
Transport – a Domain Description

DINES BJØRNER, Technical University of Denmark – March 4, 2025, Denmark

We analyze and describe a conceptual domain of transport in all its forms: passenger and goods, road, rail,

water (navigable rivers and lakes as well as the open sea), and air. From the basis of an abstract notion of

graphs with labeled nodes and edges, we define a notion of routes of graphs: sequence of node and edge labels.

Nodes (now called hubs) are then interpreted a street intersections, bus stops, railway stations, harbours and

airports and edges as links between neighbouring nodes as street segments, bus links, simple rail lines, and

simple air links. And from there it goes !

Dines Bjørner. 2025. Transport – a Domain Description. 1, 1 (March 2025), 33 pages.

1 INTRODUCTION

The Triptych Dogma

In order to specify software,
we must understand its requirements.

In order to prescribe requirements,
we must understand the domain.

So we must study, analyze and describe domains.

This is one of a series, [6, 8, 10–12], of domain studies of such infrastructure components as

government, public utilities, banking, transport, insurance, health care, etc. The current, this

‘Introduction’, section is common to most of these study reports.

1.1 On A Notion of ‘Infrastructure’

Central to our effort of studying “man-made” domains is the notion of infrastructure1. The infras-
tructure can be characterized as follows: the basic physical and organizational structures and facilities
(e.g. buildings, roads, power supplies) needed for the operation of a society or enterprise. “the social
and economic infrastructure of a country”. We interpret the “for example, e.g.,” to include,

some of them already mentioned above: government structure: legislative, executive & judicicial

units, transport: roads, navigable rivers and lakes, the open sea, banking, educational system, health

care, utilities: water, electricity, telecommnications (e.g. the Internet) gas, , etc.,
2

Also: [To be translated back into English:] Winston Churchill citeres for i Underhuset, i

1946, at have sagt: . . .Den unge Labour–taler, som vi netop har lyttet til, ønsker klart at imponere sin

1
https://en.wikipedia.org/wiki/Infrastructure

2
According to the World Bank, ‘infrastructure’ is an umbrella term for many activities referred to as ‘social overhead

capital’ by some development economists, and encompasses activities that share technical and economic features (such

as economies of scale and spill-overs from users to non-users). We take a more technical view, and see infrastructures as

concerned with supporting other systems or activities. Software for infrastructures is likely to be distributed and concerned

in particular with supporting communication of data, people and/or materials. Hence issues of openness, timeliness, security,

lack of corruption and resilience are often important.

Author’s address: Dines Bjørner, Technical University of Denmark – March 4, 2025, DTU Compute, Fredsvej 11, Holte, 2840,

Denmark, bjorner@gmail.com.

Ongoing draft. ©. Dines Bjørner, March 4, 2025

, Vol. 1, No. 1, Article . Publication date: March 2025.

2 Dines Bjørner

valgkreds med det faktum at han har gået på Eton og Oxford siden han nu bruger sådanne moderne
termer som ‘infra–struktur’ . . .

1.2 Domain Models

1.2.1 Some Characterizations.

(1) By a domain we shall understand a rationally describable segment of a manifest3, discrete
dynamics fragment of a human assisted reality: the world that we daily observe – in which

we work and act, a reality made significant by human-created entities. The domain embody

endurants and perdurants.
(2) By endurants we mean those quantities of domains that we can observe (see and touch),

in space, as “complete” entities at no matter which point in time – “material” entities that

persists, endures – capable of enduring adversity, severity, or hardship [Merriam Webster].

(3) By perdurants we mean those quantities of domains for which only a fragment exists, in

space, if we look at or touch them at any given snapshot in time [Merriam Webster].

(4) By a domain description we shall here mean a syntactic entity, both narrative and formal,

describing the domain. That is, a domain description is a structured text, such as we shall

show in Sect. 2 (pages 3–23).

(5) By a domain model we shall here mean the mathematical meaning, the semantics as denoted

the domain description.

1.2.2 Purpose of Domain Models. The Triptych dogma (above) expresses a relation of domain

models to software. But domain models serve a wider role. Mathematical models of, say, physics, are

primarily constructed to record our understanding of some aspects of the world – only secondarily

to serve as a basis for engineering work. So it is with manifest models of infra structure components

such banking, insurance, health care, transport, etc. In this, and a series of papers, [10, 11], we shall

therefore present the result of infra structure studies. We have, over the years, developed many

domain models: [1].

1.2.3 Domain Science & Engineering. In a series of publications: [2, 4, 5, 7, 9] I have developed

scientific insight into and an engineering methodology for analyzing and describing manifest

domains.

1.3 A Dichotomy

1.3.1 An Outline. As citizens we navigate, daily, in a God-given and a Man-made world. The God-
given world can be characterized, i.e., “domain described”, as having natural science properties

4
. The

laws that these natural science properties obey are the same – all over the universe ! The Man-made

world can be characterized, i.e., “domain described”, as having infrastructure components
5
. The

“laws” that these properties obey are not necessarily quite the same around the universe !

1.3.2 The Dichotomy. For our society to work, we are being educated (in primary, secondary,

tertiary schools, colleagues and at universities).We are taught to to read, write and [verbally] express

ourselves, recon and do mathematics, languages, history and the sciences: physics (mechanics,

3
The term ‘manifest’ is used in order to distinguish between these kinds of domains and those of computing and data

communication: compilers, operating systems, database systems, the Internet, etc.

4
physical & chemical, botanical & zoological, geological & geographic, etc.

5
state, regional and local government: executive, legislative and judicial, banking, insurance, health care (hospitals, clinics,

rehabilitation, family physicians, pharmacies, ...), passenger and goods transport (road, rail, sea and air), manufacturing and

sales, publishing (newspapers, radio, TV, books, journals, ...), shops (stores, ...),

© Dines Bjørner March 4, 2025.

Transport – a Domain Description 3

electricity, chemistry, botanics, zoology, geology, geography, ...), but we are not taught about most

of the infrastructure structures
6
. That is the dichotomy.

1.4 The Dichotomy Resolved

So there it is:

• first study a or several domains;

• then analyze, describe and publish infrastructure domains;

• subsequently prepare educational texts “over” these;
• finally introduce ‘an infrastructures’ school course.

1.5 A [Planned] Series of Infrastructure Domain Models

So this domain science & engineering paper – on banking – is one such infrastructure domain

description. In all we are and would like to work on these infrastructure domains:

• Banking
7
[8]

• Transport
8
[12]

• Insurance
9
[11]

• Health Care
10
[10]

• etc.

A report on double-entry bookkeeping [6] relates strongly to most of these infra-structure component

domains
11
.

2 A FORMAL DOMAIN DESCRIPTION

Appendix A on page 26 outlines the textual structure of a domain description. It refers to the formal

specification language RSL [13] for which Appendix B on page 26 gives an ultra-brief summary.

The formal domain description introduces over 180 identifiers, i.e., defines that many kinds

of formal entities. These identifiers designate types, values, functions (auxiliary and otherwise),

behaviours, actions, etc. They are [obviously] being used. To easen the domain describer and the

domain description reader around these identifiers, an index is provided in Sect. D.3 on page 28.

2.1 Kind of Transport Graphs and Conveyors

2.1.1 Informal Outline. The transport we have in mind consists of a common transport net, in

the following modelled as a graph of uniquely labelled, bi-directed edges and likewise labelled

nodes. The transport net is [“intentional pull”] complemented, cf. Sect. 2.5 on page 16, by a set of

conveyors.

Edges, nodes and conveyors are “of kind”: "road", "rail", "sea", and "air". ["road", "rail", "sea",

"air" are literal values of type Text] A conveyor is of one kind. Conveyors of kind "road" include

cars, taxis, buses, trucks and the like. Conveyors of kind "rail" include passenger trains, freight

trains, etc. Conveyors of kind "sea" include sail boats, river and canal barges, fishing vessels, line

and ramp freighters, passenger liners, etc. Conveyors of kind "air" include private airplanes and

helicopters, freight and passenger planes. An edge is of one kind. Edges of kind "road" are called

automobile roads. Edges of kind "rail", "sea" and "air" are called rail tracks, sea lanes andair lanes.

A node may be of one or more kinds. Nodes of kind "road" are called street point (street crossings,

6
See footnote 5 on the facing page.

7
https://www.imm.dtu.dk/ dibj/2025/infra/banking.pdf

8
https://www.imm.dtu.dk/ dibj/2025/infra/main.pdf

9
https://www.imm.dtu.dk/ dibj/2025/infra/insurance.pdf

10
https://www.imm.dtu.dk/ dibj/2025/infra/healthcare.pdf

11http://www.imm.dtu.dk/ dibj/2023/doubleentry/dblentrybook.pdf

© Dines Bjørner March 4, 2025.

https://www.imm.dtu.dk/~dibj/2025/infra/banking.pdf
https://www.imm.dtu.dk/~dibj/2025/infra/main.pdf
https://www.imm.dtu.dk/~dibj/2025/infra/insurance.pdf
https://www.imm.dtu.dk/~dibj/2025/infra/healthcare.pdf

4 Dines Bjørner

street ends, bus stops). Nodes of kind "rail"" are called train stations. Nodes of kind "sea" are called

harobours. Nodes of kind "air" are called airports.

2.1.2 Narrative & Formalization.
(6) There are four kinds of transportation: "road, rail, sea" and "air".

type

6. Kind = "road"|"rail"|"sea"|"air"

• • •

We divide the formal presentation into five [further] segments: Overall Transport Endurants, Graph
Endurants, Conveyor Endurants, Intentional Pull and Perdurants.

By an overall traffic domain we mean that of a graph
12
and a conveyor

13
sub-domain.

A relation between graphs and conveyors is expressed in the intentional pull section.

The “co-operation” of graphs and conveyors is expressed in the perdurant section.

By a graph we mean a set of nodes and edges: nodes are then interpreted as road intersection s

(hubs); train station s; river , canal and sea harbour s; and airport s. A node may be one or more

of these. Edges are accordingly interpreted as either street (or road) link s, rail track s, sail ing or
air route s. An edges can be only one of these. Hence there may be many edges between any two

[neighbouring] nodes.

By conveyors we mean cars, buses, trains, boats, ships, and aircraft.
The presentation follows the ontology of Fig. 1 on the next page.

2.2 Overall Transport Endurants

2.2.1 ExternalQualities.

2.2.1.1 Endurant Sorts & Observers. ‘
(7) There is the domain of transport.

(8) From transport endurants we can observe [transport] graphs.

