DOMAIN ANALYSIS & DESCRIPTION

AN EXAMPLE

Dines Bjørner
Technical University of Denmark
bjorner@gmail.com

The ICTAC 2025 Conference November 24–29, 2025 Marrakesh, Morocco

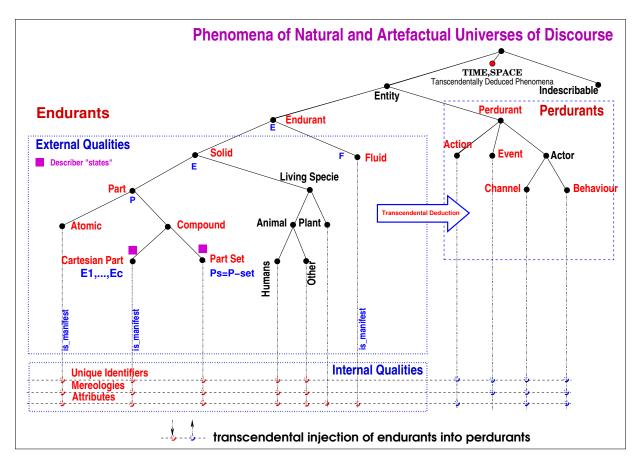
Method & Methodology

Method

- By a **method** we shall understand
 - * a set of **principles** for selecting and applying
 - * a set of **procedures** also for selecting and applying
 - * a set of techniques using
 - * a set of tools,

for people to adhere to in the **construction** of an **artefact**.

Methodology


* By **methodology** we shall understand the study of methods.

The Domain Modeling Method

- Principles: 1 abstraction.
- Procedures: the domain analysis & description ontology.
- **Techniques**²: Classical technique are that of establishing *invariants* and expressing *intentional pull*.
- Tools³: the analysis and description prompts and functions.

¹ Principle:

- (i) elemental aspect of a craft or discipline,
- (ii) foundation,
- (iii) general law of nature, etc.
- ² Technique:
- (i) formal practical details in artistic, etc., expression,
- (ii) art, skill, craft in work".
- ³ Tool:
- (i) instrument, implement used by a craftsman or laborer, weapon,
- (ii) that with which one prepares something.

. The Domain Analysis & Description Ontology

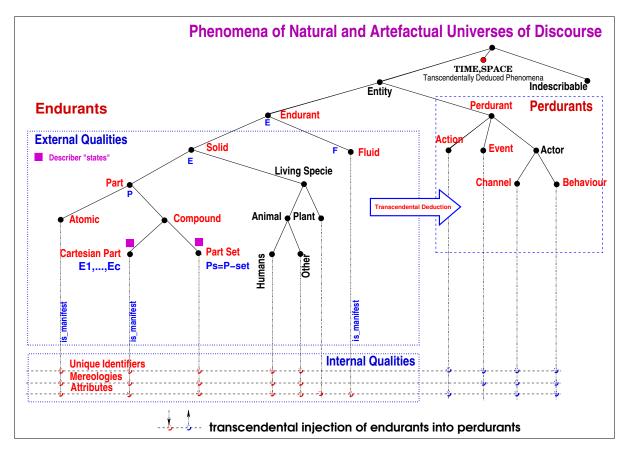
Table of Contents

Universe of Discourse	(
Endurants	
External Qualities	
Endurant Parts	15
Endurant Part State	15
Internal Qualities	
Unique Identification	20-22
Mereology	27
Attributes	30-32
Transcendental Deduction	33
Perdurants	
Channel	37
Behaviours	
Behaviour Signatures	39-40
Behaviour Definitions	41-44
Behaviour Initialization	46

An Example

0. Universe of Discourse

Narration:

