
Banking. August 18, 2025 i

Banking
A Domain Description

Dines Bjørner

Technical University of Denmark

bjorner@gmail.com – www.dtu.dk/˜db

August 18, 2025: 12:03

Work in Progress:

– is updated, corrected, revised, extended daily !

An Incomplete Draft

ii August 18, 2025 Dines Bjørner

• Some basic structure of this documents was set up in February 2025.

• I really began this document, in earnest, i.e., every day since early June 2025.

• Thursday, June 26, 2025:

– I started with some chapter structure.

– In the last week I shuffled various chapters.

– Yesterday and today I insert chapters on Currencies, Exchange Rates, etc.

• Sunday/Monday, June 29/30, 2025:

– I added Appendices on RSL and Domain Modeling, A–B.

• Friday August 1, 2025: In sections on customer, branch office, bank, etc., behaviours

– some subsections are labeled ‘Command’, but should probably be labeled ‘Message’

– and some communicated messages which presently only lists a command should also be prefixed

with a triplet: (f romui,τ, toui) –

– or should all such triplets be “abandoned” ?

• Saturday August 2, 2025: “Completed” open bank account and deposit behaviours (for cus-

tomers, branch offices and banks).

• Saturday August 9, 2025: Check, later, that account and bank history attributes are properly aug-

mented.

iii

Prelude

• We analyze and describe a conceptual domain of banking. Our “ambition” is to capture

some essential aspects of banking: from Your “mortar-&-nrick” [neigbourhood] local bank

with its branch offices and head-quarter via the national bank of Your country and the cen-

tral bank of Your region (or continent) to The World Bank and The International Monetary

Fund: which are their discernable structures, their individual operations and interaction.

This motivation for work on this document is to test “my method”.

To try it out an “near-real-life / real-scale” domains.

Alas, the domain is being “researched”, analyzed and described by only one person, 87

years old !

In a proper, professional, commercial banking domain modeling effort, see Sect. 18.4 on
page 157, there would be 7-8 persons, well-trained in Domain Modeling, doing, in
3-4 months, what is here being done by 1 person in 3-4 months (June-Sept. 2025).

• This report assumes some familiarity with RSL, cf. Appendix A on page 169, and
Domain Modeling, cf. Appendix B on page 197.

© Dines Bjørner – August 18, 2025: 12:03

iv August 18, 2025 Dines Bjørner

Contents

I A General Setting 1

1 Introduction 3

1.1 On A Notion of ‘Infrastructure’ . 3

1.2 A Dichotomy . 4

1.3 The Dichotomy Resolved . 5

1.4 A Series of Infrastructure Domain Models . 5

II Introductory Remarks 7

2 Currencies, Exchange Rates and Interests 9

2.1 Introduction . 9

2.2 Currency . 10

2.3 Exchange Rates . 10

2.4 Interests . 11

2.5 Discussion . 12

3 A First Take 13

3.1 A Survey . 13

3.2 Examples . 14

3.3 A First Rigorous Description . 16

3.4 Summary . 24

III Ordinary Customer Banking 25

4 Customers 27

4.1 External Qualities . 29

4.2 Internal Qualities . 30

4.3 Customer Commands . 35

4.4 Customer Behaviours . 37

4.5 Discussion . 68

5 Banks 69

5.1 Introduction . 70

5.2 Attributes . 72

5.3 Banking System Communication . 74

5.4 Bank Commands . 75

5.5 Bank Behaviours . 76

5.6 Discussion . 97

v

vi CONTENTS

6 Branch Offices 99

6.1 External Qualities . 100

6.2 Internal Qualities . 100

6.3 Branch Office Intentional Pull . 102

6.4 Branch Office Commands . 103

6.5 Branch Office Behaviours . 104

7 Bank Head Quarter 129

7.1 External Qualities . 129

7.2 Internal Qualities . 129

7.3 Bank Head Quarte Intentional Pull . 130

7.4 Bank Head Quarte Commands . 130

7.5 Bank Head Quarter Behaviours . 130

8 Tellers 131

8.1 Tellers and Automatic Teller Machines[ATM] . 131

8.2 ATMs . 131

8.3 Discussion . 131

9 Credit/Debit Company 133

9.1 External Qualities . 134

9.2 Internal Qualities . 134

9.3 Credit/Debit CompanyIntentional Pull . 134

9.4 Credit/Debit CompanyCommands . 134

10 Mortgage, Savings and Loan Companies 135

10.1 External Qualities . 136

10.2 Internal Qualities . 136

10.3 Credit/Debit CompanyIntentional Pull . 136

10.4 Credit/Debit CompanyCommands . 136

IV Stocks: Brokers & Exchange 137

11 Stock Brokers 139

12 Stock Exchanges 141

V National, Regional & Global Banks 143

13 National Banks: Endurants and Commands 145

13.1 Endurants . 145

13.2 National Bank Intentional Pull . 146

13.3 National Bank Commands . 146

14 Central Banks: Endurants and Commands 147

14.1 Endurants . 147

14.2 Regional Bank Intentional Pull . 147

14.3 Regional Bank Commands . 147

15 IMF: Endurants and Commands 149

15.1 Endurants . 149

15.2 IMF Intentional Pull . 149

15.3 IMF Office Commands . 149

CONTENTS vii

16 The World Bank: Endurants and Commands 151

16.1 Endurants . 151

16.2 The World Bank Intentional Pull . 151

16.3 The World Bank Commands . 151

VI Closing 153

17 Discussion 155

18 Conclusion 157

18.1 What Have We Achieved ? . 157

18.2 What Have We Not Achieved ? . 157

18.3 How Was This Domain Modelling Approached ? . 157

18.4 A Prelude to a Professional Banking Domain R & D . 157

18.5 What Next ? . 157

18.6 Acknowledgements . 157

18.7 References . 158

VII Appendix 165

A A Raise Specification Language Primer 167

A.1 Types and Values . 169

A.2 The Propositional and Predicate Calculi . 174

A.3 Arithmetics . 176

A.4 Comprehensive Expressions . 176

A.5 Operations . 179

A.6 λ -Calculus + Functions . 186

A.7 Other Applicative Expressions . 188

A.8 Imperative Constructs . 191

A.9 Process Constructs . 191

A.10 RSL Module Specifications . 192

A.11 Simple RSL Specifications . 192

A.12 RSL+: Extended RSL . 193

A.13 Distributive Clauses . 194

A.14 Space and Time . 194

B The Domain Modeling Theory 197

B.1 Domains . 200

B.2 Six Languages . 202

B.3 Endurants and Perdurants, I . 204

B.4 A Domain Analysis & Description Ontology . 204

B.5 The Name, Type and Value Concepts . 207

B.6 Phenomena and Entities . 208

B.7 Endurants and Perdurants, II . 208

B.8 External and Internal Endurant Qualities . 209

B.9 Perdurant Concepts . 224

B.10 Facets . 235

B.11 Conclusion . 237

C The Tokyo Stock Exchange 241

C.1 Introduction . 241

C.2 The Problem . 241

C.3 A Domain Description . 242

viii CONTENTS

D Indexes 257

D.1 RSL Index . 257

D.2 A Domain Modeling Index . 259

D.3 Banking Domain Concepts . 261

D.4 Formal Entities . 262

Part I

A General Setting

1

Chapter 1

Introduction

Contents

1.1 On A Notion of ‘Infrastructure’ . 3

1.1.1 Domain Models . 4

1.1.2 Some Characterizations . 4

1.1.3 Purpose of Domain Models . 4

1.1.4 Domain Science & Engineering 4

1.2 A Dichotomy . 4

1.2.1 An Outline . 4

1.2.2 The Dichotomy . 5

1.3 The Dichotomy Resolved . 5

1.4 A Series of Infrastructure Domain Models 5

The Triptych Dogma

In order to specify software,
we must understand its requirements.

In order to prescribe requirements,
we must understand the domain.

So we must study, analyze and describe domains.

This is one of a series, [26, 31, 30, 29, 23], of domain studies of such infrastructure components as government,

public utilities, banking, transport, insurance, health care, etc. The current, this ‘Introduction’ chapter is common

to these study reports.

1.1 On A Notion of ‘Infrastructure’

Central to our effort of studying “man-made” domains is the notion of infrastructure1. The infrastructure can be

characterized as follows: the basic physical and organizational structures and facilities (e.g. buildings, roads,

power supplies) needed for the operation of a society or enterprise, “the social and economic infra-

structure of a country”. We interpret the “for example, e.g.,” to include, some already mentioned above:

government structure: legislative, executive & judicial units, transport: roads, navigable rivers and lakes, the

open sea, banking, educational system, health care, utilities: water, electricity, telecommunications (e.g. the

1https://en.wikipedia.org/wiki/Infrastructure

3

4 CHAPTER 1. INTRODUCTION

Internet) gas, , etc.,2 Also: Winston Churchill is quoted to have said in the House of Commons: “The

young Labour speaker we have just listened to wants clearly impressing his constituency with the fact that he

went to Eton and Oxford since he now uses such modern terms as ‘infrastructure’ ”.

1.1.1 Domain Models

We rely on [27, 24, 19, 18, 15]. They provide a scientific foundation for modelling domains in the style of this

report.

1.1.2 Some Characterizations

• Domain: By a domain we shall understand a rationally describable segment of a manifest3, discrete

dynamics fragment of a human assisted reality: the world that we daily observe – in which we work and

act, a reality made significant by human-created entities. The domain embody endurants and perdurants.

• Endurants: By endurants we mean those quantities of domains that we can observe (see and touch), in

space, as “complete” entities at no matter which point in time – “material” entities that persists, endures

– capable of enduring adversity, severity, or hardship [Merriam Webster].

• Perdurants: By perdurants we mean those quantities of domains for which only a fragment exists, in

space, if we look at or touch them at any given snapshot in time [Merriam Webster].

• Domain Description: By a domain description we shall here mean a syntactic entity, both narrative

and formal, describing the domain. That is, a domain description is a structured text, such as shown in

Chapters 2–16 (pages 9–151).

• Domain Model: By a domain model we shall here mean the mathematical meaning, the semantics
as denoted the domain description.

1.1.3 Purpose of Domain Models

The Triptych dogma (above) expresses a relation of domain models to software. But domain models serve a

wider role. Mathematical models of, say, physics, are primarily constructed to record our understanding of some

aspects of the world – only secondarily to serve as a basis for engineering work. So it is with manifest models

of infra structure components such banking, insurance, health care, transport, etc. In this, and a series of papers,

[30, 29], we shall therefore present the result of infra structure studies. We have, over the years, developed many

domain models: [5].

1.1.4 Domain Science & Engineering

A series of publications [15, 18, 19, 24, 28] reflects scientific insight into and an engineering methodology for

analyzing and describing manifest domains.

1.2 A Dichotomy

1.2.1 An Outline

As citizens we navigate, daily, in a God-given and a Man-made world. The God-given world can be characterized,

i.e., “domain described”, as having natural science properties. The laws that these natural science properties obey

are the same – all over the universe ! The Man-made world can be characterized, i.e., “domain described”, as

2According to the World Bank, ‘infrastructure’ is an umbrella term for many activities referred to as ‘social

overhead capital’ by some development economists, and encompasses activities that share technical and eco-

nomic features (such as economies of scale and spill-overs from users to non-users). We take a more technical

view, and see infrastructures as concerned with supporting other systems or activities. Software for infrastruc-

tures is likely to be distributed and concerned in particular with supporting communication of data, people and/or

materials. Hence issues of openness, timeliness, security, lack of corruption and resilience are often important.
3The term ‘manifest’ is used in order to distinguish between these kinds of domains and those of computing

and data communication: compilers, operating systems, database systems, the Internet, etc.

1.3. THE DICHOTOMY RESOLVED 5

having infrastructure components4 . The “laws” that these properties obey are not necessarily quite the same

around our planet !

1.2.2 The Dichotomy

For our society to work, we are being educated (in primary, secondary, tertiary schools, colleges and at univer-

sities). We are taught to to read, write and [verbally] express ourselves, recon and do mathematics, languages,

history and the sciences: physics (mechanics, electricity, chemistry, biology, botany’s, zoology, geology, geogra-

phy, ...), but we are not taught about most of the infrastructure structures5. That is the dichotomy.

1.3 The Dichotomy Resolved

So there it is:

• first study a or several domains;

• then analyze, describe and publish infrastructure domains;

• subsequently prepare educational texts “over” these;

• finally introduce ‘an infrastructures’ school course.

1.4 A Series of Infrastructure Domain Models

So this domain science & engineering paper – on banking – is one such infrastructure domain description. In all

we are and would like to work on these infrastructure domains:

• Transport https://www.imm.dtu.dk/ dibj/2025/infra/main.pdf [31]

• Banking https://www.imm.dtu.dk/ dibj/2025/infra/banking.pdf [26]

• etc.

A report on double-entry bookkeeping [23] relates strongly to most of these infra-structure component domains6.

4state, regional and local government: executive, legislative and judicial, banking, insurance, health care

(hospitals, clinics, rehabilitation, family physicians, pharmacies, ...), passenger and goods transport (road, rail,

sea and air), manufacturing and sales, publishing (newspapers, radio, TV, books, journals, ...), shops (stores, ...),
5See footnote 4.
6http://www.imm.dtu.dk/ dibj/2023/doubleentry/dblentrybook.pdf

6 CHAPTER 1. INTRODUCTION

Part II

Introductory Remarks

7

Chapter 2

Currencies, Exchange Rates and
Interests

Contents

2.1 Introduction . 9

2.1.1 The Main Players . 9

2.1.2 The Main Concepts . 10

2.2 Currency . 10

2.2.1 Currencies . 10

2.2.2 Formal Model . 10

2.3 Exchange Rates . 10

2.3.1 Informal . 10

2.3.2 Formal . 11

2.3.2.1 Buy/Sell Rate . 11

2.3.2.2 Today’s Exchange Rates: Thu. 26 June, 2025 11

2.4 Interests . 11

2.4.1 Deposit & Borrowing Rates . 11

2.5 Discussion . 12

2.1 Introduction

2.1.1 The Main Players

• There are two main players:

– customers and banks.

• We consider, in this document, only one kind of customer:

– “lay” people, like You and me, ordinary people,

– in contrast to enterprises and local and national governments

seeking some form of association with banks:

– depositing,

– lending, and

– borrowing monies.

9

10 CHAPTER 2. CURRENCIES, EXCHANGE RATES AND INTERESTS

2.1.2 The Main Concepts

• We need money to be able to sustain our daily life.

• And we, generally, earn or accrue money to do so.

• Money come in different currencies, Sect. 2.2.

• Cash in one currency can be exchanged for cash in another currency, Sect. 2.3.

• To protect our cash we can “put the money in the bank” – where it might accrue interest, Sect. 2.4
– and through whom [the bank] it can be currency exchanged.

2.2 Currency

2.2.1 Currencies

By ‘currencies’7 we shall here mean the variety of money currencies:

• Danish Kroner,

• Swedish Kroner,

• Norwegian Kroner,

• British Pound, £,

• Euro, e,

• Swiss Francs,

• Turkish Lira,

• Israeli Shekel,

• Thai Baht, THB,

• Singapore Dollar, S$,

• Hong-Kong Dollar,

HK$,

• Macao Petacas,

• Chinese Yuan, CNY,

• Japanese Yen, U,

• US Dollar, $,

Etcetera !

2.2.2 Formal Model

1. There is a literal for each currency:

type

1. Currency = ”DKK”|...|”Pound”|...|”HKDollar”|...|”Yan”|...|”USD”

2.3 Exchange Rates

2.3.1 Informal

Cash in “foreign currency”, i.e., in a currency different from the one with which you wish to buy

or sell an amount of that “other” currency, is exchanged “at a rate”. There is usually one rate for

buying and a another for selling. A rate is expressed as a pair, ((sell,curr1),(cost,curr2)), of natural

numbers: and currency names: I offer sell monies in currency curr1, and get cost monies in currency

curr2. Likewise for buying: I offer buy monies in currency curr1, and get amount monies in currency

curr2.

The buy rate is sell curr1
cost curr2

, and the sell rate is buy curr1
amount curr2

.

7https://en.wikipedia.org/wiki/List of currencies

2.4. INTERESTS 11

2.3.2 Formal

2.3.2.1 Buy/Sell Rate

2. Four pieces of information are stated: the amount, buy [sell], of monies, in currency, curr1,

that will buy [sell] an amount, bought [sold], in currency, curr2. We set buy, sell to 1

currency unit.

type

2. ExchangeRates = Buy × Sell
2. Buy, Sell = Curr 1 × Curr 2 →m Bought [resp. Sold]
value

2. buy: Buy → ExchangeRates → Bought
2. buy(a)(b,s) = a∗b(a)
2. sell: Sell × ExchangeRates → Sold
2. see(s)(b,s) = a∗s(a)

This ExchangeRates relation is determined, from “day-to-day”, by a national or central bank.