(9) And from transport endurants we can observe [transport] a conveyor aggregate.

type

7. T
8. G
9. CA
value

8. obs_G: T→G
9. obs_CA: T→CA

2.2.1.2 An Endurant State Notion. We can speak of a transport state.

(10) There is given a “global” transport value, t . It contributes to a transport state.

(11) From this transport value one can derive another transport state element: a global graph

value, д.
(12) And from this transport value one can derive another transport state element: a global

conveyor aggregate value, дa.
(13) We can postulate a transport state to consist of the three endurants: t ,д, ca.

12
https://en.wikipedia.org/wiki/Graph_(discrete_mathematics)

13
Conveyor: anything that conveys, transports or delivers. Words are a conveyor of meaning [https://en.wiktionary.org/-

wiki/conveyor]

© Dines Bjørner March 4, 2025.

Transport – a Domain Description 5

External Qualities

Describer "states"

PerdurantsEndurants

Phenomena of Natural and Artefactual Universes of Discourse

E

Entity Indescribable

Perdurant

Action
Event Actor

Channel Behaviour

Fluid

Endurant

Solid

Part
Living Specie

Animal Plant

O
th

er

Unique Identifiers
Mereologies
Attributes

transcendental injection of endurants into perdurants

Internal Qualities

Cartesian Part

E1,...,Ec

is
_m

an
if

es
t

is
_m

an
if

es
t

is
_m

an
if

es
t

E

P

F

Part Set

Ps=P−set

H
u

m
an

s

CompoundAtomic

Transcendental Deduction

Fig. 1. Domain Analysis Ontology

value

10. t
11. д:G = obs_G(t)
12. ca:CA = obs_CA(t)
10. σ t = {t}∪{д}∪{ca}

2.2.2 InternalQualities.

2.2.2.1 Unique Identification.

2.2.2.1.1 Unique Identifier Sorts & Observers
(14) The transport endurant has a unique identifier.

(15) So has the graph, and

(16) the conveyor components.

type

14. TI
15. GI
16. CAI
value

14. uid_T: T → TI

© Dines Bjørner March 4, 2025.

6 Dines Bjørner

15. uid_G: T → GI
16. uid_CA: T → CAI

2.2.2.1.2 A Unique Identifier State Notion
(17) We an postulate a “global” transport state value, t .
(18) Given t we can derive a “global” graph value д.
(19) And a “global” conveyor aggregate value ca.
(20) We can therefore postulate an “uppermost” endurant transport state to consist of the three

endurants: t ,д, ca.

value

17. ti:TI =
18. дi:GI = uid_G(д)
19. cai:CAI = uid_CA(ca)
20. σ tuis = {ti}∪{дi}∪{cai}

2.2.2.1.3 Uniqueness
(21) The three [“uppermost”] transport endurants are distinct: have distinct unique identifiers.

axiom [Uniqueness of Transport Identifiers]
21. card σ t = card σ tuis = 3

• • •

It seems that at least the overall transport endurant need not be a manifest one. Hence we leave

out treatment of mereology and attributes of the transport endurant.

2.3 Graph Endurants

Endurants have both external and internal qualities.

2.3.1 ExternalQualities. External qualities are the endurant sorts, their observers and endurant

states.

2.3.1.1 The Endurant Sorts and Observers.
(22) From graphs one can observe an aggregate, i.e., a set, ea:EA, of edges –
(23) From graphs one can observe an aggregate, i.e., a set, na:NA, of nodes –
(24) From an aggregate of edges one can observe a set of edges.

(25) From an aggregate of nodes one can observe a set of nodes.

(26) Edges are atomic.

(27) Nodes are atomic.

(28) We can “lump” all endurants into a sort parts.

type

22. EA
23. NA
24. ES = E-set
25. NS = N-set
26. E

27. N
28. P = G|EA|NA|ES|NA|N|E
value

22. obs_EA: G → ES
23. obs_NA: G → NS
24. obs_ES: EA → ES
25. obs_NS: NA → NS

© Dines Bjørner March 4, 2025.

Transport – a Domain Description 7

A transport domain taxonomy is hinted at in Fig. 2.

...

T

G CA

EA,ES NA,NS C1 C2 Cp

E1 E2 En... N1 N2 ... Nm

Fig. 2. A Transport Domain Taxonomy

2.3.1.2 An Endurant State.
(29) Given the global graph value, there is therefore a “global” value of an edge aggregate.

(30) Given the global graph value, there is therefore a “global” value of a node aggregate.

(31) Given the global edge aggregate value, there is therefore a “global” node value of of the set

of all edges.

(32) Given the global graph value, there is therefore a “global” value of the set of all nodes.

(33) The state of all graph endurants is therefore the set of all graph parts.

value

29. ea = obs_EA(д)
30. na = obs_NA(д)
31. es = obs_ES(д)
32. ns = obs_NS(д)
33. σps:P-set = {д}∪{ea}∪{na}∪es∪ns

2.3.2 Internal Qualities. Internal qualities are fourfold: unique identification, mereology, at-

tributes and intentional pull.

2.3.2.1 Unique Identifiers. Unique Identification has three facets: sort, observers and an axiom.

2.3.2.1.1 Unique Identifier Sorts and Observers
(34) All parts have identification:

(35) the graph,

(36) the edge and node aggregates,

(37) the sets of edges and nodes, and

(38) each edge and node.

(39) No two of these are the same, i.e., part identifiers are unique.

type

34. PI = GI|EAI|NAI|ESI|NSI|EI|NI
34. GI,EAI,NAI,ESI,NSI,EI,NI
value

© Dines Bjørner March 4, 2025.

8 Dines Bjørner

35. uid_G: G→GI
36. uid_EA: EA→EAI, uid_NA: NA→NAI
37. uid_ES: ES→ESI, uid_NS: NS→NSI
38. uid_E: E→EI, uid_N: N→NI

2.3.2.1.2 A Unique Identifier State

(40) There is a “global” unique graph identifier.

(41) There are, correspondingly, “global” edge and node aggregate identifiers.

(42) There are, correspondingly, “global” edge set and node set identifiers; and

(43) set of edge identifiers and

(44) set of node identifiers.

(45) The unique identifier state is the union of all the unique identifiers.

value

40. дi = uid_G(д)
41. eauis = uid_EA(ea) , nauis = uid_NA(na)
42. esuis = uid_ES(ea) , nsuis = uid_NS(na)
43. euis = {uid_E(e)|e:E•e∈es}
44. nuis = {uid_N(n)|n:N•n∈ns}
45. σuis:PI-set = {uid_P(p)|p:P•p∈σ }
axiom

45. σuis = {дi}∪{eauis }∪{nauis }∪{esuis }∪{nsuis }∪euis∪nuis

2.3.2.1.3 Uniqueness

(46) No two of these are the same, i.e., part identifiers are unique.

axiom [Uniqueness of Part Identification]
46. cardσ=cardσuis

2.3.2.2 Mereology. Mereology has three facets: types, observers and wellformedness.

2.3.2.2.1 Mereology Types and Wellformedness, I

(47) The mereology of a node is a non-empty set of edge identifiers.

(48) The mereology of an edge is a set of two node identifiers.

type

47. NM = EI-set axiom ∀ nm:NM • card nm>0
48. EM = NI-set axiom ∀ em:EM • card em=2

2.3.2.2.2 Mereology Observers

value

47. mereo_N: N → NM
48. mereo_E: E → EM

© Dines Bjørner March 4, 2025.

Transport – a Domain Description 9

2.3.2.2.1 Mereology Wellformedness, II
(49) The unique identifiers of a node must be those of the edges of the graph.

(50) The unique identifiers of an edge must be those of the nodes of the graph.

axiom [Mereology Wellformedness]
49. ∀ n:N•mereo_N(n)⊆esuis
50. ∀ e:E•mereo_E(e)⊆nsuis

2.3.2.2 Paths of a Graph.
(51) A path (of a graph) is a finite

14
sequence of one or more alternating node and edge identifiers

such that

(a) neighbouring edge identifiers are those of the mereology of the “in-between” node, and

such that neighbouring node identifiers are/is those of the mereology of the “in-between”

edge;

(b) and node identifiers of a path are node identifiers of the graph,

(c) and its neighbouring edge identifier(s) are in the mereology of the identified node;

(d) and edge identifiers of a path are edge identifiers of the graph,

(e) and its neighbouring node identifier(s) are/is in the mereology of the identified edge;

(f) the kinds of the adjacent nodes and edges “fit”.

(52) Given a node [an edge] identifier we can retrieve the identified node [edge].

type

51. Path = (EI|NI)∗

axiom [Well-formed Paths]
51. ∀ path:Path •

51a. ∀ {i,i+1}⊆inds path ⇒

51a. ((is_NI(path[i])∧is_EI(path[i+1])
51a. ∨ is_EI(path[i])∧is_NI(path[i+1]))
51b. ∧ (path[i]∈nsuis⇒path[i+1]∈esuis
51c. ∧ uid_N(retr_node(path[i]))∈mereo_E(retr_node(path[i])))
51d. ∧ (path[i]∈esuis⇒path[i+1]∈nsuis
51e. ∧ uid_E(retr_edge(path[i])∈mereo_N(retr_edge(path[i]))))
51f. ∧ kind(retr_unit(path[i]))∩kind(retr_unit(path[i+1])),{})
value

52. retr_node: NI → N, retr_edge: EI → E, retr_unit: UI → U
52. retr_node(ni) as n • n ∈ ns ∧ uid_(n)=ni
52. retr_edge(ei) as e • e ∈ es ∧ uid_(e)=ei
52. retr_unit(i) as u • ∈ ns∪es ∧ uid_U(u)=i
52. uid_U(u) ≡ is_E(u)→uid_U(u),is_N(u)→uid_N(u)

The above pre/post condition allows for circular paths, i.e., possibly infinite paths that may contain

the same node or edge identifier more than once.

We can define a function that given a graph calculates all its non-circular paths.

(53) The paths15 function takes a graph and yields a possibly infinite set of paths – satisfying the

above wellformedness criterion.

14
We shall only consider finite paths. The paths function, Item 53 below, can easily be modified to yield also infinite length

paths !

15
Alarm ! Check that this function indeed generates only finite length paths !

© Dines Bjørner March 4, 2025.

10 Dines Bjørner

We define the paths function in two ways.

