiers . 22
5.3 Mereology . 22
5.4 Attributes . 23

6 Intentional Pull, I 25

6.1 History Attributes . 25
6.2 An Intentional Pull . 26

7 Single-mode Transport Behaviours 27

7.1 Communication . 27
7.2 Behaviours . 28
7.3 Behaviour Signatures . 28
7.4 Behaviour Definitions . 28
7.5 Domain Instantiation . 32

II A MULTI-MODE TRANSPORT: ENDURANTS 33

8 Multi-mode Transport 35

vii

viii CONTENTS

9 “Top” Transport Endurants 37
9.1 The Endurants – External Qualities . 37
9.2 On Internal Qualities. 42
9.3 Conveyor Companies versus Logistics Companies. 42
9.4 Financial Matters . 42

10 Merchandise 43
10.1 Merchandise Endurants . 43
10.2 Representation of Merchandises . 45
10.3 Humans . 45

11 Customer 47
11.1 Customer Endurants . 47
11.2 Customer Qualities . 48
11.3 Customer Retrieval . 49
11.4 Customer Commands . 49

12 Conveyor Companies 51
12.1 Conveyor Authorities. 51
12.2 Conveyor Company Endurants. 51
12.3 Conveyor Company Internal Qualities . 53
12.4 Conveyor Company Commands. 57

13 Conveyors, II 59
13.1 Conveyor Mereology . 59
13.2 Conveyor Attributes . 60
13.3 Conveyor Commands. 61

14 Logistics Companies 63

III A MULTI-MODE TRANSPORT: INTENTIONAL PULL 65

15 Intentional Pull, II 67

IV A MULTI-MODE TRANSPORT: COMMANDS 69

16 Multi-mode Transport Commands 71
16.1 Events and Commands . 71
16.2 Command Traces . 71
16.3 An Analysis . 72
16.4 Material and “Immaterial” Commands . 73
16.5 Abstracting an Essence of Transport . 73
16.6 Commands – A First View . 73
16.7 TR: Transport Routes . 74
16.8 A Closer Analysis of Commands . 77

V IDENTITIES 83

17 Identities 85

VI A MULTI-MODE TRANSPORT: BEHAVIOURS 87

18 Multi-mode Behaviours 89
18.1 Communication . 89
18.2 Behaviour Signatures . 90
18.3 Which Behaviours to Describe ? . 91
18.4 Multi-mode “Systems” . 91

CONTENTS ix

19 Customer Behaviours 93
19.1 Main Behaviour . 93
19.2 Subsidiary Behaviours . 94

20 Conveyor Company Behaviours 97
20.1 Main Behaviour . 97
20.2 Main Reactive Behaviour . 98
20.3 Subsidiary Behaviours . 99

21 Conveyor Behaviour 103
21.1 Earlier Treatment . 103
21.2 Main Behaviour . 105
21.3 Subsidiary Behaviours . 106

22 Logistics Company Behaviour 111

23 Edge Behaviour 113
23.1 Earlier Treatment . 113
23.2 Main Behaviour . 113

24 Node Behaviour 115
24.1 Earlier Treatment . 115
24.2 Revised Node Attributes . 115
24.3 [k10,k11,k14] Main Behaviour . 116

VII CLOSING 117

25 Discussion 119
25.1 Wither Logistics Companies . 119
25.2 Some Parts Modelled, Others Not ! ? . 120
25.3 Formal Structuring . 121
25.4 Mnemonics . 121
25.5 Narratives . 121

26 Conclusion 123
26.1 Logistics & Operations Research . 123
26.2 Interpretations . 123
26.3 Formality and Verification . 125
26.4 On the Development of This Model . 126
26.5 Acknowledgements . 126

27 Bibliography 127

VIII APPENDIX 129

A Indexes 131
A.1 Transport Domain Concepts . 131
A.2 Domain Modelling Ontology . 132
A.3 Formal Entities . 132

B Summaries 143
B.1 Commands . 143
B.2 Mereologies and Attributes . 143

x CONTENTS

Chapter 1

Introduction

The Triptych Dogma

In order to specify software,
we must understand its requirements.

In order to prescribe requirements,
we must understand the domain.

So we must study, analyze and describe domains.

This is one of a series, [10, 16, 15, 14, 8], of domain studies of such infrastructure components as government,
public utilities, banking, transport, insurance, health care, etc. The current, this ‘Introduction’ chapter is common
to these study reports.

1.1 On A Notion of ‘Infrastructure’
Central to our effort of studying “man-made” domains is the notion of infrastructure1. The infrastructure can be
characterized as follows: the basic physical and organizational structures and facilities (e.g. buildings, roads, power
supplies) needed for the operation of a society or enterprise, “the social and economic infrastructure

of a country”. We interpret the “for example, e.g.,” to include, some already mentioned above: government
structure: legislative, executive & judicial units, transport: roads, navigable rivers and lakes, the open sea, banking,
educational system, health care, utilities: water, electricity, telecommunications (e.g. the Internet) gas, , etc.,2

Also: Winston Churchill is quoted to have said in the House of Commons: “The young Labour speaker we have
just listened to wants clearly impressing his constituency with the fact that he went to Eton and Oxford since he
now uses such modern terms as ‘infrastructure’ ”.

1.2 Domain Models
We rely on [12, 9, 7, 6, 4]. They provide a scientific foundation for modelling domains in the style of this report.

1.2.1 Some Characterizations
Domain: By a domain we shall understand a rationally describable segment of a manifest3, discrete dynamics

fragment of a human assisted reality: the world that we daily observe – in which we work and act, a reality
made significant by human-created entities. The domain embody endurants and perdurants.

Endurants: By endurants we mean those quantities of domains that we can observe (see and touch), in space, as
“complete” entities at no matter which point in time – “material” entities that persists, endures – capable of
enduring adversity, severity, or hardship [Merriam Webster].

1https://en.wikipedia.org/wiki/Infrastructure
2 According to the World Bank, ‘infrastructure’ is an umbrella term for many activities referred to as ‘social overhead capital’ by some

development economists, and encompasses activities that share technical and economic features (such as economies of scale and spill-overs
from users to non-users). We take a more technical view, and see infrastructures as concerned with supporting other systems or activities.
Software for infrastructures is likely to be distributed and concerned in particular with supporting communication of data, people and/or
materials. Hence issues of openness, timeliness, security, lack of corruption and resilience are often important.

3The term ‘manifest’ is used in order to distinguish between these kinds of domains and those of computing and data communication:
compilers, operating systems, database systems, the Internet, etc.

1

2 CHAPTER 1. INTRODUCTION

Perdurants: By perdurants we mean those quantities of domains for which only a fragment exists, in space, if we
look at or touch them at any given snapshot in time [Merriam Webster].

Domain Description: By a domain description we shall here mean a syntactic entity, both narrative and formal,
describing the domain. That is, a domain description is a structured text, such as shown in Sects. 2–18 (pages
7–116).

Domain Model: By a domain model we shall here mean the mathematical meaning, the semantics as denoted the
domain description.

1.2.2 Purpose of Domain Models
The Triptych dogma (above) expresses a relation of domain models to software. But domain models serve a wider
role. Mathematical models of, say, physics, are primarily constructed to record our understanding of some aspects
of the world – only secondarily to serve as a basis for engineering work. So it is with manifest models of infra
structure components such banking, insurance, health care, transport, etc. In this, and a series of papers, [15, 14],
we shall therefore present the result of infra structure studies. We have, over the years, developed many domain
models: [3].

1.2.3 Domain Science & Engineering
A series of publications [4, 6, 7, 9, 13] reflects scientific insight into and an engineering methodology for analyzing
and describing manifest domains.

1.3 A Dichotomy

1.3.1 An Outline
As citizens we navigate, daily, in a God-given and a Man-made world. The God-given world can be characterized,
i.e., “domain described”, as having natural science properties. The laws that these natural science properties obey
are the same – all over the universe ! The Man-made world can be characterized, i.e., “domain described”, as having
infrastructure components4. The “laws” that these properties obey are not necessarily quite the same around our
planet !

1.3.2 The Dichotomy
For our society to work, we are being educated (in primary, secondary, tertiary schools, colleges and at universities).
We are taught to to read, write and [verbally] express ourselves, recon and do mathematics, languages, history and
the sciences: physics (mechanics, electricity, chemistry, biology, botany’s, zoology, geology, geography, ...), but
we are not taught about most of the infrastructure structures5. That is the dichotomy.

1.4 The Dichotomy Resolved
So there it is:

• first study a or several domains;

• then analyze, describe and publish infrastructure domains;

• subsequently prepare educational texts “over” these;

• finally introduce ‘an infrastructures’ school course.

1.5 A [Planned] Series of Infrastructure Domain Models
So this domain science & engineering paper – on banking – is one such infrastructure domain description. In all
we are and would like to work on these infrastructure domains:

4state, regional and local government: executive, legislative and judicial, banking, insurance, health care (hospitals, clinics, rehabilitation,
family physicians, pharmacies, ...), passenger and goods transport (road, rail, sea and air), manufacturing and sales, publishing (newspapers,
radio, TV, books, journals, ...), shops (stores, ...),

5See footnote 4.

1.5. A [PLANNED] SERIES OF INFRASTRUCTURE DOMAIN MODELS 3

• Transport6 [16]

• Banking7 [10]

• Insurance8 [15]

• Health Care9 [14]

• etc.

A report on double-entry bookkeeping [8] relates strongly to most of these infra-structure component domains10.

6https://www.imm.dtu.dk/ dibj/2025/infra/main.pdf
7https://www.imm.dtu.dk/ dibj/2025/infra/banking.pdf
8https://www.imm.dtu.dk/ dibj/2025/infra/insurance.pdf
9https://www.imm.dtu.dk/ dibj/2025/infra/healthcare.pdf

10http://www.imm.dtu.dk/ dibj/2023/doubleentry/dblentrybook.pdf

https://www.imm.dtu.dk/~dibj/2025/infra/main.pdf
https://www.imm.dtu.dk/~dibj/2025/infra/banking.pdf
https://www.imm.dtu.dk/~dibj/2025/infra/insurance.pdf
https://www.imm.dtu.dk/~dibj/2025/infra/healthcare.pdf

4 CHAPTER 1. INTRODUCTION

Part I

A SIMPLE BEGINNING

5

Chapter 2

Kinds of Transports

Contents
2.1 Informal Outline . 7
2.2 Narrative & Formalization . 7

2.1 Informal Outline
The transport we have in mind consists of a common transport net, in the following modelled as a graph of uniquely
labeled, bi-directed edges and likewise labeled nodes. The transport net is [“intentional pull”] complemented,
cf. Sect. 6 on page 25, by a set of conveyors.

Edges, nodes and conveyors are “of kind”: ”road”, ”rail”, ”sea”, and ”air”; these are literal values11. A
conveyor is of one kind. Conveyors of kind ”road” include taxis, buses, trucks and the like. Conveyors of kind
”rail” include passenger trains, freight trains, etc. Conveyors of kind ”sea” include sail boats, river and canal
barges, fishing vessels, line and ramp freighters, passenger liners, etc. Conveyors of kind ”air” include helicopters,
freight and passenger planes. An edge is of one kind. Edges of kind ”road” are called automobile roads. Edges of
kind ”rail”, ”sea” and ”air” are called rail tracks, sea lanes and air lanes. A node may be of one or more kinds.
Nodes of kind ”road” are called street point (street crossings, street ends, bus stops). Nodes of kind ”rail”” are
called train stations. Nodes of kind ”sea” are called harbours. Nodes of kind ”air” are called airports.

2.2 Narrative & Formalization
1. There are four kinds of transportation: ”road, rail, sea” and ”air”.

type
1. Kind = ”road”|”rail”|”sea”|”air”

People are not conveyors, so they are no “of a kind” ! People may be merchandises.

• • •

That is: transport, in this report, is all about moving goods – here referred to as merchandises – around. By
what/whichever means: on roads, rails, sea and/or by air – possibly combining two or more of these: moving from
(road) trucks to (air) freight and/or by (sea) freighter– whether line or tramps12, or in some other order ! We omit
considering people as conveyors.

We divide the first formal presentation into five [further] segments: Overall Transport Endurants, Graph En-
durants, Conveyor Endurants, Intentional Pull and Perdurants.

By an overall traffic domain we mean that of a graph13 and a conveyor14 sub-domain.
A relation between graphs and conveyors is expressed in the intentional pull section.

11– as are true and false
12a boat or ship engaged in the tramp trade is one which does not have a fixed schedule, itinerary nor published ports of call, and trades on

the so-called spot market [https://en.wikipedia.org/wiki/Tramp trade.
13https://en.wikipedia.org/wiki/Graph (discrete mathematics)
14Conveyor: anything that conveys, transports or delivers. [Words are a conveyor of meaning] [https://en.wiktionary.org/wiki/conveyor]

7

8 CHAPTER 2. KINDS OF TRANSPORTS

The “co-operation” of graphs and conveyors is expressed in the perdurant section.
By a graph we mean a set of nodes and edges: nodes are then interpreted as road intersections (hubs); train

stations; river, canal and sea harbours; and airports. A node may be one or more of these. Edges are accordingly
interpreted as either street (or road) links, irail tracks, sailing or air routes. An edges can be only one of these.
Hence there may be many edges between any two [neighbouring] nodes.

By conveyors we mean buses, trains, boats, ships, and aircraft.
The presentation follows the domain analysis & description ontology of Fig. 2.1.

External Qualities

Describer "states"

PerdurantsEndurants

Phenomena of Natural and Artefactual Universes of Discourse

E

Perdurant

Action
Event Actor

Channel Behaviour

FluidSolid

Part
Living Specie

Animal Plant

O
th

er

Unique Identifiers
Mereologies
Attributes

transcendental injection of endurants into perdurants

Internal Qualities

Cartesian Part

E1,...,Ec

is
_m

an
if

es
t

is
_m

an
if

es
t

is
_m

an
if

es
t

E

P

F

Part Set

Ps=P−set

H
u

m
an

s

CompoundAtomic

Transcendental Deduction

Endurant

Entity

TIME,SPACE
Tanscendentally Deduced Phenomena

Indescribable

Figure 2.1: Domain Analysis Ontology

Chapter 3

Overall “Single-Mode” Transport
Endurants

This early section introduces the, perhaps two most central classes of endurants: transport nets, in the ab-
stracted form of graphs, and conveyor aggregates. Conveyor aggregates embody conveyors. Conveyors
“move along” nets, and nets serve to [intentional pull 15] “carry” conveyor traffic.

3.1 Endurant Sorts & Observers
2. There is the domain of transport.

3. From transport endurants we can observe transport nets, i.e., graphs.

4. And from transport endurants we can observe a conveyor aggregate – embodying conveyors.

type
2. T

3. G

4. CA

value
3. obs G: T→G

4. obs CA: T→CA

3.1.1 An Endurant State Notion
We can speak of a transport state.

5. There is given a “global”16 transport value, t. It contributes to a transport state.

6. From this transport value one can derive another transport state element: a global graph value, g.

7. And from this transport value one can derive another transport state element: a global conveyor aggregate
value, ga.

8. We can postulate a transport state to consist of the three endurants: t,g,ca.

value
5. t:T
6. g:G = obs G(t)
7. ca:CA = obs CA(t)
5. σ t = {t}∪{g}∪{ca}

15cf. Sect. 6 on page 25
16We shall be using this term: ‘global’ extensively. By double quoting it we intend to express that “global” values are values that can be

referred to anywhere in the domain description. We emphasize their “globality” by use this kind of [mathematical] font !

9

10 CHAPTER 3. OVERALL “SINGLE-MODE” TRANSPORT ENDURANTS

3.2 Unique Identification

3.2.1 Unique Identifier Sorts & Observers
9. The transport endurant has a unique identifier.

10. So has the graph, and

11. the conveyor components.

type
9. TI

10. GI

11. CAI

value
9. uid T: T → TI

10. uid G: T → GI

11. uid CA: T → CAI

3.2.2 A Unique Identifier State Notion
We an postulate a “global” transport state value, t.

12. From t we observe its unique identity.

13. Given t we can derive a “global” graph value g, hence its unique identity.

14. And a “global” conveyor aggregate value ca, hence its unique identity..

15. We can therefore postulate an “uppermost” endurant transport state to consist of the three endurants: ti,gi,cai.

value
12. ti:TI = uid T(t)
13. gi:GI = uid G(g)
14. cai:CAI = uid CA(ca)
15. σ tuis = {ti}∪{gi}∪{cai}

3.2.3 Uniqueness
16. The three [“uppermost”] transport endurants are distinct: have distinct unique identifiers.

axiom [Uniqueness of Transport Identifiers]

16. card σ t = card σ tuis = 3

• • •

It seems that at least the overall transport endurant need not be a manifest one. Hence we leave out treatment of
mereology and attributes of the transport endurant.

Chapter 4

Graphs: Transport Nets

In addition to describing the external and internal qualities of transport nets we introduce the concepts or paths ,
i.e., routes , through/across a transport net.

4.1 The Endurant Sorts and Observers
External qualities are the endurant sorts of graphs, node and edges aggregates and nodes and edges, their observers
and endurant states.

17. From graphs one can observe an aggregate, i.e., a set, ea:EA, of edges –

18. From graphs one can observe an aggregate, i.e., a set, na:NA, of nodes –

19. From an aggregate of edges one can observe a set of edges.

20. From an aggregate of nodes one can observe a set of nodes.

21. Edges are considered atomic.

22. Nodes are considered atomic.

23. We can “lump” all endurants into a sort parts.

type
17. EA

18. NA

19. ES = E-set
20. NS = N-set
21. E

22. N

23. P = G|EA|NA|ES|NA|N|E
value
17. obs EA: G → ES

18. obs NA: G → NS

19. obs ES: EA → ES

20. obs NS: NA → NS

A transport domain taxonomy is hinted at in Fig. 4.1 on the following page.

11

12 CHAPTER 4. GRAPHS: TRANSPORT NETS

...

G

... ...

T

EA,ES NA,NS

CA,CS

E E E N N N

C C C

Figure 4.1: A Simplified Transport Domain Taxonomy: Transport Nets, G, and Conveyors, C

4.1.1 An Endurant State
24. Given the global graph value, there is therefore a “global” value of an edge aggregate.

25. Given the global graph value, there is therefore a “global” value of a node aggregate.

26. Given the global edge aggregate value, there is therefore a “global” node value of of the set of all edges.

27. Given the global graph value, there is therefore a “global” value of the set of all nodes.

28. The state of all graph endurants is therefore the set of all graph parts.

value
24. ea = obs EA(g)
25. na = obs NA(g)
26. es = obs ES(g)
27. ns = obs NS(g)
28. σ ps:P-set = {g}∪{ea}∪{na}∪es∪ns

• • •

Internal qualities are fourfold: unique identification, mereology, attributes and intentional pull.

4.2. UNIQUE IDENTIFIERS 13

4.2 Unique Identifiers
Unique Identification has three facets: sort, observers and an axiom.

4.2.1 Unique Identifier Sorts and Observers
29. All parts have identification:

30. the graph,

31. the edge and node aggregates,

32. the sets of edges and nodes, and

33. each edge and node.

34. No two of these are the same, i.e., part identifiers are unique.

type
29. PI = GI|EAI|NAI|ESI|NSI|EI|NI
29. GI,EAI,NAI,ESI,NSI,EI,NI

value
30. uid G: G→GI

31. uid EA: EA→EAI, uid NA: NA→NAI

32. uid ES: ES→ESI, uid NS: NS→NSI

33. uid E: E→EI, uid N: N→NI

4.2.2 A Unique Identifier State
35. There is a “global” unique graph identifier.

36. There are, correspondingly, “global” edge and node aggregate identifiers.

37. There are, correspondingly, “global” edge set and node set identifiers; and

38. set of edge identifiers and

39. set of node identifiers.

40. The unique identifier state is the union of all the unique identifiers.

value
35. gi = uid G(g)
36. eauis = uid EA(ea) , nauis = uid NA(na)
37. esuis = uid ES(ea) , nsuis = uid NS(na)
38. euis = {uid E(e)|e:E•e∈es}
39. nuis = {uid N(n)|n:N•n∈ns}
40. σuis:PI-set = {uid P(p)|p:P•p∈σ}
40. σuis = {gi}∪{eauis}∪{nauis}∪{esuis}∪{nsuis}∪euis∪nuis

4.2.3 Uniqueness
41. No two of these are the same, i.e., part identifiers are unique.

axiom [Uniqueness of Part Identification]

41. cardσ=cardσuis

14 CHAPTER 4. GRAPHS: TRANSPORT NETS

4.3 Mereology
Mereology has three facets: types, observers and wellformedness.

4.3.1 Mereology Types and Wellformedness, I
42. The mereology of a node is a non-empty set of edge identifiers.

43. The mereology of an edge is a set of two node identifiers.

type
42. NM = EI-set axiom ∀ nm:NM • card nm>0
43. EM = NI-set axiom ∀ em:EM • card em=2

4.3.2 Mereology Observers

value
42. mereo N: N → NM

43. mereo E: E → EM

4.3.3 Mereology Wellformedness, II
44. The unique identifiers of a node must be those of the edges of the graph.

45. The unique identifiers of an edge must be those of the nodes of the graph.

axiom [Graph Mereology Wellformedness]

44. ∀ n:N•mereo N(n)⊆esuis
45. ∀ e:E•mereo E(e)⊆nsuis

4.4. PATHS OF A GRAPH 15

4.4 Paths of a Graph
46. A path (of a graph) is a finite17 sequence of one or more alternating node and edge identifiers such that

(a) neighbouring edge identifiers are those of the mereology of the “in-between” node, and such that
neighbouring node identifiers are/is those of the mereology of the “in-between” edge;

(b) and node identifiers of a path are node identifiers of the graph,

(c) and its neighbouring edge identifier(s) are in the mereology of the identified node;

(d) and edge identifiers of a path are edge identifiers of the graph,

(e) and its neighbouring node identifier(s) are/is in the mereology of the identified edge;

(f) the kinds of the adjacent nodes and edges “fit”.

47. Given a node [an edge] identifier we can retrieve the identified node [edge].

type
46. Path = (EI|NI)∗
axiom [Wellformed Paths]

46. ∀ path:Path •

46a. ∀ {i,i+1}⊆inds path ⇒
46a. ((is NI(path[i])∧is EI(path[i+1])
46a. ∨ is EI(path[i])∧is NI(path[i+1]))
46b. ∧ (path[i]∈nsuis⇒path[i+1]∈esuis
46c. ∧ uid N(retr node(path[i]))∈mereo E(retr node(path[i])))
46d. ∧ (path[i]∈esuis⇒path[i+1]∈nsuis
46e. ∧ uid E(retr edge(path[i])∈mereo N(retr edge(path[i]))))
46f. ∧ kind(retr unit(path[i]))∩kind(retr unit(path[i+1]))6={})
value
47. retr node: NI → N, retr edge: EI → E, retr unit: UI → U

47. retr node(ni) as n • n ∈ ns ∧ uid (n)=ni
47. retr edge(ei) as e • e ∈ es ∧ uid (e)=ei
47. retr unit(i) as u • ∈ ns∪es ∧ uid U(u)=i
47. uid U(u) ≡ is E(u)→uid U(u),is N(u)→uid N(u)

The above pre/post condition allows for circular paths, i.e., possibly infinite paths that may contain the same
node or edge identifier more than once.

We can define a function that given a graph calculates all its non-circular paths.

17We shall only consider finite paths. The paths function, Item 48 below, can easily be modified to yield also infinite length paths !

16 CHAPTER 4. GRAPHS: TRANSPORT NETS

48. The paths18 function takes a graph and yields a possibly infinite set of paths – satisfying the above well-
formedness criterion.

We define the paths function in two ways.

49. Either axiomatically

50. in terms of an as predicate, with the result being the “largest” such set all of whose paths satisfy the well-
formedness criterion;

51. or inductively19:

(a) basis clause: every singleton path of either node or edge identifiers of the graph form a path.

(b) inductive clause: If pi and pj are finite, respectively possibly infinite paths of the “result”, ps, such
that

(c) paths pî〈ui〉 and 〈uj〉̂pj are in ps, and

(d) the resulting concatenated path is not circular, and

(e) the mereology of the last element of pi identifies the first element of pj,

(f) then their concatenation is a path in ps.

(g) extremal clause: No path is an element of the desired set of paths unless it is obtained from the basis
and the inductive clause by a finite number of uses.

value
48. paths: G → Path-infset
49. paths(g) as ps

50. such that: ∀ p:ps satisfy the above wellformedness

51. paths(g) ≡
51a. let ps = {〈ni〉 | ni:NI ∈ nsuis}∪{〈ei〉 | ei:EI ∈ esuis}
51f. ∪ { pî〈ui〉̂〈uj〉̂pj | pî〈ui〉:Path-set, 〈uj〉̂pj:Path-infset •

51b. ∧ ({pî〈ui〉,〈uj〉̂pj}⊆ps
51c. ∧ (ui∼ ∈ elems pj ∧ uj∼ ∈ elems pi)

51e. ∧ (ui ∈ mereo U(retr unit(uj))

51e. ∧ uj ∈ mereo U(retr unit(ui))))} in
51g. ps end
type
48. U = E|N

Solution to the equation, lines 51a–51c, is “’obtained’ by a smallest set fix-point reasoning.

52. Given a “global” graph, g, we can calculate a “similarly global” paths value:

value
52. paths:Path-set = paths(g)

With the notion of paths of a graph one can now examine whether

• a graph is strongly connected, that is, whether any node or edge can be “reached” from any other node or
edge; or

• a graph consists of two or more sub-graphs, i.e., there are no edges between nodes in two such sub-graphs;

• etc.

In the next section, i.e., Sect. 4.5.1, we shall now endow nodes and edges to reflect whether they are road intersec-
tions, railway stations, harbours, and road links, railway lines, or canal/river/sea- or air-routes, etc.

18 Alarm ! Check that this function indeed generates only finite length paths !
19https://www.cs.odu.edu/ toida/nerzic/content/recursive def/more ex rec def.html

4.4. PATHS OF A GRAPH 17

53. We can formulate a theorem: for every graph we have that every path, p, in g, also contains its reverse path,
rev(p) in g.

theorem: [All finite paths have finite reverse paths]

53. ∀ g:G,p:Path•p ∈ paths(g) ⇒ rev path(p) ∈ paths(g)

value
53. rev path: P → P

53. rev path(p) ≡
53. case p of
53. 〈〉 → 〈〉,
53. 〈ui〉 → 〈ui〉,
53. 〈ui〉̂p′̂〈uj〉 → 〈uj〉̂rev path(p′)̂〈ui〉
53. end

We can define auxiliary functions, for example:

54. Given a kind we can select all the graph paths of that kind.

value
54. path kind: Path → Kind → Path-set
54. path kind(p)(k) as pks

54. • pks ⊆ paths ∧
54. ∀ pk:Path•pk ∈ pks∧∀ elems pk•kind(retr unit(pk))∩{k}6={}

18 CHAPTER 4. GRAPHS: TRANSPORT NETS

4.5 Attributes
With endurants now being endowed with, i.e., having attributes, graphs come to “look”, more-and-more, as trans-
port nets !

Attributes has three facets: types, observers and wellformedness.

4.5.1 Attribute Types & Observers
We introduce but just a few Graph Attributes.

55. From a node we can thus observe the “kind” of node: whether ”road crossing”, train ”station”, canal/river/sea
boat/ship ”harbour”, and/or ”airport” – one or more ! [A static attribute]

Edge:

56. From an edge we can thus observe the “kind” of edge: whether it represents a street (segment between two
neighbouring road crossings), or a rail track (between two neighbouring stations), or a sea route between
two neighbouring (canal/river/sea) harbours or an aircraft route between two neighbouring airports.

57. From an edge we can we can observe its length20. [Static Attribute]

58. and the cost21 of using the edge22. [Static Attribute]

type
55. NodeKind = Kind-set axiom ∀ nk:NodeKind • nk 6={}
56. EdgeKind = Kind-set axiom ∀ ek:EdgeKind • card ek=1
57. LEN = Nat
58. COST = Nat
value
55. attr NodeKind: N → NodeKind

56. attr Edgekind: E → EdgeKind

57. attr LEN: E → LEN

58. attr COST: E → COST

20LEN is here “formalized” in terms of Natural numbers. Whether such lengths stand for mm, cm, m, km, inches, feet, yard, mile or other
we presently leave unspecified.