2.3.2.2 Today’s Exchange Rates: Thu. 26 June, 2025

We refer to https://danskebank.dk/privat/vaerktoejer/beregn/omregn-valuta8 and set the

amounts to be bought and sold to 100 !

• 100 DKK to 13.40 e

• 100 e to 116.95 US$

• 100 £ to 874.35 DKK

• 100 e to 746.04 DKK

• 100 US$ to 85.5 e

• 100 DKK to 11.44 £

2.4 Interests

9

By ‘interests’ we shall here mean

MORE TO COME

2.4.1 Deposit & Borrowing Rates

• Ordinary, “You and me”, customers, get one rate for our monies deposited with a bank,

– in fact, there are, usually, several rates:

– short- vs. long-term deposits, and

– short- vs. long-term loans,

– with some loans requiring installments, some not;

• and other rate for borrowing monies,

– again subject to short- and long-term conditions.

MORE TO COME

8Check & double check !
9Danish: CIBOR-renten, eller Copenhagen Interbank Offered Rate, er en dagligt fastsat referencerente, der

bruges som grundlag for rentesatser p mange finansielle produkter i Danmark, især lån og kreditter. Den beregnes

som et gennemsnit af de renter, som et antal store banker er villige til at tilbyde hinanden ved udlån i danske

kroner over en given periode. https://da.wikipedia.org/wiki/CIBOR

12 CHAPTER 2. CURRENCIES, EXCHANGE RATES AND INTERESTS

2.5 Discussion

TO BE WRITTEN

Chapter 3

A First Take

Contents

3.1 A Survey . 13

3.2 Examples . 14

3.3 A First Rigorous Description . 16

3.3.1 Main Endurants . 16

3.3.2 External Qualities . 16

3.3.2.1 The Sorts . 16

3.3.2.2 A Global Parts State 18

3.3.3 Internal Qualities . 19

3.3.3.1 Unique Identification 19

3.3.3.1.1 Types & Observers 19

3.3.3.1.2 A Global Unique Identifier State 20

3.3.3.1.3 An Axiom on Part States 21

3.3.3.1.4 On Unique Identifiers 22

3.3.3.1.4.1 Retrieve functions 22

3.3.3.1.4.2 Constraints: 23

3.3.3.2 Mereology . 24

3.3.3.2.1 Types and Observers 24

3.3.3.2.2 Wellformedness 24

3.4 Summary . 24

3.1 A Survey

By ‘banking’10 we shall here mean a [loose] structure of, “from bottom-up” of:

• currency – exchange rate and interests; [Chapter 2]

• a “first take” at a banking structure; [Chapter 3]

• ordinary bank customers; [Chapter 4]

• the ordinary customers, i.e., citizens, bank11; [Chapter 5]

10https://www.academicbooks.dk/content/introduction-banking
11– with a head quarter and one or more branch offices

13

14 CHAPTER 3. A FIRST TAKE

• your neighbourhood bank’s branch office; [Chapter 6]

• that branch office’s head-quarter – “the” bank ; [Chapter 7]

• Tellers; [Chapter 8]

• credit/debit companies; [Chapter 9]

• mortgage, savings & loan banks; [Chapter 10]

• stock brokers & exchanges; [Chapters 11–12]

• national banks,12; [Chapter 13]

• the central [or regional] banks,13; and [Chapter 14]

• the continental and world-wide bank authorities14. [Chapters 16–15]

The concept of currency is included in this study – see Chapter 2.
In this study we shall analyze and describe the endurants of this structure and their [perdurant]

operations, endurants as well as perdurants: “things You can point at” and ‘banking’ actions You
and they perform.

Your “mortar-&-brick” [neighbourhood] local bank is abstracted in the form of a pair: the
set of branch offices as one entity closely “connected” (in its daily operations) with the bank
head-quarters.

3.2 Examples

Examples of banking structures “as seen” from a country perspective are15:

• Denmark:

– Local Banks: Den Danske Bank, Jyske Bank, ...

– National Bank: National Banken

– Central Bank: The European Central Bank

– The World Bank

– IMF

• France:

– Local Banks: BNP Paris Bas, Societe Generale, Credit Agricole Group, ...

– National Bank: Banque de France

– Central Bank: The European Central Bank

– The World Bank

– IMF

• England:

– Local Banks: HongKong & Shanghai Bank, Lloyds, Barclays, Standard Chartered, ...

– National Bank: The Bank of England

12like the Bank of England, the US Federal Reserve, etc.
13like the Bank of England, the European Bank, the US Federal Reserve, etc.
14such as the Asian Development Bank, the World Bank and the International Monetary Fund, IMF
15 TO BE CHECKED !

3.2. EXAMPLES 15

– The World Bank

– IMF

• China:

– Local Banks: Industrial and Commercial Bank (ICBC), Bank of China, China Con-
struction Bank, Agricultural Bank, Bank of Communications, Postal Savings Bank,
...

– National Bank: Bank of China

– The World Bank

– IMF

• United States of America:

– Local Banks: JPMorgan Chase, Bank of America, Citibank, Wells Fargo Bank, U.S.
Bank, Goldman Sachs Bank, ...

– National Bank: Federal Reserve

– The World Bank

– IMF

16 CHAPTER 3. A FIRST TAKE

3.3 A First Rigorous Description

3.3.1 Main Endurants

3.3.2 External Qualities

3.3.2.1 The Sorts

3. There is “the entire”, world-wide banking system !

4. From the banking system we can observe a bank aggregate.

5. A bank aggregate consists of a set of one or more banks.

6. From a bank we can observe its head quarter.

7. And from a bank we can observe an aggregate of branch offices.

8. An aggregate of branch offices is a set of branch offices.

9. From the banking system we can observe a customer aggregate.

10. From a customer aggregate we can observe a set of customers.

11. Customers are atomic endurants.

type

3. WBS
4. BA
5. BS = B-set

5. B
6. HQ
7. BOA
8. BOS = BO-set

8. BO
9. CA
10. CS = C-set

11. C

value

4. obs BA: WBS → BA
5. obs BS: BA → BS
6. obs HQ: B → HQ
7. obs BOA: B → BOA
8. obs BOS: BA → BOS
9. obs CA: WBS → CA
10. obs CS: CA → CS

3.3. A FIRST RIGOROUS DESCRIPTION 17

BS

B

BA

B B

BOA

BBS BBS BBS

BOA BOA

BO BO BO BO BO BO BO BO BO

HQ HQ HQ

. . . [other WBS parts]

WBS

C CC

CA

CS

Figure 3.1: Bank + Customer Taxonomy

We show only a fragment of the world-wide banking system.

18 CHAPTER 3. A FIRST TAKE

3.3.2.2 A Global Parts State

12. A given world-wide banking system forms a state.

13. From that we can observe “the banking” aggregate;

14. from which we can observe the set of all banks “in the world” !

15. And from these we can observe the sets of

(a) all bank headquarters

(b) all branch offices.

16. From the world-wide banking system we can observe a customer aggregate.

17. From the customer aggregate we can observe the set of customers.

18. Customers are atomic !

19. Together they all form an endurant parts state.

value

12. wbs:WBS
13 . ba:BA = obs BA(wbs)
14. bs:BS = obs BS(ba)
15a. hqs:HQ-set = { obs HQ(b) | b:B • b∈bs }
15b. bos:BO-set = { obs BA(b) | b:B • b∈bs }
16. ca:CA = {obs CA(wbs)}
17. cs:CS = obs CS(ca)
19. σwbs = {wbs }∪{ ba }∪{ bs }∪ hqs∪ bos∪{ ca}∪ cs

3.3. A FIRST RIGOROUS DESCRIPTION 19

3.3.3 Internal Qualities

3.3.3.1 Unique Identification

3.3.3.1.1 Types & Observers

20. Parts have unique identifiers:

(a) the world-wide banking system,

(b) the banking aggregate,

(c) the set of all banks,

(d) each bank,

(e) each bank head quarter,

(f) each aggregate of branch offices,

(g) each set of bank branch offices,

(h) each branch office,

(i) the customer aggregate.

(j) the set of all customers, and

(k) each customer.

type

20a. WBSI
20b. BAI
20c. BSI
20d. BI
20e. HQI
20f. BOA
20g. BOSI
20h. BOI
20i. CAI
20j. CSI
20k. CI

value

20a. uid WBS: WBS → WBSI
20b. uid BA: BA → BAI
20c. uid BS: BS → BSI
20d. uid B: B → BI
20e. uid HQ: HQ → HQI
20f. uid BOA: BOA → BOAI
20g. uid BOS: BOS → BOSI
20h. uid BO: BO → BOI
20i. uid CA: CA → CAI
20j. uid CS: CS → CSI
20k. uid C: C → BOI

20 CHAPTER 3. A FIRST TAKE

3.3.3.1.2 A Global Unique Identifier State We formulate the global unique identifier state in

the style of that of the global parts state: ι12 π18′– ι19 π18′.

ι12 π18′ A given world-wide banking system forms a state.

ι13 π18′ From that we can observe the unique identifier of “the banking” aggregate;

ι14 π18′ from which we can observe the unique identifier of the set of all banks “in the world” !

ι15 π18′ And from these we can observe the sets

ι15a π18′ the unique identifiers of all bank headquarters

ι15b π18′ the unique identifiers all branch offices.

ι16 π18′ the unique identifier of the customer aggregate,

ι17 π18′ the unique identifier of the customer set, and

ι18 π18′ the unique identifiers of all the customers in that set.

ι19 π18′ Together they all form a unique identifier state.

value

ι12 π18′. wbsuid :WBSI = uid (wbs)
ι13 π18′. bauid:BAI = uid (obs BA(wbs))
ι14 π18′. bsuid :BSS = uid (obs BS(ba))
ι15a π18′. hqsuid:HQI-set = { uid (obs HQ(b)) | b:B • b∈ bs }
ι15b π18′. bosuid:BOI-set = { uid (obs BA(b)) | b:B • b∈ bs }
ι16 π18′. cauid :CAI = uid (obs CA(wbs))
ι17 π18′. csuid :CSI = uid (obs CS(ca))
ι18 π18′. cssuid :CI-set = { uid (c) | c:C • c∈ cs }
ι19 π18′. σwbsuid

= {wbsuid }∪{ bauid }∪{ bsuid }∪ hqsuid ∪ bosuid∪{ cauid }∪ cssuid

3.3. A FIRST RIGOROUS DESCRIPTION 21

3.3.3.1.3 An Axiom on Part States

21. Part identifiers are unique.

axiom

21. card σwbs = card σwbsuid

• • •

Note on Manifest Bank Parts: I have “endowed” all parts so far introduced with unique identifiers.

That is not to say that I presently, Sunday June 15, 2025, consider all these parts being manifest. For

this reason I shall presently, 15.6.2025, for this section, only consider as manifest bank parts: Banks,

their Head Quarters and Branch Offices.

BS

B

WBS

BA

B B

BBS BBS BBS

BO BO BO BO BO BO BO BO BO

[other WBS parts]. . .

HQ HQ HQ
BOA BOA BOA

bs

hqs

uid

uid

uid
bos

Figure 3.2: A Manifest Bank State

22 CHAPTER 3. A FIRST TAKE

3.3.3.1.4 On Unique Identifiers Unique identifiers “embody” much information !

3.3.3.1.4.1 Retrieve functions

22. From the unique identifier of a bank we can observe

(a) the identifier of “its” national bank,

(b) the identifier of its head quarter and

(c) the identifiers of all its branch offices (!).

23. From the unique identifier of a bank head quarter we can observe

(a) the identifier of “its” national bank,

(b) the identifier of “its” bank,

(c) and the identifiers of all its branch offices (!).

24. From the unique identifier of a branch office we can observe

(a) the identifier of “its” bank

(b) and head quarter.

value

22a. xtr NBI: B → NBI
22b. xtr HQI: B → HQI
22c. xtr BOIS: B → BOI-set

23a. xtr NBI: HQ → NBI
23b. xtr BI: HQ → BI
23c. xtr BOIS: HQ → BOI-set

24a. xtr BI: BO → BI
24b. xtr HQI: BO → HQI

3.3. A FIRST RIGOROUS DESCRIPTION 23

3.3.3.1.4.2 Constraints: The Wellformedness criteria related to banks amount to axioms and

can be thought of as implying “data vetting” 16 – something to be “taken care of” by any software

implementation.

25. For every bank

(a) the identifier of its head quarter must be in the set of all bank head quarter identifiers,

(b) and the identifiers of its branch offices must be in the set of all branch office identifiers,.

26. For every bank head quarter the identifiers of

(a) its branch offices

(b) and its bank

must identify that head quarter.

27. For every branch office the identifiers of

(a) its head quarter

(b) and its bank

must identify that branch office.

axiom [Consistent Bank Identification]
25. ∀ b:B • b ∈ bs ⇒
25a. let hqi = xtr HQI(b) in hqi ∈ hqsuid end

25b. ∧ let bois = xtr BOIS(b) in bois ∈ bosuid

26. ∧ ∀ hq:HQ • hq=obs HQ(b) ⇒ let hqi=uid HQ in

26a. let bois = xtr BOIS(hq) in ∀ boi∈bois⇒xtr HQ(boi)=hqi end

26b. ∧ let bi = xtr BI(hq) in xtr HQI(bi)=hqi end end end

27. ∧ ∀ bo:BO • bo ∈ obs BOS(b) ⇒ let boi=uid BO in

27a. ∧ let hqi′ = xtr HQI(boi) in hqi = hqi′ end

27b. ∧ let bi′ = xtr BI(boi) in bi = bi′ end end

16Data vetting is a crucial process of checking the quality, accuracy, and reliability of data to ensure it meets

specific requirements and is suitable for its intended use. Wikipedia

24 CHAPTER 3. A FIRST TAKE

3.3.3.2 Mereology

3.3.3.2.1 Types and Observers

28. Banks: Banks relates, i.e., communicates with customers, their branch offices and their head

quarter17.

29. Bank Headquarters: communicates with the national bank, with other banks, with their

branch offices and with their customers.

30. Bank Branch Offices: communicates with their head quarter, customers and with other

banks.

type

28. BM = CI-set × BOI-set × HQI
29. HQM = NBI × HQI-set × BOI-set × CI-set

30. BOM = HQI × CI-set × BI-set

value

28. mereo B: B → BM
29. mereo HQ: HQ → HQM
30. mereo BO: BO → BOM

3.3.3.2.2 Wellformedness

31. Banks: The various unique identifiers must be identifiers of the respective categories.

32. Bank Headquarters: The various unique identifiers must be identifiers of the respective cat-

egories.

33. Bank Branch Offices: The various unique identifiers must be identifiers of the respective

categories.

value

31. wf BM: BM → Unit > Bool

31. wf BM(cis,bois,hqi)() ≡ bcs⊆ csuid ∧ bois⊆ bosuid∧ hqi∈ hqsuid

32. wf HQM: HQM → Unit → Bool

32. wf HQM(nbi,hqis,bois,cis)() ≡ nbi∈ nbsuid ∧ hqis⊆ hqsuid ∧ bois⊆ bosuid∧ cis⊆ cssuid

33. wf BOM: BOM → Unit → Bool

32. wf BOM(hqi,cis,bis)() ≡ hqis∈ hqsuid ∧ bis⊆ bsuid∧ bis⊆ bsuid

3.4 Summary

TO BE WRITTEN

17Note: This is a tentative model of bank mereologies. It, presently, omits, treatment of Credit/Debit compa-

nies, Mortgage, Savings & Loan Companies, Stock Brokers.