(54) Either axiomatically

(55) in terms of an as predicate, with the result being the “largest” such set all of whose paths

satisfy the wellformedness criterion;

(56) or inductively
16
:

(a) basis clause: every singleton path of either node or edge identifiers of the graph form a

path.

(b) inductive clause: If pi and pj are finite, respectively possibly infinite paths of the “result”,
ps, such that

(c) paths pî⟨ui⟩ and ⟨uj⟩̂pj are in ps, and
(d) the resulting concatenated path is not circular, and

(e) the mereology of the last element of pi identifies the first element of pj,
(f) then their concatenation is a path in ps.
(g) extremal clause: No path is an element of the desired set of paths unless it is obtained

from the basis and the inductive clause.

value

53. paths: G → Path-infset
54. paths(g) as ps
55. such that: ∀ p:ps satisfy the above wellformedness
56. paths(g) ≡

56a. let ps = {⟨ni⟩ | ni:NI ∈ nsuis }∪{⟨ei⟩ | ei:EI ∈ esuis }
56f. ∪ { pî⟨ui⟩̂⟨uj⟩̂pj | pî⟨ui⟩:Path-set, ⟨uj⟩̂pj:Path-infset •

56b. ∧ ({pî⟨ui⟩,⟨uj⟩̂pj}⊆ps
56c. ∧ (ui∼ ∈ elems pj ∧ uj∼ ∈ elems pi)
56e. ∧ (ui ∈ mereo_U(retr_unit(uj))
56e. ∧ uj ∈ mereo_U(retr_unit(ui))))} in

56g. ps end

type

53. U = E|N

Solution to the equation, lines 56a–56c, is “’obtained’ by a smallest set fix-point reasoning.

(57) Given a “global” graph, д, we can calculate a “similarly global” paths value:

value

57. paths:Path-set = paths(д)

With the notion of paths of a graph one can now examine whether

• a graph is strongly connected, that is, whether any node or edge can be “reached” from any

other node or edge; or

• a graph consists of two or more sub-graphs, i.e., there are no edges between nodes in two

such sub-graphs;

• etc.

In the next section, i.e., Sect. 2.3.2.3, we shall now endow nodes and edges to reflect whether they

are road intersections, railway stations, harbours, and road links, railway lines, or canal/river/sea-

or air-routes, etc.

16
https://www.cs.odu.edu/ toida/nerzic/content/recursive_def/more_ex_rec_def.html

© Dines Bjørner March 4, 2025.

Transport – a Domain Description 11

(58) We can formulate a theorem: for every graph we have that every path, p, in g, also contains

its reverse path, rev(p) in g.

theorem: [All [finite] paths have their reversed path]
58. ∀ g:G, p:Path•p ∈ paths(g) ⇒ rev(p) ∈ paths(g)
value

58. rev: P → P
58. rev(p) ≡

58. case p of

58. ⟨⟩ → ⟨⟩,
58. ⟨ui⟩ → ⟨ui⟩,
58. ⟨ui⟩̂p′̂⟨uj⟩ → ⟨uj⟩̂rev(p′)̂⟨ui⟩
58. end

We can define auxiliary functions, for example:

(59) Given a kind we can select all the graph paths of that kind.

value

59. path_kind: Path → Kind → Path-set
59. path_kind(p)(k) as pks
59. • pks ⊆ paths ∧

59. ∀ pk:Path•pk ∈ pks∧∀ elems pk•kind(retr_unit(pk))∩{k},{}

2.3.2.3 Attributes. With endurants now being endowed with, i.e., having attributes, graphs come

to “look”, more-and-more, as transport nets !

Attributes has three facets: types, observers and wellformedness.

2.3.2.3.1 Attribute Types & Observers We introduce but just a few Graph Attributes.

(60) From a node we can thus observe the “kind” of node: whether ”road crossing”, train ”sta-

tion”, canal/river/sea boat/ship ”harbour”, and/or ”airport” – one or more ! [A static

attribute]

Edge:

(61) From an edge we can thus observe the “kind” of edge: whether it represents a street (seg-

ment between two neighbouring road crossings), or a rail track (between two neighbouring

stations), or a sea route between two neighbouring (canal/river/sea) harbours or an aircraft

route between two neighbouring airports.

(62) From an edge we can we can observe its length
17
. [Static Attribute]

(63) and the cost
18
of using the edge

19
. [Static Attribute]

type

60. NodeKind = Kind-set axiom ∀ nk:NodeKind • nk,{}
61. EdgeKind = Kind-set axiom ∀ ek:EdgeKind • card ek=1
62. LEN = Nat

63. COST = Nat

17LEN is here “formalized” in terms of Natural numbers. Whether such lengths stand for mm, cm, m, km, inches, feet, yard,
mile or other we presently leave unspecified.

18COST is here “formalized” in terms of Natural numbers. Whether such costs stand for $, ¤, £, or other we presently leave

unspecified.

19
See [3]. The usual arithmetic operators apply: scaling between ... Check also [15].

© Dines Bjørner March 4, 2025.

12 Dines Bjørner

value

60. attr_NodeKind: N → NodeKind
61. attr_Edgekind: E → EdgeKind
62. attr_LEN: E → LEN
63. attr_COST: E → COST

(64) Given a node or an edge we can observe its kinds.

(65) Given a graph, and a “kind”, we can calculate all its paths of the same kind.

(66) Given a finite route we can we can calculate its lengths

(67) and costs.

(68) We can also calculate the shortest route, possibly a set, of a graph,

(69) and the least costly,

(70) etc.

value

64. kind: (E|N) → EdgeKind|NodeKind
64. kind{en} ≡ is_E(en)→attr_Edgekind(en),is_N→attr_Edgekind(en)

65. route_kind: G → Kind → Path-set
65. route_kind(g)(k) ≡

65. { ⟨p[i]|i:Nat,p:P•p∈paths(p)∧1≤i≤len(p)∧k∈kind(p[i])⟩ }

66. length: P → LEN
66. length(p) ≡

66. case p of

66. ⟨⟩ → 0
66. ⟨ui⟩ → retr_length(ui),
66. ⟨ui⟩̂p′ → retr_length(ui)+length(p′)
66. end

66. retr_length: UI → LEN
66. retr_length(ui) ≡ (is_EI(ui)→attr_LEN(retr_edge(ui)),is_NI(ui)→0)

67. cost: P → LEN
67. cost(p) ≡

67. case p of

67. ⟨⟩ → 0
67. ⟨ui⟩ → retr_cost(ui),
67. ⟨ui⟩̂p′ → retr_cost(ui)+cost(p′)
67. end

67. retr_cost: UI → COST
67. retr_cost(ui) ≡ (is_EI(ui)→attr_COST(retr_edge(ui)),is_NI(ui)→0)

68. shortest_route: G → P-set
68. shortest_route(g) ≡

68. let ps = paths(g) in

68. { p | p:P • retr_len(p) ∧ ∀ p′:P•p′∈ps ∧ retr_len(p)≤retr_len(p′) }

68. end

© Dines Bjørner March 4, 2025.

Transport – a Domain Description 13

69. least_costly_route: G → P-set
69. let ps = paths(g) in

69. { p | p:P • retr_cost(p) ∧ ∀ p′:P•p′∈ps ∧ retr_cost(p)≤retr_cost(p′) }

69. end

70. etc.

The “etc.” covers such auxiliary functions as shortest route of a given kind , least costly route of a

given kind , etc. !

More Graph Attributes will be added [“later”].

2.3.2.3.3 Attribute Wellformedness
(71) If a node is of some kind, then there must be at least one edge leading to/from it of the same

kind.

(72) If an edge is of some kind, then the nodes connected to it must also be of that [same] kind.

(73) If a node is of kind other than "car", then there there must be an edge “of” that node of kind

"car". [One must be able to drive to stations, harbours and airports by car, taxi, lorry (truck)

or bus !]

axiom

71.
71.

72.
72.

73.
73.

2.4 Conveyor Endurants

2.4.1 External ConveyorQualities.

2.4.1.1 Conveyor Endurant Sorts & Observers.
(74) From a conveyor aggregate one can observe a finite set of conveyors.

(75) A conveyor is either a

• a road conveyor

– car,

– taxi,

– bus,

– truck,

• or a rail conveyor

– passenger train,

– freight train,

• or a water conveyor

– sailboat,

– barge,

– fishing vessel,

– freighter,

– passenger liner,

• or an airborne conveyor

– civil aircraft,

– freight plane, or

– passenger aircraft !

(76) Conveyors are atomic parts.

(77) Conveyors or “of kind”.

type

74. CS = C-set
75. C = Road|Rail|Water|Air

© Dines Bjørner March 4, 2025.

14 Dines Bjørner

75. Road = Car|Taxi|Bus|Truck
75. Rail = PassTrain|FreightTrain
75. Water = SailBoat|Barge|FishVessel|Freighter|Ferry|PassLiner
75. Air = PrivAir|Helicop|FreightPlane|PassAir
value

74. obs_CS: CA → CS

77. c_kind: C → Kind
77. c_kind(c) ≡

77. is_Road(c) → "road", is_Rail(c) → "rail",
77. is_Water(c) → "sea", is_Air(c) → "air"

2.4.1.3 A Conveyor Endurant State.
(12) Given a “global” transport value, t , we can postulate a conveyor aggregate state, ca – as we

already did in Sect. 2.2.1.2 Page 4.

(78) And, given ca, we can postulate a state of the set, cs , of all conveyors.
(79) An overall state of endurants of a transport domain is therefore the union of all its parts.

value

12. ca:CA = obs_CA(t)
78. cs:CS = obs_CS(ca)
79. σ = σps ∪{ t }∪ cs

2.4.2 Internal ConveyorQualities.

2.4.2.1 Unique Identification.

2.4.2.1.1 Unique Identifier Sorts & Observers
(80) Conveyor aggregates have unique identification.

(81) So have each of the conveyors in their set of conveyors.

type

80. CAI
81. CI
value

80. uid_CA: CA → CAI
81. uid_C: C → CI

2.4.2.1.3 Unique Identifier State
(82) The unique identifier of a conveyor aggregate contributes to the unique identifier state for

the [entire] transport domain.

(83) The unique identifiers of all conveyors contribute to the unique identifier state for the [entire]

transport domain.