21COST is here “formalized” in terms of Natural numbers. Whether such costs stand for $, ¤, £, or other we presently leave unspecified.
22See [5]. The usual arithmetic operators apply: scaling between ... Check also [20].

4.5. ATTRIBUTES 19

59. Given a node or an edge we can observe its kinds.

60. Given a graph, and a “kind”, we can calculate all its paths of the same kind.

61. Given a finite route we can we can calculate its lengths

62. and costs.

63. We can also calculate the shortest route, possibly a set, of a graph,

64. and the least costly,23

65. etc.

value
59. kind: (E|N) → EdgeKind|NodeKind
59. kind{en} ≡ is E(en)→attr Edgekind(en),is N→attr Edgekind(en)

60. route kind: G → Kind → Path-set
60. route kind(g)(k) ≡
60. { 〈p[i]|i:Nat,p:P•p∈paths(p)∧1≤i≤len(p)∧k∈kind(p[i])〉 }

61. path length: P → LEN

61. path length(p) ≡
61. case p of
61. 〈〉 → 0

61. 〈ui〉 → retr path length(ui),

61. 〈ui〉̂p′ → retr length(ui)+path path length(p′)
61. end
61. retr path length: UI → LEN

61. retr path length(ui) ≡ (is EI(ui)→attr LEN(retr edge(ui)),is NI(ui)→0)

62. path cost: P → LEN

62. path cost(p) ≡
62. case p of
62. 〈〉 → 0

62. 〈ui〉 → retr cost(ui),

62. 〈ui〉̂p′ → retr path cost(ui)+path cost(p′)
62. end

62. retr path cost: UI → COST

62. retr path cost(ui) ≡ (is EI(ui)→attr COST(retr edge(ui)),is NI(ui)→0)

63. shortest route: G → P-set
63. shortest route(g) ≡
63. let ps = paths(g) in
63. { p | p:P • retr len(p) ∧ ∀ p′:P•p′∈ps ∧ retr path len(p)≤retr path len(p′) }
63. end

65. etc.

The “etc.” covers such auxiliary functions as shortest route of a given kind , least costly route of a given kind ,
etc. !

More Graph Attributes will be added [“later”].

23See William Cook’s Web page: https://www.math.uwaterloo.ca/tsp/index.html?mc cid=a51d99f2aa&mc eid=783b63461a

and Quanta Magazine’s Fundamentals Computer Science Web page https://mail.google.com/mail/u/0/?ui=2#inbox/FMfcgz-

QZTzdWzqtRWmVWkQrcNzzDrSnJ

20 CHAPTER 4. GRAPHS: TRANSPORT NETS

4.5.2 Attribute Wellformedness
66. If a node is of some kind, then there must be at least one edge leading to/from it of the same kind.

67. If an edge is of some kind, then the nodes connected to it must also be of that [same] kind.

68. If a node is of kind other than "car", then there there must be an edge “of” that node of kind "car". [One
must be able to drive to stations, harbours and airports by car, taxi, lorry (truck) or bus !]

axiom
66.

66.

67.

67.

68.

68.

Chapter 5

Conveyors, I

We remind the reader that conveyors are either for the road: cars, taxis, trucks, buses, etc.; or for the rail: trains,
or for the sea: sailboats, barges, freighters, passenger liners, etc.; or for the air: helicopters and airplanes.

5.1 Conveyor Endurant Sorts & Observers
69. From a conveyor aggregate one can observe a finite set of conveyors.

70. A conveyor is either a

• a road conveyor

– car,
– taxi,
– bus,
– truck, etc.,

• or a rail conveyor

– passenger train,
– freight train, etc.,

• or a water conveyor

– sailboat,
– barge,
– fishing vessel,

– freighter,
– passenger liner, etc.,

• or an airborne conveyor

– civil aircraft,
– freight plane, or
– passenger aircraft, etc.

71. Conveyors are atomic parts.

72. Conveyors or “of kind”.

73. Conveyor aggregates are uniquely identified.

74. Conveyors are uniquely identified.

type
69. CS = C-set
70. C = Road|Rail|Water|Air
70. Road = ...
70. Rail = ...
70. Sea = ...
70. Air = ...
73. CAI

74. CI

value
73. uid CA: CA → CAI

74. uid C: C → CI

21

22 CHAPTER 5. CONVEYORS, I

5.2 Unique Identifiers

5.2.1 Unique Identifier State

75. The unique identifier of a conveyor aggregate contributes to the unique identifier state for the [entire] trans-
port domain.

76. The unique identifiers of all conveyors contribute to the unique identifier state for the [entire] transport
domain.

77. The overall unique identifier state, σuis, is therefore the union of all the unique identifiers of all parts of a
transport domain.

value
75. cai:CAI = uid CA(ca)
76. cis:CI-set = { uid C(c) | c:C • c ∈ obs CS(ca) }
77. σuis = σ p∪{cai}∪cis

5.2.2 Uniqueness

78. All parts are uniquely identified.

axiom [All parts are uniquely identified]

78. card σ = card σuis

5.2.3 Conveyor Retrieval

79. From a conveyor identifier one can obtain, via cs, the conveyor of that identification.

value
79. retr conveyor: CI → C

79. retr conveyor(ci) ≡ ι c:C • c ∈ cs ∧ uid C(c)=vi

5.3 Mereology

5.3.1 Mereology Types & Observers

80. The mereology of a conveyor is a finite set of edge and node identifiers that it may “visit”.24

type
80. CM = UI-set
value
80. mereo C: C → CM

24We shall extend this mereology in Sect. 13.1 on page 59.

5.4. ATTRIBUTES 23

5.3.2 Mereology Wellformedness
81. The identifiers of a conveyor mereology must be those of the edges and nodes of the transport graph, g.

82. The kind of conveyor must “fit” the kind of edges and nodes25.

axiom [Conveyor Mereology of Right Kind]

81. ∀ c:C•c∈cs⇒∀ ui:UI•ui∈mereo C(c)

81. ⇒ ui∈euis∪nuis
82. ∧ c kind(c)∩kind(retr unit(ui))6={} ι82

5.4 Attributes

5.4.1 Conveyor Attribute Types & Observers
In this section we deal wit some attributes. Further conveyor attributes are brought forward in Sect. 12.3.3 page 56.

83. Conveyors are of kind. [Static Attribute]

84. These routes must be of the kind of the conveyors traveling them !

85. Conveyors either stand still or move. That is, they have position in the graph, an index on the service route.
Either the position is at a node, or somewhere, a fraction, f , of a distance along an edge, from one node to
an adjacent. [Programmable Attribute]

86. The service route index must be commensurate with the conveyor position.

87. We omit further possible attributes: Speed, Acceleration, Weight,

type
83. Kind

85. CPos = AtNode | OnEdge
85. AtNode :: NI

85. OnEdge :: NI × (F × EI) × NI

85. F = Real axiom ∀ f:F•0<f<1
value
83. attr Kind: C → Kind

85. attr CPos: C → CPos

87. ...
axiom [Routes of commensurate kind]

84. ∀c:C•let ps=attr Routes(c)in ∀p:Path•p∈ps∧ps⊆path kind(p)(kind(c)) end

25Cars, Taxis, Buses, Trucks move along edges and nodes of kind road [a literal value, like true and false are literal values], Passenger
and Freight Trains move along edges and nodes of kind rail [a literal value], Sail Boats, Barges, Fishing Vessels, Ferries, Freighters, Ferries
and Passenger Liners move along edges and nodes of kind sea [a literal value] and Private Aircraft, Helicopters, Freight Planes and Passenger
Aircraft move along edges and nodes of kind air” [a literal value].

24 CHAPTER 5. CONVEYORS, I

5.4.2 Routes
88. The following properties hold of any route:

(a) the current route of a conveyor must always be in the routes of that conveyor.

(b) The static attribute Routes must all start and end with a node identifier.

(c) When initialized, a conveyor “starts” with a CurrentRoute chosen from the Routes.

(d) At any moment a conveyor moves along a [programmable attribute] current route.

(e) When moving from an edge to a node the current route is shortened by one.

(f) When a route is thereby exhausted, i.e., 〈〉, the conveyor may decide to select a new route.

(g) It does so from the static attribute Routes.

i. The previous, exhausted route ended with a node identifier.
ii. The next, to be current, route must start with that node identifier.

axiom [Commensurable Routes]

88. ∀ c:C,r:Routes,cr:CurrRoute • r=attr Routes(c)∧cr=attr CurrRoute(c)

88a. cr ∈ r

88b. ∧ is NI(hd r)∧is NI(r[len r])

For cars the Routes attribute may exclude certain paths, for example such toll-roads for which they have no
license. When, for example, buses, trains, ferries and passenger aircraft, the routes are such that for every pat there
is at least one path that “connects” to the former: ends, respectively starts with identical node identifiers. Usually
the set of routes contains just two paths: ode from node ni to node n j and the other from node n j to node ni. And
so forth !

5.4.3 Conveyor Attribute Wellformedness

TO BE WRITTEN

Chapter 6

Intentional Pull, I

6.1 History Attributes
History attributes record when conveyors (cars, trains, boats and aircraft) were where and at which times. They are
chronologically ordered, time-stamped sequences of event notices. History attributes are programmable.

History attributes “record” events. Conveyors, as controlled by, say humans, may not note down these events,
and edges and nodes, which we in some sense consider innate26, “most likely” do not notice them.

But we, “us”, humans, can speak about and recall [these, and “other”27] events – and they are therefore an
essential aspect of modelling any manifest domain.

89. We “lump” nodes and edges into single element ways [i.e., endurants].

90. The ordered, TIME28 -stamped, history attribute event notices record the vehicles, by their unique identi-
fiers.

91. The ordered, TIME-stamped, conveyor history attribute event notices record the ways, by their unique
identifiers.

type
89. W = N|E
89. WI = NI|EI
90. WHist = (s t:TIME×VI)∗
91. ConvHist = (s t:TIME×CI)∗
value
89. retr W: WI → N|E
89. retr W(wi) ≡ ! w:W • w ∈ns∪es ∧ uid W(w)=wi
90. attr WHist: W → WHist

90. attr ConvHist: C → ConvHist ι90

axiom [Ordered Way and Conveyor Histories]

90. ∀ wh:WHist • {i,i+1}⊆inds wh ⇒ s t(rh[i])<s t(wh[i+1])
91. ∀ ch:ConvHist • {i,i+1}⊆inds ch ⇒ s t(ch[i])<s t(ch[i+1])

26An innate quality or ability is one that you were born with, not one you have learned. That is: we consider edges and nodes to be innate
wrt. observing and recording the where-about events of conveyors – other than indirectly through the space they “occupy”, the possible wear
& tear of the road surface or rail track, or possible pollution of the sea and air, etc.

27By the seemingly cryptic “other” events, we may, in the context of transport, think of such events as conveyor breakdown, edge collapse,
etc.

28TIME is a “global” phenomenon.
We say 15:23 June 12, 2025 CET, and mean that it is now 23 minutes past 3pm, 25th of February 2025, Central European Time.
TI stands for time-interval.
We say 3 hours and 23 minutes.

25

26 CHAPTER 6. INTENTIONAL PULL, I

6.2 An Intentional Pull
Nodes and edges are intended to “carry” traffic [only] in the form of vehicles, and vehicles are intended to move
along [only] ways, i.e., nodes and edges.

92. for all conveyors (of a transport) if

(a) a conveyor is said to be on a way, i.e, at a node [resp. on an edge], at time τ ,

(b) then that way must “carry” that conveyor

(c) at exactly that same time;

93. and vice-versa, if-and-only-if, for all ways

(a) a way is said to “carry” a conveyor at time τ ,

(b) then that conveyor must be on that way

(c) at exactly that same time.

Intentional Pull:
92. ∀ c:C • c ∈ cs •

92a. let ch:CH = attr CH(c) in
92a. ∃ ! i:Nat • i ∈ inds ch •

92a. let (τ,wi) = ch[i] in
92b. let wh:WH = attr WH(retr way(wi)) in
92c. ∃ ! j:Nat • j∈ inds WH • s t(wh[j]) = τ

92. end end end
93. ≡
93. ∀ w:W • w ∈ es∪ns •

93a. let wh = attr WH(w) in
93a. ∃ ! k:Nat • k ∈ inds wh •

93a. let (τ,ci) = wh[k] in
93b. let ch:CH = attr WH(retr conveyor(ci)) in
93c. ∃ `:Nat • `∈ inds ch • s t(ch[`]) = τ

93. end end end

Chapter 7

Single-mode Transport Behaviours

The previous sections, Sects. 3–6, studied, analyzed & described a transport domain syntactically, that is: its
manifest forms and properties, but not its meaning, i.e., semantics. This sections is about that: the “meaning”,
so-to-speak, of endurants. This will be done by transcendentally deducing behaviours and actions from the
description of endurants. Endurants are transcendentally deduced into behaviours, and described as s with
arguments. Their internal properties are transcendentally deduced into arguments of these behaviours. We
choose to only endow edges, nodes and conveyors with behaviours. Behaviours synchronize and communicate via
“the ether” – here RSL/CSP-modeled as a channel array that allows conveyor, node and edge behaviours (ui,u j,uk)
to cooperate !

7.1 Communication

7.1.1 Communication Medium
94. There is a “global” communication, i.e., behaviour interaction medium, comm. It allows transport Be-

haviours to synchronize and exchange information of type M.

channel
94. comm[{i,j} | i,j:UI•{i,j}∈uis] MSG

7.1.2 Communication Causes
95. A conveyor, ci:CI, at a node decides to remain at that node.

96. A conveyor, ci:CI, at a node decides to change route.

97. A conveyor, ci:CI, at a node decides to leave the node, and

98. to enter an edge.

99. A conveyor, ci:CI, on an edge decides to move on.

100. A conveyor, ci:CI, on an edge decides to leave that edge, and

101. to enter the node.

102. And a conveyor, ci:CI, at a node or on an edge may decide, “surreptitiously” or otherwise, to just stop.

7.1.3 Communication Messages
103. The message is simple: a time stamp and the identity of a node, an edge or a conveyor.

type
103. MSG = TIME × (NI|EI|CI)

27

28 CHAPTER 7. SINGLE-MODE TRANSPORT BEHAVIOURS

7.2 Behaviours
So we model conveyor, node and edge behaviours. Each of these behaviour functions has arguments of the follow-
ing kind:

• a unique identifier, never changes, distinguishes between multiple instances of edges, or nodes, or convey-
ors;

• a mereology; and

• attributes:

– static attributes, i.e., attributes whose value never changes;

– monitorable attributes, i.e., attributes whose value changes “at their own volition”: itself nor coop-
erating behaviours cannot influence their value – we shall not consider monitorable attributes in this
study; and

– programmable values, i.e., attributes whose value may be changed by the behaviour – i.e., acts like
variables that can be read and updated !

Each of these behaviours are modelled as processes that may “go-on-and-on-forever” – modelled in terms of tail-
recursion – modelled also in the specifying Unit as part, “the last”, of the behaviour signature.

7.3 Behaviour Signatures
104. We present the conveyor, edge and node behaviour signatures.

value
104. conveyor: CI→CM→(Kind×Routes)→(CurrRoute×CPos×CH)→Unit
104. edge: EI→EM→(Kind×LEN×...)→NH→Unit
104. node: NI→NM→(Kind-set×...)→NH→Unit

7.4 Behaviour Definitions

7.4.1 Conveyor Behaviours
• A conveyor alternates between being at a node or on edge, so its behaviour is defined in terms of “either”

and their “progress” onto “the other” !

• CONVEYOR Behaviour AT A NODE:

105. A conveyor at a node either

(a) changes its current route, and choose another, the next current route, or

(b) remains at that node, idling, or circling around, or

(c) is entering an edge, or

(d) stops at that node, i.e., leaves the transport altogether.

value
105. conveyor(ci)(cm)(k,routes)(cr,AtNode(ni),ch) ≡
105a. conveyor change route(ci)(cm)(k,routes)(cr,AtNode(ni),ch)

105b. de conveyor remains at node(ci)(cm)(k,routes)(cr,AtNode(ni),ch)

105c. de conveyor enters edge(ci)(cm)(k,routes)(cr,AtNode(ni),ch)

105d. de conveyor stops at node(ci)(cm)(k,routes)(cr,AtNode(ni),ch)

7.4. BEHAVIOUR DEFINITIONS 29

• CONVEYOR Actions AT A NODE:

106. A conveyor may non-deterministically decide to change its current route at a node

(a) at time τ ,

(b) selects of next, to be, current route from routes such that that the chosen route begins with the node
being otherwise left,

(c) so informing the node, and

(d) updates its history,

(e) whereupon it resumes being a conveyor with both updated current route and history.

106. conveyor change route(ci)(cm)(k,routes)(cr,AtNode(ni),ch) ≡
106a. let τ = record TIME(),
106b. ncr = select next route(ni,routes),

106d. ch′ = 〈(τ,ni)〉̂ch in
106c. comm[{ci,ni}] ! (τ,ci) ;

106e. conveyor at node(ci)(cm)(k,routes)(ncr,AtNode(ni),ch′) end

106b. selects next route:NI × Routes → CurrRoute

106b. selects next route(ni,routes) as ncr • ncr ∈ routes ∧ hd ncr = ni

107. A conveyor remains at a node

(a) at some time, τ ,

(b) which is to be noted by the node behaviour ni

(c) whereupon the conveyor resumes being a conveyor except now with an updated conveyor history,

ch.

value
107. conveyor remains at node(ci)(cm)(k,routes)(cr,AtNode(ni),ch) ≡
107a. let τ = record TIME() in
107b. comm[{ci,ni}] ! (τ,ci);

107c. conveyor(ci)(cm)(k,routes)(cr,AtNode(ni),〈(τ,ni)〉̂ch) end

108. A conveyor at a node may non-deterministically choose to leave a node and enter an edge

(a) at some time, τ , and as determined by the current route’s next element, enters that route, i.e., edge,

(b) which is to be noted by the node and designated edge behaviours ni,

(c) updates its position

(d) and its history accordingly,, and

(e) resumes being a conveyor on an edge .

value
108. conveyor enters edge(ci)(cm)(k,routes)(cr,AtNode(ni),ch) ≡
108a. let τ = record TIME() in
108b. (comm[{ci,ni}] ! (τ,ni) ‖ comm[{ci,ni}] ! (τ,hd cr)) ;

108c. let ei = hd cr in let {ni,ni′} = mereo E(retr edge(ei)(es)) in
108c. let cpos = onEdge(hd cr,(ei,(ni,f,ni),ni′)) in
108e. conveyor(ci)(cm)(k,routes)(cr,cpos,〈(τ,ni)〉̂ch) end end end end

30 CHAPTER 7. SINGLE-MODE TRANSPORT BEHAVIOURS

109. And a conveyor may non-deterministically choose to abandon being a conveyor, i.e., leaving transport alto-
gether – stopping !

110. But first it notifies the node at which it stops.

value
109. conveyor stops at node(ci)(cm)(k,routes)(cr,AtNode(ni),ch) ≡
110. let τ = record TIME() in
110. comm[{ci,ni}] ! (τ,ci) ;

109. stop end

• A conveyor behaviour on an edge alternates.

• CONVEYOR Behaviour ON EDGE

111. An edge [behaviour] at an edge external non-deterministically either:

(a) moves along the edge, a fraction “at a time”,

(b) stops on the edge and thereby “leaves” transport; or

(c) enters a node.

111. conveyor(ci)(cm)(k,routes)(cr,OnEdge(nui f ,(f,e),nuit),ch) ≡
111a. conveyor moves on edge(ci)(cm)(k,routes)(cr,OnEdge(nui f ,(f,e),nuit),ch)

111c. de conveyor stops on edge(ci)(cm)(k,routes)(cr,OnEdge(nui f ,(f,e),nuit),ch)

111b. de conveyor enters node(ci)(cm)(k,routes)(cr,OnEdge(nui f ,(f,e),nuit),ch)

• CONVEYOR Actions ON AN EDGE:

112. A conveyor moving along an edge

(a) at time τ is modelled by

(b) incrementing the fraction of its position

(c) (while updating its history)

(d) notifying the edge [behaviour]

(e) [technically speaking] adjusting its position, and, finally,

(f) resuming being a thus updated conveyor [OnEdge]

value
112. conveyor moves on edge(ci)(cm)(k,routes)(cr,OnEdge(nui f ,(f,e),nuit),ch) ≡
112a. let τ = record TIME(),
112b. ε:Real • 0 < ε � 1 in
112b. let f′ = f+ε,

112d. cpos = OnEdge(nuii f
,(f′,e),nuit) in

112c. let ch′ = 〈(τ,ci)〉̂ch in
112e. comm[{ci,e j}] ! (τ,ci) ;

112f. conveyor(ci)(cm)(k,routes)(cr,cpos,ch′) end end end
112. pre hd cr = nui f

7.4. BEHAVIOUR DEFINITIONS 31

113. A conveyor enters a node

(a) at time τ is modelled by altering its position

(b) notifying both the edge and designated node behaviours

(c) resumes being an updated conveyor behaviour.

value
113. conveyor enters node(ci)(cm)(k,routes)(cr,OnEdge(nui f ,(f,ei),nuit),ch) ≡
113a. let τ = record TIME(), cpos = AtNode(hd cr) in
113b. (comm[{ci,ei}] ! (τ,ci) ‖ comm[{ci,nuit}] ! (τ,ci)) ;

113c. conveyor(ci)(cm)(k,routes)(tl cr,cpos,〈(τ,ci)〉̂ch) end
113. pre hd cr = nui f

114. A conveyor may non-deterministically choose to abandon being a conveyor, i.e., leaving transport altogether
– stopping !

115. But first it notifies the edge at which it stops.

value
114. conveyor stops on edge(ci)(cm)(k,routes)(cr,OnEdge(nui f ,(f,e),nuit),ch) ≡
115. let τ = record TIME() in
115. comm[{ci,e j}] ! (τ,ci) ;

114. stop end
114. pre hd cr = nui f

7.4.2 Node Behaviour
116. Node [behaviours]

(a) external non-deterministically accept conveyor, ci, actions

(b) at times τ

(c) augment their histories accordingly and

(d) resumes being node behaviours.

value
116. node: NI → NM → (NodeKind×...) → NH Unit
116a. node(ni)(nm)(nk,...)(nh) ≡
116c. let msg= debc { comm[{ni,ci}] ? | ci:CI • ci ∈ nm } in
116d. node(ni)(nm)(...)(〈msg〉̂nh) end

7.4.3 Edge Behaviour
117. Edge [behaviours] – similarly,

(a) external non-deterministically, accept conveyor, ci, actions

(b) augment their histories accordingly and

(c) resumes being edge behaviours.

value
117. edge: EI → EM → (EdgeKind×LEN×COST×...) → EH Unit
117a. edge(ei)(em)(len,cost,...)(eh) ≡
117b. let msg= debc { comm[{ei,ci}] ? | ci:CI • ci ∈ em } in
117c. edge(ni)(em)(len,cost,...)(〈msg〉̂eh) end

32 CHAPTER 7. SINGLE-MODE TRANSPORT BEHAVIOURS

7.5 Domain Instantiation
By domain initialization we mean the invocation29 of all behaviours.

118. The overall initialization expresses the parallel composition of the initialization of

119. all conveyors,

120. all nodes and

121. all edges.

118. initialization: Unit → Unit
118. initialization() ≡ t

119. ‖ { conveyor

119. (uid C(c))

119. (mereo C(c))

119. (attr KindC(c),attr RoutesC(c)) [Static Attrs.]

119. [Programmable Attrs.] (attr CurrRouteC(c),attr CPoC(c)s,attr CHC(c))

119. | c:C•c ∈ cs}
120. ‖ ‖ { edge

120. (uid E(e))

120. (mereo E(e))

120. (attr EdgeKind(e),...) [Static Attrs.]

120. [Programmable Attrs.] (attr (e),attr EH(e))

120. | e:E•e ∈ es }
121. ‖ ‖ { node

121. (]uidN(n))

121. (mereo N(n))

121. (attr NodeKinds(n)) [Static Attrs.]

121. [Programmable Attrs.] (attr NH(n))

121. | n:N•n ∈ ns}

But: the initializaton of conveyors is too simplified: To capture an essence of transport it seems reasonable to
distinguish between the various kinds of conveyors.

Thus the initialization of conveyors “really” amounts to the initialization of all

• cars, trucks, taxis,
• buses,
• passenger & freight trains,

• sailboats, barges, vessels,
• passenger liners, ferries,
• civil aircraft,

• freight planes and

• passenger aircraft.

29Invocation – in the colloquial – “call”

Part II

A MULTI-MODE TRANSPORT:
ENDURANTS

33

Chapter 8

Multi-mode Transport

The domain description of Chapters 4–7 was for single-mode transport: It focused on transport nets and conveyors.
For a model of multi-mode transport we suggest to introduce:

• Merchandise: By merchandise we shall here understand a wider concept than usually thought of. To us
merchandise is what customers wishes to and actually send and receive: goods, if You will, that have weight,
volume and value. Could be a car, a book, 10.000 barrels of oil, etc. Merchandise is treated in Sect. 10.

• Customers: A [multi-mode transport] customer is either, if persons, wishes to travel from one place to
another, or if otherwise wishes to send merchandise from one place, e.g., the customer’s place, e.g. a node
or an edge, to be received by a recipient at that another place. In the latter case customers are persons,
businesses, organizations, or other, i.e., are senders or receiver , i.e., recipients . Customers are treated in
Sect. 11.

• Conveyor Companies: A conveyor company is a business which manages a fleet of conveyors: trucks,
freight trains freighters (i.e., vessels) and freight aircraft. Conveyor Companies are treated in Sect. 12.

• Logistics Companies: A transport logistics company handles requests from senders of passengers or
goods (containers, oil, coal, gas, grain, salt, cars, machinery, etc.) to have these conveyed from one node
to another, world-wide, by whatever means of combinations of conveyors and routes. A logistics company
thus is a company which arranges for transport of merchandise. To do so logistics firms have access to the
transport offerings of a number of, not necessarily all, conveyor companies: their routes, timetable and costs.
Logistics Companies are treated in Sect. 14.

• “Overall Top” Transport Endurants: The graph, conveyors, merchandise, customers, conveyor compa-
nies and logistics companies form the transport domain. As a whole they are defined in Sect. 9.

After these sections we

• outline an intentional pull for multi-mode domains, Sect. 15,

• summarize the syntax of multi-mode transport commands, Sect. 16,

• and cover multi-mode transport behaviours, Sect. 18.

• • •

To obtain the services of merchandise transport comes at a price, the cost.
The notion of cost is related to the notion of cash. It costs to have merchandise transported. Customers shall

pay costs. Say, in the form of cash30. Costs shall be modelled as integers. They are attributes of merchandise,
customers, conveyor companies and logistics companies.

You may very well think of cash as manifest, i.e., as endurant parts. But in the context of transport we can
abstract from that. If we were to model cash as endurants, then were we to model it as atomic or composite ? Now
we avoid such questions !

30– or through withdrawal from bank accounts, or other. See [10].

35

36 CHAPTER 8. MULTI-MODE TRANSPORT

Chapter 9

“Top” Transport Endurants

9.1 The Endurants – External Qualities

9.1.1 A Transport Taxonomy
We refer to Fig. 9.1 for a taxonomy of the transport domain.

T

G

NA EA K...

... ...N E

LA,LS

M M K L L

EN

MA,MS KA,KS

Graph Merchandise

... CKCK

... ...C

CS CO CS CO

CCC

Nodes Edges Company
Conveyor

Conveyors

Conveyor

Office

Transport

Companies
Conveyor

Non−manifest Endurant Possibly Manifest Endurant is_part_of... ... refers_to

LEGEND:

CKA,CKS

Kustomers = Klients
Logistics

Companies

Figure 9.1: A Transport Domain Taxonomy

The “downwards” slanted lines express that the “lower” part is part of the “upper” part.
The “horizontal arrow” expresses that the source part embed to “arrow” part. [Only one is illustrated; more

could !

37

38 CHAPTER 9. “TOP” TRANSPORT ENDURANTS

9.1.2 An Overview of The Endurants

The Transport Domain

122. There is given the domain of interest, i.e., the universe of discourse, T.

type
122. T

value
122. t:T

Graphs

Graphs were treated in Sect. 4.