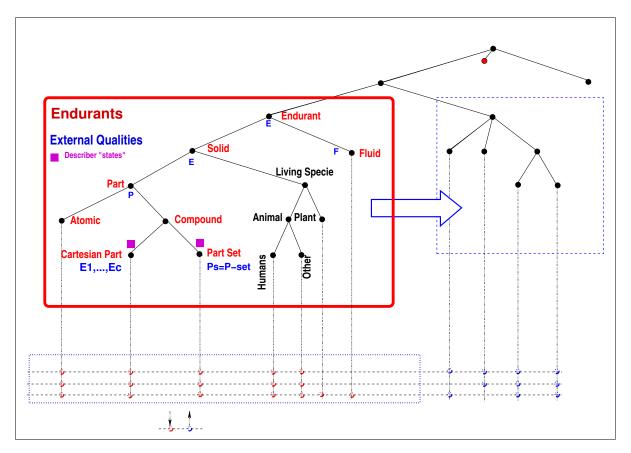

```
The domain is that of a road traffic system, RT of passengers, P, by automobiles, A, which move along a road net, RN. Passengers embark and disembark merchandise at hubs, H, and travel along links, L of the road net. Etcetera, etcetera.
```

Formalization:

```
RT, P, A, RN, H, L, ...
value

move, embark, disembark, travel, ...
axiom

[The road net is connected, ...]
```



The Domain Analysis & Description Ontology

1. Endurants

1.1. External Qualities

1.1.1 Parts

Part Analysis & Description

Narrative:

- 1. A road transport, rt:RT, is abstracted as a Cartesian of
- 2. a road net, RN and
- 3. an aggregate of automobiles, SA –
- 4. where the road net is a Cartesian of a set of hubs, AH,
- 5. and a set of links, AL.
- 6. An aggregate of automobiles is a set of automobiles.
- 7. Automobiles are here considered atomic.

Formalization:

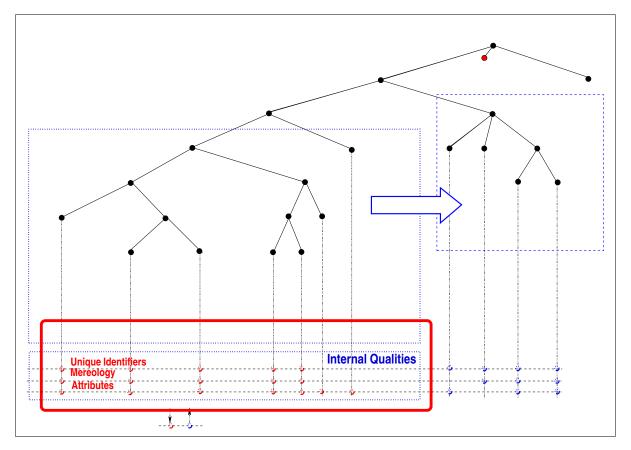
type

- 1. RT
- 2. RN
- 3. SA
- 4. AH = H-set
- 5. AL = L-set
- 6. AS = A-set

7. A

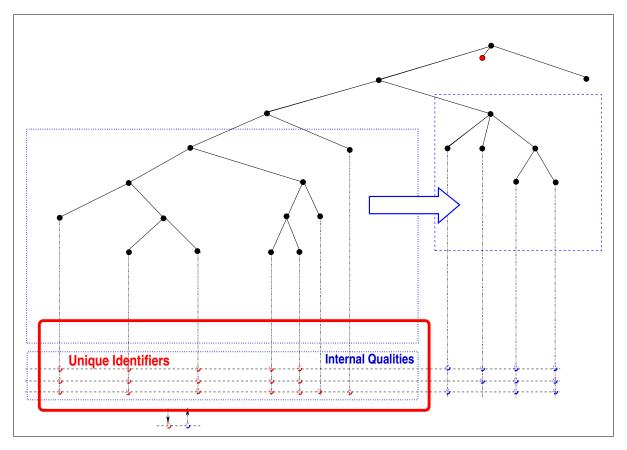
value

- 2. **obs**_RN: RT \rightarrow RN
- 3. **obs**_SA: RT \rightarrow SA
- 4. **obs** AH: RN \rightarrow AH
- 5. **obs**_AL: RN \rightarrow AL
- 6. **obs**_AS: $SA \rightarrow AS$