Part III

Ordinary Customer Banking

25

Chapter 4

Customers

Contents

4.1 External Qualities . 29

4.1.1 The Endurant Sorts . 29

4.1.1.1 Core Local Bank Endurants 29

4.1.1.2 Customers . 30

4.1.2 An Endurant State . 30

4.2 Internal Qualities . 30

4.2.1 Unique Identification . 30

4.2.1.1 Unique Identifier Sorts & Observers 30

4.2.1.2 A Unique Identifier State 31

4.2.2 Mereology . 32

4.2.3 Attributes . 33

4.2.3.1 Types and Observers 33

4.2.3.2 Attribute Wellformedness 35

4.3 Customer Commands . 35

4.4 Customer Behaviours . 37

4.4.1 Main Customer Behaviour . 37

4.4.2 Pro-active Behaviours . 38

4.4.2.1 Open Account . 39

4.4.2.1.1 Command 39

4.4.2.1.2 Behaviour 39

4.4.2.2 Place Deposit . 40

4.4.2.2.1 Command 40

4.4.2.2.2 Behaviour 40

4.4.2.3 Place Withdrawal . 41

4.4.2.3.1 Command 41

4.4.2.3.2 Behaviour 41

4.4.2.4 Transfer . 43

4.4.2.4.1 Command: 43

27

28 CHAPTER 4. CUSTOMERS

4.4.2.4.2 Behaviour 44

4.4.2.5 Exchange . 45

4.4.2.5.1 Command 45

4.4.2.5.2 Behaviour 45

4.4.2.6 Open Display . 46

4.4.2.6.1 Command 46

4.4.2.6.2 Behaviour 46

4.4.2.7 Close Display . 47

4.4.2.7.1 Command 47

4.4.2.7.2 Behaviour 47

4.4.2.8 Obtain Credit/Debit Card 48

4.4.2.8.1 Command 48

4.4.2.8.2 Behaviour 48

4.4.2.9 Credit/Debit . 49

4.4.2.9.1 Command 49

4.4.2.9.2 Behaviour 49

4.4.2.10 Close Credit/Debit Account 50

4.4.2.10.1 Command 50

4.4.2.10.2 Behaviour 50

4.4.2.11 Open Payment Service 51

4.4.2.11.1 Command 51

4.4.2.11.2 Behaviour 51

4.4.2.12 Close Payment Service 52

4.4.2.12.1 Command 52

4.4.2.12.2 Behaviour 52

4.4.2.13 Open Deposit Service 53

4.4.2.13.1 Command 53

4.4.2.13.2 Behaviour 53

4.4.2.14 Close Deposit Service 54

4.4.2.14.1 Command 54

4.4.2.14.2 Behaviour 54

4.4.2.15 Open Loan . 55

4.4.2.15.1 Command 55

4.4.2.15.2 Command 55

4.4.2.16 Amortize Loan . 56

4.4.2.16.1 Command 56

4.4.2.16.2 Behaviour 56

4.4.2.17 Increase Loan . 57

4.4.2.17.1 Command 57

4.4.2.17.2 Behaviour 57

4.4.2.18 Close Loan . 58

4.4.2.18.1 Command 58

4.1. EXTERNAL QUALITIES 29

4.4.2.18.2 Behaviour 58

4.4.2.19 Buy Stocks or Bonds 59

4.4.2.19.1 Command 59

4.4.2.19.2 Behaviour 59

4.4.2.20 Sell Stocks or Bonds 60

4.4.2.20.1 Command 60

4.4.2.20.2 Behaviour 60

4.4.2.21 Include/Exclude Debitor/Creditor 61

4.4.2.21.1 Command 61

4.4.2.21.2 Behaviour 61

4.4.2.22 Change Account Status 62

4.4.2.22.1 Command 62

4.4.2.22.2 Behaviour 62

4.4.2.23 Close Account . 63

4.4.2.23.1 Command 63

4.4.2.23.2 Behaviour 63

4.4.3 Customer Re-active Behaviours 64

4.4.3.1 The handle Behaviour 64

4.4.3.2 ur2 . 64

4.4.3.2.1 Command 64

4.4.3.2.2 Behaviour 64

4.4.3.3 ur3 . 65

4.4.3.3.1 Command 65

4.4.3.3.2 Behaviour 65

4.4.3.4 ur4 . 66

4.4.3.4.1 Command 66

4.4.3.4.2 Behaviour 66

4.4.3.5 ur5 . 67

4.4.3.5.1 Command 67

4.4.3.5.2 Behaviour 67

4.5 Discussion . 68

In this chapter we treat the concept of “mortar & brick” bank customers. By customers we shall here

mean non-bank individuals, businesses, organizations, communities, etc., who make use of local bank

services.

4.1 External Qualities

4.1.1 The Endurant Sorts

4.1.1.1 Core Local Bank Endurants

34. There is the wold banking system – from which we observe

35. a, or the, banking aggregate, and

30 CHAPTER 4. CUSTOMERS

36. its set of banks.

37. There are banks.

38. he world banking system has an aggregate of customers.

39. Aggregates of customers are sets of these.

40. Etc.

type

34. WBS
34. BA, BS
37. B
38. CA
39. CS = C-set

40. ...
value

38. obs CA: WBS → CA
39. obs CS: CA → CS

4.1.1.2 Customers

For now we shall just analyze and describe a basic concepts of banks: namely that they have cus-

tomers. Local bank customers have accounts in the bank, deposit and withdraw cash into these ac-

counts, take loans against securities and pay off these loans, etc.

41. There are [local] bank customers: depositing and withdrawing, lending and borrowing.

42. Presently we shall not speculate as to how these customers otherwise “appear” !

type

41. C

4.1.2 An Endurant State

TO BE WRITTEN

4.2 Internal Qualities

4.2.1 Unique Identification

4.2.1.1 Unique Identifier Sorts & Observers

43. Customers have unique identification.

type

43. CI
value

43. uid C: C → CI

4.2. INTERNAL QUALITIES 31

4.2.1.2 A Unique Identifier State

32 CHAPTER 4. CUSTOMERS

4.2.2 Mereology

44. Customers communicate with Branch Offices, banks, ... [to be filled in !]

type

44. CM = BOI-set × BI-set × ...
value

44. mereo C: C → CM

4.2. INTERNAL QUALITIES 33

4.2.3 Attributes

4.2.3.1 Types and Observers

45. Customers possess administrative information – such as name, birth date, address, marital

status, and place of work, etc.

We need not be concerned with the representation of the above administrative items.

46. Customers have income: salaries, yield of bonds, stocks, etc.

47. Customers posses cash on hand Cash on hand could, e.g., be cash in any number of cur-

rencies.

48. Customers posses additional assets such as stocks, bonds, trade-able commodities (jewels, land,

house, car, ...), etc. Stocks (stock portfolio) could be a set of company stocks, one or more per

company. Bonds similarly.

49. Customers have debitors18: “parties:” enterprises, institutions, other customers, etc., to

whom a customer owes monies. As an attribute we “list” them as a set of debitor identifiers.

50. Customers have creditors19,20: “parties:” enterprises, institutions, other customers, etc., to

whom the customer owes monies. As an attribute we “list” them as a set of creditor identifiers.

51. Customers have debitors21

52. Customers [thus] have liabilities: Loans, ...

53. Customers pay taxes: ...

54. Customers “possess” awareness of bank offices with whom it already have accounts, or with

whom it might wish to have accounts. identified by bank registration and account numbers.22

55. Customers have one or more bank accounts, in one or more banks, in possibly different [coun-

tries and currencies], ...

Banks have bank identifiers and accounts are “numbered”.23 We do not model the balance on these

accounts. That information is with the bank and can be inquired.

18Debitor: a person who owes a debt [Cambridge Dict.]. A now obsolete term !
19A creditor or lender is a party (e.g., person, organization, company, or government) that has a claim on the

services of a second party. It is a person or institution to whom money is owed. The first party, in general, has

provided some property or service to the second party under the assumption (usually enforced by contract) that

the second party will return an equivalent property and service. The second party is frequently called a debtor or

borrower. The first party is called the creditor, which is the lender of property, service, or money.

Creditors can be broadly divided into two categories: secured and unsecured.

A secured creditor has a security or charge over some or all of the debtor’s assets, to provide reassurance (thus

to secure him) of ultimate repayment of the debt owed to him. This could be by way of, for example, a mortgage,

where the property represents the security.

An unsecured creditor does not have a charge over the debtor’s assets.
20O’Sullivan, Arthur; Sheffrin, Steven M. (2003). Economics: Principles in Action. Upper Saddle River, NJ:

Pearson Prentice Hall. p. 264. ISBN 0-13-063085-3.

Insolvency for creditors. Australian Securities and Investments Commission. Retrieved March 22, 2022. King,

Lawrence P.; Cook, Michael L. (February 1, 1989). Creditors’ Rights, Debtors’ Protection, and Bankruptcy. M.

Bender. ISBN 9780256148237. Retrieved February 1, 2019 via Google Books.
21Debitor: A debitor, also known as a debtor, is an individual, company, or organization that owes money to

another entity, called a creditor. Essentially, a debitor is someone who has a debt obligation. This debt could

arise from various situations, such as loans, credit purchases, or contractual agreements.
22The identified accounts are “registered in” the identified bank[s].
23From bank identifiers and from account numbers ne can observe, i.e., extract their nationality and currencies

34 CHAPTER 4. CUSTOMERS

56. Customers have one or more credit and or debit cards, also [just] registered by customer name

and card identifier.24

57. A customer may view the contents of any of her accounts.

58. We do not further describe that Account Information.

59. ...

type

45. AdminInfo = Name×Nationality×BirthDate×Addresses×MarStat×Work×...
45. Name = ...
45. Nationality = ... 25

45. Birthdate = ...
45. Addresses = ...
45. MarStat = ...
45. Work = ...
46. Income = Source→m Nat

47. Cash = Currency→m Nat 26

48. Assets = Stocks×Bonds×Commodities××RealEstate×...
48. Stocks = ...
48. Bonds = ...
48. Commodities = ...
48. RealEstate = ...
51. Debitors = DI-set

51. DI = ...
50. Creditors = KI-set ...
50. KI = ...
53. Liabilities = Loans×....
53. Taxes = Kind→m Nat.
54. Banks = BOI-set

55. Accounts = BankID→m AcctNu
55. BankID
55. AcctNu
56. Cards = Name×CDId-set

56. CDId
57. Displays = BankID →m (AcctNu →m AcctInfo)
58. AcctInfo = ...
59. ...
value

45. attr AdminInfo: C→AdminInfo
46. attr Income: C→Income
47. attr Assets: C→Assets
52. attr Liabilities: C→
53. attr Taxes: C→Taxes
54. attr Banks: C→Banks
55. attr Accounts: C→Accounts
56. attr Cards: C→Cards
57. attr Displays: C → Displays
59. ...
55. xtr UIs: BankID → BI × BOI-set

55. xtr UIs: AcctNu → BI

24Again, see the previous footnote: credit cards are “registered in” the identified credit/debit card companies.

4.3. CUSTOMER COMMANDS 35

4.2.3.2 Attribute Wellformedness

TO BE WRITTEN

4.3 Customer Commands

Commands are syntactic entities. They are not endurants. They are an aspect of domain facets. In this

chapter, i.e., Chapter 4, they are formulated by customers and issued “towards” banks. Semantically

they denote state changes. The state referred to is the state of the bank. We shall treat the semantics of

commands in respective chapters. Domain facets, as a wider concept than just commands, were first

treated in [11, 2008]. [19, Chapter 8, 2021] places facets in the wider context of domain modeling.

Commands are but just one of the many kinds of facets, the script facet treated in [11]. Others are

support technology, rules & regulations, license languages, management & organization and human
behaviour.

These are presently 23 user commands of interest. Users direct commands at:

• Banks: Display, Deposit, Withdraw, Transfer, CreditDebit,

IncludeExcludeDebitor, IncludeExcludeCreditor,

OpenPaymentService, ClosePaymentService, AmortizeLoan

• Branch Offices: OpenAcct, CloseAcct, ApplyLoan, OpenLoan, CloseLoan,

IncreaseLoan

• Branch Offices or Credit/Debit Companies: ObtainCreditDebitCard, CreditDebit,

CloseCreditDebitCard

• Branch Offices or Mortgage Companies: OpenLoan, CloseLoan, IncreaseLoan

• Branch Offices or Stock Brokers: BuyStockBond, SellStockBond

• Etcetera !

The ordering in which I treat these commands is pragmatic.

60. There are [presently] 24 kinds of user to bank and branch office commands – cf. Items

ι60a π35– ι60w π36:

(a) The Open Account command requests the bank to open an account [of some currency]

[DIRECTED AT BRANCH OFFICE].

(b) The Deposit command requests the bank to accept cash to be added to an account [DI-

RECTED AT BANK].

(c) The Withdraw command requests the bank to deliver cash, being subtracted from an

account [DIRECTED AT BANK].

(d) The Transfer command requests the bank to withdraw monies from one account and

deposit in another account, either one of the requestor’s other accounts, or some other

account holder’s account, nationally or internationally [DIRECTED AT BANK].

(e) The Exchange command requests the buying or selling, i.e., the exchange, of one cur-

recny for another – with the cost to be carried by one of the customers accounts.

(f) The Open Display command requests the bank to let the customer have display some

form of presentation of the customers account with a specific bank [DIRECTED AT BANK].

25Customers may have dual (or more ?) nationality !
26Cash may be in several currencies !

36 CHAPTER 4. CUSTOMERS

(g) The Close Display command requests the bank to cease updating the display of some

form of presentation of the customers account with a specific bank [DIRECTED AT BANK].

(h) Obtain Credit/Debit Card: [DIRECTED AT BANK OR CREDIT/DEBIT COMPANY].

(i) Pay with Credit/Debit Card: [DIRECTED AT BANK OR CREDIT/DEBIT COMPANY].

(j) Close Credit/Debit Card: [DIRECTED AT BANK OR CREDIT/DEBIT COMPANY].

(k) Open Payment Service: Allow enterprises (employers, government institutions, pen-

sion funds, etc. to withdraw “cash” into named accounts. Not the same as debitor ! ?

[DIRECTED AT BRANCH OFFICE].

(l) Close Payment Service: Terminate service [DIRECTED AT BRANCH OFFICE].

(m) Open Deposit Service: Allow enterprises (employers, government institutions, pen-

sion funds, etc. to deposit “cash” into named accounts. Not the same as debitor ! ?

[DIRECTED AT BRANCH OFFICE].

(n) Close Deposit Service: [DIRECTED AT BRANCH OFFICE].

(o) The Open Loan command requests the bank to open that loan for withdrawals or trans-

fers [DIRECTED AT BRANCH OFFICE OR MORTGAGE COMPANY].

(p) The Amortize Loan command repays on the loan [DIRECTED AT BRANCH OFFICE OR

MORTGAGE COMPANY].

(q) The Increase Loan command increases the loan [DIRECTED AT BRANCH OFFICE OR MORT-

GAGE COMPANY].

(r) The Close Loan command requests the bank to terminate a loan, either delivering [or

subtracting] the balance in cash or transferring the balance to an account [DIRECTED AT

BRANCH OFFICE OR MORTGAGE COMPANY].

(s) The Buy Stock or Bond or ... command requests the bank to purchase a given number

of stocks within a stock price range range, or “similarly” for bonds, or ... [DIRECTED AT

BRANCH OFFICE OR STOCK BROKER].

(t) The Sell Stock or Bond or ... command requests the bank to sell a given number

of stocks within a stock price range range, or “similarly” for bonds, or ... [DIRECTED AT

BRANCH OFFICE OR STOCK BROKER].

(u) The Include/Exclude Creditor Debitor command informs the bank that the customer

expects the debitor to regularly either withdraw monies from an account or transfer

monies to the debitor from an account.

(v) The Change Account Status command requests the bank to edit/modify the account

information [DIRECTED AT BRANCH OFFICE].

(w) The Close Account command requests the bank to terminate an account, either de-

livering [or subtracting] the balance in cash or transferring the balance to another ac-

count. Outstanding open displays, credits, payment sevices and loans are terminated !

[DIRECTED AT BRANCH OFFICE].

Whether these 23 commands are issued by the requestor “turning up in the bank, physically”, or

electronically, or otherwise – their abstraction amounts to the same !

4.4. CUSTOMER BEHAVIOURS 37

type

60. Cmd =
60a. OpenAcct
60b. | Deposit
60c. | Withdraw
60d. | Transfer
60e. | Exchange
60f. | OpenDisplay
60g. | CloseDisplay
60h. | ObtainCreDebCard
60i. | CreditDebit
60j. | ClosCreDebCard
60k. | OpenPaymentService
60l. | ClosePaymentService

60m. | OpenDepositService
60n. | CloseDepositService
60o. | OpenLoan
60p. | AmortizeLoan
60q. | IncreaseLoan
60r. | CloseLoan
60s. | BuyStockBond
60t. | SellStockBond
60u. | IncludeExcludeDebitorCreditor
60v. | ChgeAcctStatus
60w. | CloseAcct

4.4 Customer Behaviours

4.4.1 Main Customer Behaviour

The customer behaviour is what initially determines actions.

61. The customer behaviour internal non-deterministic (⌈⌉) alternates between

(a) pro-active actions: issuing commands to banks, branch offices, etc., and reactive actions:

responding to messages from banks, branch office, etc., and

(b) external non-deterministically responding handling responses from money institutions.

type

61. customer: CI → CM → CustAdminInfo
61. → (Income×Assets×Liabilities×Taxes×Accounts×Cards×...×CHist) Unit

value

61. customer(ci)(bois,bi)(info)(inc,as,lia,tax,banks,accs,cards,dis,...,ch) ≡
61a. pro active customer(ci)(bois,bi)(info)(inc,as,lia,tax,banks,accs,cards,dis,...,ch)
61b. ⌈⌉ re active customer(ci)(bois,bi)(info)(inc,as,lia,tax,banks,accs,cards,dis,...,ch)

38 CHAPTER 4. CUSTOMERS

62. The pro-active customer behaviour internal non-deterministically (⌈⌉) alternates behaviours

specific to each of the 23 commands that users may issue.