(84) The overall unique identifier state, σuis , is therefore the union of all the unique identifiers of

all parts of a transport domain.

value

82. cai:CAI = uid_CA(ca)
83. cis:CI-set = { uid_C(c) | c:C • c ∈ obs_CS(ca) }

© Dines Bjørner March 4, 2025.

Transport – a Domain Description 15

84. σuis = σp∪{cai}∪cis

2.4.2.1.2 Uniqueness
(85) All parts are uniquely identified.

axiom [All parts are uniquely identified]
85. card σ = card σuis

2.4.2.1.3 Conveyor Retrieval
(86) From a conveyor identifier one can obtain, via cs , the conveyor of that identification.

value

86. retr_conveyor: CI → C
86. retr_conveyor(ci) ≡ ι c:C • c ∈ cs ∧ uid_C(c)=vi

2.4.2.2 Mereology.

2.4.2.2.1 Mereology Types & Observers
(87) The mereology of a conveyor is a finite set of edge and node identifiers that it may “visit”.

type

87. CM = UI-set
value

87. mereo_C: C → CM

2.4.2.2.2 Mereology Wellformedness
(88) The identifiers of a conveyor mereology must be those of the edges and nodes of the transport

graph, д.
(89) The kind of conveyor must “fit” the kind of edges and nodes

20
.

axiom [Conveyor Mereology of Right Kind]
88. ∀ c:C•c∈cs⇒∀ ui:UI•ui ∈mereo_C(c)
88. ⇒ ui∈euis∪nuis
89. ∧ c_kind(c)∩kind(retr_unit(ui)),{}

2.4.2.3 Attributes.

2.4.2.3.1 Conveyor Attribute Types & Observers
(90) Conveyours are of kind. [Static Attribute]

(91) Conveyors have paths – of their kind – that they [may] travel. [Let us consider that a Static

Attribute.]

(92) At any one time a conveyor follows one of these, a current, path. [Programmable Attribute]

(93) These routes must be of the kind of the conveyors traveling them !

20
Cars, Taxis, Buses, Trucks move along edges and nodes of kind road [a literal value, like true and false are literal values],

Passenger and Freight Trains move along edges and nodes of kind rail [a literal value], Sail Boats, Barges, Fishing Vessels,

Ferries, Freighters, Ferries and Passenger Liners move along edges and nodes of kind sea [a literal value] and Private

Aircraft, Helicopters, Freight Planes and Passenger Aircraft move along edges and nodes of kind air" [a literal value].

© Dines Bjørner March 4, 2025.

16 Dines Bjørner

(94) Conveyors either stand still or move. That is, they have position in the graph. Either they

are at a node, or somewhere, a fraction, f , of a distance along an edge, from one node to an

adjacent. [Programmable Attribute]

(95) We omit further possible attributes: Speed, Acceleration, Weight,

type

91. Routes = Path-set
91. CurrRoute = Path-set
94. CPos = AtNode | OnEdge
94. AtNode :: NI
94. OnEdge :: NI × (F × EI) × NI
94. F = Real axiom ∀ f:F•0<f<1
value

90. attr_Kind: C → Kind
91. attr_Routes: C → Kind
92. attr_CurrRoute: C → Kind
94. attr_CPos: C → CPos
95. ...
axiom [Routes of commensurate. kind]
93. ∀c:C•let ps=attr_Routes(c)in∀p:Path•p∈ps∧ps⊆path_kind(p)(kind(c)) end

On Routes:

(96) The following properties hold of any route:

(a) the current route of a conveyor must always be in the routes of that conveyor.

(b) The static attribute Routes must all start and end with a node identifier.

(c) When initialized, a conveyor “starts” with a CurrentRoute chosen from the Routes.
(d) At any moment a conveyor moves along a [programmable attribute] current route.
(e) When moving from an edge to a node the current route is shortened by one.

(f) When a route is thereby exhausted, i.e., ⟨⟩, the conveyor may decide to select a new route.

(g) It does so from the static attribute Routes.
(i) The previous, exhausted route ended with a node identifier.

(ii) The next, to be current, route must start with that node identifier.

axiom [Route Commensurability]
96. ∀ c:C,r:Routes,cr:CurrRoute • r=attr_Routes(c)∧cr=attr_CurrRoute(c)
96a. cr ∈ r
96b. ∧ is_NI(hd r)∧is_NI(r[len r])

For cars the Routes attribute may exclude certain paths, for example such toll-roads for which they

have no license. When, for example, buses, trains, ferries and passenger aircraft, the routes are such
that for every pat there is at least one path that “connects” to the former: ends, respectively starts

with identical node identifiers. Usually the set of routes contains just two paths: ode from node ni
to node nj and the other from node nj to node ni . And so forth !

2.5 Intentional Pull

2.5.1 History Attributes. History attributes record when conveyors (cars, trains, boats and

aircraft) were where and at which times. They are chronologically ordered, time-stamped sequences

of event notices. History attributes are programmable.

© Dines Bjørner March 4, 2025.

Transport – a Domain Description 17

History attributes “record” events. Conveyors, as controlled by, say humans, may not note down

these events, and edges and nodes, which we in some sense consider innate
21
, “most likely” do not

notice them.

But we, “us”, humans, can speak about and recall [these, and “other”
22
] events – and they are

therefore an essential aspect of modelling any manifest domain.

(97) We “lump” nodes and edges into single element ways [i.e., endurants].

(98) The ordered, TIME23 -stamped, history attribute event notices record the vehicles, by their

unique identifiers.

(99) The ordered, TIME-stamped, conveyor history attribute event notices record the ways, by

their unique identifiers.

type

97. W = N|E
97. WI = NI|EI
98. WH = (s_t:TIME×VI)∗

99. CH = (s_t:TIME×CI)∗

value

97. retr_W: WI → N|E
97. retr_W(wi) ≡ ! w:W • w ∈ns∪es ∧ uid_W(w)=wi
98. attr_WH: W → WH
98. attr_CH: C → CH
axiom [Ordered Way and Conveyor Histories]
98. ∀ wh:WH • {i,i+1}⊆inds wh ⇒ s_t(rh[i])<s_t(wh[i+1])
99. ∀ ch:CH • {i,i+1}⊆inds ch ⇒ s_t(ch[i])<s_t(ch[i+1])

2.5.2 An Intentional Pull. Nodes and edges are intended to “carry” traffic [only] in the form of

vehicles, and vehicles are intended to move along [only] ways, i.e., nodes and edges.

(100) for all conveyors (of a transport) if

(a) a conveyor is said to be on a way, i.e, at a node [resp. on an edge], at time τ ,
(b) then that way must “carry” that conveyor

(c) at exactly that same time;

(101) and vice-versa, if-and-only-if, for all ways

(a) a way is said to “carry” a conveyor at time τ ,
(b) then that conveyor must be on that way

(c) at exactly that same time.

Intentional Pull:

100. ∀ c:C • c ∈ cs •

100a. let ch:CH = attr_CH(c) in

21
An innate quality or ability is one that you were born with, not one you have learned. That is: we consider edges and

nodes to be innate wrt. observing and recording the where-about events of conveyors – other than indirectly through the

space they “occupy”, the possible wear & tear of the road surface or rail track, or possible pollution of the sea and air, etc.

22
By the seemingly cryptic “other” events, we may, in the context of transport, think of such events as conveyor breakdown,

edge collapse, etc.
23TIME is a “global” phenomenon.

We say 15:23 March 4, 2025 CET, and mean that it is now 23 minutes past 3pm, 25th of February 2025, Central European
Time.
TI stands for time-interval.

We say 3 hours and 23 minutes.

© Dines Bjørner March 4, 2025.

18 Dines Bjørner

100a. ∃ ! i:Nat • i ∈ inds ch •

100a. let (τ,wi) = ch[i] in

100b. let wh:WH = attr_WH(retr_way(wi)) in

100c. ∃ ! j:Nat • j∈ inds WH • s_t(wh[j]) = τ
100. end end end

101. ≡

101. ∀ w:W • w ∈ es∪ns •

101a. let wh = attr_WH(w) in

101a. ∃ ! k:Nat • k ∈ inds wh •

101a. let (τ,ci) = wh[k] in

101b. let ch:CH = attr_WH(retr_conveyor(ci)) in

101c. ∃ ℓ:Nat • ℓ∈ inds ch • s_t(ch[ℓ]) = τ
101. end end end

2.6 Perdurants

The previous sections, Sects. 2.2–2.5, studied, analyzed & described a transport domain syntacti-

cally, that is: its manifest forms and properties, but not its meaning, i.e., semantics. This sections

is about that: the “meaning”, so-to-speak, of endurants. This will be done by transcendentally

deducing behaviours and actions from the description of endurants. Endurants are transcenden-

tally deduced into behaviours, and described as s with arguments. Their internal properties are

transcendentally deduced into arguments of these behaviours. We choose to only endow edges,

nodes and conveyors with behaviours. Behaviours synchronize and communicate via “the ether”

– here RSL/CSP-modeled as a channel array that allows conveyor, node and edge behaviours

(ui ,uj ,uk) to cooperate !

2.6.1 Communication.
(102) There is a “global” communication, i.e., behaviour interaction medium, comm.

(103) It allows transport Behaviours to synchronize and exchange information of type M.

channel

102. comm[{i,j} | i,j:UI•{i,j}∈uis] M

(104) A conveyor, ci:CI, at a node decides to remain at that node.

(105) A conveyor, ci:CI, at a node decides to change route.

(106) A conveyor, ci:CI, at a node decides to leave the node, and

(107) to enter an edge.

(108) A conveyor, ci:CI, on an edge decides to move on.

(109) A conveyor, ci:CI, on an edge decides to leave that edge, and

(110) to enter the node.

(111) And a conveyor, ci:CI, at a node or on an edge may decide, “surreptitiously” or otherwide,

to just stop.

type

103. M =
104. mkRemain(TIME,CI)
105. | mkChangeRoute(TIME,CI)
106. | mkLeaveNode(TIME,CI)
107. | mkEnterEdge(TIME,CI)

© Dines Bjørner March 4, 2025.

Transport – a Domain Description 19

108. | mkMove(TIME,CI,OnEdge)
109. | mkLeaveEdge(TIME,CI)
110. | mkEnterNode(TIME,CI)
111. | mkStop(TIME,CI)

2.6.2 Behaviours. So we model conveyor, node and edge behaviours. Each of these behaviour

functions has arguments of the following kind:

• a unique identifier, never changes, distinguishes between multiple instances of edges, or

nodes, or conveyors;

• a mereology; and
• attributes:

– static attributes, i.e., attributes whose value never changes;

– monitorable attributes, i.e., attributes whose value changes “at their own volition”: itself

nor cooperating behaviours cannot influence their value –we shall not considermonitorable

attributes in this study; and

– programmable values, i.e., attributes whose value may be changed by the behaviour –

i.e., acts like variables that can be read and updated !