1.1.3 Part State

- 8. There is the set of all hubs,
- 9. and the set of all links,
- 10. and the set of all automobiles.
- 11. The union of these form a state.

variable


- 8. $hs:AH := obs_AH(obs_RN(rt))$
- 9. $ls:AL := obs_AL(obs_RN(rt))$
- 10. $as:SA := obs_AS(obs_SA(rt))$
- 11. $\sigma:(H|L|A)$ -set := $hs \cup ls \cup as$

1.2 Internal Qualities

Internal Qualities Analysis & Description

1.2.1 Unique Identification

Unique Identification

12. Each hub has a unique identifier,

13. each link has a unique identifier, and

14. each automobile has a unique identifier.

typ	\mathbf{e}
12.	Η
13.	LI

14. Al

value

12. $uid_H: H \rightarrow HI$

13. $uid_H: L \rightarrow LI$

14. $uid_H: A \rightarrow AI$

1.2.1.1 Unique Identifier State

There are

- 15. the set of all hub identifiers,
- 16. the set of all link identifiers,
- 17. the set of all automobile identifiers.
- 18. Together they form a unique identifier state.
- 19. There are as many hubs, links and automobiles as there are hub, link and automobile identifiers.

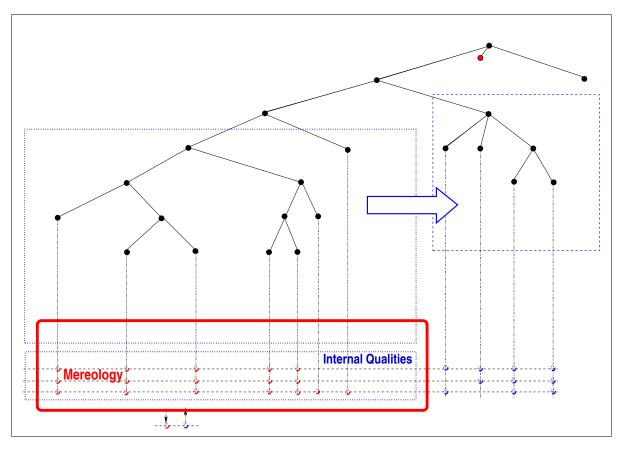
variable

- 15. hs_{uids} :HI-set := { $uid_H(h) \mid h:H \cdot u \in \sigma$ }
- 16. ls_{uids} :LI-set := { $uid_L(I) \mid I:L\cdot u \in \sigma$ }
- 17. as_{uids} :Al-set := { uid_A(a) | a:A·u $\in \sigma$ }
- 18. σ_{uids} :(HI|LI|AI)-set := $hs_{uids} \cup ls_{uids} \cup as_{uids}$

axiom

19. \square card $\sigma =$ card σ_{uids}

1.2.1.2 Part Uniqueness


The unique identifiers of a road transport, rt:RT, consists of the unique identifiers of

- 20. the set of all hub identifiers,
- 21. the set of all link identifiers,
- 22. the set of all automobile identifiers.
- 23. Together they form a unique identifier state.
- 24. There are as many hubs, links and automobiles as there are hub, link and automobile identifiers.