62. pro active customer(ci)(bois,bi)(info)(inc,as,dis,kis,lia,tax,banks,accs,cards,dis,...,ch) ≡
60a. open account(ci)(bois,bi)(info)(inc,as,dis,kis,lia,tax,banks,accs,cards,dis,...,ch)
60b. ⌈⌉ deposit(ci)(bois,bi)(info)(inc,as,dis,kis,lia,tax,banks,accs,cards,dis,...,ch)
60c. ⌈⌉ withdraw(ci)(bois,bi)(info)(inc,as,dis,kis,lia,tax,banks,accs,cards,dis,...,ch)
60d. ⌈⌉ transfer(ci)(bois,bi)(info)(inc,as,dis,kis,lia,tax,banks,accs,cards,dis,...,ch)
60e. ⌈⌉ exchange(ci)(bois,bi)(info)(inc,as,dis,kis,lia,tax,banks,accs,cards,dis,...,ch)
60f. ⌈⌉ open display(ci)(bois,bi)(info)(inc,as,dis,kis,lia,tax,banks,accs,cards,dis,...,ch)
60g. ⌈⌉ close display(ci)(bois,bi)(info)(inc,as,dis,kis,lia,tax,banks,accs,cards,dis,...,ch)
60h. ⌈⌉ obtain credit debit card(ci)(bois,bi)(info)(inc,as,dis,kis,lia,tax,banks,accs,cards,dis,...,ch)
60i. ⌈⌉ credit debit(ci)(bois,bi)(info)(inc,as,dis,kis,lia,tax,banks,accs,cards,dis,...,ch)
60j. ⌈⌉ close credit debit card(ci)(bois,bi)(info)(inc,as,dis,kis,lia,tax,banks,accs,cards,dis,...,ch)
60k. ⌈⌉ open paym serv(ci)(bois,bi)(info)(inc,as,dis,kis,lia,tax,banks,accs,cards,dis,...,ch)
60l. ⌈⌉ close paym serv(ci)(bois,bi)(info)(inc,as,dis,kis,lia,tax,banks,accs,cards,dis,...,ch)
60m. ⌈⌉ open deposit serv(ci)(bois,bi)(info)(inc,as,dis,kis,lia,tax,banks,accs,cards,dis,...,ch)
60n. ⌈⌉ close deposit serv(ci)(bois,bi)(info)(inc,as,dis,kis,lia,tax,banks,accs,cards,dis,...,ch)
60o. ⌈⌉ open loan(ci)(bois,bi)(info)(inc,as,dis,kis,lia,tax,banks,accs,cards,dis,...,ch)
60p. ⌈⌉ amortize loan(ci)(bois,bi)(info)(inc,as,dis,kis,lia,tax,banks,accs,cards,dis,...,ch)
60q. ⌈⌉ increase loan(ci)(bois,bi)(info)(inc,as,dis,kis,lia,tax,banks,accs,cards,dis,...,ch)
60r. ⌈⌉ close loan(ci)(bois,bi)(info)(inc,as,dis,kis,lia,tax,banks,accs,cards,dis,...,ch)
60s. ⌈⌉ buy stock bond(ci)(bois,bi)(info)(inc,as,dis,kis,lia,tax,banks,accs,cards,dis,...,ch)
60t. ⌈⌉ sell stock bond(ci)(bois,bi)(info)(inc,as,dis,kis,lia,tax,banks,accs,cards,dis,...,ch)
60u. ⌈⌉ incl excl deb cred(ci)(bois,bi)(info)(inc,as,dis,kis,lia,tax,banks,accs,cards,dis,...,ch)
60v. ⌈⌉ change acct status(ci)(bois,bi)(info)(inc,as,dis,kis,lia,tax,banks,accs,cards,dis,...,ch)
60w. ⌈⌉ close acct(ci)(bois,bi)(info)(inc,as,dis,kis,lia,tax,banks,accs,cards,dis,...,ch)

63. The re-active customer behaviour external non-deterministically (⌈⌉⌊⌋)

(a) awaits (i.e., responds to) messages from banks, branch offices, etc.,

(b) with these messages then being handled.

63. re active customer(ci)(bois,bi)(info)(inc,as,dis,kis,lia,tax,banks,accs,cards,dis,...,ch) ≡
63a. let msg = ⌈⌉⌊⌋ { comm[{ci,ui}]? | ui ∈ bois∪{bi} } in

63b. handle(ci)(bois,bi)(info)(inc,as,dis,kis,lia,tax,banks,accs,cards,dis,...,ch)(msg) end

4.4.2 Pro-active Behaviours

4.4. CUSTOMER BEHAVIOURS 39

4.4.2.1 Open Account

The case of the open account behaviour illustrates the following:

• the customer directs the request for an Open Account to a branch office, item 65i, page 39.

• The branch office, Sect. 6.5.2.1 on page 106, examines the request, item 159a, page 106.

• If customer request is deemed unacceptable the customer is advised, item 159b, page 106,
of the rejection.

• Otherwise the branch office deems the request acceptable, and, in turn, requests, item 159d, page 106,
the bank, Sect. 5.5.2.1 on page 78, for a new account.

• The bank replies, item 127d, page 79, zero-setting a new account, item 127c, page 79, with
such a number;

• and the customer duly informed, item 159f, page 106.

4.4.2.1.1 Command

64. In order to open an account with a bank the customer must provide the following a rough

approximation of:

• admin. info.,

• income,

• assets,

• liabilities,

• debitors,

• creditors,

• and the currency of the

new account.

type

64. OpenAcct :: (AdminInfo′×Income′×Assets′×Liabilities′×Debitors′×Creditors′)×Currency

The pro-active command [above] and the behaviour [next] expects a response, see command/behaviour

Sect. 6.5.2.1 on page 106.

4.4.2.1.2 Behaviour

65. The Open Account behaviour assembles excerpts27 of customers’

(a) income,

(b) assets,

(c) debitors,

(d) creditors,

(e) liabilities; and

(f) currency;

(g) chooses a branch office,

(h) and records the time;

(i) forms Open Account command,

(j) communicates it to the branch office.

(k) Then the customer awaits a reply
from the branch office.

(l) The reply is used to update the cus-
tomers’ accounts information28

(m) whereupon the customer resumes be-
ing a customer.

(n) Preconditions are: The auxiliary
functions open acct income,

open acct ass, open acct dis,

open acct kis, and open acct li-

abilities are well-defined.

27These excerpts depend on what the bank requires !
28We model only the case of a positive reply – leaving it to the reader to model the case of the bank not willing

to open a new account for this user !

40 CHAPTER 4. CUSTOMERS

value

65. open account(ci)(bois,bi)(info)(inc,cash,as,dis,kis,lia,tax,banks,accts,cards,dis,...,ch) ≡
65a.,65b. let inc′ = open acct income(inc), as′ = open acct assets(as),
65c.,65d. dis′ = open acct dis(dis), kis′ = open acct kis(kis),
65e.,65f. lia′ = open acct liabilites(lia), curr:Currency,
65g. boi = select bank(inc,cash,as,dis,kis,lia,tax,banks,accts,cards,dis),
65h. τ = recordTIME() in

65i. let op acct cmd = ((ci,τ,boi),mk OpenAccount((info,inc′,as′,dis′,kis′,lia′),curr)) in

65j. comm[{ci,boi}] ! open account cmd ;
65k. let mk NewAcct(bi,anu) = comm[{ci,boi}] ? ;

65l. let accts′ = accts † [bi 7→ anu]29 in

65m. customer(ci)(bois,bi)(info)(inc,cash,as,dis,kis,lia,tax,banks,accs′ ,cards,dis,...,〈op acct cmd〉̂ch)
65. end end end end

65m. pre: open acct income, open acct assets, ..., open acct liabilites are well−dined.

We leave it to the reader to sketch the auxiliary functions open · · · and select bank.

4.4.2.2 Place Deposit

4.4.2.2.1 Command

66. In order for a customer to deposit cash into an account of that customer, the following

must be provided:

• bank identification,

• account number,

• the amount of cash

and the

• identified currency

type

66. Deposit :: BI × AcctNu × Cash × Currency

The pro-active command [above] and the behaviour [next] expects a response, see com-

mand/behaviour Sect. 5.5.2.2 on page 80.

4.4.2.2.2 Behaviour

67. The deposit behaviour

(a) selects an appropriate bank,

(b) and an appropriate currency account of that customer with that bank,

(c) decides upon the currency and a suitable amount of cash of that currency to be deposited
into the account of that bank,

(d) records the time,

(e) and assembles this into a Deposit command

(f) which it them communicates to the chosen bank –

(g) from where it awaits a confirmation message

(h) whereupon the bank conditionally30 updates its cash,

29If bi is not in the domain of accts then accts′ = accts ∪ [bi 7→ anu]
30we do not show the case where the bank declines the deposit – a simple if .. then .. else .. end clause

4.4. CUSTOMER BEHAVIOURS 41

(i) and resumes being a customer [behaviour].

(j) Pre-conditions are: The auxiliary functions: select ... are well-defined, hence, for exam-
ple, curr is in the domain of cash.

value

67. deposit(ci)(bois,bi)(info)(prgr:(inc,cash,as,dis,kis,lia,tax,banks,accs,cards,dis,...,ch)) ≡
67a. let bi = select bank(prgr),
67b. anu = acct number(prgr),
67c. (curr,monies) = select curr cash(prgr),
67d. τ = recordTIME() in

67e. let deposit cmd = ((ci,τ,boi),mk Deposit(bi,anu,curr,cash)) in

67f. comm[{ci,boi}] ! deposit cmd ;
67g. let ok:mk DepositOK(t,ci,anu.curr,old−balance,new−balance) = comm[{ci,boi}] ? in

67h. let cash′ = cash † [curr 7→ (cash(curr) − cash)] in

67i. customer(ci)(bois,bi)(info)(inc,cash′ ,as,dis,kis,lia,tax,banks,accs,cards,dis,...,〈ok,deposit cmd〉̂ch)
67. end end end end

4.4.2.3 Place Withdrawal

4.4.2.3.1 Command

68. In order for a customer to withdraw cash from an account of that customer, the follow-

ing information must be provided:

• bank identification,

• account number,

• currency,

• amount to be with-

drawn.

type

68. Withdraw :: BI × AcctNu × Currency × Amount [= Nat]

The pro-active command [above] and the behaviour [next] expects a response, see com-

mand/behaviour Sect. 5.5.2.3 on page 82.

4.4.2.3.2 Behaviour

69. The withdraw behaviour

(a) selects an appropriate bank,

(b) and an appropriate account of that customer with that bank,

(c) decides upon a suitable amount of cash to be witdrawn from the account of
that bank,

(d) records the time,

(e) and assembles this into a Wihdraw command

(f) which it them communicates to the chosen bank.

(g) It then awaits a reply from the bank.

42 CHAPTER 4. CUSTOMERS

(h) There are two kinds of replies.

(i) Either the reply is “OK”

i. in which case the customer’s cash is incremented

ii. and the customer resumes being so.

(j) Or the reply is “Not OK”

i. whereupon it resumes being a customer [behaviour].

(k) Pre-conditions: Auxiliary functions select ... are welldefined.

value

69. withdraw(ci)(bois,bi)(info)(inc,cash,as,dis,kis,lia,tax,banks,accs,cards,dis,...,ch) ≡
69a. let bi = select bank(inc,cash,as,dis,kis,lia,tax,banks,accs,cards,dis),
69b. anu = select acct number(inc,cash,as,dis,kis,lia,tax,banks,accs,cards,dis),
69c. (curr,amount) = select amount curr(inc,cash,as,dis,kis,lia,tax,banks,accs,cards,dis),
69d. τ = recordTIME() in

69e. let withdraw cmd = ((ci,τ ,boi),mk Withdraw(bi,anu,(curr,amount))) in

69f. comm[{ci,boi}] !withdraw cmd ;
69g. let reply = comm[{ci,boi}] ? in

69h. case reply of

69i. mk OKWDR(anu,curr,amount,newbal) →
69(i)i. let cash′ = cash † [curr 7→ cash(curr)+amount] in

69(i)ii. customer(ci)(bois,bi)(info)
69(i)ii. (inc,cash′,as,dis,kis,lia,tax,banks,accs,cards,dis,...,〈reply,withdraw cmd〉̂ch) end

69j. mk NOKWDR(anu,curr,amount,bal) →
69(j)i. customer(ci)(bois,bi)(info)
69(j)i. (inc,cash,as,dis,kis,lia,tax,banks,accs,cards,dis,...,〈reply,withdraw cmd〉̂ch)
69. end end end end

69. pre: Auxiliary functionss select ... are welldefined.

4.4. CUSTOMER BEHAVIOURS 43

4.4.2.4 Transfer

4.4.2.4.1 Command: The transfer command has two “versions”. The customer either

transfers fund between “own” accounts, or from an own account to that of another customer.

Syntactically the forms are indistinguishable.

70. The Transfer command has two elements:

• the from element consists of

– customer identifier,

– accont number,

– currency, and

– amount

• and the to element consists of

– customer identifier, and – accont number

71. the account numbers differ.

type

70. Transfer :: (CI×AcctNu×Curr×Amount) × (CI×AcctNu)
70. Amount = Nat

axiom

71. ∀ ((ci1,anu1,curr1,am1),(ci2,anu2)):Transfer • anu16=anu2

The pro-active command [above] and the behaviour [next] expects a response, see com-

mand/behaviour Sect. 5.5.2.4 on page 84.

44 CHAPTER 4. CUSTOMERS

4.4.2.4.2 Behaviour

72. The customer decides to transfer an amount of curency:

(a) records the time;

(b) selects currency and amount,

(c) from account number, and

(d) to customer account;

(e) assembles the “from” and “to” elements

(f) of the command

(g) communicated to the bank.

(h) Awaits reply from that bank.

(i) Examines the reply31, whereupon

(j) it resumes being a customer.

(k) Pre-conditions: Auxiliary functions
select ... well defined.

value

72. transfer(ci)(bois,bi)(info)(prgr:(inc,as,dis,kis,lia,tax,banks,accs,cards,dis,...,ch)) ≡
72a. let τ = recordTIME() in

72b. let (curr,amount) = select Curr Amount(prgr) ,
72c. f anu = select AcctNu(prgr) ,
72d. (t ci,t anu) = select to CI AcctNu(prgr) ,
72e. let from = (ci,f anu,curr,amount), to = (t ci,t anu,curr,amount) in

72f. let cmd = ((ci,τ ,bi),mk Transfer(from,to)) in

72g. comm[{ci,bi}] ! cmd ;
72h. let reply = comm[{ci,bi}] ? in

72i. if B(reply) = ... then ... else ...
72j. customer(ci)(bois,bi)(info)(inc,as,dis,kis,lia,tax,banks,accs,cards,dis,...,〈reply,cmd〉̂ch)
72. end end end end end end

72k. pre: select ... well defined

31We leave it to the reader to decide what such an examination might be ! We rfer to Sect. 5.5.2.4 on page 84.

4.4. CUSTOMER BEHAVIOURS 45

4.4.2.5 Exchange

4.4.2.5.1 Command

73. The

(a)

(b)

(c)

type

73.
73a.
73b.
73c.

The pro-active command [above] and the behaviour [next] expects a response, see com-

mand/behaviour Sect. 5.5.2.5 on page 91.

4.4.2.5.2 Behaviour

74. (a)

(b)

(c)

value

74. exchange(ci)(bois,bi)(info)(inc,cash,as,dis,kis,lia,tax,banks,accs,cards,dis,...,ch)
74a.
74b.
74c.

46 CHAPTER 4. CUSTOMERS

4.4.2.6 Open Display

By display we shall here understand some visualization of any specific account. By opening

a display for a specific account, not already opened (and not [yet] closed) we shall “imag-

ine” that som visualization is somehow displayed – a display that, at any time before it is

closed, displays the current, “state” of the account – as it may be changed due to deposits,

withdrawals, etc.

4.4.2.6.1 Command

75. In order to open a display of a customers’ accounts with a specific bank the customer

must provide the following information to a branch office: the customer’s identity !

type

75. OpenDisplay :: CI

The pro-active command [above] and the behaviour [next] expects a response, see com-

mand/behaviour Sect. 5.5.2.6 on page 92.

4.4.2.6.2 Behaviour

76. The Open Display behaviour

(a) selects an appropriate bank,

(b) and records the time –from which

(c) it them assembles sender and receiver the time-stamped Open Display com-
mands

(d) which it then communicates to the selected branch office,

(e) whereupon it resumes bieng a customer [behaviour].

value

76. open display(ci)(bois,bi)(info)(inc,cash,as,dis,kis,lia,tax,banks,accs,cards,dis,...,ch) ≡
76a. let boi = select bank(inc,cash,as,dis,kis,lia,tax,banks,accs,cards,dis),
76b. τ = recordTIME() in

76c. let open disp cmd = ((ci,τ ,boi),mk OpenDisplay(boi)) in

76d. comm[{ci,boi}] ! open disp cmd ;
76e. customer(ci)(bois,bi)(info)(inc,cash,as,dis,kis,lia,tax,banks,accs,cards,dis,...,〈open disp cmd 〉̂ch)
76. end end

4.4. CUSTOMER BEHAVIOURS 47

4.4.2.7 Close Display

4.4.2.7.1 Command

77. In order to close a display of a customers’ accounts with a specific bank the customer

must provide the following information to a branch office: the customer’s identity !

type

77. CloseDisplay :: CI

The pro-active command [above] and the behaviour [next] expects a response, see com-

mand/behaviour Sect. 5.5.2.7 on page 93.