Each of these behaviours are modelled as processes that may “go-on-and-on-forever” – modelled

in terms of tail-recursion – modelled also in the specifying Unit as part, “the last”, of the behaviour

signature.

2.6.2.1 Behaviour Signatures.
(112) Conveyor behaviour signatures

(113) Node behaviours

(114) Edge behaviours

value

112. conveyor: CI→CM→(Kind×Routes)→(CurrRoute×CPos×CH)→Unit

113. edge: EI→EM→(Kind×LEN×...)→NH→Unit

114. node: NI→NM→(Kind-set×...)→NH→Unit

2.6.2.2 Behaviour Definitions.

2.6.2.2.1 Conveyor Behaviours
• A conveyor alternates between being at a node or on edge, so its behaviour is defined in

terms of “either” and their “progress” onto “the other” !

• Conveyor Behaviour at a Node:

(115) A conveyor at a node either

(a) changes its current route, and choose another, the next current route, or

(b) remains at that node, idling, or circling around, or

(c) is entering an edge, or

(d) stops at that node, i.e., leaves the transport altogether.

value

115. conveyor(ci)(cm)(k,routes)(cr,AtNode(ni),ch) ≡

115a. conveyor_change_route(ci)(cm)(k,routes)(cr,AtNode(ni),ch)
115b. ⌈⌉ conveyor_remains_at−node(ci)(cm)(k,routes)(cr,AtNode(ni),ch)
115c. ⌈⌉ conveyor_entering_edge(ci)(cm)(k,routes)(cr,AtNode(ni),ch)

© Dines Bjørner March 4, 2025.

20 Dines Bjørner

115d. ⌈⌉ conveyor_stops_at_node(ci)(cm)(k,routes)(cr,AtNode(ni),ch)

• Conveyor Actions at a Node:

(116) A conveyor may non-deterministically decide to change its current route at a node

(a) at time τ ,
(b) selects of next, to be, current route from routes such that that the chosen route begins

with the node being otherwise left,

(c) so informing the node, and

(d) updates its history,

(e) whereupon it resumes being a conveyor with both updated current route and history.

116. conveyor_change_route(ci)(cm)(k,routes)(cr,AtNode(ni),ch) ≡

116a. let τ = record_TIME()
116b. ncr = select_next_route(ni,routes),
116d. ch′ = <mkChange(τ,ni,ncr)>̂ch in

116c. (comm[{ci,ni}] ! mkChangeRoute(τ,ci,ncr)
116c. ∥ comm[{ci,ni}] ! mkChangeRoute(τ,ci,ncr)) ;
116e. conveyor_at_node(ci)(cm)(k,routes)(ncr,AtNode(ni),ch′) end

116b. selects_next_route:NI × Routes → CurrRoute
116b. selects_next_route(ni,routes) as ncr • ncr ∈ routes ∧ hd ncr = ni

(117) A conveyor remains at a node

(a) at some time, τ ,
(b) which is to be noted by the node behaviour ni
(c) whereupon the conveyor resumes being a conveyor except nowwith an updated conveyor

history, ch.

value

117. conveyor_remains_at_node(ci)(cm)(k,routes)(cr,AtNode(ni),ch) ≡

117a. let τ = record_TIME() in

117b. comm[{ci,ni}] ! mkRemain(τ,ci);
117c. conveyor(ci)(cm)(k,routes)(cr,AtNode(ni),⟨(τ,ni)⟩̂ch) end

(118) A conveyor at a node may non-deterministically choose to leave a node and enter an edge

(a) at some time, τ , and as determined by the current route’s next element, enters that route,

i.e., edge,

(b) which is to be noted by the node and designated edge behaviours ni,
(c) updates its position

(d) and its history accordingly„ and

(e) resumes being a conveyor on an edge .

value

118. conveyor_enters_edge(ci)(cm)(k,routes)(cr,AtNode(ni),ch) ≡

118a. let τ = record_TIME() in

118b. (comm[{ci,ni}] ! mkLeaveNode(τ,ni,tl cr)
118b. ∥ comm[{ci,ni}] ! mkEnterEdge(τ,hd cr,tl cr)) ;
118c. let cpos = onEdge(hd r,(,ei),ni′),
118d. ch′ = <mkChg(τ,ni,ncr)>̂ch in

© Dines Bjørner March 4, 2025.

Transport – a Domain Description 21

118e. conveyor(ci)(cm)(k,routes)(cr,cpos,⟨(τ,ni)⟩̂ch) end end

(119) And a conveyor may non-deterministically choose to abandon being a conveyor, i.e., leaving

transport altogether – stopping !

(120) But first it notifies the node at which it stops.

value

119. conveyor_stops_at_node(ci)(cm)(k,routes)(cr,AtNode(ni),ch) ≡

120. let τ = record_TIME() in

120. comm[{ci,ni}] ! mkStop(τ,ci) ;
119. stop end

• A conveyor behaviour on an edge alternates.

• Conveyor Behaviour on Edge

(121) An edge [behaviour] at an edge external non-deterministically either:

(a) moves along the edge, or

(b) stops on the edge and thereby “leaves” transport; or

(c) enters a node.

121. conveyor(ci)(cm)(k,routes)(cr,OnEdge(nuif ,(f,e),nuit),ch) ≡

121a. conveyor_moves_on_edge(ci)(cm)(k,routes)(cr,OnEdge(nuif ,(f,e),nuit),ch)
121c. ⌈⌉ conveyor_stops_on_edge(ci)(cm)(k,routes)(cr,OnEdge(nuif ,(f,e),nuit),ch)
121b. ⌈⌉ conveyor_enters_node(ci)(cm)(k,routes)(cr,OnEdge(nuif ,(f,e),nuit),ch)

• Conveyor Actions on an Edge:

(122) A conveyormoving along an edge

(a) at time τ is modelled by

(b) incrementing the fraction of its position

(c) (while updating its history)

(d) notifying the edge [behaviour]

(e) [technically speaking] adjusting its position, and, finally,

(f) resuming being a thus updated conveyor [OnEdge]

value

122. conveyor_moves_on_edge(ci)(cm)(k,routes)(cr,OnEdge(nuif ,(f,e),nuit),ch) ≡

122a. let τ = record_TIME(),
122b. ϵ:Real • 0 < ϵ ≪ in

122b. let f′ = f+ϵ,
122c. ch′ = ⟨()⟩̂ch,
122d. cpos = OnEdge(nuiif ,(f

′,e),nui t) in

122e. comm[{ci,ej }] ! mkMove(τ,ci,cpos) ;
122f. conveyor(ci)(cm)(k,routes)(cr,cpos,ch′) end end

122. pre hd cr = nuif

(123) A conveyor enters a node

(a) at time τ is modelled by

(b) altering its position

(c) notifying both the edge and designated node behaviours

(d) updating its history and

© Dines Bjørner March 4, 2025.

22 Dines Bjørner

(e) become an node behaviour.

value

123. conveyor_enters_node(ci)(cm)(k,routes)(cr,OnEdge(nuif ,(f,e),nuit),ch) ≡

123a. let τ = record_TIME(),
123b. cpos = AtEdge{hd cr} in

123. comm[{ci,nuit }] ! mkEnterNode(τ,ci) ;
123d. let ch′ = ⟨mkEnterNode(τ,ci)⟩̂ch in

123e. conveyor(ci)(cm)(k,routes)(tl cr,cpos,ch′) end end

123. pre hd cr = nf

(124) A conveyor may non-deterministically choose to abandon being a conveyor, i.e., leaving

transport altogether – stopping !

(125) But first it notifies the edge at which it stops.

value

124. conveyor_stops_on_edge(ci)(cm)(k,routes)(cr,OnEdge(nuif ,(f,e),nuit),ch) ≡

125. let τ = record_TIME() in

125. comm[{ci,ej }] ! mkStop(τ,ci) ;
124. stop end

124. pre hd cr = nuif

2.6.2.2.2 Node Behaviour
(126) Node [behaviours]

(a) external non-deterministically accept conveyor, ci, actions
(b) at times τ
(c) augment their histories accordingly and

(d) resumes being node behaviours.

value

126. node: NI → NM → ... → NH
126a. node(ni)(nm)(...)(nh) ≡

126b. let τ = record_TIME() in

126c. let msg = ⌈⌉⌊⌋ { comm[{ni,ci}] ? | ci:CI • ci ∈ nm } in

126d. node(ni)(nm)(...)(⟨msg⟩̂nh) end end

2.6.2.2.3 Edge Behaviour
(127) Edge [behaviours] – similarly:

(a) external non-deterministically accept conveyor, ci, actions
(b) at times τ
(c) augment their histories accordingly and

(d) resumes being edge behaviours.

value

127. edge: EI → EM → ... → EH
127a. edge(ei)(nm)(...)(nh) ≡

127b. let τ = record_TIME() in

127c. let msg = ⌈⌉⌊⌋ { comm[{ei,ci}] ? | ci:CI • ci ∈ em } in

127d. edge(ni)(em)(...)(⟨msg⟩̂nh) end end

© Dines Bjørner March 4, 2025.

Transport – a Domain Description 23

2.6.3 Domain Initialization. By domain initialization wemean the invocation24 of all behaviours.

(128) The overall initialization expresses the parallel composition of the initialization of

(129) all conveyors,

(130) all nodes and

(131) all edges.

128. initialization: Unit → Unit

128. initializatio() ≡

129. ∥ { conveyor
129. (uid_C(c))
129. (mereo_C(c))
129. (attr_KindC(c),attr_RoutesC(c)) [Static Attrs.]
129. [Programmable Attrs.] (attr_CurrRouteC(c),attr_CPoC(c)s,attr_CHC(c))
129. | c:C•c ∈ cs}
130. ∥ ∥ { edge
130. (uid_E(e))
130. (mereo_E(e))
130. (attr_EdgeKind(e),...) [Static Attrs.]
130. [Programmable Attrs.] (attr_(e),attr_EH(e))
130. | e:E•e ∈ es }

131. ∥ ∥ { node
131. (]uidN(n))
131. (mereo_N(n))
131. (attr_NodeKinds(n)) [Static Attrs.]
131. [Programmable Attrs.] (attr_NH(n))
131. | n:N•n ∈ ns}

But: the initializaton of conveyors is too simplified: To capture an essence of transport it seems

reasonable to distinguish between the various kinds of conceyors.