123. In a transport domain can observe the transport net, i.e., a graph, g:G.

124. From a graph we can observe a node aggregate,

125. and an edge aggregate.

126. From a node aggregate we can observe a set of nodes.

127. From an edge aggregate we can observe a set of edges.

type
123. G

124. NA

125. EA

126. NS = N-set
127. ES = E-set
126. N

127. E

value
123. obs G: T → G

124. obs NA: G → NA

125. obs EA: G → EA

126. obs NS: NA → NA

127. obs ES: EA → ES

And likewise for the unique identification of the manifest of these endurants.

type
123. GI

124. NAI

125. EAI

126. NO

127. EI

value
123. uid G: G → GI

124. uid NA: G → NAI

125. uid EA: G → EAI

126. uid N: N → NI

127. uid E: E → EI

9.1. THE ENDURANTS – EXTERNAL QUALITIES 39

Merchandise

Merchandise is treated in Sect. 10.

128. From a transport domain we can observe a merchandise aggregate, ma:MA;

129. and from a merchandise aggregate we can observe the set, ms:MS of merchandise.

And likewise for the unique identification of the manifest of these endurants.

type
128. MA

129. MS = M-set

value
128. obs MA: G → MA

129. obs MS: MA → MS

type
128. MAI

129. MI

value
128. uid MA: MA → MAI

129. uid M: M → MI

Customers

Customers are treated in Sect. 11.

130. From a transport domain we can observe a “k”ustomers aggregate, ka:KA;

131. and from a customer aggregate we can observe the set, ks:KS of customers.

132. We can speak of the set, ks, of all customers of a transport domain.

And likewise for the unique identification of the manifest of these endurants.

type
130. KA

131. KS = K-set
value
130. obs KA: T → KA

131. obs KS: KA → KS

type
130. KAI

131. KI

value
130. uid KA: KA → KAI

131. uid K: K → KI

132. ks:K-set = obs KS(obs KA(t))

40 CHAPTER 9. “TOP” TRANSPORT ENDURANTS

Conveyor Companies & Conveyors

Conveyors were treated in Sect. 5 and Conveyor Companies are treated in Sect. 12.

133. In a transport domain, t:T, we can observe the composite endurant of conveyor companies aggregate,
cca:CCA.

134. From a conveyor companies aggregate, cca:CCA, we can observe a set,cks:CKS, of conveyor companies.

135. Conveyor companies are considered atomic.

From a conveyor company, ck:CK, we can observe

136. a conveyor aggregate, ca:CA,

137. and, from that, a conveyor set, cs:CS, which is a set of conveyors.

From a conveyor company, ck:CK, we can also observe

138. we can observe an atomic conveyor company office, co:CO,

139. and an atomic, optional logistics subsidiary, ol:oL, i.e., the conveyor company may operate its own logistics
company.

type
133. CKA

134. CKS = CK-set
135. CK

136. CA

137. CS = C-set
138. CO

139. oL = LI | nil

value
133. obs CKA: T → CKA

134. obs CKS: CKA → CKS

136. obs CA: CK → CA

137. obs CS: CA → CS

138. obs CO: CK → CO

139. obs oL: CK → oL

And likewise for the unique identification of the manifest of these endurants.

type
133. CKAI

135. CKI

136. CAI

138. COI

139. oLI = LI | nil

value
133. uid CKA: CKA → CKAI

135. uid CK: CK → CKI

136. uid CA: CK → CAI

138. uid CO: CK → COI

139. uid oL: CK → oLI

• • •

We shall, in the following, not treat the concepts of conveyor [company] offices and the logistics company parts of
conveyor companies. We shall also not treat the concepts of conveyor aggregates and conveyor sets, but will treat
the concept of conveyors.

9.1. THE ENDURANTS – EXTERNAL QUALITIES 41

Logistics Companies

Logistics Companies are treated in Sect. 14.

140. From a transport domain we can observe a logistics companies aggregate;

141. and from a logistics companies aggregate we can observe the set, ls:LS of logistics companies.

And likewise for the unique identification of the manifest of these endurants.

type
140. LA

141. LS = L-set
value
140. obs LA: T → LA

141. obs LS: LA → LS

type
140. LAI

141. LI

value
140. uid LA: LA → LAI

141. uid L: LA → LS

Node and Edges were first treated in Sect. 4. To this we now add a widened understanding of their mereologies
and attributes.

142. The mereology of nodes is a pair of the set identifiers of edges imminent upon the nodes and the set of
identifiers of the customers and conveyors that can deposit merchandises “on hold” at the nodes.

143. The mereology of nodes is a pair of the set identifiers of [the pair of] nodes “at ether end of the edge” and
the set of identifiers of conveyors that may travel along the edge.

Nodes and edges have the following attributes:

(a) Nodes have merchandises “on hold” – by contract number,
(b) and nodes have node histories: time-stamped events of which conveyors notified their presence at the

node.
(c) Edges have length,
(d) cost of travel,
(e) and event histories:: time-stamped events of which conveyors notified their presence at the edge.

type
142. NM = EI-set × (KI|VI)-set
143. EM = HI-set × VI-set
143a. OnHold = ContractNu →m M-set
143b. NHist = (TIME × CI)∗

143c. LEN

143d. COST

143e. EHist = (TIME × CI)∗

value
142. mereo N: N → NM

143. mereo E: E → EM

143a. attr OnHold: N → OnHold

143b. attr NHist: N → NHist

143c. attr LEN: E → LEN

143d. attr COST: E → COST

143e. attr EHist: E → EHist

• • •

Atomic Parts:

144. Nodes, edges, merchandise, “k”ustomers, conveyors, conveyor company offices, and logistics firms are
considered atomic.

type
144. N, E, M, K, C, CO, L

We shall not [really] consider conveyor offices and logistics firms in this report.

42 CHAPTER 9. “TOP” TRANSPORT ENDURANTS

9.2 On Internal Qualities.
We discuss which endurants may be considered manifest. That is, to which of the parts – as, for example, shown
by the boxes of Fig. 9.1 on page 37 – one might associate internal qualities, say in preparation for their part
behaviours.

• With the transport part, t:T, we might – here rather loosely – associate a ministry of transport, or ...; We
shall omit such associations.

• With the graph part, g:G, we might associate various other public (or private) institutions: ministry of
roads,ministry of railways, ministry of shipping, and “ministry of air” ! We shall omit such associations.

• With the merchandise part one might associate some institution of consumer protection or other. We shall
omit such associations.

• With the customer (client, consumer) part one might associate some kind of institutions. We shall omit such
associations.

• With the conveyor company part one might associate some conveyor association. We shall omit such asso-
ciations.

• With the logistics companies part one might similarly associate some associations. We shall omit such
associations.

• With nodes, edges, merchandise, customers [clients], conveyor sets and conveyor offices we have and shall
associate internal qualities – in respective sections 4, 5 and 10, 11, 12 and 14.

So we shall not elaborate on any internal qualities of the “top-level” endurants, that is those of T, G, NA, EA,

MA, KA, CCA, and LA. But we shall, later, in indicated sections, elaborate on internal qualities of the “next-level”
endurants, i.e., those of M, K, CK, CS, CO and L [Sects. 10, 11, 12 and 14] – as we already have for N, E and C

[Sects. 4 and 5].
Figure 9.1 on page 37 hints at manifest, possibly manifest and non-manifest parts.

9.3 Conveyor Companies versus Logistics Companies.
Is it really necessary to distinguish between the two: conveyor and logistics companies ? Examples of the two are:

• conveyor companies: Maersk31, DSV32 SAS, American Airlines, British Air, Deutsche Bahn, SNCF,
Amtrack, Arriva, Greyhound, P&O, Dachser33, etc.

• logistics companies: TUI, Expedia, etc.34

As You may have deduced from the examples: some of the conveyor companies also operate “own” logistics
departments, i.e., companies. But their functions must be separated: Conveyor companies fundamentally oper-
ate conveyors, and, only as a necessity, embody logistics departments – which basically only handle only their
“mother”, i.e., the conveyor company’s own conveyors. Logistic companies, in general, make use of several con-
veyor companies.

9.4 Financial Matters
Transport implies expenses. Cost and payment of conveyance, is implied, but we have chosen to omit modelling
these facets. Both conveyor and logistics companies rely on creating, writing/editing, reading, copying and de-
stroying documents. The implied double bookkeeping will also not be modelled. These financial facets are not
an essence, so we have decided, of the core aspects of transport. We refer to [10, 11] and [8], respectively, for
treatments of these three domains.

31Maersk, Danish, is one of the world’s largest container shipping lines.
32DSV, Danish, is one of the world’s largest trucking companies.
33https://www.dachser.dk/da/
34Yes, it has not gone unnoticed, that these “travel agencies” are, indeed, logistics companies – when seen from inside the daily operations

of these. Also: I find it difficult to find conveyor companies that do not have a logistics [sub-]office !

Chapter 10

Merchandise

We shall use the term merchandise as a common denominator for “all that can be transported” ! living species:
people35, animals, plants, wheat, etc.; solid materials: iron ore, automobiles, timber, etc.; fluid materials: oil, gas,
water, etc. Perhaps a better term would/should have been goods

10.1 Merchandise Endurants

10.1.1 External Qualities
145. There is the atomic endurant: merchandise.

type
145. M

value
145. m:M

35Please do not be confused: No, we do not refer to people as slaves !

43

44 CHAPTER 10. MERCHANDISE

10.1.2 Internal Qualities
We lump the presentation of identification, mereology and attributes of merchandises into one, the present, section.

Unique Identifiers:

146. Merchandises have unique identification. [That is: no two items of merchandise have the same identification,
and these are distinct from the identification of all other parts of the transport domain.]

Mereology:

147. The mereology of any [item or piece of] merchandise is the set of customers and conveyors that may possess
or transport that merchandise.

Attributes:

148. Merchandises have practical identification: names, manufacture, place of origin, etc. Two or more merchan-
dise may have the same such identification.

149. Merchandises have current position – a programmable attributes

150. Merchandises have size, approximate height, width and depth.

151. Merchandises have weight.

152. Merchandises have cost.

153. Merchandises have flammability.

154. Merchandises may be insured.

155. Merchandises have a history: an chronologically descending, ordered sequence of event notes:

156. Events are either ...

157. Et cetera ...

type
Unique Identifiers:

146. MI

Mereology:
147. MM = KI-set × CI-set

Attributes:
148. MId = Name×Mfg×Origin×...
149. Position = (NI × (F × EI) × NI) | NI | CI
150. Size = Nat×Nat×Nat
151. Weight = Real
152. Cost = Nat
153. Flammability = ′′flammable′′|′′inflammable′′|′′combustible′′|...
154. Insurance

155. MHist = (TIME×Event)∗
156. Event = ... | ... | ... | ...
157. ...
value
146. uid M: M → MI

147. mereo M: M → MM

148. attr MId: M → MId

149. attr Position: M → Position

150. attr Size: M → Size

151. attr Weight: M → Weight

152. attr Cost: M → Cost

153. attr Flammability: M → Flammability

154. attr Insurance: M → Insurance

155. attr MHist: M → MHist

Merchandises must satisfy some axiom[s]:

10.2. REPRESENTATION OF MERCHANDISES 45

158. No one merchandise must be at exactly one position at any one time.

axiom
158. ...

10.2 Representation of Merchandises
Merchandises are inert: does not move by their own volition ! But merchandises are being moved – by conveyors.
So how do we present merchandise ? In Sect. 5.4 on page 23, when we first described conveyor attributes, we did
not endow them with merchandise. That will be remedied in Sect. 12.3.5 Page 53.

We shall then, in Sect. 12.3.5 Page 53, see that we choose to model merchandises on a conveyor as a set of
merchandise unique identifiers !

159. Here we shall model the existence of a set of merchandises as a state value.

value
159. ms:M-set = obs MS(obs MA(t))

Given the unique identifier, mi, of a merchandise and given the “global” merchandises state we can “retrieve” the
identified merchandise:

160. The retrieve merchandise function, retr merchandise, takes a merchandise identifier and in the con-
text of the “global” merchandises state ms,

161. yields the unique (ι) m with that identifier in ms that has that identifier.

value
160. retr merchandise: MI×MS → M

161. retr merchandise(mi)(ms) ≡ ι m:M • m ∈ ms ∧ uid M(m)=mi

10.3 Humans
162. Humans can be merchandise.36

type
162. Human

value
162. is Human: M → Bool

36Not in the sense of illegal immigrants, sadly, but in the sense of legally “ticketed” passengers of bus, train, ship and aircraft conveyors.

46 CHAPTER 10. MERCHANDISE

Chapter 11

Customer

We shall use the term ‘customer’ for any person or institution that requests transportation of or receives transported
merchandise. Other terms could be ‘client’ or ‘consumer’. All have the advantage of beginning with a ‘c’. Which
we [quickly] convert into a ‘k’ – for same pronunciation !

11.1 Customer Endurants

11.1.1 Endurant Sort
163. There is the atomic endurant: customer.

type
163. K

11.1.2 A State Notion
164. There is the “global” transport value, t:T.

165. From it we observe a likewise “global”, the set of all customers, ks:KS.

value
164. t:T
165. ks:KS = obs KS(obs KA(t))

47

48 CHAPTER 11. CUSTOMER

11.2 Customer Qualities

We lump the presentation of identification, mereology and attributes of customers into one, the present, section.

Unique Identifiers:

166. Customers have unique identification.

167. We can speak of the identities of all customers, as a “globally” known value.

Mereology:

168. The mereology of any customer is the triple of the set of merchandises and the logistics firms that such firms
may be requested to arrange transport.

Attributes:

169. Customers have practical identification: name and address.

170. Customers posses merchandise.

171. Customers have outstanding requests: a time-stamped set of shipping notices: to be or being sent, or to
request to or expecting to receive.

172. Customers accumulate, for every event, a Customer History: A time-stamped, chronologically ordered se-
quence of event records: most recent event first.

173. Events are either ...

174.

type
Unique Identifiers:

166. KI

Mereology:
168. KM = MI-set × (CKI|LI)-set × CI-set

Attributes:
169. CustId = CustNam × CustAdd × ...
170. Possess = MI-set
171. OutReqs = ...
172. CustHist = (TIME × Event)∗

173. Event = ...
174. ...
value

Unique Identifiers:
166. uid K: K → KI

value
167. kis:KI-set = { uid K(k) | k:K•k ∈ ks 37}

Mereology:
168. mereo K: K → KM

Attributes:
169. attr CustId: K → CustId

170. attr Possess: K → Possess

171. attr OutReqs: K → OutReqs

172. attr CustHist: K → CustHist

37ks was defined in Item 165 on the preceding page.

11.3. CUSTOMER RETRIEVAL 49

11.3 Customer Retrieval
175. The retrieve customer function, retr customer, takes a customer identifier and in the context of the

“global” customers state, ks,

176. yields the unique, ι , k with that identifier in ks that has that identifier.

value
159. retr customer: KI×KS → K

161. retr customer(ki)(ks) ≡ ι k:K • k ∈ ks ∧ uid K(k)=ki

11.4 Customer Commands
We refer to Sect. 16.6.1 on page 73.

50 CHAPTER 11. CUSTOMER

Chapter 12

Conveyor Companies

We remind the reader of Sect. 9.3 on page 42.
The purpose of a conveyor company is to provide conveyors for the transport of merchandise. It does so in an

interaction between customers and logistics companies.
Conveyor companies has basically two main functions wrt. transport provision: a conveyor office and an entity

which manages the day-to-day movement of conveyors. A derivative, “in-house” function may be that of logistics:
the more-or-less optimal allocation of conveyor resources, routes, etc.

12.1 Conveyor Authorities.
We shall not consider the various public government conveyor authorities that “oversee” specific kinds of conveyor
traffic. In many countries there are, for example, several railway operators, but the underlying rail net is usually
operated by a [semi-]public government authority.

12.2 Conveyor Company Endurants.

12.2.1 Conveyor Company External Qualities
12.2.1.1 Sorts and Observers

From page 40 we repeat:

type
133. CKA

134. CKS = CK-set
135. CK

136. CA

137. CS = C-set
138. CO

139. oL = LI | nil
value
133. obs CKA: T → CKA

134. obs CKS: CKA → CKS

136. obs CA: CK → CA

137. obs CS: CA → CS

138. obs CO: CK → CO

139. obs oL: CK → oL

51

52 CHAPTER 12. CONVEYOR COMPANIES

12.2.1.2 A Conveyor Company Taxonomy

In preparation for our presentation of describing “the state” of the conveyor company segment we show a taxonomy
for the full structure of conveyor company parts in Fig. 12.1. The rendition is just an edited segment of Fig. 9.1
on page 37.

Transport

T

L

Company

Logistics

The Conveyor Company Segment

Conveyor Companies:

Conveyor

...

... ...

Conveyor
Company

Conveyor
Office

cks

cos

css

cs

CK

C C

CA,CS

Aggregates, CKA
Sets, CKS

CA,CS

cka

CK

C

COCO

C

CKA,CKS

Figure 12.1: Conveyor Companies Taxonomy
We consider all parts to be manifest

Horizontal dotted lines indicate ”state” components

12.2.2 A Conveyor Aggregate State Notion
There is the “global” transport domain value, t:T.

177. From t we can observe a likewise “global” conveyor company aggregate value, cca:CCA.

value
177. cka:CKA = obs CKA(t)

178. From cca we can observe a likewise “global” set of conveyor companies value, cks:CKS.

value
178. cks:CKS = obs CKS(cka)

179. From cks we can observe a likewise “global” set of conveyors value, css:CS-set.

value
179. css:CS-set = ∪{obs CS(ck)|ck:CK•ck∈css}

12.3. CONVEYOR COMPANY INTERNAL QUALITIES 53

180. From ccs we can observe a likewise “global” of all set of conveyors value, cs:C-set.

value
180. cs:C-set = ∪{obs CS(cs)|cs:CS•cs∈cks}

181. From cks we can observe a likewise “global” set of conveyor company offices value, cos:CO-set.

value
181. cos:C-set = ∪{obs CO(cs)|cs:CS•cs∈cks}

182. From cks we can observe a likewise “global” set of optional logistics companies value, ols:oL-set. They
do not contribute to the conveyor company segment state.

value
182. ols:C-set = ∪{obs oL(ck)|ck:CK•ck∈cks} \ {nil}

183. We can postulate an overall conveyor company state, σCK .

value
183. σCK = {cca}∪{cks}∪css∪cs∪cos

12.3 Conveyor Company Internal Qualities

12.3.1 Conveyor Company Identification
There are three issues here.

12.3.1.1 Conveyor Company Uniqueness of Identification.

The following conveyor companies parts have unique identifications:

184. the conveyor companies aggregate,

185. the conveyor companies set of conveyor companies

186. conveyor companies,

187. conveyors,

188. conveyor offices, and

189. optional logistics firms.

type
184. CCAI

185. CKSI

186. CAI

187. CI

188. COI

189. oLI

value
184. uid CCA: CCA → CCAI

185. uid CKS: CKS → CKSI

186. uid CA: CK → CKI

187. uid C: C → CI

188. uid CO: CO → COI

189. uid oL: oL → oLI

54 CHAPTER 12. CONVEYOR COMPANIES

12.3.1.2 Conveyor Company Unique Identifier State.

190. We can postulate, cf. Item 183 on the previous page, an overall conveyor company unique identifiers state,
σCKuid .

value
190. σCKuid =
190. {uid CCA(cca)} [= ccaui]
190. ∪ {uid CKS(cks)} [= ccksuid]
190. ∪ {uid CK(ck)|ck:CK•ck∈css} [= cksuid]
190. ∪ {uid C(cs)|c:C•cs∈cs} [= csuid]
190. ∪ {uid CO(co)|co:CO•co∈cos} [= cosuid]

Where we use some non-RSL definitions of separate unique identifier sets – to be used in formulas 195–200 below.

12.3.1.3 Conveyor Company Uniqueness of Identification.

191. All conveyor company parts are uniquely identified.

axiom [Unique Conveyor Companies Parts]

191. cardσCK = cardσCKuid

12.3.2 Conveyor Company Mereology
In the previous chapter Sect. 12.3.1, on unique identification, (pages 53-54), we treated all parts of the conveyor
companies segment, as manifest. In the present chapter we shall only consider

• conveyor company set of conveyors, cks,

• conveyor company conveyors, cs, and

• conveyor company offices, cos,

as manifest.

192. The mereology of conveyor company sets of conveyors, are a pair of (i) the identities of the conveyors they
“manage” and (ii) conveyor company, i.e., the conveyor company office they are“paired with”.

193. The mereology of a conveyor is the identity conveyor company set of conveyors they “belong to”.

194. The mereology of conveyor company office is a triplet: (i) the conveyor company sets of conveyors identity,
(ii) a set of logistics company identities and (iii) a set of customers [who may handle their transport matters
without the help of logistics firms].

type
192. CAM = CI-set × COI

193. CM = CAI

194. COM = CAI × LI-set × KI-set

value
192. mereo CA: CA → CAM

193. mereo C: C → CAI

194. mereo CO: CO → COM

12.3. CONVEYOR COMPANY INTERNAL QUALITIES 55

195. The Well-formed Conveyor Company Mereologies axiom has several clauses:

196. No two conveyor companies share [conveyor company sets of] conveyors.

197. The conveyor aggregate is correctly identified.

198. Conveyor, c:C, identities are those of actual conveyors,

199. and the identified logistics companies are actual

200. and the “k”ustomers are actual.

axiom [Well-formed Conveyor Company Mereologies]

196. share conveyors(cks)
195. ∧ ∀ ck:CK • ck ∈ cks ⇒

let (cai,lis,kis) = mereo CO(ck),

cs = obs CS(obs CA(ck)) in
197. cai=uid CA(obs CA(ck))

198. ∧ {uid C(c)|c:C•c ∈ cs} ∈ csuid
199. ∧ lis ⊆ lis
200. ∧ kis ⊆ kis

end

196. share conveyors: CKS → Bool
196. share conveyors(cks) ≡
196. ∀ ck,ck′:CK • ck6=ck′ ∧ {ck,ck′}⊆cks
196. ⇒ obs CS(obs CA(ck))ck ∩ obs CS(obs CA(ck′)) 6= {}

56 CHAPTER 12. CONVEYOR COMPANIES

12.3.3 Conveyor Company Attributes

Conveyor Companies have a number of attributes. We mention a few:

201. General conveyor company information, which conveyors it manages, their timed routes, capacity, maximum
load, etc.38

202. Resources: own and other conveyor companies’ conveyors, their status, etc.

203. Contract history:

(a) for every contract, once “on the move”, which ways: from sending customer to node, from node to
conveyor, from conveyor to node and from node to receiving customer39.

204. Orders

(a) by contract number

(b) and an indexed set of offers,

(c) each index being a choice number.

205. Current business: set of command messages.40

206. Past business: set of command messages.41

207. History: TIME-stamped, chronologically ordered, descending sequence of Events: the messages received
from customers and conveyors.

208. From choice and contract numbers one can observe the identity of the issuing conveyor company.

type
201. ConvCompInfo = ...
202. Resources = ...
203. Contracts = ContractNu →m Move∗

203a. Move = (KI×NI)|(NI×CI)|(CI×NI)|(NI×KI)
204. Orders = ContractNu →m Offers

204a. ContractNu

204b. Offers = ChoiceNu →m TR

204c. ChoiceNu

205. CurrBuss = MSG-set
206. PastBuss = MSG-set
207. CKHist = MSG∗

value
201. attr ConvCompInfo: C → ConvCompInfo

203. attr Contracts: CK → Contracts

204. attr Orders: CK → Orders

205. attr CurrBuss: CK → CurrBuss

206. attr PastBuss: CK → PastBuss

207. attr CKHist: CK → CKHist

value
208. xtr CKI: (ChoiceNu|ContractNu) → CKI

38Note: The conveyor company information attribute contains “all” the information that is needed for the calculation of offers etc.
39Note: This conveyor company attribute is updated every time a conveyor [k12] and a customer [k15] acknowledges the transfer of

merchandises
40Note: Received messages are “stashed” here for future handling – and removed once handled.
41Note: Handled [current business] messages here “stashed” here, transferred from the current business attributes.

12.4. CONVEYOR COMPANY COMMANDS. 57

12.3.3.1 Progress Updates

Conveyor companies are involved in many actions. Most of the actions [referred to by these commands] entail an
update of conveyor companies’ Progress attribute. Some directly by the conveyor companies. Others specifically
initiated by [the] so-called Acknowledgment actions originating with customers and conveyors.

These explicit acknowledgments are of the form:

• mk Acknowledgment(TIME,contract number,(ui,uj))

where:

• (ui,uj): (KI×CKI)|(CKI×KI)|(KI×NI)|(NI×CI)|(CI×NI)|(NI×KI)

The explicit acknowledgments entail updates to conveyor companies’ Progress attribute:

209. The upd contracts function takes a contracts attribute and an acknowledgment and yields an updated
contracts attribute.

value
209. upd contracts: Contracts → Acknowledgment → Contracts

209. upd contracts(con)(mk Acknowledgment(τ,cnu,(ui,uj))) ≡
209. con † [cnu 7→ con(cnu)̂〈mk Acknowledgment(τ,cnu,(ui,uj))〉]

12.4 Conveyor Company Commands.
We refer to Sect. 16.8.2 on page 79.

58 CHAPTER 12. CONVEYOR COMPANIES

Chapter 13

Conveyors, II

We have already dealt with conveyors: their external qualities, Sect. 5.1 on page 21, and two of their internal
qualities, unique identification, Sect. 5.2 on page 22, and mereology, Sect. 5.3 on page 22. We shall, however,
extend the mereology first sketched in Sect. 5.3 on page 22.

13.1 Conveyor Mereology
210. The mereology of a conveyor is a quadruple:

• the set of all identifiers of nodes and edges that the conveyor may travel;

• the set of all identifiers of conveyor companies that it may receive directives from and to which it shall
have to acknowledge transfers of merchandises;

• the set of all identifiers of customers that it shall inform of pending collections and deliveries, and to
which it shall deliver merchandises;

type
210. CM = (NI|EI)set × CKI-set × KI-set
value
210. mereo C: C → CM

59

60 CHAPTER 13. CONVEYORS, II

13.2 Conveyor Attributes
In Sect. 5.4 on page 23 we already touched upon some conveyor attributes.

We now extend these42.

211. Conveyors are of kind [unchanged] [Static Attribute].

212. Conveyors convey, i.e., stores (holds), merchandises by contract number.

213. They follow a service route43, sr:SR [programmable attribute] which is a path, of three or more node and
edge identifiers – beginning with a node and ending with a node.

214. Conveyors “carry” and index attribute – SRIndex – – indicating as to where in the service route they, at
present, are.

215. Conveyors also operate according to two “tables”: for each node that it visits there are contracts to be
unloaded, respectively loaded. This information is given to conveyors, at any time, by conveyor company
directives.

216. Conveyors, having unloaded a contract at a final node informs the receiving customer of arrival. Note the
difference between that attribute type name Finals (with a plural ’s’) and the function argument identifier
type Final (with no such plural).

217. Conveyors have, dynamically, a position – CPos – either they are at a node or are en route, i.e., on an edge
between two adjacent nodes.

218. The SR, SRIndex and CPos must be commensurate: if index i:SRIndex designates a node ni, then
cpos:CPosmust be a AtNode(ni), else, it designates and edge, ej, and cpos:CPosmust be some OnEdge(,(,ej),).44

219. And conveyors have a history.

220. We omit further possible attributes: Speed, Acceleration, Weight,

221. These routes must be of the kind of the conveyors traveling them !

type
211. Kind

212. Stowage = ContractNu →m M-set
215. TBU,TBL = NI →m ContractNu-set
213. SR = Path

214. SRIndex = Nat
216. Finals = NI →m (KI →m ContractNu)

216. Final = NI × ContractNu × KI

217. CPos = [Item 85 on page 23]

219. CHist = MSG∗ 45

220. ...

value
211. attr Kind: Conveyor → Kind

211. attr Stowage: Conveyor → Stowage

215. attr TBU: Conveyor → TBU

215. attr TBL: Conveyor → TBL

213. attr SR: Conveyor → SR

214. attr SRIndex: Conveyor → SRIndex

216. attr Finals: Conveyor → Finals

217. attr CPos Conveyor → Position

219. attr CHist: Conveyor → CHist

axiom [Routes of commensurate kind]

221. [left to the reader !]