4.4.2.7.2 Behaviour

78. The Close Display behaviour

(a) selects an appropriate bank,

(b) and records the time –from which

(c) it them assembles sender and receiver the time-stamped Close Display com-
mand –

(d) which it then communicates to the selected branch office,

(e) whereupon it resumes bieng a customer [behaviour].

type

78. close display(ci)(bois,bi)(info)(inc,cash,as,dis,kis,lia,tax,banks,accs,cards,dis,...,ch) ≡
78a. let boi = select bank(inc,cash,as,dis,kis,lia,tax,banks,accs,cards,dis),
78b. τ = recordTIME() in

78c. let close disp cmd = ((ci,τ ,boi),mk CloseDisplay(boi)) in

78d. comm[{ci,boi}] ! close disp cmd ;
78e. customer(ci)(bois,bi)(info)(inc,cash,as,dis,kis,lia,tax,banks,accs,cards,dis,...,〈close disp cmd 〉̂ch)
78. end end

48 CHAPTER 4. CUSTOMERS

4.4.2.8 Obtain Credit/Debit Card

4.4.2.8.1 Command

79. The

(a)

(b)

(c)

type

79.
79a.
79b.
79c.

The pro-active command [above] and the behaviour [next] expects a response, see com-

mand/behaviour Sect. 6.5.2.2 on page 108.

4.4.2.8.2 Behaviour

80. The

(a)

(b)

(c)

type

80.
80a.
80b.
80c.

4.4. CUSTOMER BEHAVIOURS 49

4.4.2.9 Credit/Debit

4.4.2.9.1 Command

81. The

(a)

(b)

(c)

type

81.
81a.
81b.
81c.

The pro-active command [above] and the behaviour [next] expects a response, see com-

mand/behaviour Sect. 5.5.2.8 on page 94.

4.4.2.9.2 Behaviour

82. The

(a)

(b)

(c)

type

82. credit debit(ci)(bois,bi)(info)(inc,cash,as,dis,kis,lia,tax,banks,accs,cards,dis,...,ch) ≡
82a.
82b.
82c.

50 CHAPTER 4. CUSTOMERS

4.4.2.10 Close Credit/Debit Account

4.4.2.10.1 Command

83. The

(a)

(b)

(c)

type

83.
83a.
83b.
83c.

The pro-active command [above] and the behaviour [next] expects a response, see com-

mand/behaviour Sect. 6.5.2.3 on page 109.

4.4.2.10.2 Behaviour

84. The

(a)

(b)

(c)

type

84.
84a.
84b.
84c.

4.4. CUSTOMER BEHAVIOURS 51

4.4.2.11 Open Payment Service

4.4.2.11.1 Command

85. The

(a)

(b)

(c)

type

85.
85a.
85b.
85c.

The pro-active command [above] and the behaviour [next] expects a response, see com-

mand/behaviour Sect. 6.5.2.4 on page 110.

4.4.2.11.2 Behaviour

86. The

(a)

(b)

(c)

type

86.
86a.
86b.
86c.

52 CHAPTER 4. CUSTOMERS

4.4.2.12 Close Payment Service

4.4.2.12.1 Command

87. The

(a)

(b)

(c)

type

87.
87a.
87b.
87c.

The pro-active command [above] and the behaviour [next] expects a response, see com-

mand/behaviour Sect. 6.5.2.5 on page 111.

4.4.2.12.2 Behaviour

88. The

(a)

(b)

(c)

value

88.
88a.
88b.
88c.

4.4. CUSTOMER BEHAVIOURS 53

4.4.2.13 Open Deposit Service

4.4.2.13.1 Command

89. The

(a)

(b)

(c)

type

89.
89a.
89b.
89c.

The pro-active command [above] and the behaviour [next] expects a response, see com-

mand/behaviour Sect. 6.5.2.6 on page 112.

4.4.2.13.2 Behaviour

90. The

(a)

(b)

(c)

value

90.
90a.
90b.
90c.

54 CHAPTER 4. CUSTOMERS

4.4.2.14 Close Deposit Service

4.4.2.14.1 Command

91. The

(a)

(b)

(c)

type

91.
91a.
91b.
91c.

The pro-active command [above] and the behaviour [next] expects a response, see com-

mand/behaviour Sect. 6.5.2.7 on page 113.

4.4.2.14.2 Behaviour

92. The

(a)

(b)

(c)

type

92.
92a.
92b.
92c.

4.4. CUSTOMER BEHAVIOURS 55

4.4.2.15 Open Loan

4.4.2.15.1 Command

93. The

(a)

(b)

(c)

type

93.
93a.
93b.
93c.

The pro-active command [above] and the behaviour [next] expects a response, see com-

mand/behaviour Sect. 6.5.2.9 on page 115.

4.4.2.15.2 Command

94. The

(a)

(b)

(c)

value

94.
94a.
94b.
94c.

56 CHAPTER 4. CUSTOMERS

4.4.2.16 Amortize Loan

4.4.2.16.1 Command

95. The

(a)

(b)

(c)

type

95.
95a.
95b.
95c.

The pro-active command [above] and the behaviour [next] expects a response, see com-

mand/behaviour Sect. 5.5.2.9 on page 95.

4.4.2.16.2 Behaviour

96. The

(a)

(b)

(c)

type

96.
96a.
96b.
96c.

4.4. CUSTOMER BEHAVIOURS 57

4.4.2.17 Increase Loan

4.4.2.17.1 Command

97. The

(a)

(b)

(c)

type

97.
97a.
97b.
97c.

The pro-active command [above] and the behaviour [next] expects a response, see com-

mand/behaviour Sect. 6.5.2.10 on page 116.

4.4.2.17.2 Behaviour

98. The

(a)

(b)

(c)

type

98.
98a.
98b.
98c.

58 CHAPTER 4. CUSTOMERS

4.4.2.18 Close Loan

4.4.2.18.1 Command

99. The

(a)

(b)

(c)

type

99.
99a.
99b.
99c.

The pro-active command [above] and the behaviour [next] expects a response, see com-

mand/behaviour Sect. 6.5.2.11 on page 117.

4.4.2.18.2 Behaviour

100. The

(a)

(b)

(c)

type

100.
100a.
100b.
100c.

4.4. CUSTOMER BEHAVIOURS 59

4.4.2.19 Buy Stocks or Bonds

4.4.2.19.1 Command

101. The

(a)

(b)

(c)

type

101.
101a.
101b.
101c.

4.4.2.19.2 Behaviour

102. The

(a)

(b)

(c)

type

102.
102a.
102b.
102c.

60 CHAPTER 4. CUSTOMERS

4.4.2.20 Sell Stocks or Bonds

4.4.2.20.1 Command

103. The

(a)

(b)

(c)

type

103.
103a.
103b.
103c.

4.4.2.20.2 Behaviour

104. The

(a)

(b)

(c)

type

104.
104a.
104b.
104c.

4.4. CUSTOMER BEHAVIOURS 61

4.4.2.21 Include/Exclude Debitor/Creditor

4.4.2.21.1 Command

105. The

(a)

(b)

(c)

type

105.
105a.
105b.
105c.

4.4.2.21.2 Behaviour

106. The

(a)

(b)

(c)

type

106.
106a.
106b.
106c.

62 CHAPTER 4. CUSTOMERS

4.4.2.22 Change Account Status

4.4.2.22.1 Command

107. The

(a)

(b)

(c)

type

107.
107a.
107b.
107c.

4.4.2.22.2 Behaviour

108. The

(a)

(b)

(c)

type

108.
108a.
108b.
108c.

4.4. CUSTOMER BEHAVIOURS 63

4.4.2.23 Close Account

4.4.2.23.1 Command

109. The

(a)

(b)

(c)

type

109.
109a.
109b.
109c.

The pro-active command [above] and the behaviour [next] expects a response, see com-

mand/behaviour Sect. 6.5.2.16 on page 122.

4.4.2.23.2 Behaviour

110. The

(a)

(b)

(c)

value

110.
110a.
110b.
110c.

64 CHAPTER 4. CUSTOMERS

4.4.3 Customer Re-active Behaviours

4.4.3.1 The handle Behaviour

The handle behaviour “takes care of”, i.e., “handles”, replies, i.e., messages (msg), from

other banking behaviours.

111. It does so by inquiring as to the type of the reply messages:

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

(j)

value

111. handle cust reacts(ci)(bois,bi)(info)(inc,cash,as,dis,kis,lia,tax,banks,accs,cards,dis,...,ch)(msg)
111a. is ...(msg) →
111b. is ...(msg) →
111c. is ...(msg) →
111d. is ...(msg) →
111e. is ...(msg) →
111f. is ...(msg) →
111g. is ...(msg) →
111h. is ...(msg) →
111i. is ...(msg) →
111j. → customer(ci)(bois,bi)(info)(inc,cash,as,dis,kis,lia,tax,banks,accs,cards,dis,...,ch)

4.4.3.2 ur2

4.4.3.2.1 Command

4.4.3.2.2 Behaviour

4.4. CUSTOMER BEHAVIOURS 65

4.4.3.3 ur3

4.4.3.3.1 Command

4.4.3.3.2 Behaviour

66 CHAPTER 4. CUSTOMERS

4.4.3.4 ur4

4.4.3.4.1 Command

4.4.3.4.2 Behaviour

4.4. CUSTOMER BEHAVIOURS 67

4.4.3.5 ur5

4.4.3.5.1 Command

4.4.3.5.2 Behaviour

68 CHAPTER 4. CUSTOMERS

4.5 Discussion

Chapter 5

Banks

Contents

5.1 Introduction . 70

5.2 Attributes . 72

5.2.1 Types . 72

5.2.2 Wellformedness . 73

5.3 Banking System Communication . 74

5.4 Bank Commands . 75

5.5 Bank Behaviours . 76

5.5.1 The Bank Main Behaviour . 76

5.5.2 The Bank Re-active Behaviours 77

5.5.2.1 New Account Number 78

5.5.2.1.1 Message . 78

5.5.2.1.2 Behaviour 79

5.5.2.2 Receive Deposit . 80

5.5.2.2.1 Command: 80

5.5.2.2.2 Behaviour 81

5.5.2.3 Deliver Withdrawal 82

5.5.2.3.1 Command: 82

5.5.2.3.2 Behaviour 83

5.5.2.4 Effect Transfer . 84

5.5.2.4.1 Command: 84

5.5.2.4.2 Behaviour 85

5.5.2.4.2.1 Nil Transfer: 86

5.5.2.4.2.2 Same Customer, Same Bank Trans-

fer: 87

5.5.2.4.2.3 Different Customers, Same Bank Trans-

fer: 88

5.5.2.4.2.4 Same Customer, Different Banks Trans-

fer: 89

69

70 CHAPTER 5. BANKS

5.5.2.4.2.5 Different Customers, Different Banks

Transfer: 90

5.5.2.5 Exchange . 91

5.5.2.6 Open Display . 92

5.5.2.6.1 Command 92

5.5.2.6.2 Behaviour 92

5.5.2.7 Close Display . 93

5.5.2.7.1 Command 93

5.5.2.7.2 Behaviour 93

5.5.2.8 Effect Credit/Debit 94

5.5.2.8.1 Command 94

5.5.2.8.2 Behaviour 94

5.5.2.9 Effect Amortization 95

5.5.2.9.1 Command 95

5.5.2.9.2 Behaviour 95

5.5.3 The Bank Pro-active Behaviours 96

5.5.3.1 Command . 96

5.5.3.2 Behaviour . 96

5.6 Discussion . 97

5.1 Introduction

By a bank we shall here, in a restricted sense mean an aggregate of: a set of one or more

local banks, i.e., branch offices, and a (i.e., one) headquarter, Bank customers “deal”

with the bank in two ways

• through a branch office for other operations than cash deposits and withdrawals, and

• with the bank for cash deposits and withdrawals, debits and credits, etc.

Customers do not deal with bank head quarters.

So branch offices are where You go to

• open and close accounts,

• obtain and close credit/debit cards,

• apply for, open, increase and close loans,

• buy and sell stocks and bonds, and

• change account states.

So the concept of a bank has several “meanings”: the physical embodiment of the “mortar

& brick” branch offices (and, for that matter, their head quarters), and the mental notion of a

bank: the three concepts outlined in this chapter.

5.1. INTRODUCTION 71

• • •

We have already, in Chapter 3, covered

• endurants, 3.3.2 on page 16, and

• unique identification, 3.3.3.1 on page 19, and

• mereology, 3.3.3.2 on page 24, of banks.

72 CHAPTER 5. BANKS

5.2 Attributes

5.2.1 Types

112. Banks have [static attribute] administrative information (name, address, ...).

113. Banks keep track of customer accounts [programmable attribute].

(a) There is a customer account table. It relates customer identifiers to account
information [programmable attribute].

(b) Account numbers are further unspecified.

(c) Account information consists of customer name, [approximate recent] salary,
[approximate recent] assets, etc.

114. For every account there is a set of one or more currency balances [programmable
attribute]

(a) where a currency balance is a natural number.

115. An account history lists the time-stamped deposits and withdrawals.

116.

117. Banks keep cash of various categories,

(a) incl. denominations, f.ex. currencies.

118. Banks also have a history [programmable attribute] .

type

112. AdmInfo = ...
113. CustAccts = CI →m CustAcct
113a. CustAcct = AcctNu-set

113b. AcctNu = ...
113c. AcctInfo = Name×Salary×Assets×...
114. Accounts = AcctNu →m (Currency →m Balance)
114a. Balance = Nat

115. AcctHist = (TIME×Cash×(Dep|With))∗

116. Dep = ”deposit”, With = ”withdrawal”
117. Cashs = CashCat →m Nat

117a. CashCat = ′′cashcat1′′|′′cashcat2′′|′′cashcat3′′|...
118. BHist = (...)∗

value

112. attr AdmInfo: B → AdmInfo
113. attr CustAccts: B → Accounts
114. attr Accounts: B → Account
115. attr AcctHist: B → AcctHist
117. attr Cashs: B → Cashs

5.2. ATTRIBUTES 73

118. attr BankHist: B → BankHist

113b. xtr CI: AcctNu → CI, xtr BI: AcctNu → BI

5.2.2 Wellformedness

119.

119.

74 CHAPTER 5. BANKS

5.3 Banking System Communication

120. There is a global communications medium that allows behaviours of identities ui and

uj to synchronize and communicate, offer (!), respectively accept (?) messages.

121. These messages are typed.

120. channel

120. comm { [{ui,uj}] | ui,uj:UI • {ui,uj} ⊆ ... } : MSG
121. type

121. MSG = ...

We have defined MSG, “bit-by-bit” in this and other chapters !

5.4. BANK COMMANDS 75

5.4 Bank Commands

Banks responds to commands received from account holders, branch offices or the bank

headquarter. Banks do not, in our model, by themselves issue commands. [Compare this

opening paragraph with those of Sects. 4.3 on page 35 and 6.5 on page 104.]

122. Banks issue, in response to branch office and customer commands, that is: re-actively,

the following (presently 8) commands:

(a) New Account Number: A branch office alerts the bank: to assign a new,

hitherto unused, account number of some identified currency, to a customer and

set its balance to the name, ci:CI, of that customer, to 0.

(b) Receive Deposit: Bank recognizes the deposit and, hence, deposit of an amount

of cash into a customer account, and informs of new balance. This command is

in response to the customer Deposit command, cf. ι60b π35.

(c) Delivers Withdraw: Bank recognizes the request and, hence, conditionally

withdraws of an amount of cash from a customer account, subject to the new

balance not exceeding the lower [contracted] limit, and informs of new balance.

This command is in response to the customer Withdraw command, cf. ι60c π35.

(d) Effect Transfer: Bank recognizes the request and, hence, conditionally with-

draws an amount of cash from a customer account, subject to the new account

balance not exceeding the lower [contracted] limit, and then, conditionally, trans-

fers that amount to an[other] account [of possibly another customer, in possibly

the same or another bank], and informs of new balance. This command is in

response to the customer Transfer command, cf. ι60d π35.

(e) Present Display: The bank replies with an image of the named account – and

refreshes that image whenever a “movement” (i.e., a change of values on that

account), the refreshed image being sent [also] to the customer. This command

is in response to the customer OpenDisplay command, cf. ι60f π35.