Thus the initialization of conveyors “really” amounts to the initialization of all

• cars, trucks, taxis,

• buses,

• passenger & freight trains,

• sailboats, barges, vessels,

• passenger liners, ferries,

• civil aircraft,

• freight planes and

• passenger aircraft.

Here we illustrate the initialization a few of these !

To be written

2.7 A Review

To be written

24
Invocation – in the colloquial – “call”

© Dines Bjørner March 4, 2025.

24 Dines Bjørner

3 CONCLUSION

3.1 Multi-Mode Transport

The domain description of Sect. 2 was for single-mode transport: It focused on conveyours. For a

model of multi-mode transport we suggest to introduce transport logistics companies. A transport

logistics company handles requests from senders of passengers or goods (containers, oil, coal, gas,
grain, salt, cars, machinery, etc.) to have these conveyed from one node to another, ay world-wide,

by whatever means of combinations of conveyors and routes. We intend to extend the above study

to include multi-mode transport.

More to come

3.2 Interpretations

The domain description of Sect. 2 can be viwed in three ways:

(i) as a step in the general, say socio-economic study of a specific infra-structure [sub-]domain;

(ii) as a prerequisite for business process re-engineering;
(iii) as an, albeit, in this case, and this stage of unfolding study, basis document for preparing

teachers material for subsequent development, i.e., writing, of secondary school course

element ofor teaching such specific infra-structure [sub-]domains; and

(iv) as an initial feasability study for possible subsequent development of software for multi-mode

transport systems.

We shall now comment on each of these.

3.2.1 Socio-Economic Study.

To be written

3.2.2 Business Process Re-Engineering.

To be written

3.2.3 Secondary School Topic.

To be written

3.2.4 Software System Development.

To be written

3.3 On the Development of This Model

I started on this document on Saturday February 22, 2025. I finished, “more-or-les” all the for-

malisation and this concluding section on Monday March 3, 2025. Nine days, Nine days of great

fun.

More to come

© Dines Bjørner March 4, 2025.

Transport – a Domain Description 25

3.4 Acknowledgements

4 BIBLIOGRAPHY

REFERENCES

[1] Dines Bjørner. Domain Case Studies:
• 2025: Documents – a Domain Description, Winter/Spring 2025, www.imm.dtu.dk/~dibj/2025/documents/main.pdf

• 2023: Nuclear Power Plants, A Domain Sketch, 21 July, 2023 www.imm.dtu.dk/~dibj/2023/nupopl/nupopl.pdf

• 2021: Shipping, April 2021. www.imm.dtu.dk/~dibj/2021/ral/ral.pdf

• 2021: Rivers and Canals – Endurants, March 2021. www.imm.dtu.dk/~dibj/2021/Graphs/Rivers-and-Canals.pdf

• 2021: A Retailer Market , January 2021. www.imm.dtu.dk/~dibj/2021/Retailer/BjornerHeraklit27January2021.pdf

• 2019: Container Terminals, ECNU, Shanghai, China www.imm.dtu.dk/~dibj/2018/yangshan/maersk-pa.pdf

• 2018: Documents, TongJi Univ., Shanghai, China www.imm.dtu.dk/~dibj/2017/docs/docs.pdf

• 2017: Urban Planning, TongJi Univ., Shanghai, China www.imm.dtu.dk/~dibj/2017/urban-planning.pdf

• 2017: Swarms of Drones, IS/CAS25, Peking, China www.imm.dtu.dk/~dibj/2017/swarms/swarm-paper.pdf

• 2013: Road Transport , Techn. Univ. of Denmark www.imm.dtu.dk/~dibj/road-p.pdf

• 2012: Credit Cards, Uppsala, Sweden www.imm.dtu.dk/~dibj/2016/credit/accs.pdf

• 2012:Weather Information, Bergen, Norway www.imm.dtu.dk/~dibj/2016/wis/wis-p.pdf

• 2010:Web-based Transaction Processing, Techn. Univ. of Vienna, Austria, 186 pageswww.imm.dtu.dk/~dibj/wfdftp.pdf

• 2010: The Tokyo Stock Exchange, Tokyo Univ., Japan www.imm.dtu.dk/~db/todai/tse-2.pdf

• 2009: Pipelines, Techn. Univ. of Graz, Austria www.imm.dtu.dk/~dibj/pipe-p.pdf

• 2007: A Container Line Industry Domain, Techn. Univ. of Denmark www.imm.dtu.dk/~dibj/container-paper.pdf

• 2002: The Market , Techn. Univ. of Denmark www.imm.dtu.dk/~dibj/themarket.pdf

• 1995–2004: Railways, Techn. Univ. of Denmark - a compendium www.imm.dtu.dk/~dibj/train-book.pdf

Experimental research carried out to “discover”, try-out and refine method principles, techniques and tools, 1995–2025.
[2] Dines Bjørner. Manifest Domains: Analysis & Description www.imm.dtu.dk/~dibj/2015/faoc/faoc-bjorner.pdf . Formal

Aspects of Computing, 29(2):175–225, March 2017. Online: 26 July 2016.
[3] Dines Bjørner. Domain analysis & description - the implicit and explicit semantics problem www.imm.dtu.dk/

~dibj/2017/bjorner-impex.pdf . In Régine Laleau, Dominique Méry, Shin Nakajima, and Elena Troubitsyna, editors,
Proceedings Joint Workshop on Handling IMPlicit and EXplicit knowledge in formal system development (IMPEX) and
Formal and Model-Driven Techniques for Developing Trustworthy Systems (FM&MDD), Xi’An, China, 16th November

2017, volume 271 of Electronic Proceedings in Theoretical Computer Science, pages 1–23. Open Publishing Association,
2018.

[4] Dines Bjørner. Domain Analysis & Description. www.imm.dtu.dk/~dibj/2018/tosem/Bjorner-TOSEM.pdf . ACM
Trans. on Software Engineering and Methodology, 28(2):66 pages, March 2019.

[5] Dines Bjørner. Domain Science & Engineering – A Foundation for Software Development. EATCS Monographs in
Theoretical Computer Science. Springer, Heidelberg, Germany, 2021. A revised version of this book is [7].

[6] Dines Bjørner. Double-entry Bookkeeping. Research, Institute of Mathematics and Computer Science. Technical
University of Denmark, DK-2800 Kgs.Lyngby, Denmark, August 2023. http://www.imm.dtu.dk/˜dibj/2023/double-
entry/dblentrybook.pdf. One in a series of planned studies: [8, 10–12].

[7] Dines Bjørner. Domain Modelling – A Primer. A significantly revised version of [5]. xii+202 pages26, Summer 2024.
[8] Dines Bjørner. Banking – A Domain Description. Sci. & techn. study, Technical University of Denmark, Fredsvej 11,

DK 2840 Holte, Denmark, March 2025. One in a series of planned studies: [6, 10–12].
[9] Dines Bjørner. Domain Modelling. Submitted to ACM FAC, page 18, February 2025. Institute of Mathematics and

Computer Science. Technical University of Denmark.
[10] Dines Bjørner. Health Care – A Domain Description. Sci. & techn. study, Technical University of Denmark, Fredsvej

11, DK 2840 Holte, Denmark, March 2025. One in a series of planned studies: [6, 8, 11, 12].
[11] Dines Bjørner. Insurance – A Domain Description. Sci. & techn. study, Technical University of Denmark, Fredsvej 11,

DK 2840 Holte, Denmark, March 2025. One in a series of planned studies: [6, 8, 10, 12].
[12] Dines Bjørner. Transport – A Domain Description. Sci. & techn. study, Technical University of Denmark, Fredsvej 11,

DK 2840 Holte, Denmark, March 2025. One in a series of planned studies: [6, 8, 10, 11].

25
Inst. of Softw., Chinese Acad. of Sci.

26
This book is currently being translated into Chinese by Dr. Yang ShaoFa, IoS/CAS (Institute of Software, Chinese Academy

of Sciences), Beijing and into Russian by Dr. Mikhail Chupilko and colleagues, ISP/RAS (Institute of Systems Programming,

Russian Academy of Sciences), Moscow

© Dines Bjørner March 4, 2025.

www.imm.dtu.dk/~dibj/2025/documents/main.pdf
www.imm.dtu.dk/~dibj/2023/nupopl/nupopl.pdf
www.imm.dtu.dk/~dibj/2021/ral/ral.pdf
www.imm.dtu.dk/~dibj/2021/Graphs/Rivers-and-Canals.pdf
www.imm.dtu.dk/~dibj/2021/Retailer/BjornerHeraklit27January2021.pdf
www.imm.dtu.dk/~dibj/2018/yangshan/maersk-pa.pdf
www.imm.dtu.dk/~dibj/2017/docs/docs.pdf
www.imm.dtu.dk/~dibj/2017/urban-planning.pdf
www.imm.dtu.dk/~dibj/2017/swarms/swarm-paper.pdf
www.imm.dtu.dk/~dibj/road-p.pdf
www.imm.dtu.dk/~dibj/2016/credit/accs.pdf
www.imm.dtu.dk/~dibj/2016/wis/wis-p.pdf
www.imm.dtu.dk/~dibj/wfdftp.pdf
www.imm.dtu.dk/~db/todai/tse-2.pdf
www.imm.dtu.dk/~dibj/pipe-p.pdf
www.imm.dtu.dk/~dibj/container-paper.pdf
www.imm.dtu.dk/~dibj/themarket.pdf
www.imm.dtu.dk/~dibj/train-book.pdf
www.imm.dtu.dk/~dibj/2015/faoc/faoc-bjorner.pdf
www.imm.dtu.dk/~dibj/2017/bjorner-impex.pdf
www.imm.dtu.dk/~dibj/2017/bjorner-impex.pdf
www.imm.dtu.dk/~dibj/2018/tosem/Bjorner-TOSEM.pdf

26 Dines Bjørner

[13] Chris W. George, Peter Haff, Klaus Havelund, Anne Elisabeth Haxthausen, Robert Milne, Claus Bendix Nielsen, Søren
Prehn, and Kim Ritter Wagner. The RAISE Specification Language. The BCS Practitioner Series. Prentice-Hall, Hemel
Hampstead, England, 1992.