218. � ... [left to the reader] ...

42Here we see a benefit from observing attributes, rather than explicitly defining the attributes of a part as a Cartesian of attributes.
43This service route concept reflects that the conveyor, at any time, may carry merchandise from many distinct contracts.
44The joint i:SRIndex and cpos:CPos may be a bit too much, but they come in conveniently for our subsequent formalizations.
45The messages are those directed at or emanating from conveyors

13.3. CONVEYOR COMMANDS. 61

13.3 Conveyor Commands.
We refer to Sect. 16.8.2 on page 79.

62 CHAPTER 13. CONVEYORS, II

Chapter 14

Logistics Companies

We remind the reader of Sect. 9.3 on page 42.
The purpose of a logistics company is to arrange of transportation. It does so in interaction between customers

and conveyor companies.
The functions of logistics companies very much overlaps with some of the functions of conveyor companies.
An “extreme” example of a logistics company is that of a travel agency !
We shall, however, not pursue the logistics concept further – since its role is also played by conveyor companies.

63

64 CHAPTER 14. LOGISTICS COMPANIES

Part III

A MULTI-MODE TRANSPORT:
INTENTIONAL PULL

65

Chapter 15

Intentional Pull, II

TO BE WRITTEN

67

68 CHAPTER 15. INTENTIONAL PULL, II

Part IV

A MULTI-MODE TRANSPORT:
COMMANDS

69

Chapter 16

Multi-mode Transport Commands

16.1 Events and Commands
We distinguish events from commands:

Events are perdurants. The “occur instantaneously”. At “their own” volition. In a state46 and possibly cause a
state change. Some events, the internal events, have their “root” in the [part] behaviour, hence “affect” the attributes
of the underlying part. Other events, the external events, have their “root” “outside” the [part] behaviour, but may
“affect” the attributes of the underlying part.

Commands are syntactic entities. Commands are “issued”47 by part behaviours They “occur” as the result of
actions taken by [receiving] part behaviours. They have a syntax. They constitute a script facet48 related to the
part [behaviour]. They have a semantics. The semantics of commands is expressed by behaviour actions. We
distinguish between directive commands and response commands. Directive commands are issued by a part
behaviour and is directed at another part behaviour. Response commands are acted upon by a part behaviour in
response to a command issued by another part behaviour. For both kinds of commands there are thus at least two
behaviours involved in expressing their semantics.

16.2 Command Traces
In order to describe the very many commands it has proven useful to sketch a possible diagram of command traces.
Figure 16.1 on the next page49 shows schematically a possible trace of commands. The ordering, “i” in ki, shall
indicate some temporal ordering of the issue of these commands.

We shall elaborate on the transport behaviours – with reference to Fig. 16.1 on the next page.50

k1 After some preparatory work a sending customer inquires as to possible transport at a chosen conveyor or
logistics company.

k2 After some preparatory work the conveyor or logistics company replies to the inquiry.

k3 After some preparatory work the customer places and order for transport.

k4 After some preparatory work the chosen conveyor or logistics company confirms the order,

k5 which the customer now [likewise firmly] accepts – with payments.

k6 At some point logistics companies hand over customer orders to [respective] conveyor companies.

k7 After some preparatory work these conveyor companies, one or more, select a the set of conveyors and
inform them of the order, i.e., give them directives.

k8 The conveyor company, at some time after [k7] informs the customer that a designated node is ready to
accept its merchandises for transport – “on hold”, at a node.

46By ‘state’ we shall, in the context of perdurants, mean the value of all dynamic attributes of all behaviours.
47By “issued” we shall here mean that they are communicated, in the style of CSP communications by behaviours directed at other behaviours.
48For facets and scripts see [7, Chap. 8].
49In Fig. 16.1 on the following page we have “merged” the logistics company handling of commands with that of the conveyor company

handling – as there is some “overlap” in their functionalities.
50That is: figures like Fig. 16.1 on the following page are not given a semantics. The “semantics” of Fig. 16.1 on the next page

“transpires from the entire formal model of this report.

71

72 CHAPTER 16. MULTI-MODE TRANSPORT COMMANDS

k5k3

k2

k1
k9Cust.Query Cust.

Order
Offer

Conveyor
Companies

Notify

Acknowledgement

k13

Acknowledgement

Customers: Sending & Receiving

k7
per conveyor

Confirm

Order

material communication

command

LEGEND:

k8
Coll.

Pend.

OrderOK

k6

Pending

Collection

Notify
k10k10

O
n

/O
ff

E
d

g
e

O
n

/O
ff

N
o

d
e

k12a,b

k15a,b k14a

k14b

Pend.

Deliv.

* from customers
Edges

* from conv.comps.

* from conveyors

* from nodes

Issued once

k4

preparing for command

Conveyors

Load/Unload

k6: Issued to one or more
[other] Conveyor Companies
by logistics firms
[not described]

NKTransfer

KNTransfer

Load/Unload

NCTransfer/CNTransfer

Logistics and Conveyor Companies

Nodes

k1
1a

−
b

Figure 16.1: Command & Material Traces [→]

k9 Having been so notified by a conveyor the customer delivers the merchandises, to be transported, at a node,
to be “on hold” for the conveyor.

k10 Conveyors, “on the move”, notify edges and nodes of their presence.

k11 In synchronous communications conveyors exchange merchandises with nodes: either loading ([k11a]) or
unloading ([k11b]).

k12 Those conveyors inform their companies of transfers.

k13 The “last” conveyor notifies the “end” customer receiver of pending arrival.

k14 Having been notified, by the conveyor, the “end” customer receives the transported merchandises.

k15 That customer informs the [final] conveyor company of the [final] transfer.

16.3 An Analysis
We now analyze Sect. 16.2 on the preceding page.

It seems tat there are four kinds of “commands”: ab initio, deferred, triggered and cascaded.

• Ab Initio: There is only one command of this category: the customer query command, [k1].

Customers, at their own instigation, that is, internal non-deterministically, decides to have some merchan-
dises transported.

• Deferred: Most commands are of this category: they are implied by issue of other, that is, “previous” [k2]
thus follows from [k1], [k3] from [k2], etc.

There is no guarantee that [k2] will occur. The conveyor (or logistics) company may simply ignore that it
has received [k1], respectively [k3] may not occur in response to [k2]. Etcetera.

16.4. MATERIAL AND “IMMATERIAL” COMMANDS 73

• Triggered: “Commands” [k11a] and [k11b] are not “directly issued”, external non-deterministically,“at
some time” in response to [k7].

[k7], such as we small model it, shall result in conveyors having an appropriate attribute, the to be loaded and
to be unloaded, containing such information as when conveyors at nodes shall load and unload merchandises
– and when conveyors are At such Nodes, this attribute information is said to trigger these merchandise
transfers.

• Cascaded: [k8] is issued either at the same time as [k7], or shortly thereafter. [k9] is issued when [k8] has
been received – after which a first [k15] is issued.

16.4 Material and “Immaterial” Commands

Kommands k1-k8, k10, k13, k15 and k18 are “immaterial” in that they “just” communicate information. Com-
mands k9, k11 and k14 are “material” in that they, besides information (data) also communicate, i.e., physically
transfer material, i.e., merchandises.

16.5 Abstracting an Essence of Transport

By “abstracting an essence of transport” we mean that a number of transport “details” are omitted for “the benefit”
of emphasizing “other details” ! For examples: (i) we omit details of the structure and contents of what is to be
transported, (ii) keeping, somehow, details of who is sending, the address, by whom the merchandise is to be
received, etc., (iii) omitting details of merchandise, identification, quantity, weight, value, etc., (iv) cost, payments,
etc. In the description of commands, below, we therefore abstract “to the core” these commands – assuming that
the various “actors”: the customers, the logistics and conveyor companies and the conveyors can otherwise, i.e.,
somehow “find out” !

16.6 Commands – A First View

As You see, there are many commands. In this section we shall “take an abstract view of these” before, in Sect. 16.8
we go into the detailing of these commands This “abstract view” should then enable us to “design”, as it were, a
systematic form and set of less abstract commands.

16.6.1 Customer Commands, I

222. k1 Customers inquire either logistics companies or conveyor companies about many things, for example
time-tables, cost, etc., for the transport of merchandises from one customer to another, etc.

223. k3 Customers place orders, with either logistics companies or conveyor companies for the transport – ac-
cording to some offers, k2, made by these.

224. k5 Customers “signs” the k4 offer.

225. k9 Customers deliver merchandise to nodes.

226. k15 Customers acknowledge receipt of merchandises.

type
222. [k1] CustQuery

223. [k3] CustOrder

224. [k5] OrderOK

225. [k9] CustDel

226. [k15] Acknowledgment

74 CHAPTER 16. MULTI-MODE TRANSPORT COMMANDS

16.6.2 Conveyor Company Commands, I
227. k2 Conveyor companies place an offer for transport in response to an inquiry, k1.

228. k4 Conveyor companies OKs an order in response to an customer order, k3.

229. k7 Conveyor companies inform conveyors of orders, k4, to be carried out.

230. k8 Conveyor companies inform customers of pending collection of merchandises.

type
227. [k2] ConvCompOffer

228. [k4] ConvCompOrdOK

229. [k7] ConvCompConvDir

230. [k8] PendColl

16.6.3 Conveyor Commands, I
231. k8 Conveyor notify customers of pending collection.

232. k10 Conveyor notify edges and nodes of its presence.

233. k11a-k11b Conveyor transfers merchandises to and from node.

234. k12 Conveyor acknowledges conveyor company of merchandise transfer.

235. k13 Conveyor informs customer of pending delivery.

232. [k10] Notify

233. [k11a] CNTransfer

234. [k12] Acknowledgement

235. [k13] PendDel

• • •

Conveyors collect and deliver merchandise not only from and to nodes, but also from and to other conveyors.
Therefore the k10–k15a-b. sequence of commands also takes place between distinct conveyors.

16.6.4 Logistics Company Commands
We shall skip this section,

16.7 TR: Transport Routes
We may have “abstracted too much” in Sect. 16.6. For example, where in the conveyor company and logistics
company to customer order OK commands is the information “hidden” that outlines the course of actions: which
route to take, with which conveyors, at which approximate times ? That information may be formalized:

16.7. TR: TRANSPORT ROUTES 75

na nb nc

ne

ei ej ek
el

em

en

c3

segment 1

(k1,a1),c1 c2

nd

nf

(k2,a2)
ng

ng
ep

eq

eo

segment 2

Segments
3 to s−1

segment s

Figure 16.2: A Transport Route: k:kustomer, c:conveyor, a:address, n:node, e:edge

76 CHAPTER 16. MULTI-MODE TRANSPORT COMMANDS

236. A transport [route] is a composite of

237. first a sending customer’s identifier and place of pick-up ((k1,a1));

238. then the storage: a non-empty set of unique identifiers of the merchandises transported – indexed by contract
number;

239. followed by a sequence of one or more segments (segment 1, segment 2, ..., segment n)–

240. each segment beginning with a conveyor (c1, c2, ..., c3) identifier, then a node identifier (na, nc, ..., ne),
and finally a non-empty edge-node-path –

241. an edge-node-path is sequence of alternating edge and node identifiers (〈ei, nb, ej, ..., ek, nc〉);

242. finally ending with a receiving customer’s identifier and place of delivery (k2,a2)).

243. The two addresses must be different a1 6=a2.

244. The paths formed by edge-node-paths headed by a, i.e., the, node identifier must be paths of the transport
net51,

245. and these paths must be of the same kind as the conveyor for those paths.

246. The time ordering is strictly ascending –

247. and the “end” node of one segment must match, i.e., be equal to the “beginning” node of the next segment.

248. The storage must be well-formed: no two contracts identify the same merchandises.

249. From a contract number one can observer, i.e., extract, the issuing conveyor company identifier.

type
236. TR = s sndr:(KI × Addr)

238. × s cos:(ContractNu →m MI-set) axiom ∀ mis:MI-set • mis6={}
239. × s sgl:Segment∗ [axiom ∀ sl:Segment∗•sl 6=〈〉]
242. × s rcvr:(KI × Addr)

240. Segment = TIME × CI × NI × Edge Node Path

241. Edge Node Path = (s ei:EI×s ni:NI)∗ axiom ∀ enp:Edge Node Path•enp6=〈〉
238. ContractNu

value
249. xtr CKI: ContractNu → CKI

axiom
238. ∀ tr:TR • let cos=s cos(tr) in ∀ cnu:dom cos•xtr MIs(cnu)=cos(cnu) end

Wellformed Transports52

axiom [Wellformed Transports]

243. ∀ ((,a1), ,sl,(,a2)):TR • a1 6=a2 ∧
242. ∀ seg:Segment•seg∈ elems sl ⇒
242. ∀ (,ci,ni,enp):Segment•(ci,enil,ei)∈ elems enp
244. ∧ 〈ni〉̂enp ∈ paths ∧ enil∈paths
245. ∧ same kind(enp,ci)

246. ∧ ∀ i,i+1•{i,i+1}⊆inds sl ⇒
246. let (τi,ci,ni,enp) = sl[i], (τj,cj,nj,enpj) = sl[i+1] in τi<τj

247. ∧ s ni(enpi[len enp]) = nj end
247. ∀ storage:(ContractNu→m MI-set) •

247. ∀ cni,cnj:ContractNu • {cni,cnj}⊆dom storage ∧ cni∼−cnj
247. ⇒ storage(cni)∩storage(cnj)={}

51Cf. Item 52 on page 16
52Axiom 243–247 must be carefully checked

16.8. A CLOSER ANALYSIS OF COMMANDS 77

Auxiliary Functions

value
245. same kind: Edge Node Path × CI → Bool
245. same kind(enpath,ci) ≡ ... [Left to the reader]

An aspect of the transport routes, tr:TR, when a transport route has more than one segment, is that the node
between two adjacent segments, serve as a repository for merchandises. A conveyor unloading merchandises
destined for other, one or more, conveyors may not arrive when either or all of these conveyors have arrived53,
so they deposit, put “on hold”, those merchandises. For respective kinds of nodes these “deposit holds” are, for
example, called bus stops for kind road, train station waiting rooms for kind rail, airport passenger lounges for
kind air, and container terminals for kind sea.

Segments (Item 240 on the facing page) are static descriptions of where conveyors are to move. Service

Routes, SRs (Item 213 on page 60), are static descriptions of when conveyors are to move.

16.8 A Closer Analysis of Commands
We refer back to the overview of all commands given in Sect. 16.6.

16.8.1 Customer Commands, II
222. For a customer to formulate a proper query about possible transports such a query must contain the following

information:

(a) a unique, customer-chosen inquiry identification and

(b) a query compound.

250. The query compound, it seems, should contain such information as:

(a) name, address, and other such data that “pin-points”, “validates” the inquirer;

(b) characterization of the merchandise to be transported: product information, quantity, total weight, total
volume, total value [for insurance purposes], etc.;

(c) time interval of transport;

(d) from where to where;

(e) expected cost frame; and, possibly, more !

(f) Addresses are further unspecified.

type
222. [k1] CustQuery ::

249a. QueryId

249b. × QueryComp

250. QueryComp =
250a. Addr

250b. × MInfo [...]
250c. × TI [= (TIME×TIME), axiom ∀ (ft,tt):TI•ft<tt]
250d. × FT [= NI×(NI×KI×AddrInfo), axiom ∀ (nf,(nt, ,)):FT•nf 6=nt]
250e. × ExpCost

250f. Addr

53The conveyor or logistics company, when preparing the offers, are assumed to make sure that there is appropriate time intervals between
unloading and loading conveyors for relevant merchandises.

78 CHAPTER 16. MULTI-MODE TRANSPORT COMMANDS

223. For a customer to formulate a proper order for a specific transport such a query must be based on the
conveyor or logistics company offer to a query like that outlined in Item 250, above, the order must contain
the following information:

(a) the customer inquiry identification, and

(b) a reference to the logistics or conveyor company contract number given in query reply.

(c) Then more-or-less the same information, formulated as a compound, as given in the original query –
which is also expected to be contained in the reply offer;

(d) name, address, etc.,

(e) merchandise information,

(f) precise times.

(g) from-to transport details,

(h) the offered cost,

(i) etc.

251. From a query identifier one can extract the customer identity.

type
223. [k3] CustOrd ::

250a. QueryId

250b. × ContractNu

250c. × OrdrComp

250c. OrdrComp =
250d. Addr

250e. × MerchInfo

250f. × TI

250g. × FT

250h. × Cost

250i. × ...

value
251. xtr KI: QueryId → KI

224. For a customer to OK a proposed transport the the customer must provide

(a) the contract number,

(b) the choice number,

(c) payment.

224. [k5] OrderOK ::

251a. ContractNu

251b. × ChoiceNo

251c. × Payment

224. For a customer to deliver the merchandises according to the contracted order the customer must provide

(a) a reference to to the contract number and

(b) the therein indicated number of actual merchandises !

type
224. [k9] KNTransfer ::

251a. ContractNu

251b. × M-set

16.8. A CLOSER ANALYSIS OF COMMANDS 79

252. [k15] A customer having received merchandises (from another customer via conveyors) at a node acknowl-
edges this receipt by so informing the conveyor company.

type
252. [k15] Acknowledgment :: TIME×ContractNu×(NI×KI)

Observe that the first two commands and the last command were strictly “informational”, i.e., syntactic, whereas
the Customer tDelivery command is “rather” physical:, i.e., semantic: the command, so-to-speak, “embodies” an
action, the manifest movement of volumes of possibly heavy material !

There may be other customer commands – such as inquiring as to the progress of an actual transport, etc. We
leave that to the reader.

16.8.2 Conveyor Commands, II
The conveyor commands, first outlined in Sect. 16.6.3 on page 74, are now summarized and detailed. First we
list their treatment in Sect. 16.6.3 on page 74.

231. k8 Conveyor informs customer of pending collection.

232. k10 Conveyor notifies edges and nodes of conveyor presence.

233. k11 Conveyor transfers (loads [k11a], unloads [k11b]) merchandises.

234. k12 Conveyor acknowledges conveyor company of merchandise transfer.

235. k13 Conveyor informs customer of pending delivery.

231. [k8] PendColl

232. [k10] Notify

233. [k11a,b] Transfer = CNTransfer | NCTransfer
234. [k12] Acknowledgment

235. [k13] PendDel

253. [k8] Conveyors inform either a customer of pending collection of merchandises.

They do so by simply mentioning the contract number and the set of unique identifiers of the merchandise
to be collected.

254. [k10] Conveyors notify edges and nodes of their presence.

Conveyors transfer:

255. [k11a] load from a node.

256. [k11b] or unload merchandises to a node.

They do so by stating the contract number and presenting the set of merchandise to be transferred.

257. [k12] Conveyors, time-stamped, acknowledges its company of, and at the completion of a transfer, collection
or delivery of merchandise. They do so by mentioning the contract number and the two “parties” to the
transfer:

258. either a customer and a node, or a of conveyor and a node.

259. [k13] Conveyors inform customers of pending delivery (at a node).

type
253. [k8] PendColl :: (NI×(ContractNu> MI-set))
254. [k10] Notify :: AtNode | OnEdge
255. [k11a] NCTransfer :: (ContractNu×M-set)
256. [k11b] CNTransfer :: (ContractNu×M-set)
257. [k12] Acknowledgment :: TIME×ContractNu×FromTo
258. FromTo = (NI×CI)|(CI×NI)
259. [k13] PendDel :: (NI×(ContractNu×MI-set))

80 CHAPTER 16. MULTI-MODE TRANSPORT COMMANDS

16.8.3 Conveyor Company Commands, II

Review:

type
ι227 π74. [k2] ConvCompOffer

ι228 π74. [k4] ConvCompOrdOK

ι229 π74. [k7] ConvCompConvDir

We now detail these.

260. An offer for transport must state

(a) the conveyor company identity;

(b) a contract54 number;

(c) refer to an inquiry, for example by stating its number or by repeated it; and

(d) a set of zero, one or more choice number indexed offer-choices.

An offer-choice

(e) a timed route of transport, and

(f) a cost.

261. An OK, binding acknowledgment of an order must state

(a) the conveyor company identity,

(b) a contract number,

(c) refer to an offer and choice number,

(d) “repeats” the contracted timed route of transport,

(e) and the cost.

262. The conveyor company information to be given to conveyors of orders, k4, state

(a) the conveyor company identity;

(b) a contract number and

(c) the contracted time route of transport.

263. From Offer numbers, contract numbers and choice numbers one can extract the offering and contracting
company’s identity

264. as well as the identity of the customer being offered and contracted.

type
260. [k2] ConvCompOffer :: CKI×ContractNu×QueryNu×(ChoiceNu→m OfferChoice)

260b. ContractNu

260d. ChoiceNu

260e. OfferChoice = TR× ost

261. [k4] ConvCompOrdOK :: CKI×ContractNu×ChoiceNu×TR×Cost

262a. [k7] ConvCompConvDir :: CKI×ContractNu×Segment

value
263. xtr CKI: (OfferNu|ChoiceNu|ContractNu) → CKI

264. xtr KI: (OfferNu|ChoiceNu|ContractNu) → KI

54– even though this may not result in a contract

16.8. A CLOSER ANALYSIS OF COMMANDS 81

16.8.4 Node Commands
Nodes, as behaviours, have now become reactive. They store contracted merchandises – “on hold between” con-
veyors. So they must react to conveyor commands requesting merchandises, unloaded, to be put “on hold” or
fetched, to be loaded. They react by accepting and delivering merchandises from, respectively to conveyors and
customers. To these requests node behaviours must react [immediately (?)]. These are the only transport commands
that must be so synchronized55. All other transport commands are “buffered”56

265. [k14] Nodes transfer merchandises (from another customer via conveyors) from the ‘on-hold’ of a node to a
customer.

type
265. [k14] NKTransfer :: NI×ContractNu

16.8.5 Edge Commands
Thee are no edge commands. Edge behaviours receive notifications from conveyors as to their presence on edges.

55Alert: Check that I actually describe so !
56 Alert: Perhaps one should reconsider the customer to conveyor and conveyor to customer transfers of merchandises to also be synchro-

nized.

82 CHAPTER 16. MULTI-MODE TRANSPORT COMMANDS

Part V

IDENTITIES

83

Chapter 17

Identities

So far we have introduced a variety of identities:

• unique identities of endurants,

• query ‘numbers’,

• offer ‘numbers’,

• contract numbers,

• etc.

These are, of course, not identifiers nor numbers or numerals. They are abstract entities.
We can say a lot about these:

85

86 CHAPTER 17. IDENTITIES

266. From the identity of a customer we can “extract” (i.e., “observe”) such things as the name of the customer, the
address (road name & number, district name, city name, county name, country name, telephone ‘numbers’,
e-mail addresses, etc., etc.).

267. From the identity of a conveyor we can ‘extract’ the identity of its owner: a conveyor company.

268. From a query ‘number’ we can extract the identity of the querying customer.

269. From offer, order and contract ‘numbers’ we can extract the identities of conveyor (logistics) company and
customer identities.

270. From a contract number we can extract the set of merchandise identifiers “involved” in the identified contract.

271. From a contract number we can extract a waybill57,

272. From a contract number we can extract a a bill-of-lading58.

273. From a contract number we can observe whether it (i.e.,the waybill/bill-of-lading) represents a ticket for
human “merchandise” (cf. Sect. 10.3 on page 45).

274. Et cetera.

value
266. xtr Name: KI→Name

266. xtr Addr: KI→((RoadNam×Nat)×DisNam×CounNam×LandNAm×PhonNu×Email×...)
267. xtr CKI: CI→CKI

268. xtr CI: QueryNu→CI

269. xtr CKI: (OfferNu|OrderNu|ContractNu)→CKI

269. xtr CI: (OfferNu|OrderNu|ContractNu)→CI

270. xtr MIs: ContractNu→MI-set
type
266. RoadNam, DisNam, CounNam, LandNam, PhonNu, Email

271. WayBill

272. BoL

value
271. xtr WayBill: CKI→WayBill

272. xtr BoL: CKI→BoL

273. is Ticket: (WayBill|BoL)→Bool

MORE TO COME

57A waybill is a document issued by a carrier acknowledging the receipt of goods by the carrier and the contract for shipment of a consignment
of that cargo. Typically it will show the names of the consignor and consignee, the point of origin of the consignment, its destination, and route
[Wikipedia].

58A bill of lading (sometimes abbreviated as B/L or BoL) is a document issued by a carrier (or their agent) to acknowledge receipt of cargo
for shipment. Although the term is historically related only to carriage by sea, a bill of lading may today be used for any type of carriage of
goods. Bills of lading are one of three crucial documents used in international trade to ensure that exporters receive payment and importers
receive the merchandise. The other two documents are a policy of insurance and an invoice.[a] Whereas a bill of lading is negotiable, both a
policy and an invoice are assignable [Wikipedia].

Part VI

A MULTI-MODE TRANSPORT:
BEHAVIOURS

87

Chapter 18

Multi-mode Behaviours

Contents
18.1 Communication . 89
18.2 Behaviour Signatures . 90
18.3 Which Behaviours to Describe ? . 91
18.4 Multi-mode “Systems” . 91

18.4.1 Multi-mode Domain Initialization . 91
18.4.2 Multi-mode Domain Instantiation . 92

18.1 Communication
275. There is a medium for synchronization of and communication between behaviours.

276. comm[{ui,uj}] ! value expresses an event [an action]: the “output” of value, from the behaviour identi-
fied by ui towards the behaviour identified by uj.

277. comm[{ui,uj}] ? expresses a value, i.e., the “input” of a value, from the behaviour identified by ui by the
behaviour identified by uj.

channel
278. { comm[{ui,uj}] | ui,uj:UI • {ui,uj}⊆σuis } : MSG

278. The comm channel declaration above expresses that this medium is “two-dimensional” and communicates
(“mediates”) messages of type M.

279. Messages are timed commands

280. and the commands are those of customers, conveyor companies, logistics companies and conveyors.

type
279. MSG = (UI×TIME×UI)59 × Command

279. UI =KI|CKI|CI
279. [k1] Command = CustQuery [Customer→Company]
279. [k3] | CustOrd ...
279. [k5] | OrderOK ...
279. [k15] | Acknowledgment ...
279. [k9] | KNTransfer [Customer→Node]
279. [k14a] | PendColl ...
279. [k2] | ConvCompOffer [Company→Customer]
279. [k4] | ConvCompOrdOK ...
279. [k8] | PendColl ...
279. [k7] | ConvCompConvDir [Company→Conveyor]
279. [k12] | Acknowledgment [Conveyor→Company]

89

90 CHAPTER 18. MULTI-MODE BEHAVIOURS

279. [k13] | PendDeliv [Conveyor→Customer]
279. [k11a] | CNTransfer [Conveyor→Node]
279. [k10] | Notify ...
279. [k11b] | NCTransfer [Conveyor→Edge]
279. [k10] | Notify ...
279. [k11b] | NCTransfer [Node→Conveyor]
279. [k14] | NKTransfer [Node→Customer]

• • •

A core property of CSP is that behaviours both synchronize their behaciours and exchange messages, from one,
!, to another, ?.

18.2 Behaviour Signatures

We omit consideration of aggregate and merchandise behaviours. There are:

281. the customer behaviours,

282. the logistics company behaviours,

283. the conveyor company behaviours,

284. the conveyor behaviours,

285. the edge behaviours, and

286. the node behaviours.

In some other order their signatures are:

value
281. customer: KI [identifier]

281. → KM61 [mereology]

281. → (CustId × AddrInfo × ...) [static attrs.]

281. → (Possess × OutReqs × CustHist) Unit [progr. attrs.]

283. conv comp: CKI → [identifier]

283. → CKM [mereology]

283. → (ConvCompInfo × ...) [static attrs.]

283. → (Resources×Contracts×Orders×CurrBuss×PastBuss×CKHist) Unit [progr. attrs.]

284. conveyor: CI [identifier]

284. → CM [mereology]

284. → (Kind × ...) [static attrs.]

284. → (Stowage×TBU×TBL×SR×SRIndex×Final×CPos×CHist) Unit [progr. attrs.]