(f) Abort Display: The bank cease to refresh the account image – by simply “clos-

ing down” the “imagery” ! This command is in response to the customer CloseDisplay

command, cf. ι60g π36.

(g) Effect Credit/Debit: The bank informs the customer of each “movement” on

the account due to successful credit/debit requests. This command is in response

to the customer CreditDebit command, cf. ι60i π36.

(h) Effect Amortization of Loan[s]: The bank withdraws interest and annuity on

one or more loans and informs the customer.

(i) Account Closed: The bank closes an account in response to a customer close

account request. It also closes outstanding credit/debit cards, loans, payment and

deposit services.

123. At this stage of the development of this banking domain model it seems that there is

no need for banks to pro-actively issue commands.

76 CHAPTER 5. BANKS

type

122. BCmd =
122a. NewAcctNu
122b. RcvDep
122c. DlvWith
122d. EffectXfer

122e. PresDisp
122f. AbortDisp
122g. EffDebCred
122h. EffAmort
122i. EffClose

5.5 Bank Behaviours

5.5.1 The Bank Main Behaviour

124. The bank behaviour internal non-deterministically (⌈⌉) alternates between

(a) external non-deterministically responding handling responses from money insti-

tutions, and

(b) pro-active actions: issuing commands to banks, branch offices, etc., and reactive

actions: responding to messages from banks, branch office, etc.

type

124. bank: BOI→BM→AdminInfo→CustAccts×Accounts×AcctHist×Cashs×BHist Unit

value

124. bank(boi)(bm)(...)(custaccts,accts,acthist,cashs,bhist) ≡
124a. ⌈⌉ re active bank(boi)(bm)(...)(custaccts,accts,acthist,cashs,bhist)
124b. pro active bank(boi)(bm)(...)(custaccts,accts,acthist,cashs,bhist)

5.5. BANK BEHAVIOURS 77

5.5.2 The Bank Re-active Behaviours

125. The re active bank behaviour

(a) external non-deterministically ⌈⌉⌊⌋ offers to accept communications from customers,

cis, and branch offices, bois.

These communications are either:

(b) new account numbers,

(c) deposits,

(d) withdrawals,

(e) transfefs,

(f) open displays,

(g) close displays,

(h) credit/debits, or

(i) loan amortizations,

in which cases corresponding behaviours are invoked, or, if none of these,

(j) the re active bank behaviour “reverts” to being a, i.e., the, bank behaviour.

value

125. re active bank(bi)(bm:(cis,bois,hqi))(...)(custaccts,accts,acthist,cashs,bhist) ≡
125a. let ((ci,τ,bi),msg) = ⌈⌉⌊⌋ { comm[{ui,bi}] ? | ui ∈ cis∪bois } in

125b. is NewAcctNu(msg) →
125b. bank new acct(bi)(bm:(cis,bois,hqi))(...)(custaccts,accts,acthist,cashs,bhist)(bi)((ci,τ,bi),msg),
125c. is Deposit(msg) →
125c. bank rcv dep(bi)(bm:(cis,bois,hqi))(...)(custaccts,accts,acthist,cashs,bhist)(bi)((ci,τ,bi),msg),
125d. is Withdraw(msg) →
125d. bank del with(bi)(bm:(cis,bois,hqi))(...)(custaccts,accts,acthist,cashs,bhist)((ci,τ,bi),msg),
125e. is Transfer(msg) →
125e. bank effect xfer(bi)(bm:(cis,bois,hqi))(...)(custaccts,accts,acthist,cashs,bhist)((ci,τ,bi),msg),
125f. is OpenDisplay(msg) →
125f. bank open disp(bi)(bm:(cis,bois,hqi))(...)(custaccts,accts,acthist,cashs,bhist)((ci,τ,bi),msg),
125g. is CloseDisplay(msg) →
125g. bank coose disp(bi)(bm:(cis,bois,hqi))(...)(custaccts,accts,acthist,cashs,bhist)((ci,τ,bi),msg),
125h. is CreditDebit(msg) →
125h. eff deb cre bank(bi)(bm:(cis,bois,hqi))(...)(custaccts,accts,acthist,cashs,bhist)((ci,τ,bi),msg),
125i. is AmortizeLoan(msg) →
125i. bank amortize loan(bi)(bm:(cis,bois,hqi))(...)(custaccts,accts,acthist,cashs,bhist)(bi)((ci,τ,bi),msg),
125j. → bank(bi)(bm:(cis,bois,hqi))(...)(custaccts,accts,acthist,cashs,bhist)(bi)
125. end

78 CHAPTER 5. BANKS

5.5.2.1 New Account Number

The new account number bank action is in response to the branch office request, Sect. 6.5.2.1
on page 106, ι159d π106, for a new account.

5.5.2.1.1 Message

126. The bank response is in the form of a message which contains just a new account
number.

type

126. NewAcctMsg :: CI × AcctNu

5.5. BANK BEHAVIOURS 79

5.5.2.1.2 Behaviour

127. The bank behaviour has received a request fora new [currency] account

(NewAcctNu(ci,boi,curr)).

(a) The bank creates an hitherto unused account number.

(b) Updates the customer accounts (record) for that customer with that new ac-

count number.

(c) Updates the bank accounts with that new accounts number to show a (currency)

balance of zero.

(d) Records the time.

(e) Assembles a reply message.

(f) Communicates that reply message for that customer to the branch office.

(g) And resumes being a bank.

value

127. bank new acct(bi)(bm:(cis,bois,hqi))(...)(custaccts,accts,acthist,cashs,bhist)(bi)
127. (request:((ci,t,boi),mk NewAcctNu(ci,boi,curr))) ≡
127a. let an:AcctNu • an 6∈ dom accts in

127b. let custaccts′ = custaccts † [ci 7→(custaccts(ci))∪{anu}] in

127c. let accts′ = accts † [anu 7→ [curr 7→ 0]],
127d. τ = recordTIME() in

127e. let reply = ((bi,τ ,boi),mk NewAcctMsg(ci,anu)) in

127f. comm[{bi,boi}] !mk NewAcctMsg(ci,anu) ;
127g. bank(bi)(bm:(cis,bois,hqi))(...)(custaccts′,accts′,cashs,〈reply,request〉̂bhist)(bi)
127. end end end end

80 CHAPTER 5. BANKS

5.5.2.2 Receive Deposit

5.5.2.2.1 Command: The bank receives a request to deposit an amount of cash in some

currency in some account (of that currency).

128. It replies with a message informing of the new balance of that account. That message

contains:

• deposit time,

• customer identifier,

• identified account,

• amount of deposit,

• currency,

• old and

• new balance.

type

128. DepositOK :: TIME× CI × AcctNu × Cash × Curr × Balance × Balance

The re-active command [above] and the behaviour [next] is in response command/behaviour

Sect. 4.4.2.2 on page 40.

5.5. BANK BEHAVIOURS 81

5.5.2.2.2 Behaviour

129. The bank receives a deposit request.

(a) Records the time and notes the depositing customer32.

(b) The bank updates its account for that customer.

(c) The bank updates its account history for that customer, and

(d) its cashs.

(e) Assembles a reply message.

(f) Communicates a DepositOK to the customer.

(g) Resumes being a bank.

Prerequisites for the proper handling of the customer’s deposit request are:

(h) the customer is recorded as having an account of the indicated currency, and
the bank’s cashs is recorded as containing the indicated currency.

value

129. bank rcv dep(bi)(bois,bi)(info)(custaccts,accts,accthist,cashs,bhist)
129. ((ui,τ ,bi),mk Deposit(bi,anu,curr,amount)) ≡
129a. let τ = recordTIME(), ci = xtr CI(anu) in

129b. let accts′ = acctts † [ci 7→ [curr 7→ (accts(ci))(curr)+amount]],
129c. accthist′ = 〈(τ ,amount,”deposit”)〉̂accthist,
129d. cashs′ = cashs † [curr 7→ cashs(curr) + amount],
129e. reply = mk DepositOK(τ ,ci,anu.curr,(accts(ci))(curr),(accts(ci))(curr)+)amount in

129f. comm[{bi,ui}] ! reply ;
129g. bank(bi)(bois,bi)(info)(custaccts,accts′,accthist′,cashs′,〈((bi,τ ,ci),reply)〉̂bhist) end end

129h. pre: ci ∈ dom accts ∧ curr ∈ dom accts(ci) ∧ curr ∈ dom cashs

32– as the depositors may be a bank, as in a transfer

82 CHAPTER 5. BANKS

5.5.2.3 Deliver Withdrawal

5.5.2.3.1 Command: The bank has received a withdraw request from a customer. That

request, as it is for all such customer-banking requests, is in the form of a command, cf.

ι69e π41. The bank responds with either of two messages.

130. These two messages, WithdrawResponse, are either an OK reply with the cash or a

Not OK reply:

(a) The OK WDR reply contains

• the account number,

• the currency,

• cash, and

• new balance.

(b) The NOK WDR reply contains

• the account number,

• the currency,

• the requested amount of cash and

• the current balance.

type

130. WithDrawResp = OK WDR | NOK WDR
130a. OK WDR :: AccNu × Curr × Cash × NewBal
130b. NOK WDR :: Amount × Curr × Amount × CurrBal

The re-active command [above] and the behaviour [next] is in response command/behaviour

Sect. 4.4.2.3 on page 41.

5.5. BANK BEHAVIOURS 83

5.5.2.3.2 Behaviour

131. The bank response to a withdraw request is to

(a) record time;

(b) question whether there ace sufficient funds to honour the withdrawal.

(c) If not, then concoct a suitable reply;

(d) communicate this to the customer and

(e) resume being a bank.

(f) If indeed, then update customer’s account,

(g) the bank’s cashs, and a

(h) reply –

(i) which is communicated to the customer –

(j) whereupon the bank resumes being a bank.

Prerequisites for the proper handling of the customer withdrawal request are:

(k) the customer is recorded as having an account of that currency and the bank’s
cashs is recorded as containing the indicated currency.

value

131. bank del with(bi)(bois,bi)(info)(custaccts,accts,accthist,cashs,bhist)
131. ((ci,τ ,bi),mk Withdraw(bi,anu,(curr,amount))) ≡
131a. let τ = recordTIME() in

131b. if (accts(ci))(curr)<amount
131c. then let reply = ((bi,τ ,ci),mk NOK WDR(anu,curr,amount,(accts(ci))(curr))) in

131d. comm[{bi,ci}] ! reply ;
131e. bank(bi)(bois,bi)(info)(custaccts,accts,〈reply〉̂accthist,cashs,〈reply〉̂bhist) end

131f. else let accts′ = acctts † [ci 7→ [curr 7→ (accts(ci))(curr) − amount]] ,
131g. cashs′ = cashs † [curr 7→ cashs(curr) − amount] ,
131h. reply = ((bi,τ ,ci),mk OK WDR(anu,curr,amount,(accts(ci))(curr) − amount)) in

131i. comm[{bi,ci}] ! reply ;
131j. bank(bi)(bois,bi)(info)(custaccts,accts′,〈reply〉̂accthist,cashs′,〈reply〉̂bhist) end

131. end end

131k. pre: ci ∈ dom accts ∧ curr ∈ accts(ci) ∧ curr ∈ dom cashs

84 CHAPTER 5. BANKS

5.5.2.4 Effect Transfer

One may consider a transfer in either of two ways:

• either as a transfer of cash-o-hand, that is, as a pair of withdrawals and

deposits, both initiated by the transferring customer,

• or as a transfer in two parts:

1. first the transferring customer commands its bank to withdraw and

amount from an identified account,

2. whereupon the transferring [customers] bank commands the “trans-

ferred to” customers bank to receive a deposit.

We shall opt for the latter form.

5.5.2.4.1 Command: The bank has received a transfer request from a customer. That

request, as it is for all such customer-banking requests, is in the form of a command, cf.

ι72 π44. The bank responds with either of two messages. There is either insufficient funds,

or there are sufficient funds for the transfer. The transfer is from one customers account

to another account of the same customer or another customer. The bank response to the

transferring customer is either one of insufficient funds or an OK, i.e., sufficient funds.

132. The two kinds of bank replies are:

(a) TransferNOK which consists of

• Transfer and • ”not ok”; and

(b) TransferOK which consists of

• Transfer and • ”ok”;

type

132. TransferReply = TransferNOK | TransferOK
132a. TransferNOK :: Transfer × ”not ok”
132b. TransferOK :: Transfer × ”ok”

The re-active command [above] and the behaviour [next] is in response command/behaviour

Sect. 4.4.2.4 on page 43.

5.5. BANK BEHAVIOURS 85

5.5.2.4.2 Behaviour

133. The bank response to a customer transfer request is to test the following cases:

(a) Are there sufficient funds to transfer ?

If so, then

(b) the transfer is between the same customer’s [different] accounts ?

(c) the transfer is between the same customer’s [different, and different bank]
accounts ?

(d) the transfer is between two different customers of the same bank ?

(e) the transfer is between two different customers of different banks ?

(f) otherwise the bank resumes being the bank.

In all of these cases the transferring bank performs the expected operations – as outlined
in respective actions.

value

value

133. bank effect xfer(bi)(bois,bi)(info)(custaccts,accts,accthist,cashs,bhist)
133. (msg:((ci,t,bi),mk Transfer((ci,anu,curr,amount),(ci′ ,anu′,curr,amount)))) ≡
133a. (accts(anu))(curr) ≤ amount
133a. → nil xfer(bi)(bois,bi)(info)
133a. (custaccts,accts,accthist,cashs,〈msg〉̂bhist)(msg),
133b. ci=ci′ ∧ xtr BI(anu)=xtr BI(anu′)
133b. → same cust same bank xfer(bi)(bois,bi)(info)
133b. (custaccts,accts,accthist,cashs,〈msg〉̂bhist)(msg),
133c. ci=ci′ ∧ xtr BI(anu)6=xtr BI(anu′)
133c. → same cust diff banks xfer(bi)(bois,bi)(info)
133c. (custaccts,accts,accthist,cashs,〈msg〉̂bhist)(msg),
133d. ci 6=ci′ ∧ xtr BI(anu)=xtr BI(anu′)
133d. → diff cust same bank xfer(bi)(bois,bi)(info)
133d. (custaccts,accts,accthist,cashs,〈msh〉̂bhist)(msg),
133e. xtr BI(anu)=xtr BI(anu′)
133e. → diff custs diff banks xfer(bi)(bois,bi)(info)
133e. (custaccts,accts,accthist,cashs,〈msh〉̂bhist)(msg)
133f. → bank(bi)(bois,bi)(info)(custaccts,accts,accthist,cashs,bhist)

As it turns out: the two pairs:

• same cust same bank xfer and same cust diff banks xfer, and

• diff cust same bank xfer and diff custs diff banks xfer

are, in effect, of the same form.

86 CHAPTER 5. BANKS

The five tranfer sub-actions are:

• 5.5.2.4.2.1. nil xfer Page 86

• 5.5.2.4.2.2. same cust same bank xfer Page 87

• 5.5.2.4.2.3. diff custs same bank xfer Page 88

• 5.5.2.4.2.4. same cust diff banks xfer Page 89

• 5.5.2.4.2.5. diff custs diff banks xfer Page 90

• • •

5.5.2.4.2.1 Nil Transfer: Customer cash is insufficient.

134. For the nil xfer,

(a) if that the customer balance for the identified currency account is not sufficient

for the transfer,

(b) then reply to that effect is assembled and communicated –

(c) whereupon the bank resumes being a bank.

value

134. nil xfer(bi)(bois,bi)(info)(custaccts,accts,accthist,cashs,〈msg〉̂bhist)
134. (msg:((ci,t,bi),mk Transfer((ci,anu,curr,amount),(ci′ ,anu′)))) ≡
134a. let reply = ((bi,τ ,ci),mk TransferNOK(msg,sort{′′not ok′′})) in

134b. comm[{ci,bi}]reply ;
134c. bank(bi)(bois,bi)(info)(custaccts,accts,accthist,cashs,〈reply,msg〉̂bhist)
134. end

134a. pre: anu ∈ dom accts ∧ curr ∈ dom (accts(anu)) ∧ (accts(anu))(curr) < amount

5.5. BANK BEHAVIOURS 87

5.5.2.4.2.2 Same Customer, Same Bank Transfer: Transfer is between two different ac-

counts, but same customer at same bank.

135. The same cust same bank xfer action

(a) updates the two [same] customer accounts,

(b) records time,

(c) assembles a reply message,

(d) and communicates this [back] to the customer,

(e) whereupon it resumes being that [same] customer.