[14] Charles Anthony Richard Hoare. Communicating Sequential Processes. Published electronically: usingcsp.com/-
cspbook.pdf, 2004.

[15] Andrew Kennedy. Programming languages and dimensions. PhD thesis, University of Cambridge, Computer Laboratory,
April 1996. 149 pages: cl.cam.ac.uk/techreports/UCAM-CL-TR-391.pdf. Technical report UCAM-CL-TR-391, ISSN
1476-298.

A DOMAIN DESCRIPTION UNITS

Domain descriptions consists of a set of description units. . Usually these are presented in some
sequential order, such as, for example, yielded by a breath-first traversal of the description ontology
as illustrated by Fig. 1 on page 5, but usually also ordered such that formal domain concepts
are defined before their use – except for this section whose RSL constructs are first described in
Appendix B. These are the domain description units:
(132) A type description unit introduces a type, T, abstract, or “concrete”, the latter by providing a

type expression, TE. Types are here considered simple sets of values.
(133) A value description unit introduces a value, v or type T, abstract, or “concrete”, the latter by

providing a value expression, VE(f,a).
(134) A function description unit introduces a function, f of function type A→B, total, →, or

partial
∼
→, with function arguments a – where f may occur [recursively] in the definition of

f.
(135) A axiom description unit introduces a [usually labeled] predicate, P, over type, value,

function, and variable identifiers – limiting the range of their values.
(136) A variable description unit introduces an assignable, global entity, x of type T, without or

with an initial value as determined by some
(137) A channel description unit introduces a communication medium – in this paper referred to

as comm – in the form of a “two-dimensional” CSP [14] array which communicate values of
type T. The array indices range over behaviours, i.e., over their unique identifiers.

132. type T, type T = TE

133. value v:T, value v:T = VE

134. value f:A→B, f(a) ≡ VE(f,a), f:A
∼
→B

135. axiom [Label:] P

136. variable x:T, variable x:T := VE

137. comm[{i,j}|i:I,j:J• P(i,j)]: T

B ULTRA BRIEF RSL PRIMER

To be written

C TRANSPORT GLOSSARY

(138) Aircraft:

(139) Bill of Lading:

(140) Boat:

(141) Car:

(142) Container:

(143) Conveyor:

(144) Edge:

(145) Freight:

(a) Freight Cost:

(146) Graph:

(147) Node:

(148) Passenger:

© Dines Bjørner March 4, 2025.

Transport – a Domain Description 27

(a) Passenger Cost:

(149) Path:

(150) Ship:

(151) Train:

(152) Ticket:

(153) Time Table:

More to come

D INDEXES

D.1 Transport Domain Concepts

action, 18

air route, 4

airport, 4

argument

of behaviour, 18

behaviour, 18

argument, 18

business process re-engineering, 24

canal, 4

conveyor, 3

kind, 3

current, 16

description

of domain, 26

unit, 26

axiom, 26

channel, 26

function, 26

type, 26

value, 26

variable, 26

domain

description, 26

edge

kind, 3

label

unique, bi-directed, 3

event, 17

event notice, 16

function, 18

graph = net, 3

history attribute, 16

infrastructure

component, 2

intentional pull, 3

invocation, 23

kind, 3

conveyor, 3

edge, 3

node, 3

link, 4

multi-mode transport, 24

node

kind, 3

label, 3

rail track, 4

river, 4

road, 4

road intersection, 4

routes, 16

sail, 4

sea harbour, 4

single-mode transport, 24

street, 4

tail-recursion, 19

theorem, 11

time-stamp, 16

train station, 4

transport, 3

multi-mode, 24

net, 3

single-mode, 24

transport logistics company, 24

D.2 Domain Modelling Ontology

© Dines Bjørner March 4, 2025.

28 Dines Bjørner

attribute

observer

conveyor, 15

graph, 11

type

conveyor, 15

graph, 11

wellformedness

graph, 13

attributes

conveyor, 15

graph, 11

behaviour, 19

definition, 19

signature, 19

communication, 18

domain

initialization, 23

endurant

conveyor, 13

graph, 6

observer

conveyor, 13

graph, 6

transport, 4

sort

conveyor, 13

graph, 6

transport, 4

state

conveyor, 14

graph, 7

transport, 4

transport, 4

external quality

conveyor, 13

graph, 6

transport, 4

intentional pull, 16

internal quality

conveyor, 14

graph, 7

transport, 5

mereology

conveyor, 15

graph, 8

observer, 8

conveyor, 15

graph, 8

type

conveyor, 15

graph, 8

wellformedness

conveyor, 15

graph, 9

perdurant, 18

unique identification

conveyor, 14

graph, 7

transport, 5

unique identifier

observer

conveyor, 14

graph, 7

transport, 5

sort

conveyor, 14

graph, 7

transport, 5

state

conveyor, 14

graph, 8

transport, 6

uniqueness

conveyor, 15

graph, 8

transport, 6

D.3 Formal Entities

Auxiliary Functions

c_ kind, 14

cost, 12

kind, 12

least_ costly_ route, 13

least_ costly_ route_ of_ kind, 13

© Dines Bjørner March 4, 2025.

Transport – a Domain Description 29

length, 12

path_ kind, 11

paths, 10

retr_ conveyor, 15

retr_ cost, 12

retr_ edge, 9

retr_ length, 12

retr_ node, 9

retr_ unit, 9

retr_ W, 17

route_ kind, 12

select_ next_ route, 20

shortest_ route, 12

shortest_ route_ of_ kind, 13

Axioms

All parts are uniquely identified, 15

Conveyor Mereology of Right Kind, 15

Mereology Wellformedness, 9

Ordered Way and Conveyor Histories, 17

Route Commensurability, 16

Routes of commensurate kind, 16

Uniqueness of Part Identification, 8

Uniqueness of Transport Identifiers, 6

Behaviour

Signatures

conveyor, 19

edge, 19

node, 19

Definitions

conveyor, 19

conveyor_ change_ route, 20

conveyor_ enters_ edge, 20

conveyor_ enters_ node, 22

conveyor_ moves_ on_ edge, 21

conveyor_ remains_ at_ node, 20

conveyor_ stops_ at_ node, 21

conveyor_ stops_ on_ edge, 22

edge, 22

node, 22

Channel

comm, 18

Message

Types

M, 18

mkChangeRoute, 18

mkEnterEdge, 18

mkEnterNode, 19

mkLeaveEdge, 19

mkLeaveNode, 18

mkMove, 19

mkRemain, 18

mkStop, 19

Theorems

All graphs have finite reversed paths, 11

Values, 8

TIME, 17
TI, time-interval, 17

σ , 14
σps , ι27, 7
σt , 5
σuis , 8, 15
ca, 5, 14
cai , 6, 14
cis , 14
cs , 14
euis , 8
ea, 7
eauis , 8
es , 7
esuis , 8
д, 5
дi , 6
nuis , 8
na, 7
nauis , 8
ns , 7
nsuis , 8
paths , 10
t , 5
ti , 6
air, 4

rail, 4

road, 4

sea, 4

ea, ι29, 7
es, ι26, 7
na, ι30, 7
ns, ι27, 7

Endurant

sorts

E, ι27, 6
EA, ι22, 6
ES, ι24, 6
N, ι26, 6
NA, ι23, 6

© Dines Bjørner March 4, 2025.

30 Dines Bjørner

NS, ι25, 6
P, ι28, 6
Air, 14

Barge, 14

Bus, 14

C, 13

CA, 4

Car, 14

CS, 13

E, 6

EA, 6

ES, 6

Ferry, 14

FishVessel, 14

Freighter, 14

FreightPlane, 14

FreightTrain, 14

G, 4

Helicop, 14

N, 6

NA, 6

NS, 6

P, 6

PassAir, 14

PassLiner, 14

PassTrain, 14

PrivAir, 14

Rail, 14

Road, 14

SailBoat, 14

T, 4

Taxi, 14

Truck, 14

U, 10

Water, 14

observers

obs_CS, 14

obs_EA, 6

obs_ES, 7

obs_NA, 7

obs_NS, 7

obs_obs_CA, 4

obs_obs_G, 4

Unique Identification

sorts

CAI, 5, 14

CI, 14

EAI, 8

EI, 8

ESI, 8

GI, 5, 8

NAI, 8

NI, 8

NSI, 8

PI, 8

TI, 5

observers

uid_CAI, 6, 14

uid_CI, 14

uid_EA, 8

uid_ES, 8

uid_E, 8

uid_GI, 6

uid_G, 8

uid_NA, 8

uid_NS, 8

uid_N, 8

uid_TI, 6

Mereology

types

CM, 15

EM, 8

NM, 8

observers

mereo_C, 15

mereo_EM, 8

mereo_NM, 8

Attribute

types:

AtNode, 16

CH, 17

COST, 11

CPos, 16

CurrRoute, 16

EdgeKind, 11

F, 16

LEN, 11

NodeKind, 11

OnEdge, 16

Routes, 16

WH, 17

observers:

attr_CH, 17

attr_COST, 12

attr_CPos, 16

attr_CurrRoute, 16

© Dines Bjørner March 4, 2025.

Transport – a Domain Description 31

attr_Edgekind, 12

attr_Kind, 16

attr_LEN, 12

attr_NodeKind, 12

attr_Routes, 16

attr_WH, 17

Auxiliary Types

Kind, 4

Path, 9

W, 17

WI, 17

Intentional Pull

Vehicles, Nodes and Edges, 17

All

All graphs have finite reversed paths, 11

M, 18

mkChangeRoute, 18

mkEnterEdge, 18

mkEnterNode, 19

mkLeaveEdge, 19

mkLeaveNode, 18

mkMove, 19

mkRemain, 18

mkStop, 19

TIME, 17
TI, time-interval, 17

σ , 14
σt , 5
σuis , 8, 15
ca, 5, 14
cai , 6, 14
cis , 14
cs , 14
euis , 8
ea, 7
eauis , 8
es , 7
esuis , 8
д, 5
дi , 6
nuis , 8
na, 7
nauis , 8
ns , 7
nsuis , 8
paths , 10
t , 5

ti , 6
Air, 14

All parts are uniquely identified, 15

AtNode, 16

Barge, 14

Bus, 14

CAI, 5, 14

CA, 4

CH, 17

CI, 14

CM, 15

COST, 11, 12

CPos, 16

CS, 13

Car, 14

Conveyor Mereology of Right Kind, 15

CurrRoute, 16

C, 13, 15

EAI, 8

EA, 6

EI, 8

EM, 8

ESI, 8

ES, 6

EdgeKind, 11

Edgekind, 12

E, 6

Ferry, 14

FishVessel, 14

FreightPlane, 14

FreightTrain, 14

Freighter, 14

F, 16

GI, 5, 8

G, 4

Helicop, 14

Kind, 4, 16

LEN, 11, 12

Mereology Wellformedness, 9

NAI, 8

NA, 6

NI, 8

NM, 8

NSI, 8

NS, 6

NodeKind, 11, 12

N, 6

OnEdge, 16

© Dines Bjørner March 4, 2025.