282. logistics: LI → [identifier]

282. → LM [mereology]

282. → (LogisticsCompInfo × ...) [static attrs.]

282. → (PastBusiness × CurrBusiness × LHist) Unit [progr. attrs.]

285. edge: EI [identifier]

285. → EM [mereology]

285. → (EdgeKind × LEN × COST × ...) [static attrs.]

285. → EHist Unit [progr. attrs.]

286. node: NI [identifier]

286. → NM [mereology]

286. → (NodeKind × ...) [static attrs.]

286. → (OnHold × NHist) Unit [progr. attrs.]

59The triplet: (fui,t,tui) is subject to the following constraint, which we leave to the reader to formalize: if tui:KI then tui:CKI or
tui:CI; if tui:CKI then tui:KI or tui:CI; if tui:CI then tui:KI or tui:CKI.

18.3. WHICH BEHAVIOURS TO DESCRIBE ? 91

18.3 Which Behaviours to Describe ?
We treat the transcendentally deduced behaviours of some, but not all, the manifest parts: customers, conveyor
companies, but not their conveyor company offices nor their conveyor aggregates, but their conveyors.
We omit, also treatment of Logistics companies as their “function” is “very much like, i.e., “overlapping” with,
that of conveyor companies.

• • •

The arrangement of the [narrative & formal] descriptions is by endurant, i.e., part, type; but the “reading” of these
should be by pairs: each pair represents an arrow in Fig. 9.1 on page 37, one of the pair represents the source
of the arrow, the “sending” behaviour, the second of the pair represents the target of the arrow, the “receiving”
behaviour,

18.4 Multi-mode “Systems”
We can initialize a domain, and we can instatiate a domain.

18.4.1 Multi-mode Domain Initialization
287. An initialization of a transport domain means the parallel composition of the

288. parallel composition of the initialization of all customer behaviours with the

289. parallel composition of the initialization of all conveyor company behaviours with the

290. parallel composition of the initialization of all conveyor behaviours with the

291. parallel composition of the initialization of all logistics behaviours with the

292. parallel composition of the initialization of all edge behaviours with the

293. parallel composition of the initialization of all node behaviours.

287. instantiation: Unit → Unit
287. instantiation() ≡
288. ‖ { customer(uid K(k))

288. (mereo K(k))

288. (attr CustId(k),...)
288. ([],{},〈〉)
288. | k:K • k∈ks } [ks, see Item 132 on page 39]

288. ‖
289. ‖ { conv comp(uid CK(ck))

289. (mereo CK(ck))

289. (attr ConvCompInfo(ck),...)
289. (attr Resources(c),[],[],{},{},〈〉)
289. | ck:CK • ck∈cks } [cks, see Item 178 on page 52]

289. ‖
290. ‖ { conveyor(uid C(c))

290. (mereo C(c))

290. (attr Kind(c),...)
290. ([],[],[],attr SR(c),1,[],attr Position(c),〈〉)
290. | c:C • c∈cs } [cs, see Item 180 on page 53]

290. ‖
291. ‖ { logistics(...) | ... } [see remark on page 111]

291. ‖
292. ‖ { edge(uid E(e))

292. (mereo E(e))

292. (attr EdgeKind(e),attr LEN(e),attr COST(e),...)
292. (〈〉)
292. | e:E • e∈es } [es, see Item 26 on page 12]

292. ‖
293. ‖ { node(uid N(n))

293. (mereo N(n))

293. (attr NodeKind(n),...)
293. ([],〈〉)
293. | n:N • n∈ns } [ns, see Item 27 on page 12]

92 CHAPTER 18. MULTI-MODE BEHAVIOURS

18.4.2 Multi-mode Domain Instantiation
287. instantiation: Unit → Unit
287. instantiation() ≡
288. ‖ { customer(uid K(k))

288. (mereo K(k))

288. (attr CustId(k),...)
288. (attr Possess(k),attr OutReqs(k),attr CustHist(k))

288. | k:K • k∈ks } [ks, see Item 132 on page 39]

288. ‖
289. ‖ { conv comp(uid CK(ck))

289. (mereo CK(ck))

289. (attr ConvCompInfo(ck),...)
289. (attr Resources(c),attr Contracts(ck),attr Orders(ck),

289. attr CurrBuss(ck),attr PastBuss(ck),attr CKHist(ck))

289. | ck:CK • ck∈cks } [cks, see Item 178 on page 52]

289. ‖
290. ‖ { conveyor(uid C(c))

290. (mereo C(c))

290. (attr Kind(c),...)
290. (attr Stowage(c),attr TBU(c),attr TBL(c),attr SR(c),

290. attr SRIndex(c),attr Final(c),attr Position(c),attr CHist(c))

290. | c:C • c∈cs } [cs, see Item 180 on page 53]

290. ‖
291. ‖ { logistics(...) | ... } [see remark on page 111]

291. ‖
292. ‖ { edge(uid E(e))

292. (mereo E(e))

292. (attr EdgeKind(e),attr LEN(e),attr COST(e),...)
292. (attr EHist(e))

292. | e:E • e∈es } [es, see Item 26 on page 12]

292. ‖
293. ‖ { node(uid N(n))

293. (mereo N(n))

293. (attr NodeKind(n),...)
293. (attr OnHold(n),attr NHist(n))

293. | n:N • n∈ns } [ns, see Item 27 on page 12]

We refer to Sect. 7.5 on page 32 for a first example of domain initialization.

Chapter 19

Customer Behaviours

Contents
19.1 Main Behaviour . 93

19.1.1 Overall Behaviour . 93
19.1.2 Overall Reactive Behaviour . 94

19.2 Subsidiary Behaviours . 94
19.2.1 Proactive Behaviours . 94

19.2.1.1 [k1] Customer Issues Query . 94
19.2.2 Reactive Behaviours . 95

19.2.2.1 [k3] Customer Issues Order . 95
19.2.2.2 [k5] Customer Accepts Offer . 95
19.2.2.3 [k9] Customer Delivers Mercandises . 96
19.2.2.4 [k14a-b,k15b] Customer Requests & Receives Merchandises 96

19.1 Main Behaviour

19.1.1 Overall Behaviour
294. The customer internal non-deterministically alternates between being

(a) a private entity, doing whatever,
or possibly

(b) [k1]62 querying conveyor or logistics companies about a possible transport;
(c) [k3] examining a conveyor or logistics company offer;
(d) [k5] accepting an offer from a conveyor or logistics company;
(e) [k9] delivering merchandises to nodes;
(f) [k14] requesting contracted onhold merchandises from nodes,and
(g) external non-deterministically possibly receiving messages from conveyor companies or logistics com-

panies, conveyors, or nodes ([k2,k4,k8,k13,k14]).

u The [k1] query is pivotal. It “sets everything else in motion”. Responses from the conveyor company are
“temporarily stored”, cf. customer receives messages, i.e., cust receiv messages, Item 294g. “Storage” is in
the form of an additional behaviour argument.

value
294. customer(ki)(cm)(kid,kaddr)(po,or,ch) ≡
294a. ...
294b. [k1] de cust issues query(ki)(cid,...)(...)(po,or,r,ch)
294c. [k3] de cust issues order(ki)(cid,...)(...)(po,or,r,ch)
294d. [k5] de cust order OK(ki)(cid,...)(...)(po,or,r,ch)
294e. [k9] de cust delivers merchandises(ki)(cid,...)(...)(po,or,r,ch)
294e. [k14] de cust requests merchandises(ki)(cid,...)(...)(po,or,r,ch)
294g. de cust receives messages(ki)(cid,...)(...)(po,or,r,ch)

62The bracketed numbers refer to those of Fig. 16.1 on page 72.

93

94 CHAPTER 19. CUSTOMER BEHAVIOURS

19.1.2 Overall Reactive Behaviour

295. The external non-deterministic reception of messages, msg:63 MSG, proceed as follows:

(a) Customer awaits messages64 from either conveyor companies or conveyors.

(b) Customers “remember” these messages as outstanding requests. They will be handled by [recursively]
iterated invocations of the conveyor behaviour !

So we “handle” that “lastly” listed behaviour “first” !

value
295. cust receives messages(ki)(cid,...)(...)(po,or,r,ch) ≡
295a. let msg= debc { comm [ki,ui] ? | ui ∈ ckis∪cis } in
295b. customer(ki)(cid,...)(...)(po,or∪{((ki,\tida,ui),msg)},r,〈msg〉̂ch) end

The “handling” of the orders, or “buffered” are defined in the ‘Reactive Behaviours’ subsections:

• Customer Issues Order [k3], Sect. 19.2.2.1, item 297 on the next page;

• Customer Accepts Offer [k5] (order OK), Sect. 19.2.2.2, item 297 on the facing page;

• Customer Delivers Mercandises [k9], Sect. 19.2.2.3, item 298 on page 96; and

• Customer Requests & Receives Merchandises [k14a-b,k15b], Sect. 19.2.2.4, item 299 on page 96.

19.2 Subsidiary Behaviours

19.2.1 Proactive Behaviours

19.2.1.1 [k1] Customer Issues Query

296. [k1] The customer decides

(a) to inquire, with some conveyor or logistics company, with a selected query command65,

(b) which it then communicates to the conveyor company or logistics company, updates its outstanding
requests and augments its history,

(c) whereupon it resumes being a customer.

This query action [k1] is “matched” by the suggest offer action [k2] Sect. Suggest Offer]20.3.1 on page 99;
cf. formula lines 296b and 302d on page 99.

296. cust issues query(ki)(cid,...)(...)(po,or,ch) ≡
296a. let (coli,mk CustQuery(qi,qc)) = sel q(ki,(cid,...),(...),(po,or,ch)) in
296a. let msg = ((ki,recordTIME(),coli),mk CustQuery(qi,qc)) in
296b. comm[{ki,coli}] !msg; [k1]
296c. customer(ki)(cid,...)(...)(po,or∪{msg},〈msg〉̂ch) end end

296a. sel q: KI×(CustId×AddrInfo×...)× ..
296a. ×(Posses×OutReqs×CustHist) → CustInq

296a. sel q(ki,(cid,ai,...),(...),(po,or,ch)) ≡ ... see footnote 65 pg 94

63We have emphasized the message arguments as these play a pivotal role in the behavior interaction.
64These messages are either [k4] ConvCompOffers, [k8] ConvCompOrderOK, [k9] PendColl, [k13] ConvCustPendDel,

[k14] NKTransfer messages.
65– we leave unspecified how that query is formed from the basis of the customer attributes

19.2. SUBSIDIARY BEHAVIOURS 95

19.2.2 Reactive Behaviours
19.2.2.1 [k3] Customer Issues Order

297. [k3] If there is an ongoing (or outstanding) conveyor company offer

(a) then the customer selects a suitable one. If there is not such the choice number is forced to 0.

(b) Time is recorded.

(c) If the customer does not finds a suitable offer

(d) it so informs the conveyor company.

(e) Else it likewise informs the conveyor company of order and choice number.

(f) Whereupon it resumes being a customer.66

This issues order action [k3] is “matched” by the confirm order action [k4] Sect. Confirm Order]20.3.2 on
page 99.

value
297. cust issues order(ki)(cid,ai,...)(...)
297. (po,{((cki,t,ki),mk ConvCompOffer(on,t,choices))67}∪or,ch) ≡
296a. let (cn,offer) = select offer(choices) in
296c. let msg = ((ki,recordTIME(),cki),if cn=0
296c. then mk OrderOK(on,no)
296c. else mk OrderOK(on,cn,offer) end) in
296d. comm[{cid,cki}] ! msg; [k3]
296f. customer(ki)(cid,ai,...)(...)(po,or,〈msg〉̂ch) end end

19.2.2.2 [k5] Customer Accepts Offer

297. Customers

(a) examine transport company offers: the examine analysis function is left to Your imagination; the
status value is either a no, or is OrderOK.

(b) A time-stamped message to that effect is communicated to the conveyor company.

(c) And the customer resumes being so.

This customer order OK action [k5] is “matched” by the conveyor directives action [k7] Sect. Conveyor
Directives]20.3.3 on page 100. And also the pending collection action [k8] Sect. Pending Collection]20.3.4
on page 101.

297. cust order OK(ki)(cid,...)(...)
297. (po,{(ki,τ,cki),m:mk ConvCompOffer(cki69,cnu,qno,offers)}∪or,ch) ≡
297a. let okonok = examine(ki)(cid,...)(...)(po,{(ki,τ,cki),m}∪or,ch) in
297b. let msg= ((ki,TIME,cki),mk OrderOK(oknok)) in
297b. comm[{cid,cki}] ! msg;
297c. customer(ki)(cid,...)(...)(po,or,〈msg〉̂ch) end end

66We have used some informal notation, i.e., [orderOK=]
67Note the formal argument “trick”: If the ongoing requests argument contains an element, ConvCompOffer(on,t,choices), then

the cust accept offer behaviour applies. If it does not, then skip !
69The two argument ckis are/must be [!] identical.

96 CHAPTER 19. CUSTOMER BEHAVIOURS

19.2.2.3 [k9] Customer Delivers Mercandises

298. [k9] Customer delivers merchandises:

(a) collecting the identified merchandises;

(b) composing messages to node and contracting conveyor company;

(c) then transferring the merchandises to the identified node;

(d) informing the contracting conveyor company; and

(e) finally resuming being a customer.

This delivery action [k9] is “in consequence” of the pending collection action [k8] Sect. Pending Collection]20.3.4
on page 101.

value
298. cust delivers merchandises(ki)(cid,ai,...)(...)
298. (po,{mk PendColl(cki,on,mis,ni)}∪or,ch) ≡
298a. let ms = {m|m:M•m∈po∧uid M(m)∈mis}, τ = recordTIME()in
298b. let msg1 = ((ki,τ,ni),mk KNTransfer(on,ms)),

298b. msg2 = ((ki,,τ,cki),mk Acknowledgment(τ,cnu,(ki,ni))) in
298c. [k9] (comm[{ki,ni}] ! msg1
298d. [k15a] ‖ comm[{ki,cki}] ! msg1);

298e. customer(ki)(cid,ai,...)(...)(po\ms,or,〈{msg1,msg2}〉̂ch) end end

19.2.2.4 [k14a-b,k15b] Customer Requests & Receives Merchandises

299. [k14a] Customers are ready to receive merchandises once a message of pending delivery has been received
from a conveyor.

(a) [k14a] They can therefore accept such a delivery notice;

(b) concocts an acknowledgment to the conveyor company,

(c) [k15b] communicates this to the conveyor company,

(d) whereupon it resumes being a customer.

This cust requests merchandises action [k14] is “matched” by the node action Sect. Main Behaviour]24.3
on page 116; cf. formula lines 299a and 323 on page 116.

value
299. cust requests merchandises(ki)(cid,ai,...)(...)
299. (po,{(ci,t,ki),mk PendDeliv(ci,cnu,mis)}∪or,ch) ≡
299b. [k14a] comm[{ki,ni}] !mk ((ki,recordTIME(),ni),PendColl(ni,(cnu,mis)))70;

299a. [k14b] let mk NKTransfer(cms) = comm[{ki,ni}] ? 71 in
299c. [k15b] comm[{ki,cki}] !mk Acknowledgment(recordTIME(),cnu,(ci,ki)) ;

299d. customer(ki)(cid,ai,...)(...)(po∪∪ rng cms,or,〈ms,msg〉̂ch) end

70Observe that the received message ki [in (cki,t,ki)] must match the formal argument ki. This informative communication is symbol-
ized by the “open, white arrowhead” of the [k14] “double arrow” in Fig. 16.1 on page 72.

71This material communication is symbolized by the “black arrowhead” of the [k14] “double arrow” in Fig. 16.1 on page 72.

Chapter 20

Conveyor Company Behaviours

Contents
20.1 Main Behaviour . 97
20.2 Main Reactive Behaviour . 98
20.3 Subsidiary Behaviours . 99

20.3.1 [k2] Suggest Offer . 99
20.3.2 [k4] Confirm Order . 99
20.3.3 [k7] Conveyor Directives . 100
20.3.4 [k8] Pending Collection . 101

20.1 Main Behaviour

97

98 CHAPTER 20. CONVEYOR COMPANY BEHAVIOURS

300. Conveyor companies non-deterministically alternates between

(a) being “themselves”, sorting out daily, “internal” operations,

internal non-deterministically issuing

(b) [k2] (i.e., suggesting) offers,

(c) [k4] order confirmations,

(d) [k7] messages to conveyors about transports and

(e) [k8] pending collection;

external non-deterministically awaiting

(f) [k1] queries from customers, [k3] orders, [k5] sign-off on orders, or [k12,k15] acknowledgments of
merchandise transfers.

300. conveyor company(cki)(me)(info)(res,co,ors,cb,pb,ckh) ≡
300a. ...
300b. [k2] debc suggests offer(cki)(me)(info)(res,co,ors,cb,pb,ckh)

300c. [k4] debc confirms offer(cki)(me)(info)(res,co,ors,cb,pb,ckh)

300d. [k7] debc informs conveyors(cki)(me)(info)(res,co,ors,cb,pb,ckh)

300e. [k8] debc pending collection(cki)(me)(info)(res,co,ors,cb,pb,ckh)

300f. [k12,k15] debc awaits msg(cki)(me)(info)(res,co,ors,cb,pb,ckh)

20.2 Main Reactive Behaviour

301. The conveyor company external non-deterministic reception of messages, i.e., responses, proceed as follows:

(a) The conveyor company awaits responses from either customers or conveyors. 72

(b) If the message

(c) is an acknowledgment, [k12,k15], of merchandise transfers,

(d) then the contracts attribute is updated accordingly and

(e) the conveyor company resumes being so,

(f) else the conveyor company resumes being so, with updated current business,

301. awaits msg(cki)(me)(info)(res,co,ors,cb,pb,ckh) ≡
301a. let msg :((koci,τ,cki),cmd)

301a. = de { comm [cci,koci]|koci:(KI|CI)•koci∈kis∪cis73} in
301b. case msg of
301c. (ui,τ,cki),mk Acknowledgment(τ,cnu,(ui,uj))

301d. → let co′ = upd contracts(co,mk Acknowledgment(τ,cnu,(ui,uj))) in
301e. conveyor company(cki)(me)(info)(res,co′,ors,cb,pb,〈msg〉̂ckh) end
301f. → conveyor company(cki)(me)(info)(res,co,ors,cb∪msg,pb,〈msg〉̂ckh)
301. end end

301d. upd contracts: Contracts×Acknowledgment → Contracts

301d. upd contracts(co,(τ,cnu,ft)) ≡ 〈(τ,cnu,ft)〉̂con
72These responses are either [k1] customer queries, [k3] customer orders, [k5] customer order confirmation (and payment), or [k12,k15]

conveyor and customer acknowledgment of merchandise transfers. Any other messages will be ignored
73kis and cis were defined in Items 167 on page 48 and 76 on page 22, respectively.

20.3. SUBSIDIARY BEHAVIOURS 99

20.3 Subsidiary Behaviours

20.3.1 [k2] Suggest Offer
302. The conveyor company, with a customer query in its “in-basket”: current business, decides

(a) to calculate an offer, commensurate with the query –

(b) while updating the Offers and Orders attributes –

(c) to form this offer into a commands, and to

(d) communicate this offer to the inquiring customer,

(e) updates its “past business” and history, and

(f) resumes being a conveyor company.

This suggest offer action [k2] is “matched” by the query action [k1] Sect. Customer Issues Query]19.2.1.1
on page 94; cf. formula lines 296b on page 94 and 302d.

302. suggests offer(cki)(me)(info)

302. (res,co,ors,msg:{((cki,τ,ki),mk CustQuery(qi,qc))}∪cb74,pb,ckh) ≡
302a. let offer:ConvCompOffer

302a. = calc offer(cki,res,co,ors,cb,pb,ckh)(mk CustQuery(qi,ic)) in
302b. let (res′,ors′) = update res and ors(res,ors)(offer),

302c. msg = ((cki,recordTIME(),ki),offer) in
302d. [k2] comm[{cki,ki}] !msg;
302e. let pb′ = pb∪{msg}, ckh′=〈msg〉̂ckh in
302f. conveyor company(cki)(me)(info)(res′,co,ors′,cb,pb′,ckh′) end end end
301. post: commensurate query offers(mk CustQuery(ki,iq,ic),offer)

302. commensurate query offers: ...
302a. calc offer(...) ≡ ...
302b. update res[ources] and or[der]s ...

20.3.2 [k4] Confirm Order
(300c) The conveyor company with an OrderOK, decides to handle that:

(a) If the order was not OK’ed then it does nothing,

(b) else it cashes the payment76 –

(c) updates its current business and history,

(d) and resumes being a conveyor company.

This confirm order action k4 is “matched” by the customer accepts offer action k5 Sect. Customer
Accepts Offer]19.2.2.2 on page 95.

300c. confirms offer(cki)(me)(info)

300c. (res,co,ors,{msg:((ki,t,cki),nok)}∪cb,pb,ckh) ≡
302a. conveyor company(cki)(me)(info)(res,co,ors,cb,{msg}∪pb,ckh)

300c. confirms offer(cki)(me)(info)

300c. (res,co,ors,{msg:((ki,t,cki),mk OrderOK(con,cn,pay))}∪cb,pb,ckh) ≡
302b. [payment is registered ;]
302c. let ors′ = update orders(co,ors)(msg), ckh′ =〈pay〉̂ckh in
302d. conveyor company(cki)(me)(info)(res,co,ors′,cb,pb∪{msg},ckh′) end

74See footnote 67 on page 95.
76The receipt and registration of payments, etc., etc., is a role for the conveyor company office.

100 CHAPTER 20. CONVEYOR COMPANY BEHAVIOURS

303. The update orders [auxiliary] function

(a) examines the choice identified offer, and

the identified choice, tr, and

updates the contract to now only reflect that choice.

The “stashing” of msg in the “past business book” serves to remind the conveyor company to – sooner or later –
issue [k7]. See next !

303. updates orders: Orders → MSG → Orders

303. updates orders(ors)((ki,t,cki),mk OrderOK(cnu,cn,pay)) ≡
303a. ors\{cn}∪[cn 7→(ors(cn))(cnu)]

20.3.3 [k7] Conveyor Directives
(300d) “Sooner or later” the conveyor company reacts on the orderOK and

304. informs the one or more conveyors to be involved in the contracted transport.

(a) If the orderOK was a no it does nothing, i.e., resumes being a conveyor company.

(b) Else it decomposes the possibly multiple element segment list into separate conveyor company to
conveyor directives,

(c) communicates these to each involved conveyor, and

(d) updates its history, and resumes being a conveyor company.

This conveyor directives action [k7] is “matched” by the [k5] action customer accepts offer Sect. Customer
Accepts Offer]19.2.2.2 on page 95; cf. formula lines 297b on page 95 and 304c.

300d. informs conveyors(cki)(me)(info)

304. (res,co,ors,cb,pb∪{((ki,t,cki),mk OrderOK(cnu,chn,status))},ckh) ≡
304a. if status = no axiom status 6= orderOK
304a. then conveyor company(cki)(me)(info)(res,co,ors,cb,pb,ckh77)

304b. else let (status,tr) = (co(con))(chn) in
304b. let dirl = elems construct dirs(ki,recordTIME(),cki,cnu,tr) in
304c. {comm[{cki,ci}] ! dir|dir:ConvDir•dir∈ elems dirl∧dir=((cki,t,ci),)} end end
304d. conveyor company(cki)(me)(info)(res,co,ors,cb,pb,〈dir|dir∈dirs〉̂ckh) end

305. The construct dirs function

(a) from each segment from the contracted, con and chosen, [choice no.] chn, transport offer, it constructs
a convoy directive,

(b) and assembles into a Conveyor Company to Conveyor Directive command.

(c) A convoy directive is a pair of unload and load directives.

(d) An unload [load] directive is a quadruple of TIME, a node identifier, a contract number and a set of
merchandise identifiers.

type
305c. ConvDir = Unload×Load×[Final]78

216. Finals = NI→m (ContractNu→m KI)

216. Final = (NI × (ContractNu × KI))|not final
305d. Load,Unload = TIME × NI × ContractNu × MI-set
value
305. construct dirs: KI×TIME ×CKI×ContrNo×TR → ConvDir∗

305. construct dirs(ki,t,cki,cnu,((fki,faddr),mis,sgl,(tki,taddr))) ≡
305a. let dirl = 〈 extract dir(sgl[i],con,mis,i,len sgl,tki)|i:Nat•1≤i≤len sgl 〉 in
305b. 〈 ((cki,t,ci),ConvDir(dirl[i],not final))|i:Nat•1≤i<lens gl 〉
305b. ̂ 〈 ((cki,t,ci),ConvDir(dir[len sgl],(ni,(cnu,ki)))) 〉 end

77 Alert: I am not sure with what, if anything, to prefix the history with is OK. I was not ready to think about it when I wrote it, March 31,
2025, 16:01

20.3. SUBSIDIARY BEHAVIOURS 101

306. The extract directive function applies to a segment, contract number, a set of merchandise identifiers, the
index of the segment list being examines, the length of that list, and the “end” customer identifier.

(a) If the current index is less than the segment list, the no “final” is issued, just a pair of unload/loads.

(b) Otherwise a final: nj,cnu,ki, the identifier of the last node where the contracted merchandises will
be held for the customer ki.

type
306. Segment = TIME × CI × NI × (EI|NI)∗
value
306. extract dir: Segment × ContractNu × MI-set × Nat × Nat × KI

306. → ((UnLoad×Load)×Final)
306. extract dir(sg:(t,ci,ni,enl̂〈nj〉),cnu,mis,i,li,ki) ≡
306a. if i<li then (((t,ni,con,mis),(t,nj,cnu,mis)),nil)
306b. else (((t,ni,con,mis),(t,nj,cnu,mis)),(nj,cnu,ki)) end
306. pre: the edge-node identifier list is not empty, i.e., 6= 〈〉

We apologize for the somewhat “tricky” functions: construct dirs and extract dir79.