(f) Preconditions are: the accounts are of the same customer, and are commensurate

with the currency, and customer has enough currency to transfer.

value

135. same cust same bank xfer(bi)(bois,bi)(info)(custaccts,accts,accthist,cashs,〈msg〉̂bhist)
135. (msg:((ci,t,bi),mk Transfer((f ci,f anu,curr,amount),(t ci,t anu)))) ≡
135a. let accts′ = accts † [f anu 7→ [curr 7→ (accts(f anu))(curr) − amount]]
135a. † [t anu 7→ [curr 7→ (accts(t anu))(curr) + amount]] ,
135b. τ = recordTIME() in

135c. let reply = ((bi,τ ,f ci),mk TransferOK(msg,”ok”)) in

135d. comm[{f ci,bi}] ! reply ;
135e. bank(bi)(bois,bi)(info)(custaccts,accts′,accthist,cashs,〈reply,msg〉̂bhist)
135. end end

135f. pre: f ci=t ci ∧ xtr BI(f anu)=xtr BI(t anu)
135f. ∧ f anu ∈ dom accts ∧ curr ∈ dom (accts(f anu))
135f. ∧ t anu ∈ dom accts ∧ curr ∈ dom (accts(t anu))
135f. ∧ (accts(anu))(curr) ≥ amount

88 CHAPTER 5. BANKS

5.5.2.4.2.3 Different Customers, Same Bank Transfer: Transfer is between two differ-

ent customer accounts in same bank.

As it turns out – some simple reasoning could have show that – the two actions are

essentially of the same form, The two actions: same cust same bank xfer and this, the

diff custs same bank xfer action, could be formulated as one.

136. The diff custs same bank xfer action:

(a) updates the two [different] customers accounts,

(b) records time,

(c) assembles a reply message,

(d) and communicates this [back] to the transferring customer,

(e) whereupon it resumes being the transferring customer.

(f) Preconditions are: the transferring customer’s account balance is larger than or

equal to the amount to be transferred, the two customers are different and their

banks are the same.

value

136. diff custs same bank xfer(bi)(bois,bi)(info)(cust accts,accts,acct hist,cashs,bhist)
136. (((ci,t,bi),mk Transfer((f ci,f anu,curr,amount),(t ci,t anu)))) ≡
136a. let accts′′ = accts′ † [anu 7→ [curr 7→ (accts(anu))(curr) − amount]]
136a. † [anu′ 7→ [curr 7→ (accts(anu′))(curr) + amount]] ,
136b. τ = recordTIME() in

136c. let reply = ((bi,τ ,ci),mk TransferOK(msg,”ok”)) in

136d. comm[{ci,bi}] ! reply ;
136e. bank(bi)(bois,bi)(info)(custaccts,accts,accthist,cashs,〈reply,msg〉̂bhist)
136. end end

136f. pre: f ci 6=t ci ∧ xtr BI(f anu)=xtr BI(t anu)
136f. ∧ f anu ∈ dom accts ∧ curr ∈ dom (accts(f anu))
136f. ∧ t anu ∈ dom accts ∧ curr ∈ dom (accts(t anu))
136f. ∧ (accts(f anu))(curr) ≥ amount

5.5. BANK BEHAVIOURS 89

5.5.2.4.2.4 Same Customer, Different Banks Transfer: Transfer is between two differ-

ent customers’ accounts in different banks.

The description lets the transferring customer’s bank handle the customer’s account, as

a “withdrawal”, and, through a “deposit command”, lets the “transferred to”, i.e., receiving

customer’s bank, handle the “deposit”.

137. The same cust diff banks xfer action:

(a) The transferring customer’s bank adjusts its accounts,

(b) records time,

(c) assembles a deposit command

(d) which is then communicated to the “transferred to” bank account;

(e) from which it then awaits a reply message;

(f) if the reply is ”ok” then a successful transfer is completed and the transferring

bank reverts to being a bank with an updated customer account.

(g) else an un-successful transfer is completed (“terminated”) and the transferring

bank reverts to being a bank with no updated customer account.

value

137. same cust diff banks xfer(bi)(bois,bi)(info)(custaccts,accts,accthist,cashs,〈msg〉̂bhist)
137. (msg:((f ci,t,bi),mk Transfer((f ci,f anu,curr,amount),(t ci,t anu)))) ≡
137a. let accts′ = accts † [f anu 7→ (accts(f anu))(curr) − amount] ,
137b. τ = recordTIME() in

137c. let fwd cmd = ((bi,τ ,xtr BI(t anu)),mk Deposit(xtr BI(t anu),t anu,curr,amount)) in

137d. comm[{bi,xtr BI(t anu)}] ! fwd cmd ;
137e. let reply:(,Transfer(ok or nok)) = comm[{bi,xtr BI(t anu)}] ? in

137e. case Transfer(ok or nok) of

137f. ”ok” →
137f. bank(bi)(bois,bi)(info)(custaccts,accts′,〈reply,fwd cmd〉̂accthist,cashs,〈msg〉̂bhist)
137g. ”nok” →
137g. bank(bi)(bois,bi)(info)(custaccts,accts,〈reply,fwd cmd〉̂accthist,cashs,〈msg〉̂bhist)
137. end end end end

137g. pre: (accts(f anu))(curr) ≥ amount ∧ f ci=t ci ∧ xtr BI(f anu)6=xtr BI(t anu)

90 CHAPTER 5. BANKS

5.5.2.4.2.5 Different Customers, Different Banks Transfer: Transfer is between two

different customers accounts in different banks.

138. As for the same cust same bank xfer and diff custs same bank xfer action

descriptions, the diff custs diff banks xfer action description,

139. is, in form, the same as the same cust diff banks xfer action description:

value

138. diff custs diff banks xfer(bi)(bois,bi)(info)(custaccts,accts,accthist,cashs,〈msg〉̂bhist)
138. (((ci,t,bi),mk Transfer((f ci,t anu,curr,amount),(t ci,t anu)))) ≡
139. same cust diff banks xfer(bi)(bois,bi)(info)(custaccts,accts,accthist,cashs,〈msg〉̂bhist)
139. (((f ci,t,bi),mk Transfer((f ci,f anu,curr,amount),(t ci,t anu))))

5.5. BANK BEHAVIOURS 91

5.5.2.5 Exchange

TO BE WRITTEN

92 CHAPTER 5. BANKS

5.5.2.6 Open Display

5.5.2.6.1 Command

140. The

(a)

(b)

(c)

(d)

(e)

type

140.
140a.
140b.
140c.
140d.
140e.

The re-active command [above] and the behaviour [next] is in response command/behaviour

Sect. 4.4.2.6 on page 46.

5.5.2.6.2 Behaviour

141. The

(a)

(b)

(c)

(d)

(e)

value

141. bank open disp(bi)(bois,bi)(info)(inc,as,lia,tax,banks,accs,cards,dis,...,ch)
141. ((ci,τ ,bi),mk OpenDisplay(, ,)) ≡
141a.
141b.
141c.
141d.
141e.

5.5. BANK BEHAVIOURS 93

5.5.2.7 Close Display

5.5.2.7.1 Command

142. The

(a)

(b)

(c)

(d)

(e)

type

142.
142a.
142b.
142c.
142d.
142e.

The re-active command [above] and the behaviour [next] is in response command/behaviour

Sect. 4.4.2.7 on page 47.

5.5.2.7.2 Behaviour

143. The

(a)

(b)

(c)

(d)

(e)

value

143. bank close disp(bi)(bois,bi)(info)(inc,as,lia,tax,banks,accs,cards,dis,...,ch)
143. ((ci,τ ,bi),mk CloseDisplay(, ,)) ≡
143a.
143b.
143c.
143d.
143e.

94 CHAPTER 5. BANKS

5.5.2.8 Effect Credit/Debit

5.5.2.8.1 Command

144. The

(a)

(b)

(c)

(d)

(e)

type

144.
144a.
144b.
144c.
144d.
144e.

The re-active command [above] and the behaviour [next] is in response command/behaviour

Sect. 4.4.2.9 on page 49.

5.5.2.8.2 Behaviour

145. The

(a)

(b)

(c)

(d)

(e)

145a. eff deb cre bank(bi)(bois,bi)(info)(inc,as,lia,tax,banks,accs,cards,dis,...,ch)
145a. ((ci,τ ,bi),mk DebitCredit(, ,)) ≡
145b.
145c.
145d.
145e.

5.5. BANK BEHAVIOURS 95

5.5.2.9 Effect Amortization

5.5.2.9.1 Command

146. The

(a)

(b)

(c)

(d)

(e)

146.
146a.
146b.
146c.
146d.
146e.

The re-active command [above] and the behaviour [next] is in response command/behaviour

Sect. 4.4.2.16 on page 56.

5.5.2.9.2 Behaviour

147. The

(a)

(b)

(c)

(d)

(e)

value

147. bank amort(bi)(bois,bi)(info)(inc,as,lia,tax,banks,accs,cards,dis,...,ch)
147. ((ci,τ ,bi),mk AmorizeLoan(, ,)) ≡
147a.
147b.
147c.
147d.
147e.

96 CHAPTER 5. BANKS

5.5.3 The Bank Pro-active Behaviours

5.5.3.1 Command

148. Since there is, at the moment of this being written, 24.6.2025, 10:40 am, no pro-active

commands of the bank,

(a) that bank resumes being a bank.

5.5.3.2 Behaviour

value

148. pro active bank(boi)(bm:(cis,bois,hqi))(...)(custaccts,accts,acthist,cashs,bhist) ≡
148a. bank(boi)(bm:(cis,bois,hqi))(...)(custaccts,accts,acthist,cashs,bhist)

5.6. DISCUSSION 97

5.6 Discussion

98 CHAPTER 5. BANKS

Chapter 6

Branch Offices

Contents

6.1 External Qualities . 100

6.2 Internal Qualities . 100

6.2.1 Unique Identification . 100

6.2.2 Mereology . 100

6.2.3 Attributes . 101

6.2.4 Wellformedness . 101

6.3 Branch Office Intentional Pull . 102

6.4 Branch Office Commands . 103

6.5 Branch Office Behaviours . 104

6.5.1 Main Branch Office Behaviour 104

6.5.2 Branch Office Re-active Behaviours 105

6.5.2.1 Open Account . 106

6.5.2.2 Open Debit/Credit Card 108

6.5.2.3 Close Debit/Credit Card 109

6.5.2.4 Open Payment . 110

6.5.2.5 Close Payment . 111

6.5.2.6 Open Deposit . 112

6.5.2.7 Close Deposit . 113

6.5.2.8 Close Account . 114

6.5.2.9 Open Loan . 115

6.5.2.10 Increase Loan . 116

6.5.2.11 Close Loan . 117

6.5.2.12 Buy Stocks or Bonds 118

6.5.2.13 Sell Stocks or Bonds 119

6.5.2.14 Incl./Excl. Deb,/Cre. 120

6.5.2.15 Change Account . 121

6.5.2.16 Close Account . 122

6.5.3 Branch Office Pro-active Behaviours 123

99

100 CHAPTER 6. BRANCH OFFICES

6.5.3.1 Information From Bank 124

6.5.3.2 XXX . 125

6.5.3.3 YYY . 126

6.5.3.4 ZZZ . 127

6.5.3.5 WWW . 128

We remind the reader that, for local banks, we distinguish between their head-quarter

and their branch offices and that we abstract the perhaps visible set of more than one branch

office into one. The thus abstracted branch office services non-banking customers: You and

I, businesses, etc. The head-quarter services its branch office[s] and interacts with other local

banks, the central banks, etc.

6.1 External Qualities

Was treated in Sect. 3.3.2 on page 16.

6.2 Internal Qualities

6.2.1 Unique Identification

Was treated in Sect. 3.3.3.1 on page 19.

6.2.2 Mereology

Was treated in Sect. 3.3.3.2 on page 24.

6.2. INTERNAL QUALITIES 101

6.2.3 Attributes

149. Each branch office has its own registration identification33

150. which is further undefined,

151. but define an extraction function which from branch office registration (and, see
next, account) identifiers extract the branch office identifier and the bank head-
quarter identifier.

152. One “central” attribute is that of the accounts ! For every account identifier there
is account information.

(a) Account identifiers are further unspecified tokens.

(b) Account information records such things as Balance, Interest Rates, Time-
stamped List of Transactions, etc.

(c) Balance is a rational number, zero, positive or negative fractions.

(d) Interest Rates are either Positive or Negative,

(e) Transactions lists a sequence of commands directed at the account – such that
the time-stamped transactions are ordered: most recent transactions first.

(f) A transaction is a time-stamped command.

153. Branch offices have a history of all transactions.

type

149. RegNu
150. CustCtlg = CI→m AccId-set

150. AccId
152. Accts = (AccId→m AcctInfo)
152a. AccId
152b. AcctInfo = Bal×IntR×Transl×...
152c. Bal = Real

152d. IntR,PosR,NegR =Real

152e. Transl = Trans∗

153. BOHist =Trans∗

152f. Trans = TIME×Cmd
value

151. attr RegNu: BO → RegNu
151. attr CustCtlg: BO → CustCtlg
152. attr Accts: BO → Accounts
153. attr BOHist: BO → BOHist

151. xtr BOI HQI: (Regnu|AccId)
151. → (BOI×HQI)

6.2.4 Wellformedness

154.

154.

33– to be used, for example, when customers may wish to interact with the bank

102 CHAPTER 6. BRANCH OFFICES

6.3 Branch Office Intentional Pull

TO BE WRITTEN

6.4. BRANCH OFFICE COMMANDS 103

6.4 Branch Office Commands

Branch offices either responds to commands received from account holders, banks or the

bank headquarter. or issue, by their own initiative [most likely in response to a directive

from its headquarter], commands to bank customers – say in case of interest rate changes,

etc. [Compare this opening paragraph with those of Sects. 4.3 on page 35 and 5.4 on
page 75.]

155. Commands: Branch offices issue the following (presently 9) commands:

(a) Your New Account is Granted: This command is in response to the customer

OpenAcct command, cf. ι60a π35.

(b) Your New Credit/Debit Card: This command is in response to the customer

ObtainCreDebCard command, cf. ι60h π36.

(c) Your Credit/Debit Card Closed: This command is in response to the customer

ClosCreDebCard command, cf. ι60j π36.

(d) Your Loan Application: This command is in response to the customer Open

Loan command, cf. ι60o π36.

(e) Your Loan Increase: This command is in response to the customer IncreaseLoan

command, cf. ι60q π36.

(f) Your Loan Closed: This command is in response to the customer CloseLoan

command, cf. ι60r π36.

(g) Change of Account Status Accepted: This command is in response to the

customer ChgeAcctStatus command, cf. ι60v π36.

(h) Information from Your Bank: The bank, i.e., the branch office, occasionally

informs its customers, f.ex.: of changes of interest rates on deposits, loans, etc.,

or other.

(i) Your Account has been Closed: This command is in response to the customer

CloseAcct command, cf. ι60w π36.

type

155. BOCmd =
155a. NewAcct
155i. | ClosAcct
155b. | OpnCDCard
155c. | CloCDCard

155d. | LoanAccDen
155e. | LoanIncrOK
155f. | LoanClos
155g. | AccChgAcctSta
155h. | InfoFromBank

104 CHAPTER 6. BRANCH OFFICES

6.5 Branch Office Behaviours

6.5.1 Main Branch Office Behaviour

156. The branch office internal non-deterministically alternates between

(a) re-actively responding to customer, bank and bank headquarter commands and

(b) pro-actively issuing commands to customers, [their] bank and [their bank] head-

quarter.

value

156. branch office(boi)(cis,bois,hqi)(static)(monit)(progr) ≡
156a. re active branch office(boi)(cis,bois,hqi)(static)(monit)(progr)
156b. ⌈⌉ pro active branch office(boi)(cis,bois,hqi)(static)(monit)(progr)

6.5. BRANCH OFFICE BEHAVIOURS 105

6.5.2 Branch Office Re-active Behaviours

157. The re-active-branch-office behaviour external non-deterministically (⌈⌉⌊⌋)

(a) awaits (i.e., responds to) messages from customers, branch offices or its head

quarter.

(b) If the message received is of type “X” then a corresponding behavior is involved.