32 Dines Bjørner

Ordered Way and Conveyor Histories, 17

PI, 8

PassAir, 14

PassLiner, 14

PassTrain, 14

Path, 9

PrivAir, 14

P, 6

Rail, 14

Road, 14

Route Commensurability, 16

Routes of commensurate kind, 16

Routes, 16

SailBoat, 14

TI, 5

Taxi, 14

Truck, 14

T, 4

Uniqueness of Part Identification, 8

Uniqueness of Transport Identifiers, 6

U, 10

Vehicles, Nodes and Edges, 17

WH, 17

WI, 17

Water, 14

W, 17

comm, 18

c_ kind, 14

conveyor_ change_ route, 20

conveyor_ enters_ edge, 20

conveyor_ enters_ node, 22

conveyor_ moves_ on_ edge, 21

conveyor_ remains_ at_ node, 20

conveyor_ stops_ at_ node, 21

conveyor_ stops_ on_ edge, 22

conveyor, 19

cost, 12

edge, 19, 22

kind, 12

least_ costly_ route_ of_ kind, 13

least_ costly_ route, 13

length, 12

node, 19, 22

path_ kind, 11

paths, 10

retr_ W, 17

retr_ conveyor, 15

retr_ cost, 12

retr_ edge, 9

retr_ length, 12

retr_ node, 9

retr_ unit, 9

route_ kind, 12

select_ next_ route, 20

shortest_ route_ of_ kind, 13

shortest_ route, 12

obs_CS, 14

obs_EA, 6

obs_ES, 7

obs_NA, 7

obs_NS, 7

obs_obs_CA, 4

obs_obs_G, 4

uid_CAI, 6, 14

uid_CI, 14

uid_EA, 8

uid_ES, 8

uid_E, 8

uid_GI, 6

uid_G, 8

uid_NA, 8

uid_NS, 8

uid_N, 8

uid_TI, 6

air, 4

rail, 4

road, 4

sea, 4

, 8

There are 181 formal RSL entities.

© Dines Bjørner March 4, 2025.

Transport – a Domain Description 33

Contents

Abstract 1

1 Introduction 1

1.1 On A Notion of ‘Infrastructure’ 1

1.2 Domain Models 2

1.2.1 Some Characterizations 2

1.2.2 Purpose of Domain Models 2

1.2.3 Domain Science & Engineering 2

1.3 A Dichotomy 2

1.3.1 An Outline 2

1.3.2 The Dichotomy 2

1.4 The Dichotomy Resolved 3

1.5 A [Planned] Series of Infrastructure

Domain Models 3

2 A Formal Domain Description 3

2.1 Kind of Transport Graphs and Conveyors 3

2.1.1 Informal Outline 3

2.1.2 Narrative & Formalization 4

2.2 Overall Transport Endurants 4

2.2.1 ExternalQualities 4

2.2.1.1 Endurant Sorts & Observers 4

2.2.1.2 An Endurant State Notion 4

2.2.2 InternalQualities 5

2.2.2.1 Uniqe Identification 5

2.2.2.1.1 Uniqe Identifier Sorts & Observers 5

2.2.2.1.2 A Uniqe Identifier State Notion 6

2.2.2.1.3 Uniqeness 6

2.3 Graph Endurants 6

2.3.1 ExternalQualities 6

2.3.1.1 The Endurant Sorts and Observers 6

2.3.1.2 An Endurant State 7

2.3.2 InternalQualities 7

2.3.2.1 Uniqe Identifiers 7

2.3.2.1.1 Uniqe Identifier Sorts and Observers 7

2.3.2.1.2 A Uniqe Identifier State 8

2.3.2.1.3 Uniqeness 8

2.3.2.2 Mereology 8

2.3.2.2.1 Mereology Types and Wellformedness, I 8

2.3.2.2.2 Mereology Observers 8

2.3.2.2.1 Mereology Wellformedness, II 9

2.3.2.2 Paths of a Graph 9

2.3.2.3 Attributes 11

2.3.2.3.1 Attribute Types & Observers 11

2.3.2.3.3 Attribute Wellformedness 13

2.4 Conveyor Endurants 13

2.4.1 External ConveyorQualities 13

2.4.1.1 Conveyor Endurant Sorts & Observers 13

2.4.1.3 A Conveyor Endurant State 14

2.4.2 Internal ConveyorQualities 14

2.4.2.1 Uniqe Identification 14

2.4.2.1.1 Uniqe Identifier Sorts & Observers 14

2.4.2.1.3 Uniqe Identifier State 14

2.4.2.1.2 Uniqeness 15

2.4.2.1.3 Conveyor Retrieval 15

2.4.2.2 Mereology 15

2.4.2.2.1 Mereology Types & Observers 15

2.4.2.2.2 Mereology Wellformedness 15

2.4.2.3 Attributes 15

2.4.2.3.1 Conveyor Attribute Types & Observers 15

2.5 Intentional Pull 16

2.5.1 History Attributes 16

2.5.2 An Intentional Pull 17

2.6 Perdurants 18

2.6.1 Communication 18

2.6.2 Behaviours 19

2.6.2.1 Behaviour Signatures 19

2.6.2.2 Behaviour Definitions 19

2.6.2.2.1 Conveyor Behaviours 19

2.6.2.2.2 Node Behaviour 22

2.6.2.2.3 Edge Behaviour 22

2.6.3 Domain Initialization 23

2.7 A Review 23

3 Conclusion 24

3.1 Multi-Mode Transport 24

3.2 Interpretations 24

3.2.1 Socio-Economic Study 24

3.2.2 Business Process Re-Engineering 24

3.2.3 Secondary School Topic 24

3.2.4 Software System Development 24

3.3 On the Development of This Model 24

3.4 Acknowledgements 25

4 Bibliography 25

References 25

A Domain Description Units 26

B Ultra Brief RSL Primer 26

C Transport Glossary 26

D Indexes 27

D.1 Transport Domain Concepts 27

D.2 Domain Modelling Ontology 27

D.3 Formal Entities 28

Contents 33

© Dines Bjørner March 4, 2025.

	Abstract
	1 Introduction
	1.1 On A Notion of `Infrastructure'
	1.2 Domain Models
	1.2.1 Some Characterizations
	1.2.2 Purpose of Domain Models
	1.2.3 Domain Science & Engineering

	1.3 A Dichotomy
	1.3.1 An Outline
	1.3.2 The Dichotomy

	1.4 The Dichotomy Resolved
	1.5 A [Planned] Series of Infrastructure Domain Models

	2 A Formal Domain Description
	2.1 Kind of Transport Graphs and Conveyors
	2.1.1 Informal Outline
	2.1.2 Narrative & Formalization

	2.2 Overall Transport Endurants
	2.2.1 External Qualities
	2.2.1.1 Endurant Sorts & Observers
	2.2.1.2 An Endurant State Notion

	2.2.2 Internal Qualities
	2.2.2.1 Unique Identification
	2.2.2.1.1 Unique Identifier Sorts & Observers
	2.2.2.1.2 A Unique Identifier State Notion
	2.2.2.1.3 Uniqueness

	2.3 Graph Endurants
	2.3.1 External Qualities
	2.3.1.1 The Endurant Sorts and Observers
	2.3.1.2 An Endurant State

	2.3.2 Internal Qualities
	2.3.2.1 Unique Identifiers
	2.3.2.1.1 Unique Identifier Sorts and Observers
	2.3.2.1.2 A Unique Identifier State
	2.3.2.1.3 Uniqueness

	2.3.2.2 Mereology
	2.3.2.2.1 Mereology Types and Wellformedness, I
	2.3.2.2.2 Mereology Observers
	2.3.2.2.1 Mereology Wellformedness, II

	2.3.2.2 Paths of a Graph
	2.3.2.3 Attributes
	2.3.2.3.1 Attribute Types & Observers
	2.3.2.3.3 Attribute Wellformedness

	2.4 Conveyor Endurants
	2.4.1 External Conveyor Qualities
	2.4.1.1 Conveyor Endurant Sorts & Observers
	2.4.1.3 A Conveyor Endurant State

	2.4.2 Internal Conveyor Qualities
	2.4.2.1 Unique Identification
	2.4.2.1.1 Unique Identifier Sorts & Observers
	2.4.2.1.3 Unique Identifier State
	2.4.2.1.2 Uniqueness
	2.4.2.1.3 Conveyor Retrieval

	2.4.2.2 Mereology
	2.4.2.2.1 Mereology Types & Observers
	2.4.2.2.2 Mereology Wellformedness

	2.4.2.3 Attributes
	2.4.2.3.1 Conveyor Attribute Types & Observers

	2.5 Intentional Pull
	2.5.1 History Attributes
	2.5.2 An Intentional Pull

	2.6 Perdurants
	2.6.1 Communication
	2.6.2 Behaviours
	2.6.2.1 Behaviour Signatures
	2.6.2.2 Behaviour Definitions
	2.6.2.2.1 Conveyor Behaviours
	2.6.2.2.2 Node Behaviour
	2.6.2.2.3 Edge Behaviour

	2.6.3 Domain Initialization

	2.7 A Review

	3 Conclusion
	3.1 Multi-Mode Transport
	3.2 Interpretations
	3.2.1 Socio-Economic Study
	3.2.2 Business Process Re-Engineering
	3.2.3 Secondary School Topic
	3.2.4 Software System Development

	3.3 On the Development of This Model
	3.4 Acknowledgements

	4 Bibliography
	References
	A Domain Description Units
	B Ultra Brief RSL Primer
	C Transport Glossary
	D Indexes
	D.1 Transport Domain Concepts
	D.2 Domain Modelling Ontology
	D.3 Formal Entities

	Contents