20.3.4 [k8] Pending Collection
307. At some time conveyor companies react to customers’ [k5] order OK (accepts offer) messages

(a) by replying with a pending collection message –

(b) whereupon the resume being conveyor companies,

This pending collection action [k8] is “in consequence” of the [k5] action order OK (accepts offer) Sect. Cus-
tomer Accepts Offer]19.2.2.2 on page 95.

value
307. pending collection(cki)(me)(info)

307. (res,co,ors,{((ki,τ,cki),mk OrderOK(ni,cnu,chn,orderOK))}∪cb,pb,ckh) ≡
307a. let msg= mk ((cki,recordTIME(),ki),(PendColl(ni,(cnu,mis)))) in
307a. comm[{cki,ki}] !msg;
307b. conveyor company(cki)(me)(info)(res,co,ors,cb,pb,〈msg〉̂ckh) end

78The type expression [T] stands for T|nil
79Most other function definitions are, in our opinion, straightforward

102 CHAPTER 20. CONVEYOR COMPANY BEHAVIOURS

Chapter 21

Conveyor Behaviour

Contents
21.1 Earlier Treatment . 103
21.2 Main Behaviour . 105
21.3 Subsidiary Behaviours . 106

21.3.1 Proactive Behaviours . 106

21.3.1.1 [k7] Directives . 106

21.3.1.2 [k10] Conveyor to Node and Edge Notifications 106

21.3.1.3 Conveyor on Edge . 107

21.3.1.4 Conveyor at Node . 108

21.1 Earlier Treatment

In Sect. 7.4.1 on page 28 we first treated conveyor behaviours:
Signatures then:

value
ι104 π28. conveyor: CI→CM→(Kind×Routes)→(CurrRoute×CPos×CH) Unit

Behaviour, then at node:

value
ι105 π28. conveyor(ci)(cm)(k,routes)(cr,AtNode(ni),ch) ≡
ι105a π28. conveyor change route(ci)(cm)(k,routes)(cr,AtNode(ni),ch)

ι105b π28. de conveyor remains at−node(ci)(cm)(k,routes)(cr,AtNode(ni),ch)
ι105c π28. de conveyor enters edge(ci)(cm)(k,routes)(cr,AtNode(ni),ch)

ι105d π28. de conveyor stops at node(ci)(cm)(k,routes)(cr,AtNode(ni),ch)

ι106 π29. conveyor change route(ci)(cm)(k,routes)(cr,AtNode(ni),ch) ≡
ι106a π29. let τ = record TIME(),
ι106b π29. ncr = select next route(ni,routes),

ι106d π29. ch′ = 〈(τ,ni)〉̂ch in
ι106c π29. comm[{ci,ni}] ! (τ,ci) ;

ι106e π29. conveyor at node(ci)(cm)(k,routes)(ncr,AtNode(ni),ch′) end

ι106b π29. selects next route:NI × Routes → CurrRoute

ι106b π29. selects next route(ni,routes) as ncr • ncr ∈ routes ∧ hd ncr = ni

Behaviour, then on edge:

103

104 CHAPTER 21. CONVEYOR BEHAVIOUR

ι111 π30. conveyor(ci)(cm)(k,routes)

ι111 π30. (cr,mk OnEdge(nui f ,(f,e),nuit),ch) ≡
ι111a π30. conveyor moves on edge(ci)(cm)(k,routes)

ι111a π30. (cr,mk OnEdge(nui f ,(f,e),nuit),ch)

ι111c π30. de conveyor stops on edge(ci)(cm)(k,routes)

ι111c π30. (cr,mk OnEdge(nui f ,(f,e),nuit),ch)

ι111b π30. de conveyor enters node(ci)(cm)(k,routes)

ι111b π30. (cr,mk OnEdge(nui f ,(f,e),nuit),ch)

ι107 π29. conveyor remains at node(ci)(cm)(k,routes)(cr,AtNode(ni),ch) ≡
ι107a π29. let τ = record TIME() in
ι107b π29. comm[{ci,ni}] ! (τ,ci);

ι107c π29. conveyor(ci)(cm)(k,routes)(cr,AtNode(ni),〈(τ,ni)〉̂ch) end

ι108 π29. conveyor enters edge(ci)(cm)(k,routes)(cr,AtNode(ni),ch) ≡
ι108a π29. let τ = record TIME() in
ι108b π29. (comm[{ci,ni}] ! (τ,ni) ‖ comm[{ci,ni}] ! (τ,hd cr)) ;

ι108c π29. let ei = hd cr in let {ni,ni′} = mereo E(retr edge(ei)(es)) in
ι108c π29. let cpos = onEdge(hd cr,(ei,(ni,f,ni),ni′)) in
ι108e π29. conveyor(ci)(cm)(k,routes)(cr,cpos,〈(τ,ni)〉̂ch) end end end end

ι109 π30. conveyor stops at node(ci)(cm)(k,routes)(cr,AtNode(ni),ch) ≡
ι110 π30. let τ = record TIME() in
ι110 π30. comm[{ci,ni}] ! (τ,ci) ;

ι109 π30. stop end

21.2. MAIN BEHAVIOUR 105

21.2 Main Behaviour
In the context of customers and logistics and conveyor companies, as illustrated by Fig. 16.1 on page 72, convey-
ors, i.e., their behaviour, are a bit more intricate !

308. Conveyors non-deterministically alternates between

(a) being themselves,

or external non-deterministically receiving

(b) [k7] directives from conveyor companies – their own or other,

(c) and then handling these messages,80

and internal non-deterministically sending messages

(d) [k10] notifying edges and nodes of their presence,

(e) [k12] and acknowledgments of transfer of merchandises from and to customers and nodes.

When not responding to and handling messages from other behaviours ([k7] conveyor companies, or [k9]
customers),

(f) a conveyor is either at a node, possibly unloading or loading merchandises, or

(g) along, i.e., on, an edge.

308. conveyor(ci)(cm:(uis,ckis,kis,cis))(k,...)
308. (stow,tbu,tbl,sr,idx,finals,pos,ch) ≡
308a. ... conveyor(ci)(cm:(uis,ckis,kis,cis))(k,...)
308a. (stow,tbu,tbl,sr,idx,finals,pos,ch)

308b. [k7] de let msg debc { comm[{ci,cki}] ? | cki∈ckis } in
308c. conv dir handling(ci)(uis,ckis,kis,cis)(k,...)
308c. (stow,tbu,tbl,sr,idx,finals,pos,〈msg〉̂ch)(msg) end
308d. [k10] de conv node notification(ci)(uis,ckis,kis,cis)(k,...)
308d. (stow,tbu,tbl,sr,idx,finals,pos,ch)

308d. [k10] de conv edge notification(ci)(uis,ckis,kis,cis)(k,...)
308d. (stow,tbu,tbl,sr,idx,finals,pos,ch)

308e. [k12] de conv comp ack(ci)(uis,ckis,kis,cis)(k,...)
308e. (stow,tbu,tbl,sr,idx,finals,pos,ch)

308f. de conv at node(ci)(uis,ckis,kis,cis)(k,...)
308f. (stow,tbu,tbl,sr,idx,finals,pos,ch)

308g. de conv on edge(ci)(uis,ckis,kis,cis)(k,...)
308g. (stow,tbu,tbl,sr,idx,finals,pos,ch)

80Note: This is the only message received by conveyors from contracting conveyor companies in this, the present transport domain model.
For more realistic transport domain models there will, of course, be other such messages – but they deal, not with the intrinsic facets of transport
(logistics) but with technology support, management & organization, human, and other facets – cf. Chapter 8 of my book [7].

106 CHAPTER 21. CONVEYOR BEHAVIOUR

21.3 Subsidiary Behaviours

21.3.1 Proactive Behaviours

21.3.1.1 [k7] Directives

309. The conv directive handling behaviour for handling conveyor company to conveyor directives

(a) updates the to-be-unloaded, the to-be-loaded and the finals attributes, and

(b) resumes being a conveyor.

This conveyor directives handling action k7 is “matched” by the informs conveyors action k7 Sect. Con-
veyor Directives]20.3.3 on page 100; cf. formula lines 309 and 304c on page 100.

309. [k7] conv dir handling(ci)(me)(k,r)

309. (stow,tbu,tbl,sr,idx,finals,pos,ch)

309. ((cki,t,ci),ConvDir((t′,ni,cnu,mis),(t′′,nj,cnu,mis)),final) ≡
309a. let tbu′ = tbu ∪ [nj 7→tbu∪{cnu}], [we disregard t,t′,t′′]
309a. tbl′ = tbl ∪ [ni7→tbl∪{cnu}], [we disregard t,t′,t′′]
309a. finals′ = upd finals(finals,final) in
309b. conveyor(ci)(me)(k,r)(stow,tbu′,tbl′,sr,idx,finals′,pos,〈dirs〉̂ch) end

309a. upd finals(finals,(ni,cnu,ki)) ≡ finals∪[ni 7→[ki7→cnu]]

21.3.1.2 [k10] Conveyor to Node and Edge Notifications

310. Conveyor notify the edges and nodes along which it is moving:

(a) either at a node,

(b) or on an edge.

This conv node notification action k10 is “matched” by the node action k10 Sect. Main Behaviour]24.3 on
page 116; cf. formula lines 310a and 322b on page 116.

value
310. conv node notification(ci)(uis,ckis,kis,cis)(k,...)
310. (stow,tbu,tbl,sr,idx,finals,mk AtNode(ni),ch) ≡
310a. let msg = ((ci,recordTIME(),ni),mk AtNode(ni)) in
310a. [k10] comm[{ci,ni}] !msg ;

310. conveyor(ci)(uis,ckis,kis,cis)(k,...)
310. (stow,tbu,tbl,sr,idx,finals,mk AtNode(ni),〈msg〉̂ch) end

This conv edge notification action k10 is “matched” by the edge action k10 Sect. Main Behaviour]24.3 on
page 116; cf. formula lines 310b and 322d on page 116.

310. conv edge notification(ci)(uis,ckis,kis,cis)(k,...)
310. (stow,tbu,tbl,sr,idx,finals,pos:mk OnEdge(,(,ei),),ch) ≡
310b. let msg = ((ci,recordTIME(),ei),mk OnEdge(ei)) in
310b. [k10] comm[{ci,ei}] !msg ;

310. conveyor(ci)(uis,ckis,kis,cis)(k,...)
310. (stow,tbu,tbl,sr,idx,finals,pos,〈msg〉̂ch) end

80The ci is that of the conveyor
79The two formal argument occurrences of ci, respectively cki, must be pairwise identical ! See also the next conv msg handling

definitions.

21.3. SUBSIDIARY BEHAVIOURS 107

21.3.1.3 Conveyor on Edge

Conveyor on Edge – Then:

ι111 π30. conveyor(ci)(cm)(k,routes)(cr,mk OnEdge(nui f ,(f,e),nuit),ch) ≡
ι111a π30. conveyor moves on edge(ci)(cm)(k,routes)(cr,mk OnEdge(nui f ,(f,e),nuit),ch)

ι111c π30. de conveyor stops on edge(ci)(cm)(k,routes)(cr,mk OnEdge(nui f ,(f,e),nuit),ch)

ι111b π30. de conveyor enters node(ci)(cm)(k,routes)(cr,mk OnEdge(nui f ,(f,e),nuit),ch)

We leave it to the reader, this time, to review the functions: conveyor moves on edge Sect. 7.4.1 items 112
on page 30 etc., conveyor stops on edge Sect. 7.4.1 items 114 on page 31 etc. and conveyor enters node

Sect. 7.4.1 items 113 on page 31 etc.

• • •

Conveyor on Edge – Now:

311. An edge [behaviour] at an edge external non-deterministically either:

(a) moves along the edge, a fraction “at a time”, or

(b) stops on the edge and thereby “leaves” transport; or

(c) enters a node.

311. conveyor on edge(ci)(me:(uis,ckis,kis,cis))(k,len,cost)

311. (stow,tbu,tbl,sr,idx,finals,mk OnEdge((fni,(ej,f),tni)),ch) ≡
311a. de conveyor moves on edge(ci)(me:(uis,ckis,kis,cis))(k,len,cost)

311a. (stow,tbu,tbl,sr,idx,finals,mk OnEdge((fni,(ej,f),tni)),ch)

311b. de conveyor stops on edge(ci)(me:(uis,ckis,kis,cis))(k,len,cost)

311b. (stow,tbu,tbl,sr,idx,finals,mk OnEdge((fni,(ej,f),tni)),ch)

311c. de conveyor enters node(ci)(me:(uis,ckis,kis,cis))(k,len,cost)

311c. (stow,tbu,tbl,sr,idx,finals,mk OnEdge((fni,(ej,f),tni)),ch)

The next behaviour is “patterned” over Items 112a– 112e on page 30.

312. A conveyor which is moving along an edge, some fraction down the edge/road/track/route, but not “yet”
near “the end”:

(a) at time τ ,

(b) increments the fraction of its position

(c) (while updating its history)

(d) notifying the edge [behaviour]

(e) [technically speaking] adjusting its position], and, finally,

(f) resuming being a thus updated conveyor [OnEdge.

312. conveyor moves along edge(ci)(me)(, ,)

312. (stow,tbu,tbl,sr,idx,finals,mk OnEdge((fni,(ej,f),tni)),ch) ≡
312a. let τ = record TIME(), ε:Real • 0 < ε � 1 in
312b. let f′ = f+ε, cpos = mk OnEdge(nuii f

,(f′,e),nuit) in
312c. let ch′ = 〈(τ,ci)〉̂ch in
312d. comm[{ci,ej}] ! (τ,ci) ;

312e. conveyor(ci)(me)(, ,)

312f. (stow,tbu,tbl,sr,idx,finals,mk AtNode(tni),ch) end end end
312. pre: f ' 1 ∧ sr(idx)=tni

108 CHAPTER 21. CONVEYOR BEHAVIOUR

313. A conveyor may, “surreptitiously” as it were, “decide” to stop being a conveyor altogether !

313. conveyor stops on edge(ci)(me:(uis,ckis,kis,cis))(k,len,cost)

313. (stow,tbu,tbl,sr,idx,finals,mk OnEdge((fni,(ej,f),tni)),ch) ≡ stop

314. A conveyor enters a node

(a) at time τ , by altering its position,

(b) notifying both edge and node behaviours,

(c) and resumes being a conveyor.

314. conveyor enters node(ci)(me)(, ,)

314. (stow,tbu,tbl,sr,idx,finals,mk OnEdge(fni,(ej,1),tni),ch) ≡
314. let τ = recordTIME() in
314a. (comm[{ci,ej}] ! (τ,ci)‖comm[{‘tau,tni}] ! (τ,ci)) ;

314b. conveyor(ci)(me)(, ,)

314b. (stow,tbu,tbl,sr,idx,finals,mk atNode(tni),〈(τ,mk atNode(tni))〉ch) end

21.3.1.4 Conveyor at Node

Conveyor at Node – Then:

value
ι105 π28. conveyor(ci)(cm)(k,routes)(cr,mk AtNode(ni),ch) ≡
ι105a π28. conveyor change route(ci)(cm)(k,routes)(cr,mk AtNode(ni),ch)

ι105b π28. de conveyor remains at node(ci)(cm)(k,routes)(cr,mk AtNode(ni),ch)

ι105c π28. de conveyor enters edge(ci)(cm)(k,routes)(cr,mk AtNode(ni),ch)

ι105d π28. de conveyor stops at node(ci)(cm)(k,routes)(cr,mk AtNode(ni),ch)

• • •

Conveyor at Node – Now:

A primary “business” of a conveyor at a node is to unload and load merchandises.

315. In general, a conveyor at a node internal non-deterministically “alternates” between

(a) unloading merchandises,

(b) loading merchandises,

(c) stopping altogether, and

(d) entering a next edge – if not the end of the conveyor route –

– an in these cases resuming being a conveyor.

315. conveyor at node(ci)(uis,ckis,kis,cis)(k,...)
315. (stow,tbu,tbl,sr,idx,finals,mk AtNode(ni),ch) ≡
315a. conveyor unloads merch(ci)(uis,ckis,kis,cis)(k,...)
315a. (stow,tbu,tbl,sr,idx,finals,mk AtNode(ni),ch)

315b. de conveyor loads merch(ci)(uis,ckis,kis,cis)(k,...)
315b. (stow,tbu,tbl,sr,idx,finals,mk AtNode(ni),ch)

315c. de conveyor stops at node(ci)(uis,ckis,kis,cis)(k,...)
315c. (stow,tbu,tbl,sr,idx,finals,mk AtNode(ni),ch)

315d. de conveyor enters edge(ci)(uis,ckis,kis,cis)(k,...)
315d. (stow,tbu,tbl,sr,idx,finals,mk AtNode(ni),ch)

21.3. SUBSIDIARY BEHAVIOURS 109

316. Conveyors unload (deliver), onto the node they are at,

(a) from their stowage, the one-or-more contracted merchandises, for that node,

(b) [k11a] and communicates these to that node,

(c) [k12a] and acknowledges that to the contracting conveyor companies.

(d) For final ‘unloads’, if any, receiving customers

(e) are informed of pending delivery.

(f) Whereupon the conveyor resumes being a conveyor at that node.

value
316. conveyor unloads merch(ci)(uis,ckis,kis,cis)(k,...)
316. (stow,tbu,tbl,sr,idx,finals,mk AtNode(ni),ch) ≡
316a. let unls = tbu(ni), stow′ = stow\{ni} in
316b. [k11a] comm[{ci,ni}] !mk CNTransfer(stow/unls)80

316c. [k12a] ‖ {comm[{ci,xtr CKI(ci)}] !mk Acknowledgment(recordTIME(),cnu,(ci,ni))
316c. | cnu:ContractNu•cnu∈ unls } ;

316d. if ni 6∈ dom finals

316d. then skip
316e. else { let cnu=(finals(ni))(ki), mis=(tbu(nu))(cnu) in
316e. [k13] comm[{ci,ki}] !mk PendDeliv(ni,(cnu,mis)) ;

316e. | ki:KI•ki∈ dom finals(ni) end }
316d. end
316f. conveyor unloads merch(ci)(uis,ckis,kis,cis)(k,...)
316f. (stow′,tbu\{ni},tbl,sr,idx,finals\{ni},mk AtNode(ni),〈v〉̂ch) end

Alert: Fix v: CNTransfer(unls) ?

317. Conveyors load (fetch)

[from the node they are at, onto their stowage]

contracted merchandises:

(a) if there are merchandises to

(b) load these

(c) communicate them to the node

(d) and the contracting conveyor company notified.

(e) otherwise nothing is done;

(f) and the conveyor resumes being a conveyor at that node.

value
317. conveyor loads merch(ci)(uis,ckis,kis,cis)(k,...)
317. (stow,tbu,tbl,sr,idx,finals,mk AtNode(ni),ch) ≡
317a. if ni∈ dom tbl

317b. then let lds = tbl(ni), cki = xtr CKI(cnu) in
317c. comm[{ci,ni}] !mk NCTransfer(lds) ;

317d. comm[{ci,cki}] !mk Acknowledgment(cnu,(ci,ni)) end
317a. else skip end
317f. conveyor loads merch(ci)(uis,ckis,kis,cis)(k,...)
317f. (stow,tbu,tbl\{ni},sr,idx,finals,mk AtNode(ni),〈load〉̂ch)
Alert: Check for proper load onto ch

80The value of stow/unls is that of stow [domain-]restricted to unls.

110 CHAPTER 21. CONVEYOR BEHAVIOUR

The next behaviour:

value
conveyor stops at node(ci)(uis,ckis,kis,cis)(k,...)

(stow,tbu,tbl,sr,idx,finals,mk AtNode(ni),ch) ≡ stop

is a “mere” transcription” of the similarly named behaviour of Sect. 7.4.1 on page 28, items 114 on page 31-... .

318. Finally, the conveyor may [be ready to] leave the node for possibly continuing its journey.

(a) If the conveyor is at the end of its current service route, sr,

(b) then

(c) it reverts sr, into rs,

(d) which defines the next mk onEdge(fni,(0,ei),tni) elements,

(e) and the conveyor continues being a conveyor, on that edge.

(f) Otherwise

(g) the next mk onEdge(fni,(0,ei),tni) elements, are defined by the current service route, sr,

(h) and the conveyor continues being a conveyor, on that edge.

318. conveyor enters edge(ci)(me)(k,...)
318. (stow,tbu,tbl,sr,idx,finals,mk AtNode(ni),ch) ≡
318a. if idx = len sr

318b. then
318c. let rs = revert(sr) in
318d. let fni = rs[1], ei = rs[2], tni = rs[3] in
318d. let e = mk onEdge(fni,(0,ei),tni) in
318e. conveyor(ci)(me)(k,...)
318e. (stow,tbu,tbl,rs,1,finals,e,〈e〉̂ch) end end end
318f. else
318g. let fni = sr[idx], ei = sr[idx+1], tni = sr[idx+3] in
318h. let e = mk onEdge(fni,(0,ei),tni) in
318h. conveyor(ci)(me)(k,...)
318h. (stow,tbu,tbl,sr,idx+1,finals,e,〈e〉̂ch) end end
318f. end

318c. revert: Path → Path

318c. revert(p) ≡
318c. case p of
318c. 〈〉 → 〈〉,
318c. r̂〈u〉 → 〈u〉̂revert(q)
318c. end

The above reflects but one choice for continuing a conveyor once it has “exhausted” its current service route.
Others can be thought of.

Chapter 22

Logistics Company Behaviour

We skip this chapter: the conveyor company behaviour “says it all !”.

111

112 CHAPTER 22. LOGISTICS COMPANY BEHAVIOUR

Chapter 23

Edge Behaviour

Contents
23.1 Earlier Treatment . 113
23.2 Main Behaviour . 113

23.1 Earlier Treatment

value
104. edge: EI→EM→(Kind×LEN×Cost)→NH→Unit

value
117. edge: EI → EM → (EdgeKind×LEN×Cost) ... → EH

117a. edge(ei)(em)(ekind,len,cost)(eh) ≡
117b. let msg= debc { comm[{ei,ci}] ? | ci:CI • ci ∈ em } in
117c. edge(ni)(em)(eki...)(〈msg〉̂eh) end

23.2 Main Behaviour
319. An edge behaviour revolves around:

(a) conveyors moving along, being so notified by messages which it remembers by “adding” them to their
histories,

(b) before resuming being adge behaviours.

319. edge(ei)(em)(ekind,len,cost)(eh) ≡
319a. let msg= debc { comm[{ei,ci}] ? | ci:CI•ci ∈ em } in
319b. edge(ei)(em)(ekind,len,cost)(〈msg〉̂eh) end

That is, no change !

113

114 CHAPTER 23. EDGE BEHAVIOUR

Chapter 24

Node Behaviour

Contents
24.1 Earlier Treatment . 115
24.2 Revised Node Attributes . 115
24.3 [k10,k11,k14] Main Behaviour . 116

24.1 Earlier Treatment

value
ι116 π31. node: NI → NM → NodeKind → NH

ι116a π31. node(ni)(nm)(nkind)(nh) ≡
ι116c π31. let msg= debc { comm[{ni,ci}] ? | ci:CI • ci ∈ nm } in
ι116d π31. node(ni)(nm)(nkind)(〈msg〉̂nh) end

24.2 Revised Node Attributes
320. Each node may potentially provide [also] as a temporary “on-hold” storage for customer merchandises.

type
320. OnHold = ContractNu →m M-set
value
320. attr OnHold: N → OnHold

115

116 CHAPTER 24. NODE BEHAVIOUR

24.3 [k10,k11,k14] Main Behaviour
321. Node behaviours revolves around:

322. nodes external non-deterministically accepting messages from conveyors where these messages are

(a) [k10] either notifications of the presence of (moving) conveyors – duly recorded in the node history
attribute;

(b) [k11a] or from conveyors unloading at nodes duly updated in the node onhold and history attributes;

(c) [k11b] or from conveyors loading at nodes

(d) [k12] and informing the “originating” conveyor company,

– in which latter case

(e) the merchandises identified in the load are communicated (“back”) to the conveyor.

or non-deterministically externally receiving requests from customers to

323. to deliver contracted onhold merchandises,

321. node(ni)(nm:(eis,kis,cis))(nkind)(onhold,nh) ≡
322. let msg = debc {comm[{ni,ci}] ? |ci:CI•ci∈cis} in
322. case msg of

322a. [k10] (,mk AtNode(ni))

322a. → node(ni)(nm)(nkind)(onhold,〈msg〉̂nh),
322b. [k11a] ((ci,τ,ni),mk CNTransfer(cnu,lds)) [cf. 316b on page 109]

322b. → node(ni)(nm)(nkind)(onhold∪lds81,〈msg〉̂nh),
322c. ((ci,τ,ni),mk NCTransfer(cnu,mis)) [cf. 317a on page 109]

322d. [k12] → let ms = {m:M|m∈ onhold(cnu)∧uid (m)∈mis} in
322e. [k11b] comm[{ni,ci}] !mk NCTransfer([cnu7→ms]) ;

322d. node(ni)(nm)(nkind)(onhold\cnu,〈msg〉̂nh) end

322. end end

323. debc let msg:mk PendColl(ni,(cnu,mis)) = debc {comm[{ni,ki}] ? |ki:KI•ki∈kis} in
323. let ms = {m|m:M•m∈onhold(cnu)∧uid M(m)∈mis} in
323. let τ = recordTIME()in
323. msg = ((ni,τ,ki),mk NKTransfer(ms)) in
323. [k14] comm[{ni,ki}] ! msg ;

323. node(ni)(nm)(nkind)(onhold\cnu,〈((ni,τ,ki),ms to mis(ms))〉̂nh) end end
116. end

80domlds∩domonhold={}
81Alert: Fic unls; one or more !?

Part VII

CLOSING

117

Chapter 25

Discussion

Contents
25.1 Wither Logistics Companies . 119
25.2 Some Parts Modelled, Others Not ! ? . 120
25.3 Formal Structuring . 121
25.4 Mnemonics . 121
25.5 Narratives . 121

25.1 Wither Logistics Companies
It was a mistake, it seems, to distinguish between conveyor and logistics companies. A conveyor company with no
conveyors is a logistics company. Examples are travel agencies. A revised taxonomy for conveyor companies is
as shown in Figs. 25.1 and 25.2 on the following page. They are revisions of Figs. 12.1 on page 52 and 9.1 on
page 37.

Transport

T

L

Company

Logistics

The Conveyor Company Segment

Conveyor Companies:

Conveyor

...

... ...

Conveyor
Company

Conveyor
Office

cks

cos

css

cs

CK

C C

CA,CS

Aggregates, CKA
Sets, CKS

CA,CS

cka

CK

C

COCO

C

CKA,CKS

Transport

T

The Conveyor Company Segment

Conveyor Companies:

Conveyor

...

... ...

Conveyor
Company

cks

css

cs

CK

C C

CA,CS

Aggregates, CKA
Sets, CKS

CA,CS

cka

CK

CC

CKA,CKS

Figure 25.1: Old and Revised Conveyor Company Taxonomies

The corresponding Command & Material Traces figures is Fig. 25.3 on the next page:

MORE TO COME

119

120 CHAPTER 25. DISCUSSION

T

G

NA EA K...

... ...N E

LA,LS

M M K L L

EN

MA,MS KA,KS

Graph Merchandise

... CKCK

... ...C

CS CO CS CO

CCC

Nodes Edges Company
Conveyor

Conveyors

Conveyor

Office

Transport

Companies
Conveyor

Non−manifest Endurant Possibly Manifest Endurant is_part_of... ... refers_to

LEGEND:

CKA,CKS

Kustomers = Klients
Logistics

Companies

T

G

NA EA K... ...

... ...N E

M M K

EN

MA,MS KA,KS

Graph Merchandise

... CKCK

... ...C

CS CS

CCC

Nodes Edges Company
Conveyor

Conveyors

Conveyor

Transport

Companies
Conveyor

Non−manifest Endurant Possibly Manifest Endurant is_part_of... ...

LEGEND:

CKA,CKS

Kustomers = Klients

Figure 25.2: Old and Revised Transport Taxonomies

k5k3

k2

k1
k9Cust.Query Cust.

Order
Offer

Conveyor
Companies

Notify

Acknowledgement

k13

Acknowledgement

Customers: Sending & Receiving

k7
per conveyor

Confirm

Order

material communication

command

LEGEND:

k8
Coll.

Pend.

OrderOK

k6

Pending

Collection

Notify
k10k10

O
n

/O
ff

E
d

g
e

O
n

/O
ff

N
o

d
e

k12a,b

k15a,b k14a

k14b

Pend.

Deliv.

* from customers
Edges

* from conv.comps.

* from conveyors

* from nodes

Issued once

k4

preparing for command

Conveyors

Load/Unload

k6: Issued to one or more
[other] Conveyor Companies
by logistics firms
[not described]

NKTransfer

KNTransfer

Load/Unload

NCTransfer/CNTransfer

Logistics and Conveyor Companies

Nodes

k1
1a

−
b

k5k3

k2

k1
k9Cust.Query Cust.

Order
Offer

Conveyor
Companies

Notify

Acknowledgement

k13

Acknowledgement

Customers: Sending & Receiving

k7
per conveyor

Confirm

Order

material communication

command

LEGEND:

k8
Coll.

Pend.

OrderOK Pending

Collection

Notify
k10k10

O
n

/O
ff

E
d

g
e

O
n

/O
ff

N
o

d
e

k12a,b

k15a,b k14a

k14b

Pend.

Deliv.

* from customers
Edges

* from conv.comps.

* from conveyors

* from nodes

Issued once

k4

preparing for command

Conveyors

Load/Unload

NKTransfer

KNTransfer

Load/Unload

NCTransfer/CNTransfer

Nodes

k1
1a

−
b

Figure 25.3: Old and Revised Command & Material Traces [→]

25.2 Some Parts Modelled, Others Not ! ?

The reader will have observed that we model only some of the internal qualities of composite parts ! Why ? Well
the answer is this: We have chosen to emphasize the modelling of essential aspects of transport. The “omitted” full
modelling of some, well most, composite parts [endurants], and hence their behaviours [perdurants], is therefor
motivated as follows:

• Graphs: With G, EA and NA we do not associate any manifest “authority”. But we could ! ? With G we
could associate such more-or-less public authorities as the road authorities of Your city or country, rail net
authorities, coastal and sea authorities, air traffic command & control, incl. ICAO 82,etc.

• Merchandise Aggregate: With MA we also do not associate any manifest “authority”. But we could ! ?
There are an abundance of private/public association which monitor and control publically available mer-
chandise categories: food, toy, automobile, etc., agencies.