variable

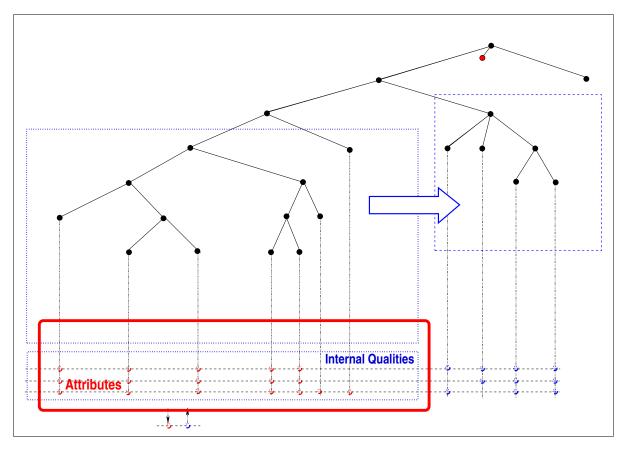
- 20. hs_{uids} :HI-set := { $uid_H(h) \mid h:H \cdot h \in \sigma$ }
- 21. ls_{uids} :LI-set := { $uid_L(I) \mid I:L \cdot I \in \sigma$ }
- 22. as_{uids} :Al-set := { uid_A(a) | a:A · a ∈ σ }
- 23. σ_{uids} :(HI|LI|AI)-set := $hs_{uids} \cup hs_{uids} \cup hs_{uids}$
- 24. $\mathbf{card}\sigma = \mathbf{card}\sigma_{uids}$

1.2.2 Mereology

Mereology

We shall be concerned only with the mereology of some manifest parts.

- 25. The mereology of links is a 2 element set of hub identifiers.
- 26. The mereology of a hub is a possibly empty set of hub identifiers.
- 27. The mereology of an automobile is a set of hub and link identifiers


type

- 25. ML = Ll-set $axiom <math>\forall$ $ml:MK \cdot card ml = 2 \land ml \subseteq ls_{uis}$
- 26. $MH = HI\text{-set axiom } \forall \text{ mh:}MH \cdot \text{mh} \subseteq hs_{uis}$
- 27. MA = (HI|LI)-set $axiom \forall ma:MA \cdot ma \subseteq as_{uis}$

value

- 25. **mereo**_L: $L \rightarrow ML$
- 26. **mereo**_H: $H \rightarrow MH$
- 27. **mereo**_A: $A \rightarrow MA$

1.2.3 Attributes

Attributes

Example attributes are:

- 28. Hubs have states, $h\sigma:H\Sigma$: the set of pairs of link identifiers, (fli,tli), of the links from and to which automobiles may enter, respectively leave the hub.
- 29. Hubs have state spaces, $h\omega$:H Ω : the set of hub states "signaling" which states are open/closed, i.e., green/red.
- 30. Links that have lengths, LEN; and
- 31. Automobiles have road net positions, APos,
- 32. either at a hub, atH,
- 33. or *on a link*, onL, some fraction, f:Real, down a link, identified by li, from a hub, identified by fhi, towards a hub, identified by thi.
- 34. Links have states, $I\sigma:L\Sigma$: the set of pairs of link identifiers, (fIi,tIi), of the links from and to which automobiles may enter, respectively leave the hub.
- 35. Links have state spaces, $\omega:L\Omega$: the set of link states "signaling" which states are open/closed, i.e., green/red.
- 36. Hubs, links and automobiles have *histories*: time-stamped, chronologically ordered sequences of automobiles entering and leaving links and hubs, with automobile histories similarly recording hubs and links entered and left.
- 37. Link positions have well-defined identifiers and fractions.

type

28.
$$H\Sigma = (LI \times LI)$$
-set

29.
$$H\Omega = H\Sigma$$
-set

30.
$$LEN = Nat$$

31.
$$APos = atH \mid onL$$

33. onL :: LI
$$\times$$
 (fhi:HI \times f:Real \times thi:HI)