• Customer Aggregate: With KA we do not associate any manifest “authority”. But we could ! ? We leave
it to the reader to identify possibly relevant such candidates !

• Conveyor Companies Aggregate: With CKA we do not associate any manifest “authorities”. But we
could ! ? There are public/private associations which handle concerns of the conveyor industry, one or more
for each kind. We omit their modelling.

• Logistics Companies Aggregate: With LA we do not associate any manifest “authorities”. We could ! ?
But we do not.

82https://www.icao.int/about-icao/Pages/default.aspx

25.3. FORMAL STRUCTURING 121

25.3 Formal Structuring
By formal structuring we mean the way we have chosen some endurant parts to be composite, i.e., Cartesians an
sets of parts. This structuring is most clearly reflected in Fig. 9.1. We now regret the “messy” handling of logistics,
both as separate parts, and as an element of conveyor companies. A better “decomposition” must be found in a
continuation project. There are other, in our mind, minor, such restructurings to be made.

25.4 Mnemonics
Mnemonics is the study and development of systems for improving and assisting the memory83. One such system
is naming. We have strived some “logic” in choosing names. Endurant parts have been given very short one, two
or three letter identifiers. Commands, functions and behaviours have been assigned longer identifiers, trying to
compress their full names in the informal texts. A careful review, for any possible continuation project should
carefully review these latter names.

25.5 Narratives
All (or almost all) formulas have been preceded by narratives. Pairwise their numbering “match” ! But these
narratives are, in our mind, far from satisfactory. Much more care should be taken in formulating and “repetitively”
express these narratives. Perhaps one should serve two narratives for each one presented here ? One, short, coupled
with and receding the formulas; another, longer, perhaps appearing as footnotes, or as notes in a separate appendix ?

83 https://languages.oup.com/google-dictionary-en/ and https://dictionary.cambridge.org/dictionary/english/mnemonic

122 CHAPTER 25. DISCUSSION

Chapter 26

Conclusion

Contents
26.1 Logistics & Operations Research . 123

26.1.1 Logistics . 123
26.1.2 Operations Research . 123

26.2 Interpretations . 123
26.2.1 Socio-Economic Study . 124
26.2.2 Business Process Re-Engineering . 124
26.2.3 Primary and Secondary School Topic . 124
26.2.4 Algorithms & Data Structures . 124
26.2.5 Software System Development . 124

26.3 Formality and Verification . 125
26.4 On the Development of This Model . 126
26.5 Acknowledgements . 126

Chapters 2–24 (pages 7–116) sketched a “strict” narrative coupled to a formal description of an essence of transport
domains. These were engineering descriptions. Your understanding of these rely on Your having understood
[12, 9, 7, 6, 4].

26.1 Logistics & Operations Research
As for ‘logistics companies’: Yes, I have left them out.

26.1.1 Logistics
324. By logistics we shall mean the detailed planning of the organization and implementation of a complex

operation..

In this report logistics, in this sense of planning has been concentrated in the function cal offer, cf. Item 302a
on page 99.

26.1.2 Operations Research
That is: the often exciting and beautiful properties of optimization algorithms are to be “buried” here. They do not
belong to the ‘transport’ aspects – but to the strategic, tactical an operational facets of the transport domain84.

26.2 Interpretations
The domain description of Sects. 2–18 (pages 7–116) can be viewed in three ways:

(i) as a step in the general, say socio-economic study of a specific infra-structure [sub-]domain;

(ii) as a prerequisite for business process re-engineering;

84Cf. Sect.8̇.7, Example 107, pages 232–233 of my book [7].

123

124 CHAPTER 26. CONCLUSION

(iii) as an, albeit, in this case, and this stage of unfolding study, basis document for preparing teachers material
for subsequent development, i.e., writing, of secondary school course element for teaching such specific
infra-structure [sub-]domains; and

(iv) as an initial feasibility study for possible subsequent development of software for multi-mode transport
systems.

We shall now comment on each of these.

26.2.1 Socio-Economic Study

TO BE WRITTEN

26.2.2 Business Process Re-Engineering

TO BE WRITTEN

26.2.3 Primary and Secondary School Topic
We should like to see reports on the study, analysis and description of several societal infrastructure components:

• the banking system, from Your local, “brick and mortar” branch office via its head quarter, the national
bank of Your country85, the regional bank of your continent to The World Bank86 and the IMF87;

• the insurance industry;

• the health care industry, from Your family doctor, via local clinics, to hospitals – with pharmacies, home
care and health insurance providers included;

• the education system, from primary and secondary schools, to high schools, colleges and universities;

• et cetera !

26.2.4 Algorithms & Data Structures
Many functions, like get offers, imply, for their software realization, rather complex data structures and in-
tricate algorithms. Since we are describing domains, and not designing software. we need, in a sense, not be
concerned. But we have achieved, one might say, a clear identification, of where such clever software designs may
be warranted.

26.2.5 Software System Development
This study and experimental report began with espousing The Triptych Dogma. But we have advocated that
domain modelling be used for other purposes than “just” software development. Now we ”return to the fore” ! We
now assume that there is, indeed, to be professionally & commercially, at least in a seriously funded effort, to be
developed actual software for essential aspects of transport as they have been laid out in this study and experimental
report. How would we go about doing that ?

Based on more than 40 years of experience88 we would do as follows:

• First we would, as we have already started doing, perform the three phases of so-called ‘‘SEA’’ preparatory
work.

– Study, – Analyze, and – Experiment.

We have just, more-or-less, completed these three phases.

• Now we are ready for a project committed to produce a “full-blown” domain model.

85https://www.nationalbanken.dk/en
86https://www.worldbank.org/ext/en/home
87https://www.imf.org/en/Home
88We refer to the Dansk Datamatik Center’s [17] CHILL and Ada projects [18]

26.3. FORMALITY AND VERIFICATION 125

• After that, the similar development of a requirements prescription.

• And after that, the development of a software design, is coding, validation, etc.

How would we organize the “full-blown” domain modelling

• First we would assemble, in this case, six people, well-familiar with the domain modelling approach pursued
in this report.

• They would be organized with the following responsibilities – being responsible for the development of:

– the transport net, i.e., graph, model – 1 person;

– the conveyor model – 2 persons;

– the merchandises model – 1 person; and

– the logistics and conveyor companies model – 2 persons.

All under the leadership of an overall domain modelling “architect” !

They would each have “an own”, private and “inviolable” office. After a very few days of domain modelling they
would

• each morning review the previous day’s work of a colleague, on a rotating shift basis, a “new colleague” on
consecutive days;

• meet around a coffee/tea machine and a white board mid-morning for the possible discussion of common
issues – across their modelling – while also handing back the possibly annotated work of their reviewed
colleague;

• go back to correcting possible collegial remarks;

• and otherwise continue their main assigned work !

26.3 Formality and Verification
Jean-Raymond Abrial89 passed away 26 May 2025. He was one of the greats of our science. His contributions,
especially through Z, B and The B Methods [2, 1] to construction by proof are seminal.

So where, in our description, do we find “traces” of that ?
The answer is: nowhere !
Why ?
Well, usually proof of program correctness is usually [carried out] with respect to some property, some “prior”

specification. For domains there is no prior “specification” ! There is the manifest reality of the subject domain.
Thus we must first specify, i.e., describe that domain.
A domain description, a domain model, cannot be said to be correct.
It is either a bad, or a not so bad, or not quite so “approximate” a description as to be accepted by domain

stakeholders; or it is a reasonably good model.
Verification of a domain model is by its acceptance by domain stakeholders.
When, below, we refer to verification we mean that properties of the description can be expressed, in mathe-

matical logic and then formally proved: verified, tested, checked !

• • •

But: But the above is not good enough ! Certainly J.R. Abrial’s work must or ought apply here ! ? A study
should be made, by professionals well-familiar with, for example, Event B90. Based on the description/modelling
taxonomy, cf. Fig. 2.1, it might very well be possible to formulate the formal model along the principles set out by
J.R. Abrial

• • •

The next remarks were written before the J.R. Abrial discourse above.

• • •
89https://en.wikipedia.org/wiki/Jean-Raymond Abrial
90https://www.event-b.org/, https://www.southampton.ac.uk/˜tsh2n14/publications/chapters/eventb-dbook13.pdf

126 CHAPTER 26. CONCLUSION

The reader may well have observed two aspects of our “formal” model:

• (i) “Formality” of the Specification: I have been rather “lax”, some would say, in my use for RSL. An
example is “trick”, referred to in footnote 67 on page 95, and used in several formal parameter of behaviours.
Other examples is the use of discriminated union of ::-defined command types. These “lax” uses have been
done, deliberately, in the interest of shortening the formulas. They can all be edited into “correct” RSL.

• (ii) Lack of Verification: Yes, indeed. I have not been as careful as I would wish, to highlight all the
places where appropriate theorems should be enunciated, let alone proved. Similarly for axioms. I trust
the reader can spot these places. And I trust that appropriate proofs be provided. Not necessarily formal
proofs in the sense of there being a proof system for the RSL for all of these cases: there is not. But then I
am “almost” sure that classical proofs, such as mathematicians “always” do, can suffice. And, for cases that
that is not immediately possible ? Well, great, then this domain description provides rich possibilities for the
able computer scientist to excel !

26.4 On the Development of This Model
I started on this document on Saturday February 22, 2025. I finished, “more-or-less” all the formalization and this
concluding section on Monday March 3, 2025. Nine days, Nine days of great fun.

I am not really ashamed to confess that other than the RSL formula text editing system I have not had access to
proper RSL tools, such as they indeed do exist. Thus I have not been able to more-or-less automatically check my
RSL formulas. Et cetera - et cetera !

During the development many model-formulations changed. Figure 16.1 on page 72, for example, underwent
numerous versions.

26.5 Acknowledgements

Chapter 27

Bibliography

[1] Jean-Raymond Abrial. The B Book: Assigning Programs to Meanings and Modeling in Event-B: System
and Software Engineering. Cambridge University Press, Cambridge, England, 1996 and 2009.

[2] Jean-Raymond Abrial. From Z to B and then Event B: Assigning Proofs to Meaningful Programs. In
IFM 2013, LNCS 7940, Åbo, Finland, June 2013. Springer.

[3] Dines Bjørner. Domain Case Studies:

• 2025: Documents – a Domain Description, Winter/Spring 2025, www.imm.dtu.dk/~dibj/2025/
documents/main.pdf

• 2023: Nuclear Power Plants, A Domain Sketch, 21 July, 2023 www.imm.dtu.dk/~dibj/2023/

nupopl/nupopl.pdf

• 2021: Shipping , April 2021. www.imm.dtu.dk/~dibj/2021/ral/ral.pdf

• 2021: Rivers and Canals – Endurants, March 2021. www.imm.dtu.dk/~dibj/2021/Graphs/

Rivers-and-Canals.pdf

• 2021: A Retailer Market, January 2021. www.imm.dtu.dk/~dibj/2021/Retailer/

BjornerHeraklit27January2021.pdf

• 2019: Container Terminals, ECNU, Shanghai, China www.imm.dtu.dk/~dibj/2018/yangshan/

maersk-pa.pdf

• 2018: Documents, TongJi Univ., Shanghai, China www.imm.dtu.dk/~dibj/2017/docs/docs.pdf

• 2017: Urban Planning , TongJi Univ., Shanghai, China www.imm.dtu.dk/~dibj/2017/

urban-planning.pdf

• 2017: Swarms of Drones, IS/CAS91, Peking, China www.imm.dtu.dk/~dibj/2017/swarms/

swarm-paper.pdf

• 2013: Road Transport, Techn. Univ. of Denmark www.imm.dtu.dk/~dibj/road-p.pdf

• 2012: Credit Cards, Uppsala, Sweden www.imm.dtu.dk/~dibj/2016/credit/accs.pdf

• 2012: Weather Information, Bergen, Norway www.imm.dtu.dk/~dibj/2016/wis/wis-p.pdf

• 2010: Web-based Transaction Processing , Techn. Univ. of Vienna, Austria, 186 pages www.imm.

dtu.dk/~dibj/wfdftp.pdf

• 2010: The Tokyo Stock Exchange, Tokyo Univ., Japan www.imm.dtu.dk/~db/todai/tse-2.pdf

• 2009: Pipelines, Techn. Univ. of Graz, Austria www.imm.dtu.dk/~dibj/pipe-p.pdf

• 2007: A Container Line Industry Domain, Techn. Univ. of Denmark www.imm.dtu.dk/~dibj/

container-paper.pdf

• 2002: The Market, Techn. Univ. of Denmark www.imm.dtu.dk/~dibj/themarket.pdf

• 1995–2004: Railways, Techn. Univ. of Denmark - a compendium www.imm.dtu.dk/~dibj/

train-book.pdf

Experimental research carried out to “discover”, try-out and refine method principles, techniques and
tools, 1995–2025.

91Inst. of Softw., Chinese Acad. of Sci.

127

www.imm.dtu.dk/~dibj/2025/documents/main.pdf
www.imm.dtu.dk/~dibj/2025/documents/main.pdf
www.imm.dtu.dk/~dibj/2023/nupopl/nupopl.pdf
www.imm.dtu.dk/~dibj/2023/nupopl/nupopl.pdf
www.imm.dtu.dk/~dibj/2021/ral/ral.pdf
www.imm.dtu.dk/~dibj/2021/Graphs/Rivers-and-Canals.pdf
www.imm.dtu.dk/~dibj/2021/Graphs/Rivers-and-Canals.pdf
www.imm.dtu.dk/~dibj/2021/Retailer/BjornerHeraklit27January2021.pdf
www.imm.dtu.dk/~dibj/2021/Retailer/BjornerHeraklit27January2021.pdf
www.imm.dtu.dk/~dibj/2018/yangshan/maersk-pa.pdf
www.imm.dtu.dk/~dibj/2018/yangshan/maersk-pa.pdf
www.imm.dtu.dk/~dibj/2017/docs/docs.pdf
www.imm.dtu.dk/~dibj/2017/urban-planning.pdf
www.imm.dtu.dk/~dibj/2017/urban-planning.pdf
www.imm.dtu.dk/~dibj/2017/swarms/swarm-paper.pdf
www.imm.dtu.dk/~dibj/2017/swarms/swarm-paper.pdf
www.imm.dtu.dk/~dibj/road-p.pdf
www.imm.dtu.dk/~dibj/2016/credit/accs.pdf
www.imm.dtu.dk/~dibj/2016/wis/wis-p.pdf
www.imm.dtu.dk/~dibj/wfdftp.pdf
www.imm.dtu.dk/~dibj/wfdftp.pdf
www.imm.dtu.dk/~db/todai/tse-2.pdf
www.imm.dtu.dk/~dibj/pipe-p.pdf
www.imm.dtu.dk/~dibj/container-paper.pdf
www.imm.dtu.dk/~dibj/container-paper.pdf
www.imm.dtu.dk/~dibj/themarket.pdf
www.imm.dtu.dk/~dibj/train-book.pdf
www.imm.dtu.dk/~dibj/train-book.pdf

128 BIBLIOGRAPHY

[4] Dines Bjørner. Manifest Domains: Analysis & Description www.imm.dtu.dk/~dibj/2015/faoc/

faoc-bjorner.pdf. Formal Aspects of Computing, 29(2):175–225, March 2017. Online: 26 July
2016.

[5] Dines Bjørner. Domain analysis & description - the implicit and explicit semantics problem www.imm.dtu.

dk/~dibj/2017/bjorner-impex.pdf. In Régine Laleau, Dominique Méry, Shin Nakajima, and Elena
Troubitsyna, editors, Proceedings Joint Workshop on Handling IMPlicit and EXplicit knowledge in formal
system development (IMPEX) and Formal and Model-Driven Techniques for Developing Trustworthy
Systems (FM&MDD), Xi’An, China, 16th November 2017, volume 271 of Electronic Proceedings in
Theoretical Computer Science, pages 1–23. Open Publishing Association, 2018.

[6] Dines Bjørner. Domain Analysis & Description. www.imm.dtu.dk/~dibj/2018/tosem/

Bjorner-TOSEM.pdf. ACM Trans. on Software Engineering and Methodology, 28(2):66 pages,
March 2019.

[7] Dines Bjørner. Domain Science & Engineering – A Foundation for Software Development. EATCS
Monographs in Theoretical Computer Science. Springer, Heidelberg, Germany, 2021. A revised version
of this book is [9].

[8] Dines Bjørner. Double-entry Bookkeeping. Research, Institute of Mathematics and Computer Science.
Technical University of Denmark, DK-2800 Kgs.Lyngby, Denmark, August 2023. http://www.imm.-

dtu.dk/~dibj/2023/doubleentry/dblentrybook.pdf. One in a series of planned studies: [10, 16,
15, 14].

[9] Dines Bjørner. Domain Modelling – A Primer. A significantly revised version of [7]. xii+202 pages92,
Summer 2024.

[10] Dines Bjørner. Banking – A Domain Description. Sci. & techn. study, Technical University of Denmark,
Fredsvej 11, DK 2840 Holte, Denmark, March 2025. One in a series of planned studies: [16, 15, 14, 8].

[11] Dines Bjørner. Documents – A Domain Description. Sci. & techn. study, Technical University of Denmark,
Fredsvej 11, DK 2840 Holte, Denmark, March 2025. One in a series of planned studies: [10, 16, 15, 14, 8].

[12] Dines Bjørner. Domain Analysis & Description. To be submitted, page 33, March 2025. Institute of
Mathematics and Computer Science. Technical University of Denmark.

[13] Dines Bjørner. Domain Modelling. Submitted to ACM FAC, page 18, February 2025. Institute of
Mathematics and Computer Science. Technical University of Denmark.

[14] Dines Bjørner. Health Care – A Domain Description. Sci. & techn. study, Technical University of Denmark,
Fredsvej 11, DK 2840 Holte, Denmark, March 2025. One in a series of planned studies: [10, 16, 15, 8].

[15] Dines Bjørner. Insurance – A Domain Description. Sci. & techn. study, Technical University of Denmark,
Fredsvej 11, DK 2840 Holte, Denmark, March 2025. One in a series of planned studies: [10, 16, 14, 8].

[16] Dines Bjørner. Transport – A Domain Description. Sci. & techn. study, Technical University of Denmark,
Fredsvej 11, DK 2840 Holte, Denmark, March 2025. One in a series of planned studies: [10, 15, 14, 8].

[17] Dines Bjørner, Chr. Gram, Ole N. Oest, and Leif Rystrøm. Dansk Datamatik Center. In Benkt Wangler
and Per Lundin, editors, History of Nordic Computing, Stockholm, Sweden, 18-20 October 2010. Springer.

[18] Dines Bjørner and Ole N. Oest. The DDC Ada Compiler Development Project. In Dines Bjørner and
Ole N. Oest, editors, Towards a Formal Description of Ada, [19], volume 98 of Lecture Notes in Computer
Science, pages 1–19. Springer, 1980.

[19] Dines Bjørner and Ole N. Oest, editors. Towards a Formal Description of Ada, volume 98 of Lecture
Notes in Computer Science. Springer, Heidelberg, Germany, 1980.

[20] Andrew Kennedy. Programming languages and dimensions. PhD thesis, University of Cambridge, Com-
puter Laboratory, April 1996. 149 pages: cl.cam.ac.uk/techreports/UCAM-CL-TR-391.pdf. Technical
report UCAM-CL-TR-391, ISSN 1476-298.

92This book is currently being translated into Chinese by Dr. Yang ShaoFa, IoS/CAS (Institute of Software, Chinese Academy of Sciences),
Beijing and into Russian by Dr. Mikhail Chupilko and colleagues, ISP/RAS (Institute of Systems Programming, Russian Academy of Sciences),
Moscow

www.imm.dtu.dk/~dibj/2015/faoc/faoc-bjorner.pdf
www.imm.dtu.dk/~dibj/2015/faoc/faoc-bjorner.pdf
www.imm.dtu.dk/~dibj/2017/bjorner-impex.pdf
www.imm.dtu.dk/~dibj/2017/bjorner-impex.pdf
www.imm.dtu.dk/~dibj/2018/tosem/Bjorner-TOSEM.pdf
www.imm.dtu.dk/~dibj/2018/tosem/Bjorner-TOSEM.pdf

Part VIII

APPENDIX

129

Appendix A

Indexes

A.1 Transport Domain Concepts

action, 27
of behaviour, 71

argument
of behaviour, 27

behaviour, 27
action, 71
argument, 27
of part, 71

bookkeeping, double, 42
business process re-engineering, 123

cash, 35
client, 47
command, 71

directive, 71
response, 71

consumer, 47
conveyor, 7

kind, 7
conveyor company, 35
cost, 35

of conveyance, 42
current, 24
customer, 35, 47

aggregate, 39

directive
command, 71

double bookkeeping, 42

edge
kind, 7
label

unique, bi-directed, 7
entity

syntactic, 71
event, 25, 71

external, 71
internal, 71

event notice, 25
external

event, 71

facet

script, 71
function, 27

goods = merchandises, 43
graph [= net], 7

history attribute, 25

infrastructure
component, 2

intentional pull, 7
internal

event, 71
invocation, 32

kind, 7
conveyor, 7
edge, 7
node, 7

kustomer
aggregate, 39

logistics, 123

merchandise, 35, 43
= goods, 43
aggregate, 39

merchandises, 43
multi-mode transport, 35

node
kind, 7
label, 7

overall, top transport endurants, 35

part
behaviour, 71

path, 11
payment

of conveyance, 42
people, 7

receiver, 35
recipient, 35
response

command, 71

131

132 APPENDIX A. INDEXES

route, 11
routes, 24

script
facet, 71

semantics, 71
sender, 35
single-mode transport, 35
state

change, 71

syntactic entity, 71

tail-recursion, 28
theorem, 17
time-stamp, 25
transport, 7

multi-mode, 35
net, 7
route, 76
single-mode, 35

A.2 Domain Modelling Ontology

attribute
observer

conveyor, 23, 24
graph, 18

type
conveyor, 23, 24
graph, 18

wellformedness
graph, 20

attributes
conveyor, 23
graph, 18

behaviour, 28
definition, 28
signature, 28

communication, 27

domain
instantiation, 32

endurant
conveyor, 21
graph, 11
observer

conveyor, 21
graph, 11
transport, 9

sort
conveyor, 21
graph, 11
transport, 9

state
graph, 12
transport, 9

transport, 9

intentional pull, 25

mereology
conveyor, 22
graph, 14
observer, 14

conveyor, 22
graph, 14

type
conveyor, 22
graph, 14

wellformedness
conveyor, 23
graph, 14

perdurant, 27

unique identification
graph, 13
transport, 10

unique identifier
observer

graph, 13
transport, 10

sort
graph, 13
transport, 10

state
conveyor, 22
graph, 13
transport, 10

uniqueness
conveyor, 22
graph, 13
transport, 10

A.3 Formal Entities
The formal entries first lists formula entries by ontological category, then all:

Endurants

External Qualities

* Parts: Sorts ad Observers

* A Part State Concept

Internal Qualities

A.3. FORMAL ENTITIES 133

Unique Identification

* Unique Identifiers: Sorts and Observers

* A Unique Identifier State Concept

* A Wellformedness Axiom

Mereology

* Mereology: Sorts and Observers

* A Wellformedness Axiom

Attributes

* Attributes: Sorts and Observers

* Wellformedness Axioms

* Intentional Pull

* Commands

Perdurants

* Communication

* Messages

* Behaviour Signatures

* Behaviour Definitions

* Initialization

* Values

* Auxiliary Types

* Auxiliary Functions

* Theorems

Only the *’ed entries are listed.

Endurant
sorts

EA ι17, 11
ES ι19, 11
E ι22, 11
NA ι18, 11
NS ι20, 11
N ι21, 11
P ι23, 11
C ι70, 21
CA ι136, 40, 51
CA ι4, 9
CK ι135, 40, 51
CKA ι133, 40, 51
CKS ι134, 40, 51
CO ι138, 40, 51
CS ι69, 21
CS ι137, 40, 51
E ι21, 11
E ι127, 38
EA ι17, 11
EA ι125, 38
EAI ι125, 38
EI ι127, 38
ES ι19, 11
ES ι127, 38
G ι3, 9
G ι123, 38
GI ι123, 38
KA ι130, 39
KS ι131, 39
LA ι140, 41

LS ι141, 41
M ι145, 43
MA ι128, 39
MS ι129, 39
N ι22, 11
N ι126, 38
NA ι18, 11
NA ι124, 38
NAI ι124, 38
NI ι126, 38
NS ι20, 11
NS ι126, 38
oL ι139, 40, 51
P ι23, 11
T, 38
T ι2, 9
U, 16

auxiliary types
Air ι70, 21
Rail ι70, 21
Road ι70, 21
Sea ι70, 21

observers
obs CA ι136, 40, 51
obs CKA ι133, 40, 51
obs CKS ι134, 40, 51
obs CO ι138, 40, 51
obs CS ι137, 40, 51
obs EA ι17, 11
obs EA ι125, 38
obs ES ι19, 11
obs ES ι127, 38

134 APPENDIX A. INDEXES

obs GT ι123, 38
obs KA ι130, 39
obs KAI ι130, 39
obs KI ι131, 39
obs KS ι131, 39
obs LA ι140, 41
obs LS ι141, 41
obs MA ι128, 39
obs MAI ι128, 39
obs MI ι129, 39
obs MS ι129, 39
obs NA ι18, 11
obs NA ι124, 38
obs NS ι20, 11
obs NS ι126, 38
obs oL ι139, 40, 51
obs obs CA ι4, 9
obs obs G ι3, 9

Unique Identification
sorts

CAI ι73, 21
CAI ι186, 53
CAI ι136, 40
CAI ι11, 10
CCAI ι184, 53
CI ι74, 21
CI ι187, 53
CIK ι135, 40
CKAI ι133, 40
CKSI ι185, 53
COI ι188, 53
COI ι138, 40
EAI, 13
EI, 13
ESI, 13
GI, 13
GI ι10, 10
KAI ι130, 39
KI ι166, 48
KI ι131, 39
LAI ι140, 41
LI ι141, 41
MAI ι128, 39
MI ι146, 44
MI ι129, 39
NAI, 13
NI ι29, 13
NSI, 13
oLI ι189, 53
oLI ι139, 40
PI ι29, 13
TI ι9, 10

observers
uid C ι187, 53
uid CA ι136, 40
uid CAI ι73, 21
uid CAI ι11, 10
uid CCA ι184, 53
uid CI ι74, 21
uid CK ι186, 53

uid CKAI ι133, 40
uid CKI ι135, 40
uid CKS ι185, 53
uid CO ι188, 53
uid CO ι138, 40
uid E ι33, 13
uid EA ι31, 13
uid EAI ι125, 38
uid EI ι127, 38
uid ES ι32, 13
uid G ι30, 13
uid GI ι10, 10
uid GI ι123, 38
uid K ι166, 48
uid LAI ι140, 41
uid LI ι141, 41
uid M ι146, 44
uid N ι33, 13
uid NA ι31, 13
uid NAI ι124, 38
uid NI ι126, 38
uid NS ι32, 13
uid TI ι9, 10
uid oL ι189, 53
uid oL ι139, 40

Axioms
ι221, 60
All parts are uniquely identified ι78, 22
Commensurable Routes ι88, 24
Conveyor Mereology of Right Kind ι 81 , 23
Graph Mereology Wellformedness ι44 ι45, 14
Ordered Way and Conveyor Histories ι90, 25
Routes of commensurate kind ι84, 23
Unique Conveyor Companies Parts ι191, 54
Uniqueness of Part Identification ι41, 13
Uniqueness of Transport Identifiers ι16, 10
Wellformed Conveyor Company Mereologies

ι196, 55
Wellformed Transports ι243, 76

Mereology
types

CAM ι192, 54, 144
CM ι210, 59
CM ι80, 22
CM ι193, 54
COM ι194, 54
Cost ι152, 44
COST ι143d, 41
EHist ι143e, 41
EM ι43, 14, 144
EM ι143, 41
Flammability ι153, 44
Insurance ι154, 44
KM ι168, 48, 143
LEN ι143c, 41
MHist ι155, 44
MId ι148, 44
MM ι147, 44
NHist ι143b, 41