34.
$$L\Sigma = (HI \times HI)$$
-set

35.
$$L\Omega = L\Sigma$$
-set

36. HHis,LHis =
$$(TIME \times AI)^*$$

36. AHis =
$$(\mathbb{TIME} \times (HI|LI))^*$$

value

28.
$$attr_H \Sigma: H \to H \Sigma$$

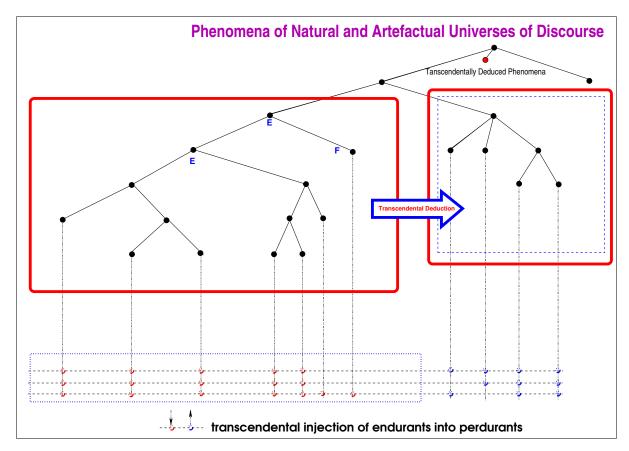
29.
$$attr_H\Omega: H \to H\Omega$$

30. attr_LEN:
$$L \rightarrow LEN$$

31. attr_APos:
$$A \rightarrow APos$$

34.
$$attr_L\Sigma: L \to L\Sigma$$

35. attr_L
$$\Omega$$
: L \rightarrow L Ω


36. attr_HHis:
$$H \rightarrow HHis$$

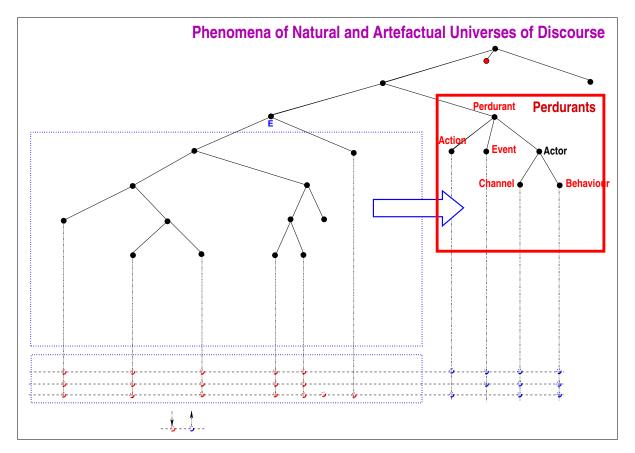
36. attr_LHis:
$$L \rightarrow LHis$$

36. attr_AHis:
$$A \rightarrow AHis$$

axiom

37. $\forall \mathsf{mk_onL}(\mathsf{li},(\mathsf{fhi},\mathsf{f},\mathsf{thi})):\mathsf{onL} \cdot 0 < \mathsf{f} < 1 \land \mathsf{li} \in ls_{uids} \land \{\mathsf{fhi},\mathsf{thi}\} \subseteq hs_{uids} \land \dots \blacksquare$

2. Transcendental Deduction


Transcendental Deductions:

• We decide to transcendental deduce the following manifest parts:

- * stations,
- * lines,
- into behaviours.

- * junctions and
- * passengers,

3. Perdurants

Perdurants

3.1 Channels

Channel

- 38. There is a set of channels between hubs, links and automobiles.
- 39. These channels communicate messages, M.

 M will "transpire" frm the behaviour definitions.

channel

- 38. { $ch[\{ui,uj\}] | \{ui,ij\}: (HI|LI|AI)-set \cdot ui \neq uj \land \{ui,uj\} \subseteq \sigma_{uids} \} M$ **type**
- 38. M