A.3. FORMAL ENTITIES 135

NM ι42, 14, 144
NM ι142, 41
OnHold ι143a, 41
Position ι149, 44
Size ι150, 44
Weight ι151, 44

observers
mereo C ι210, 59
mereo C ι80, 22
mereo C ι193, 54
mereo CA ι192, 54
mereo CO ι194, 54
mereo EM ι43, 14
mereo EM ι143, 41
mereo K ι168, 48
mereo M ι147, 44
mereo NM ι42, 14
mereo NM ι142, 41

auxiliary types
Event ι156, 44

Attribute
types:

AtNode ι85, 23
CKHist ι207, 56, 144
Contracts ι203, 56, 144
Contracts ι204, 56
ConvCompInfo ι201, 56, 144
ConvHist ι91, 25
COST ι58, 18
CPos ι85, 23
CurrBuss ι205, 56, 144
CustHist ι172, 48, 143
CustId ι169, 48, 143
EdgeKind ι56, 18
F ι85, 23
Kind ι211, 60
Kind ι83, 23
LEN ι57, 18
NodeKind ι55, 18
OnEdge ι85, 23
OnHold ι320, 115
Orders ι204, 144
OutReqs ι171, 48, 143
PastBuss ι206, 56, 144
Position ι217, 60
Possess ι170, 48, 143
Resources ι202, 56
SR ι213, 60, 144
SRIndex ι214, 60
Stowage ι212, 60
WHist ι90, 25

observers:
attr CHist ι219, 60
attr CKHist ι207, 56
attr COST ι58, 18
attr COST ι143d, 41
attr CPos ι217, 60
attr CPos ι85, 23
attr Contracts ι203, 56
attr ConvCompInfo ι201, 56

attr ConvHist, 25
attr Cost ι152, 44
attr CurrBuss ι205, 56
attr CustHist ι172, 48
attr CustId ι169, 48
attr EHist ι143e, 41
attr Edgekind ι56, 18
attr Finals ι216, 60
attr Flammability ι153, 44
attr Insurance ι154, 44
attr Kind ι211, 60
attr Kind ι83, 23
attr LEN ι57, 18
attr LEN ι143c, 41
attr MHist ι155, 44
attr MId ι148, 44
attr NHist ι143b, 41
attr NodeKind ι55, 18
attr OnHold ι143a, 41
attr OnHold ι320, 115
attr Orders ι204, 56
attr OutReqs ι171, 48
attr PastBuss ι206, 56
attr Position ι149, 44
attr Possess ι170, 48
attr SR ι213, 60
attr SRIndex ι214, 60
attr Size ι150, 44
attr Stowage ι212, 60
attr TBL ι215, 60
attr TBU ι215, 60
attr WH ι90, 25
attr Weight ι151, 44

auxiliary types:
CHist ι219, 60
ChoiceNu ι204c, 56, 144
ContractNu ι204a, 56, 144
Event ι173, 48, 143
Final ι216, 60
Finals ι216, 60
Move ι203a, 56, 144
Offer ι204b, 56
Offers ι204b, 144
TBL ι215, 60
TBU ι215, 60

Intentional Pull
Vehicles, Nodes and Edges ι92, 26

Commands
syntax

Acknowledgement ι234, 74
Acknowledgment ι234, 79
Acknowledgment ι226, 73
Acknowledgment ι252, 79
Acknowledgment ι257, 79
CNTransfe ι255, 79
CNTransfer ι233, 74
ConvCompConvDir ι229, 74, 80
ConvCompConvDir ι262, 80
ConvCompOffer ι227, 74, 80

136 APPENDIX A. INDEXES

ConvCompOffer ι260, 80
ConvCompOrdOK ι228, 74, 80
ConvCompOrdOK ι261, 80
CustDel ι225, 73
CustOrd ι223, 78
CustOrder ι223, 73
CustQuery ι222, 73, 77
K ι163, 47
KNTransfer ι224, 78
NCTransfer ι255, 79
NKTransfer ι265, 81
Notify ι232, 74, 79
Notify ι254, 79
OrderOK ι224, 73, 78
PendColl ι231, 79
PendColl ι230, 74
PendColl ι253, 79
PendDel ι235, 74, 79
PendDel ι259, 79
Transfer ι233, 79

auxiliary types
Addr ι250a, 77
Addr ι250f, 77
ChoiceNu ι260d, 80
ContractNu ι260b, 80
ContractNu ι251a, 78
ContractNu ι238, 76
ExpCost ι250e, 77
FromTo ι258, 79
FT ι250d, 77
MInfo ι250b, 77
M-set ι251b, 78
OfferChoice ι260e, 80
OrdrComp ι250c, 78
QueryComp ι249b, 77
QueryId ι249a, 77
TI ι250c, 77
TR ι236, 76

auxiliary functions
Addr ι250d, 78
ContractNu ι250b, 78
Cost ι250h, 78
FT ι250g, 78
MerchInfo ι250e, 78
OrdrComp ι250c, 78
QueryId ι250a, 78
TI ι250f, 78

Channel
comm, 27
comm ι278, 89
M ι279, 89

Message
Types

M ι103, 27

Behaviour
Signatures

conv comp ι283, 90
conveyor ι284, 90

conveyor ι104, 28, 103
customer ι281, 90
edge ι285, 90
edge ι104, 28, 113
edge ι117, 31, 113
initialization ι118, 32
logistics ι282, 90
node ι286, 90
node ι104, 28
node ι116, 31, 115

Definitions
awaits msg ι301, 98
confirms offer ι300c, 99
conv msg handling ι309, 106
conveyor ι308, 105
conveyor ι105, 28, 108
conveyor ι111, 30, 107
conveyor change route ι106, 29, 103
conveyor company ι300, 98
conveyor enters edge ι108, 29, 104
conveyor enters node ι113, 31
conveyor moves on edge ι112, 30
conveyor remains at node ι107, 29, 104
conveyor stops at node ι109, 30, 104
conveyor stops on edge ι114, 31
cust delivers merchandises ι298, 96
cust issues order ι297, 95
cust order OK ι297, 95
cust requests merchandises ι299, 96
customer ι294, 93
customer issues query ι296, 94
customer receiv messages ι294g, 94
edge ι117, 31, 113
inform conveyors ι300d, 100
initialization ι118, 32
instantiation ι287, 91, 92
node ι116, 31, 115
pending collection ι307, 101
suggests offer ι300b, 99

Values
TIME, 25
TI, time-interval, 25
σCKuid ι190, 54
σCK ι183, 53
σps ι28, 12
σtuis ι15, 10
σt ι5, 9
σuis ι77, 22
σuis ι40, 13
ca ι7, 9
cai ι75, 22
cai ι14, 10
ccaui ι190, 54
ccksuid ι190, 54
cis ι76, 22
cka ι177, 52
cks ι178, 52
cksuid ι190, 54
cos ι181, 53
cosuid ι190, 54

A.3. FORMAL ENTITIES 137

cs ι180, 53
csuid ι190, 54
css ι179, 52
euis ι38, 13
ea ι24, 12
eauis ι36, 13
es ι26, 12
esuis ι37, 13
g ι6, 9
gi ι35, 13
gi ι13, 10
ks ι165, 47
ks ι132, 39
m ι145, 43
nuis ι39, 13
na ι25, 12
nauis ι36, 13
ns ι27, 12
nsuis ι37, 13
ols ι182, 53
paths ι52, 16
t, 38
t ι164, 47
t ι5, 9
ti ι12, 10

Auxiliary
Types

ConvDir ι305c, 100
Edge Node Path ι241, 76
Kind, 7
Load ι305d, 100
Path ι46, 15
Segment ι240, 76
Unload ι305d, 100
W ι89, 25
WI ι89, 25

Functions
calc offer ι302a, 99
commensurate query offer ι301, 99
commensurate query offers ι302a, 99
construct dirs ι305, 100
ContractNu ι249, 76
extract dir ι306, 101
kind ι59, 19
least costly route of kind, 19
path cost ι62, 19
path kind ι54, 17
path length ι61, 19
paths ι48, 16
retr conveyor ι79, 22
retr customer ι159, 49
retr edge ι47, 15
retr merchandise ι160, 45
retr merchandise ι161, 45
retr node ι47, 15
retr path cost ι62, 19
retr path length ι61, 19
retr unit ι47, 15
retr W ι89, 25
rev path ι53, 17

route kind ι60, 19
same kind ι245, 77
select next route ι106b, 29, 103
share conveyors ι196, 55
shortest route ι63, 19
shortest route of kind, 19
update orders ι303, 100
update res and ors ι302b, 99
update resources and orders ι302b, 99
xtr Addr ι266, 86
xtr CI ι268, 86
xtr CI ι269, 86
xtr CKI ι263, 80
xtr CKI ι267, 86
xtr CKI ι269, 86
xtr KI ι264, 80
xtr KI ι251, 78
xtr MIs ι270, 86
xtr Name ι266, 86

Theorems
All finite paths have finite reverse paths ι53, 17

All
attr CHist ι219, 60
attr CKHist ι207, 56
attr COST ι58, 18
attr COST ι143d, 41
attr CPos ι217, 60
attr CPos ι85, 23
attr Contracts ι203, 56
attr ConvCompInfo ι201, 56
attr ConvHist, 25
attr Cost ι152, 44
attr CurrBuss ι205, 56
attr CustHist ι172, 48
attr CustId ι169, 48
attr EHist ι143e, 41
attr Edgekind ι56, 18
attr Finals ι216, 60
attr Flammability ι153, 44
attr Insurance ι154, 44
attr Kind ι211, 60
attr Kind ι83, 23
attr LEN ι57, 18
attr LEN ι143c, 41
attr MHist ι155, 44
attr MId ι148, 44
attr NHist ι143b, 41
attr NodeKind ι55, 18
attr OnHold ι143a, 41
attr OnHold ι320, 115
attr Orders ι204, 56
attr OutReqs ι171, 48
attr PastBuss ι206, 56
attr Position ι149, 44
attr Possess ι170, 48
attr SR ι213, 60
attr SRIndex ι214, 60
attr Size ι150, 44
attr Stowage ι212, 60

138 APPENDIX A. INDEXES

attr TBL ι215, 60
attr TBU ι215, 60
attr WH ι90, 25
attr Weight ι151, 44
All finite paths have finite reverse paths ι53, 17
M ι103, 27
ι221, 60
TIME, 25
TI, time-interval, 25
σCKuid ι190, 54
σCK ι183, 53
σps ι28, 12
σtuis ι15, 10
σt ι5, 9
σuis ι77, 22
σuis ι40, 13
ca ι7, 9
cai ι14, 10
ccaui ι190, 54
ccksuid ι190, 54
cis ι76, 22
cka ι177, 52
cks ι178, 52
cksuid ι190, 54
cos ι181, 53
cosuid ι190, 54
cs ι180, 53
csuid ι190, 54
css ι179, 52
euis ι38, 13
ea ι24, 12
eauis ι36, 13
es ι26, 12
esuis ι37, 13
g ι6, 9
gi ι35, 13
gi ι13, 10
ks ι165, 47
ks ι132, 39
m ι145, 43
nuis ι39, 13
na ι25, 12
nauis ι36, 13
ns ι27, 12
nsuis ι37, 13
ols ι182, 53
paths ι52, 16
t ι5, 9
t, 38
ti ι12, 10
Air ι70, 21
All parts are uniquely identified ι78, 22
AtNode ι85, 23
C ι210, 59
C ι70, 21
C ι80, 22
CA ι192, 54
CA ι136, 40, 51
CA ι4, 9
CAI ι73, 21
CAI ι186, 53

CAI ι136, 40
CAI ι11, 10
CAM ι192, 54, 144
CCAI ι184, 53
CHist ι219, 60
CI ι74, 21
CIK ι135, 40
CK ι135, 40, 51
CKA ι133, 40, 51
CKAI ι133, 40
CKHist ι207, 56, 144
CKS ι134, 40, 51
CKSI ι185, 53
CM ι210, 59
CM ι80, 22
CO ι194, 54
CO ι138, 40, 51
COI ι188, 53
COI ι138, 40
COM ι194, 54
COST ι58, 18
COST ι143d, 41
CPos ι85, 23
CS ι69, 21
CS ι137, 40, 51
ChoiceNu ι204c, 56, 144
Commensurable Routes ι88, 24
ContractNu ι204a, 56, 144
ContractNu ι249, 76
Contracts ι203, 56, 144
Contracts ι204, 56
ConvCompInfo ι201, 56, 144
ConvDir ι305c, 100
ConvHist ι91, 25
Conveyor Mereology of Right Kind ι 81 , 23
Cost ι152, 44
CurrBuss ι205, 56, 144
CustHist ι172, 48, 143
CustId ι169, 48, 143
E ι21, 11
E ι127, 38
EA ι17, 11
EA ι125, 38
EAI ι125, 38
EAI, 13
EHist ι143e, 41
EI ι127, 38
EI, 13
EM ι43, 14, 144
EM ι143, 41
ES ι19, 11
ES ι127, 38
ESI, 13
EdgeKind ι56, 18
Edge Node Path ι241, 76
Event ι173, 48, 143
Event ι156, 44
F ι85, 23
Final ι216, 60
Finals ι216, 60
Flammability ι153, 44

A.3. FORMAL ENTITIES 139

G ι3, 9
G ι123, 38
GI ι10, 10
GI ι123, 38
GI, 13
Graph Mereology Wellformedness ι44 ι45, 14
Insurance ι154, 44
K ι168, 48
KA ι130, 39
KAI ι130, 39
KI ι166, 48
KI ι131, 39
KM ι168, 48, 143
KS ι131, 39
Kind ι211, 60
Kind ι83, 23
Kind, 7
LA ι140, 41
LAI ι140, 41
LEN ι57, 18
LEN ι143c, 41
LI ι141, 41
LS ι141, 41
Load ι305d, 100
M ι279, 89
M ι145, 43
M ι147, 44
MA ι128, 39
MAI ι128, 39
MHist ι155, 44
MI ι146, 44
MI ι129, 39
MId ι148, 44
MM ι147, 44
MS ι129, 39
Move ι203a, 56, 144
N ι22, 11
N ι126, 38
NA ι18, 11
NA ι124, 38
NAI ι124, 38
NAI, 13
NHist ι143b, 41
NI ι29, 13
NI ι126, 38
NM ι42, 14, 144
NM ι142, 41
NS ι20, 11
NS ι126, 38
NSI, 13
NodeKind ι55, 18
Offer ι204b, 56
Offers ι204b, 144
OnEdge ι85, 23
OnHold ι143a, 41
OnHold ι320, 115
Ordered Way and Conveyor Histories ι90, 25
Orders ι204, 144
OutReqs ι171, 48, 143
P ι23, 11
PI ι29, 13

PastBuss ι206, 56, 144
Path ι46, 15
Position ι217, 60
Position ι149, 44
Possess ι170, 48, 143
Rail ι70, 21
Resources ι202, 56
Road ι70, 21
Routes of commensurate kind ι84, 23
SR ι213, 60, 144
SRIndex ι214, 60
Sea ι70, 21
Segment ι240, 76
Size ι150, 44
Stowage ι212, 60
T ι2, 9
TBL ι215, 60
TBU ι215, 60
TI ι9, 10
T, 38
Unique Conveyor Companies Parts ι191, 54
Uniqueness of Part Identification ι41, 13
Uniqueness of Transport Identifiers ι16, 10
Unload ι305d, 100
U, 16
Vehicles, Nodes and Edges ι92, 26
W ι89, 25
WHist ι90, 25
WI ι89, 25
Weight ι151, 44
Wellformed Conveyor Company Mereologies

ι196, 55
Wellformed Transports ι243, 76
comm ι278, 89
comm, 27
awaits msg ι301, 98
calc offer ι302a, 99
commensurate query offer ι301, 99
commensurate query offers ι302a, 99
confirms offer ι300c, 99
construct dirs ι305, 100
conv comp ι283, 90
conv msg handling ι309, 106
conveyor ι308, 105
conveyor ι284, 90
conveyor ι104, 28, 103
conveyor ι105, 28, 108
conveyor ι111, 30, 107
conveyor change route ι106, 29, 103
conveyor company ι300, 98
conveyor enters edge ι108, 29, 104
conveyor enters node ι113, 31
conveyor moves on edge ι112, 30
conveyor remains at node ι107, 29, 104
conveyor stops at node ι109, 30, 104
conveyor stops on edge ι114, 31
cust delivers merchandises ι298, 96
cust issues order ι297, 95
cust order OK ι297, 95
cust requests merchandises ι299, 96
customer ι294, 93

140 APPENDIX A. INDEXES

customer ι281, 90
customer issues query ι296, 94
customer receiv messages ι294g, 94
edge ι285, 90
edge ι104, 28, 113
edge ι117, 31, 113
extract dir ι306, 101
inform conveyors ι300d, 100
initialization ι118, 32
instantiation ι287, 91, 92
kind ι59, 19
least costly route of kind, 19
logistics ι282, 90
node ι286, 90
node ι104, 28
node ι116, 31, 115
oL ι139, 40, 51
oLI ι189, 53
oLI ι139, 40
path cost ι62, 19
path kind ι54, 17
path length ι61, 19
paths ι48, 16
pending collection ι307, 101
retr W ι89, 25
retr conveyor ι79, 22
retr customer ι159, 49
retr edge ι47, 15
retr merchandise ι160, 45
retr merchandise ι161, 45
retr node ι47, 15
retr path cost ι62, 19
retr path length ι61, 19
retr unit ι47, 15
rev path ι53, 17
route kind ι60, 19
same kind ι245, 77
select next route ι106b, 29, 103
share conveyors ι196, 55
shortest route ι63, 19
shortest route of kind, 19
suggests offer ι300b, 99
update orders ι303, 100
update res and ors ι302b, 99
update resources and orders ι302b, 99
xtr Addr ι266, 86
xtr CI ι268, 86
xtr CI ι269, 86
xtr CKI ι263, 80
xtr CKI ι267, 86
xtr CKI ι269, 86
xtr KI ι264, 80
xtr KI ι251, 78
xtr MIs ι270, 86
xtr Name ι266, 86
obs CA ι136, 40
obs CKA ι133, 40
obs CKS ι134, 40
obs CO ι138, 40
obs CS ι137, 40
obs EA ι17, 11

obs EA ι125, 38
obs ES ι19, 11
obs ES ι127, 38
obs GT ι123, 38
obs KA ι130, 39
obs KAI ι130, 39
obs KI ι131, 39
obs KS ι131, 39
obs LA ι140, 41
obs LS ι141, 41
obs MA ι128, 39
obs MAI ι128, 39
obs MI ι129, 39
obs MS ι129, 39
obs NA ι18, 11
obs NA ι124, 38
obs NS ι20, 11
obs NS ι126, 38
obs oL ι139, 40
obs obs CA ι4, 9
obs obs G ι3, 9
uid CA ι136, 40
uid CAI ι73, 21
uid CAI ι11, 10
uid CCA ι184, 53
uid CI ι74, 21
uid CK ι186, 53
uid CKAI ι133, 40
uid CKI ι135, 40
uid CKS ι185, 53
uid CO ι188, 53
uid CO ι138, 40
uid E ι33, 13
uid EA ι31, 13
uid EAI ι125, 38
uid EI ι127, 38
uid ES ι32, 13
uid G ι30, 13
uid GI ι10, 10
uid GI ι123, 38
uid K ι166, 48
uid LAI ι140, 41
uid LI ι141, 41
uid M ι146, 44
uid N ι33, 13
uid NA ι31, 13
uid NAI ι124, 38
uid NI ι126, 38
uid NS ι32, 13
uid TI ι9, 10
uid oL ι189, 53
uid oL ι139, 40
Acknowledgement ι234, 74
Acknowledgment ι234, 79
Acknowledgment ι226, 73
Acknowledgment ι252, 79
Acknowledgment ι257, 79
Addr ι250a, 77
Addr ι250f, 77
Addr ι250d, 78
ChoiceNu ι260d, 80

A.3. FORMAL ENTITIES 141

CNTransfe ι255, 79
CNTransfer ι233, 74
ContractNu ι260b, 80
ContractNu ι250b, 78
ContractNu ι251a, 78
ContractNu ι238, 76
ConvCompConvDir ι229, 74, 80
ConvCompOffer ι227, 74, 80
ConvCompOrdOK ι228, 74, 80
ConvCompOrdOK ι261, 80
Cost ι250h, 78
CustDel ι225, 73
CustOrder ι223, 73
CustQuery ι222, 73
ExpCost ι250e, 77
FromTo ι258, 79
FT ι250d, 77
FT ι250g, 78
K ι163, 47
KNTransfer ι224, 78
MerchInfo ι250e, 78

MInfo ι250b, 77
M-set ι251b, 78
NCTransfer ι255, 79
NKTransfer ι265, 81
Notify ι232, 74, 79
Notify ι254, 79
OfferChoice ι260e, 80
OrderOK ι224, 73, 78
OrdrComp ι250c, 78
PendColl ι231, 79
PendColl ι230, 74
PendColl ι253, 79
PendDel ι235, 74, 79
PendDel ι259, 79
QueryComp ι249b, 77
QueryId ι249a, 77
QueryId ι250a, 78
TI ι250c, 77
TI ι250f, 78
TR ι236, 76
Transfer ι233, 79

There are 483 formal RSL entities, and there are 504 RSL definitions – the former counted among the latter.

142 APPENDIX A. INDEXES

Appendix B

Summaries

B.1 Commands

ι222 π73. [k1] CustQuery ::<QueryId×QueryComp
ι260 π80. [k2] ConvCompOffer :: CKI×ContractNu×QueryNu×(ChoiceNu→m OfferChoice)

ι260e π80. OfferChoice = TR×Cost
ι223 π73. [k3] CustOrd :: QueryId×ContractNu×OrdrComp
ι261 π80. [k4] ConvCompOrdOK :: CKI×ContractNu×ChoiceNu×TR×Cost
ι224 π73. [k5] OrderOK :: ContractNu×ChoiceNu×Payment
ι262a π80. [k7] ConvCompConvDir :: CKI×ContractNu×Segment
ι253 π79. [k8] PendColl :: (NI×ContractNu×MI-set) mayby not the MI-set
ι224 π73. [k9] KNTransfer :: ContractNu×M-set
ι254 π79. [k10] Notify :: AtNode | OnEdge
ι255 π79. [k11a] NCTransfer :: ContractNu→m M-set
ι256 π79. [k11b] CNTransfer :: ContractNu→m M-set
ι257 π79. [k12] Acknowledgment :: TIME×ContractNu×((NI×CI)|(CI×NI))
ι259 π79. [k13] PendDel :: NI×ContractNu×MI-set mayby not the MI-set
ι265 π81. [k14a] NKTransfer :: NI×ContractNu×MI-set mayby not the MI-set
ι252 π79. [k15a] Acknowledgment :: TIME×ContractNu×(NI×KI)
ι252 π79. [k15b] Acknowledgment :: TIME×ContractNu×(KI×NI)

B.2 Mereologies and Attributes

B.2.1 Customers

Mereology:
ι168 π48. KM = MI-set × (CKI|LI)-set × CI-set

Attributes:
ι169 π48. CustId = CustNam × CustAdd × ...
ι170 π48. Possess = MI-set
ι171 π48. OutReqs = ...
ι172 π48. CustHist = (TIME × Event)∗

ι173 π48. Event = ...
ι174 π48. ...

143

144 APPENDIX B. SUMMARIES

B.2.2 Conveyor Companies

Mereology:
ι192 π54. CAM = CI-set × COI

Attributes:
ι201 π56. ConvCompInfo = ...
ι203 π56. Contracts = ContractNu →m Move∗

ι203a π56. Move = (KI×NI)|(NI×CI)|(CI×NI)|(NI×KI)
ι204 π56. Orders = ContractNu →m Offers

ι204a π56. ContractNu

ι204b π56. Offers = ChoiceNu →m TR

ι204c π56. ChoiceNu

ι205 π56. CurrBuss = MSG-set
ι206 π56. PastBuss = MSG-set
ι207 π56. CKHist = MSG∗

B.2.3 Conveyors

Mereology:
ι210 π59. CM = (NI|EI)set × CKI-set × KI-set

Attributes:
ι211 π60. Kind

ι212 π60. Stowage = ContractNu →m M-set
ι215 π60. TBU,TBL = NI→m ContractNu-set
ι213 π60. SR = Path

ι214 π60. SRIndex = Na

ι216 π60. Finals = NI →m (KI →m ContractNu)

ι216 π60. Final = NI × ContractNo × KI

ι217 π60. CPos = OnEdge (= NI×(F<>EI)×NI)
ι217 π60. CPos = AtNode (= NI)

ι219 π60. CHist = MSG∗

B.2.4 Nodes and Edges

Mereology:
ι42 π14. NM = EI-set axiom ∀ nm:NM • card nm>0
ι43 π14. EM = NI-set axiom ∀ em:EM • card em=2

Attributes:
ι55 π18. NodeKind = Kind-set axiom ∀ nk:NodeKind • nk 6={}
ι56 π18. EdgeKind = Kind-set axiom ∀ ek:EdgeKind • card ek=1
ι57 π18. LEN = Nat
ι58 π18. COST = Nat
ι320 π115. OnHold = ContractNu →m M-set

	Introduction
	On A Notion of `Infrastructure'
	Domain Models
	A Dichotomy
	The Dichotomy Resolved
	A [Planned] Series of Infrastructure Domain Models

	I redA Simple Beginningblack
	Kinds of Transports
	Informal Outline
	Narrative & Formalization

	Overall ``Single-Mode'' Transport Endurants
	Endurant Sorts & Observers
	Unique Identification

	Graphs: Transport Nets
	The Endurant Sorts and Observers
	Unique Identifiers
	Mereology
	Paths of a Graph
	Attributes

	Conveyors, I
	Conveyor Endurant Sorts & Observers
	Unique Identifiers
	Mereology
	Attributes

	Intentional Pull, I
	History Attributes
	An Intentional Pull

	Single-mode Transport Behaviours
	Communication
	Behaviours
	Behaviour Signatures
	Behaviour Definitions
	Domain Instantiation

	II redA Multi-mode Transport: Endurantsblack
	Multi-mode Transport
	``Top'' Transport Endurants
	The Endurants – External Qualities
	On Internal Qualities.
	Conveyor Companies versus Logistics Companies.
	Financial Matters

	Merchandise
	Merchandise Endurants
	Representation of Merchandises
	Humans

	Customer
	Customer Endurants
	Customer Qualities
	Customer Retrieval
	Customer Commands

	Conveyor Companies
	Conveyor Authorities.
	Conveyor Company Endurants.
	Conveyor Company Internal Qualities
	Conveyor Company Commands.

	Conveyors, II
	Conveyor Mereology
	Conveyor Attributes
	Conveyor Commands.

	Logistics Companies

	III redA Multi-mode Transport: Intentional Pullblack
	Intentional Pull, II

	IV redA Multi-mode Transport: Commandsblack
	Multi-mode Transport Commands
	Events and Commands
	Command Traces
	An Analysis
	Material and ``Immaterial'' Commands
	Abstracting an Essence of Transport
	Commands – A First View
	TR: Transport Routes
	A Closer Analysis of Commands

	V redIdentitiesblack
	Identities

	VI redA Multi-mode Transport: Behavioursblack
	Multi-mode Behaviours
	Communication
	Behaviour Signatures
	Which Behaviours to Describe?
	Multi-mode ``Systems''

	Customer Behaviours
	Main Behaviour
	Subsidiary Behaviours

	Conveyor Company Behaviours
	Main Behaviour
	Main Reactive Behaviour
	Subsidiary Behaviours

	Conveyor Behaviour
	Earlier Treatment
	Main Behaviour
	Subsidiary Behaviours

	Logistics Company Behaviour
	Edge Behaviour
	Earlier Treatment
	Main Behaviour

	Node Behaviour
	Earlier Treatment
	Revised Node Attributes
	[k10,k11,k14] Main Behaviour

	VII redClosingblack
	Discussion
	Wither Logistics Companies
	Some Parts Modelled, Others Not!?
	Formal Structuring
	Mnemonics
	Narratives

	Conclusion
	Logistics & Operations Research
	Interpretations
	Formality and Verification
	On the Development of This Model
	Acknowledgements

	Bibliography

	VIII redAppendixblack
	Indexes
	Transport Domain Concepts
	Domain Modelling Ontology
	Formal Entities

	Summaries
	Commands
	Mereologies and Attributes