3.2 Behaviour Signatures

• The signature of behaviours follow the "Schönfinkel'ed pattern" of

```
names of behaviour: unique identifier
             \rightarrow mereology
                      \rightarrow static attributes
                              [\rightarrow inert\ and\ monitorable\ attributes]
                                     \rightarrow programmable attributes
                                             \rightarrow channel arrays and Unit.
value
       hub: HI
          \rightarrow MereoH
               \rightarrow (H\Omega \times ...)
                      \rightarrow (H\Sigma × HHist × ...)
                            \rightarrow \{ \mathsf{ch}[\{\mathsf{uid}_{\mathsf{H}}(p),\mathsf{ai}\}] | \mathsf{ai}: \mathsf{Al} \cdot \mathsf{ai} \in as_{uid} \} \ \mathbf{Unit}
           link: LI
            \rightarrow Mereol \rightarrow
                 \rightarrow (L\Omega \times LEN \times ...) \rightarrow
                      \rightarrow (L\Sigma × LHist × ...)
                            \rightarrow \{ \mathsf{ch}[\{\mathsf{uid\_L}(p),\mathsf{ai}\}] | \mathsf{ai:Al\cdot ai} \in as_{uid} \} \ \mathbf{Unit}
            automobile: Al
                       \rightarrow MereoA
                            \rightarrow (...)
                                 \rightarrow (AVel \times HAcc \times ... \times APos \times AHist)
                                      \rightarrow \{ \mathsf{ch}[\{\mathsf{uid}\_\mathsf{H}(p),\mathsf{ri}\}] | \mathsf{ri}:(\mathsf{HI}|\mathsf{LI})\cdot\mathsf{ri}\in hs_{uid}\cup ls_{uid} \} \ \mathbf{Unit}
```

3.3 Behaviour Definitions

Automobile at Hub

```
40. We abstract automobile behaviour at a Hub (hi).
  (a) Either the automobile remains at the hub,
 (b) or, internally non-deterministically,
  (c) leaves the hub entering a link,
 (d) or, internally non-deterministically,
  (e) stops.
     automobile(ai)(ris)(...)(atH(hi),ahis,_) \equiv
          automobile_remain_at_hub(ai)(ris)(...)(atH(hi),ahis,__)
 40a
 40b
          automobile_leaving_hub(ai)(ris)(...)(atH(hi),ahis,__)
 40c
 40d
          automobile_stop(ai)(ris)(...)(atH(hi),ahis,__)
```

40e

Automobile at Hub – Contd.

- 41. [40a] The automobile **remains** at a hub:
 - (a) time is recorded,
 - (b) informing the hub behaviour, whereupon
 - (c) the automobile remains at that hub, "idling",

```
41 automobile_remain_at_hub(ai)(ris)(...)(atH(hi),ahis,__) \equiv 41a let \tau = \mathbf{record}_{\mathbb{T}}\mathbb{IME} in 41b ch[{ai,hi}]! \tau; 41c automobile(ai)(ris)(...)(atH(hi),\langle (\tau, hi) \rangle^{\hat{}}ahis,__) end
```

Automobile at Hub – Contd.

- 42. [40c] The automobile **leaves** the hub entering link li:
 - (a) time is recorded;
 - (b) hub is informed of automobile leaving and link that it is entering;
 - (c) "whereupon" the vehicle resumes (i.e., "while at the same time" resuming) the vehicle behaviour positioned at the very beginning (0) of that link.
 - 42 automobile_leaving_b(ai)({li}\Uris)(...)(atH(hi),ahis,__) \equiv 42a let $\tau = \mathbf{record}_{\mathbb{T}} \mathbb{IME}_{\mathbb{T}}$ in
 42b (ch[{ai,hi}]! τ || ch[{ai,li}]! τ);
 42c automobile(ai)(ris)(...)(onL(li,(hi,0,__)), $\langle (\tau, li) \rangle^{\hat{}}$ ahis,__) end
 42 pre: [hub is not isolated]

Automobile at Hub – Contd.

43. [40e] Or the automobile **stops**, "disappears — off the radar"!

43 automobile_ $stop(ai)(ris),(...)(atH(hi),ahis,_) \equiv stop$

3.4 Behaviour Initialization

Initialization

- 44. Let us refer to the system initialization as a behaviour:
 - (a) all hubs are initialized concurrently,
 - (b) and, concurrently,
 - (c) all links are initialized concurrently,
 - (d) and, concurrently,
 - (e) all automobiles are initialized concurrently.

value

```
44. rts_initialisation: Unit \rightarrow Unit
44. rts_initialisation() \equiv
44a. \parallel { hub(uid_H(I))(mereo_H(I))(attr_H\Omega(I),...)(attr_H\Sigma(I),...)| h:H · h ∈ hs }
44b. \parallel
44c. \parallel { link(uid_L(I))(mereo_L(I))(attr_LEN(I),...)(attr_L\Sigma(I),...)| I:L · I ∈ ls }
44d. \parallel
44e. \parallel { automobile(uid_A(a))(mereo_A(a))(attr_APos(a)attr_AHis(a),...) | a:A · a ∈ as }
```

Summing Up

Review & Outlook

• This is NEITHER Computer NOR Computing Science:

* This is Domain Science & Engineering

- * It is, for example,
 - · a prerequisite for software requirements
 - \cdot and hence software design & coding!
- * We must abandon the "old" approach: just
 - \cdot first software requirements.
 - \cdot then software design & coding!

* Now:

- * First domain modeling \mathbb{D} .
- * Then "derive" requirements \mathbb{R} from \mathbb{D} .
- * Then "derive" software \mathbb{S} from \mathbb{R} .
- * Finally verify $\mathbb{D}, \mathbb{S} \models \mathbb{R}$

Review & Outlook

Four uses of Domain Models:

* Understanding

* Theorems of Societal Infrastructures

* "Business Process Re-engineering"

* Redesigning Societal Infrastructures

* Software Development: Domains \rightarrow Requirements \rightarrow Software

* Basis for School Textbooks!

- * Today we teach & learn about mathematics, physics, zoology, wt.
- \ast Tomorrow we could/should teach & learn about our own infrastructures:
 - \cdot utilities,

· banking,

- · judiciary system,
- \cdot retailing,

· health care,

- · transport logistics,
- · manufacturing,
- \cdot et cetera.

Review & Outlook - Continued:

• Exploratory Models – 1995–2025:

- * A Retailer Market,
- * Documents,
- * Canals,
- * Container Terminals,
- * Credit Cards,
- * Double-entry Bookkeeping,
- * Graphs,
- * Rivers & Canals,
- * Railways,
- * Road Transport,

- * Shipping,
- * Stock Exchanges,
- * Swarms of Drones,
- * The "7 Seas",
- * The "Blue Skies",
- * Transport Logistics,
- * Urban Planning,
- * Weather Information,
- * Web Transactions,
- * Worldwide Banking.

Review & Outlook – Continued:

How to Do:

* Study the Domain:

* visit/work in the domain

* talk to domain stakeholders

* read about the domain

* etc., etc.

* Exploratory Model: one person⁴

2 months! – then

- * Establish & Mantain Vocabulary: throughout the project
- * Form a Team: one or two per manifest endurant + perdurant⁵
- * Follow the Method: Strictly, "no wavering!"
- * Daily Work:

* Early am: [Rotating/Shift] Review colleague's work

* Mid am: Team white board meeting: Discuss issues

* Late am + all pm: Modeling

8:30-10:00

10:00-10:45

10:45–12:00, 13:00–16:30

^{4 –} as for this example – or two for "larger" domain

⁵ – that is: 5 for this example!

Review & Outlook – Continued:

How Much – How Little ?:

* For Understanding:

Any amount of a domain!

* For "Business Process Re-Engineering":

Those aspects that appears to be re-oriented plus a little more!

* For Software Development:

A little more than what appears to be "computerized"!

* For School Textbooks:

That of a domain that he textbook would like to teach students.

Review & Outlook – Continued:

Commensurate Models:

* "Families" of Domain Models:

- * We assume that there are, or will be, two or more domain X models.
- * Then $X_i, X_j, ..., X_k$, should/must satisfy some "Commensurateness" relations:
- $*\mathcal{C}_{ij}(X_i, X_j), \mathcal{C}_{ik}(X_i, X_k), ..., \mathcal{C}_{jk}(X_j, X_k).$
- *C "being": extension, retraction, refinement, enlargement, ...

That's it, Folks!

THANKS