(c) Else the behaviour resumes being a branch office behaviour.

value

157. re active branch office(boi)(bom:cis,bois,hqi)(static:regnu)(progr:(custctlg,access,bohist)) ≡
157a. let ((ci,τ ,bi),msg) = ⌈⌉⌊⌋ { commqui,boi | ui ∈ cisuid∪boisuid∪{hqi} } in

157b. is OpenAcct(msg) → open account bo(boi)(bom)(static)(progr)((ci,τ ,bi),msg)
157b. is ObtainCredDebCard(msg) → open CD bo(boi)(bom)(static)(progr)((ci,τ ,bi),msg)
157b. is ClosCredDebCard(msg) → clos CD bo(boi)(bom)(static)(progr)((ci,τ ,bi),msg)
157b. is OpenPaymentService(msg) → open payment bo(boi)(bom)(static)(progr)((ci,τ ,bi),msg)
157b. is ClosPaymentService(msg) → clos payment bo(boi)(bom)(static)(progr)((ci,τ ,bi),msg)
157b. is OpenDepositService(msg) → open deposit bo(boi)(bom)(static)(progr)((ci,τ ,bi),msg)
157b. is CloseDepositService(msg) → close deposit bo(boi)(bom)(static)(progr)((ci,τ ,bi),msg)
157b. is ApplyLoan(msg) → apply loan bo(boi)(bom)(static)(progr)((ci,τ ,bi),msg)
157b. is IncreaseLoan(msg) → increase loan bo(boi)(bom)(static)(progr)((ci,τ ,bi),msg)
157b. is CloseLoan(msg) → clos loan bo(boi)(bom)(static)(progr)((ci,τ ,bi),msg)
157b. is BuyStock(msg) → buy stock bo(boi)(bom)(static)(progr)((ci,τ ,bi),msg)
157b. is SellStock(msg) → sell stock bo(boi)(bom)(static)(progr)((ci,τ ,bi),msg)
157b. is InclExclDebCred(msg) → incl excl DB bo(boi)(bom)(static)(progr)((ci,τ ,bi),msg)
157b. is ChangeAcctStatus(msg) → change status bo(boi)(bom)(static)(progr)((ci,τ ,bi),msg)
157b. is ClosAcct(msg) → clos account bo(boi)(bom)(static)(progr)((ci,τ ,bi),msg)
157c. → branch office(boi)(cis,bois,hqi)(static:regnu)(progr:(custctlg,access,bohist))
157b. end

106 CHAPTER 6. BRANCH OFFICES

6.5.2.1 Open Account

6.5.2.1.1 Command. The Open Account command, mk OpenAcct(info,inc,as,dis,-

kis,lia), is a request from a customer, ci. That customer expects a reply. Either in the

form of a no, that is, we, the bank, do not accept that You open an account, given her infor-

mation, info,inc,as,dis,kis,lia, that You have given, sorry, ot it is a yes, welcome to

the bank, here is Your new bank account number etc. These replies amount to commands,

sent by the branch office to whom the Open Account request was addressed. This reply

command has the following form:

158. The branch office reply to a customer open account request is either to decline the

request34 or to accept the request:

(a) The DeclineAcct reply just lists a ”no”.

(b) The NewAcct reply “lists” the bank indentifier and a new account number.

type

158. OpenAcctReply = DeclineAcct | NewAcct
158a. DeclineAcct :: ”no”
158b. NewAcct :: BI × AcctNu

The re-active command [above] and the behaviour [next] is in response command/behaviour

Sect. 4.4.2.1 on page 39.

6.5.2.1.2 Behaviour

159. The branch office as received an open account request.

(a) Based on the customer information the branch office examines whether to
decline or grant the request.

(b) If it is to decline the reques it replies so to the customer

(c) and resumes being a branch office.

(d) If it is to accept the open account request then it alerts its bank as to a
fresh, hitherto unused account number, and

(e) awaits one such.

(f) It then communicates this to the customer

(g) and resumes being a branch office.

value

159. open account bo(boi)(bom)(static)(progr:((ci,τ ,bi),cmd:mk OpenAcct(info,inc,as,dis,kis,lia)),curr) ≡
159a. let yes no = examine open account request(cmd,progr) in

159b. if yes no = ”no”

34The bank [head quarter or branch office] judges that the customer is not “fit”.

6.5. BRANCH OFFICE BEHAVIOURS 107

159b. then comm[{boi,ci}] !mk DeclineAcct(”no”) ;
159c. branch office(boi)(bom)(static)(progr)
159d. else comm[{xtr BI(boi),boi}] !mk NewAcctNu(ci,boi) ;
159e. let mk AcctNu(anu) = comm[{xtr BI(boi),boi}] ? in

159f. comm[{boi,ci}] !mk NewAcct(bi,anu) ;
159g. branch office(boi)(bom)(static)(progr) end

159. end end

108 CHAPTER 6. BRANCH OFFICES

6.5.2.2 Open Debit/Credit Card

6.5.2.2.1 Command

160. The

(a)

(b)

(c)

(d)

160.
160a.
160b.
160c.
160d.

The re-active command [above] and the behaviour [next] is in response command/behaviour

Sect. 4.4.2.8 on page 48.

6.5.2.2.2 Behaviour

161. The

(a)

(b)

(c)

(d)

value

161. open CD bo(boi)(bom)(static)(progr)((ci,τ ,bi),mk ObtainCreDebCard()) ≡
161a.
161b.
161c.
161d.

6.5. BRANCH OFFICE BEHAVIOURS 109

6.5.2.3 Close Debit/Credit Card

6.5.2.3.1 Command

162. The

(a)

(b)

(c)

(d)

type

162.
162a.
162b.
162c.
162d.

The re-active command [above] and the behaviour [next] is in response command/behaviour

Sect. 4.4.2.10 on page 50.

6.5.2.3.2 Behaviour

163. The

(a)

(b)

(c)

(d)

value

163. close CD bo(boi)(bom)(static)(progr)((ci,τ ,bi),mk ClosCreDebCard()) ≡
163a.
163b.
163c.
163d.

110 CHAPTER 6. BRANCH OFFICES

6.5.2.4 Open Payment

6.5.2.4.1 Command

164. The

(a)

(b)

(c)

(d)

164.
164a.
164b.
164c.
164d.

The re-active command [above] and the behaviour [next] is in response command/behaviour

Sect. 4.4.2.11 on page 51.

6.5.2.4.2 Behaviour

165. The

(a)

(b)

(c)

(d)

value

165. open paym bo(boi)(bom)(static)(progr)((ci,τ ,bi),mk OpenPaymentService()) ≡
165a.
165b.
165c.
165d.

6.5. BRANCH OFFICE BEHAVIOURS 111

6.5.2.5 Close Payment

6.5.2.5.1 Command

166. The

(a)

(b)

(c)

(d)

type

166.
166a.
166b.
166c.
166d.

The re-active command [above] and the behaviour [next] is in response command/behaviour

Sect. 4.4.2.12 on page 52.

6.5.2.5.2 Behaviour

167. The

(a)

(b)

(c)

(d)

value

167. close payt bo(boi)(bom)(static)(progr)((ci,τ ,bi),mk ClosePaymentService()) ≡
167a.
167b.
167c.
167d.

112 CHAPTER 6. BRANCH OFFICES

6.5.2.6 Open Deposit

6.5.2.6.1 Command

168. The

(a)

(b)

(c)

(d)

type

168.
168a.
168b.
168c.
168d.

The re-active command [above] and the behaviour [next] is in response command/behaviour

Sect. 4.4.2.13 on page 53.

6.5.2.6.2 Behaviour

169. The

(a)

(b)

(c)

(d)

type

169. open deposit bo(boi)(bom)(static)(progr)((ci,τ ,bi),mk OpenDepositService()) ≡
169a.
169b.
169c.
169d.

6.5. BRANCH OFFICE BEHAVIOURS 113

6.5.2.7 Close Deposit

6.5.2.7.1 Command

170. The

(a)

(b)

(c)

(d)

type

170.
170a.
170b.
170c.
170d.

The re-active command [above] and the behaviour [next] is in response command/behaviour

Sect. 4.4.2.14 on page 54.

6.5.2.7.2 Behaviour

171. The

(a)

(b)

(c)

(d)

value

171. close deposit bo(boi)(bom)(static)(progr)((ci,τ ,bi),mk CloseDepositService()) ≡
171a.
171b.
171c.
171d.

114 CHAPTER 6. BRANCH OFFICES

6.5.2.8 Close Account

6.5.2.8.1 Command

172. The

(a)

(b)

(c)

(d)

type

172.
172a.
172b.
172c.
172d.

The re-active command [above] and the behaviour [next] is in response command/behaviour

Sect. 4.4.2.23 on page 63.

6.5.2.8.2 Behaviour

173. The

(a)

(b)

(c)

(d)

value

173. close account bo(boi)(bom)(static)(progr)((ci,τ ,bi),mk CloseAcct()) ≡
173a.
173b.
173c.
173d.

6.5. BRANCH OFFICE BEHAVIOURS 115

6.5.2.9 Open Loan

6.5.2.9.1 Command

174. The

(a)

(b)

(c)

(d)

type

174.
174a.
174b.
174c.
174d.

The re-active command [above] and the behaviour [next] is in response command/behaviour

Sect. 4.4.2.15 on page 55.

6.5.2.9.2 Behaviour

175. The

(a)

(b)

(c)

(d)

value

175. apply loan bo(boi)(bom)(static)(progr)((ci,τ ,bi),mk ApplyLoan()) ≡
175a.
175b.
175c.
175d.

116 CHAPTER 6. BRANCH OFFICES

6.5.2.10 Increase Loan

6.5.2.10.1 Command

176. The

(a)

(b)

(c)

(d)

type

176.
176a.
176b.
176c.
176d.

The re-active command [above] and the behaviour [next] is in response command/behaviour

Sect. 4.4.2.17 on page 57.

6.5.2.10.2 Behaviour

177. The

(a)

(b)

(c)

(d)

value

177. increase loan bo(boi)(bom)(static)(progr)((ci,τ ,bi),mk CloseLoan()) ≡
177a.
177b.
177c.
177d.

6.5. BRANCH OFFICE BEHAVIOURS 117

6.5.2.11 Close Loan

6.5.2.11.1 Command

178. The

(a)

(b)

(c)

(d)

type

178.
178a.
178b.
178c.
178d.

The re-active command [above] and the behaviour [next] is in response command/behaviour

Sect. 4.4.2.18 on page 58.

6.5.2.11.2 Behaviour

179. The

(a)

(b)

(c)

(d)

value

179. close loan bo(boi)(bom)(static)(progr)((ci,τ ,bi),mk CloseLoan()) ≡
179a.
179b.
179c.
179d.

118 CHAPTER 6. BRANCH OFFICES

6.5.2.12 Buy Stocks or Bonds

6.5.2.12.1 Command

180. The

(a)

(b)

(c)

(d)

type

180.
180a.
180b.
180c.
180d.

The re-active command [above] and the behaviour [next] is in response command/behaviour

Sect. 4.4.2.18 on page 58.

6.5.2.12.2 Behaviour

181. The

(a)

(b)

(c)

(d)

value

181. buy stock bo(boi)(bom)(static)(progr)((ci,τ ,bi),mk BuyStock()) ≡
181a.
181b.
181c.
181d.

6.5. BRANCH OFFICE BEHAVIOURS 119

6.5.2.13 Sell Stocks or Bonds

6.5.2.13.1 Command

182. The

(a)

(b)

(c)

(d)

type

182.
182a.
182b.
182c.
182d.

The re-active command [above] and the behaviour [next] is in response command/behaviour

Sect. 4.4.2.18 on page 58.

6.5.2.13.2 Behaviour

183. The

(a)

(b)

(c)

(d)

value

183. sell stock bo(boi)(bom)(static)(progr)((ci,τ ,bi),mk SellStock()) ≡
183a.
183b.
183c.
183d.

120 CHAPTER 6. BRANCH OFFICES

6.5.2.14 Incl./Excl. Deb,/Cre.

6.5.2.14.1 Command

184. The

(a)

(b)

(c)

(d)

type

184.
184a.
184b.
184c.
184d.

The re-active command [above] and the behaviour [next] is in response command/behaviour

Sect. 4.4.2.18 on page 58.

6.5.2.14.2 Behaviour

185. The

(a)

(b)

(c)

(d)

value

185. incl excl deb cre bo(boi)(bom)(static)(progr)((ci,τ ,bi),mk InclExclDebCre()) ≡
185a.
185b.
185c.
185d.

6.5. BRANCH OFFICE BEHAVIOURS 121

6.5.2.15 Change Account

6.5.2.15.1 Command

186. The

(a)

(b)

(c)

(d)

type

186.
186a.
186b.
186c.
186d.

The re-active command [above] and the behaviour [next] is in response command/behaviour

Sect. 4.4.2.18 on page 58.

6.5.2.15.2 Behaviour

187. The

(a)

(b)

(c)

(d)

value

187. change account bo(boi)(bom)(static)(progr)((ci,τ ,bi),mk ChangeAcct()) ≡
187a.
187b.
187c.
187d.

122 CHAPTER 6. BRANCH OFFICES

6.5.2.16 Close Account

6.5.2.16.1 Command

188. The

(a)

(b)

(c)

(d)

type

188.
188a.
188b.
188c.
188d.

The re-active command [above] and the behaviour [next] is in response command/behaviour

Sect. 4.4.2.23 on page 63.

6.5.2.16.2 Behaviour

189. The

(a)

(b)

(c)

(d)

value

189. close account bo(boi)(bom)(static)(progr)((ci,τ ,bi),mk CloseAcct()) ≡
189a.
189b.
189c.
189d.

6.5. BRANCH OFFICE BEHAVIOURS 123

6.5.3 Branch Office Pro-active Behaviours

190. The

(a)

(b)

(c)

(d)

value

190. yyy(boi)(mereo:bom)(stat:regnu)(progr:(custctlg,access,bohist)) ≡
190a.
190b.
190c.
190d.

124 CHAPTER 6. BRANCH OFFICES

6.5.3.1 Information From Bank

6.5.3.1.1 Command

191. The

(a)

(b)

(c)

(d)

type

191.
191a.
191b.
191c.
191d.

6.5.3.1.2 Behaviour

192. The

(a)

(b)

(c)

(d)

value

192. info from bank(...) ≡
192a.
192b.
192c.
192d.

6.5. BRANCH OFFICE BEHAVIOURS 125

6.5.3.2 XXX

193. The

(a)

(b)

(c)

(d)

(e)

value

193. yyy(boi)(bom)(regnu)(progr:(custctlg,access,bohist)) ≡
193a.
193b.
193c.
193d.
193e.

126 CHAPTER 6. BRANCH OFFICES

6.5.3.3 YYY

194. The

(a)

(b)

(c)

(d)

(e)

value

194. yyy(boi)(bom)(regnu)(progr:(custctlg,access,bohist)) ≡
194a.
194b.
194b.
194b.

6.5. BRANCH OFFICE BEHAVIOURS 127

6.5.3.4 ZZZ

195. The

(a)

(b)

(c)

(d)

(e)

value

195. yyy(boi)(bom)(regnu)(progr:(custctlg,access,bohist)) ≡
195a.
195b.
195c.
195d.
195e.

128 CHAPTER 6. BRANCH OFFICES

6.5.3.5 WWW

196. The

(a)

(b)

(c)

(d)

(e)

value

196. yyy(boi)(bom)(regnu)(progr:(custctlg,access,bohist)) ≡
196a.
196b.
196c.
196d.
196e.

Chapter 7

Bank Head Quarter

Contents

7.1 External Qualities . 129

7.1.1 The Endurants . 129

7.2 Internal Qualities . 129

7.2.1 Unique Identification . 129

7.2.2 Mereology . 130

7.2.3 Attributes . 130

7.2.3.1 Sorts & Types . 130

7.2.3.2 Wellformedness . 130

7.3 Bank Head Quarte Intentional Pull 130

7.4 Bank Head Quarte Commands . 130

7.5 Bank Head Quarter Behaviours . 130

7.5.1 The Bank Head Quarter Behaviour 130

7.5.2 The Bank Head Quarter Re-active Behaviours 130

7.5.3 The Bank Head Quarter Pro-active Behaviours 130

Note: In this chapter we shall relate the bank head quarter to the bank, its

branch offices, to national banks, regional banks, etc., as well as to other banks,

f.ex. with respect to currency trading.

7.1 External Qualities

7.1.1 The Endurants

Was treated in Sect. 3.3.2 on page 16.

7.2 Internal Qualities

7.2.1 Unique Identification

Was treated in Sect. 3.3.3.1 on page 19.

129

130 CHAPTER 7. BANK HEAD QUARTER

7.2.2 Mereology

Was treated in Sect. 3.3.3.2 on page 24.

7.2.3 Attributes

7.2.3.1 Sorts & Types

7.2.3.2 Wellformedness

7.3 Bank Head Quarte Intentional Pull

7.4 Bank Head Quarte Commands

7.5 Bank Head Quarter Behaviours

7.5.1 The Bank Head Quarter Behaviour

7.5.2 The Bank Head Quarter Re-active Behaviours

7.5.3 The Bank Head Quarter Pro-active Behaviours

Chapter 8

Tellers

Contents

8.1 Tellers and Automatic Teller Machines[ATM] 131

8.2 ATMs . 131

8.3 Discussion . 131

8.1 Tellers and Automatic Teller Machines[ATM]

8.2 ATMs

8.3 Discussion

131

132 CHAPTER 8. TELLERS

Chapter 9

Credit/Debit Company

Contents

9.1 External Qualities . 134

9.1.1 The Endurants . 134

9.1.1.1 Endurant Sorts . 134

9.1.1.2 An Endurant State . 134

9.2 Internal Qualities . 134

9.2.1 Unique Identification . 134

9.2.1.1 Unique Identifier Sorts 134

9.2.1.2 A Unique Identifier State 134

9.2.2 Mereology . 134

9.2.2.1 Sorts . 134

9.2.2.2 Wellformedness . 134

9.2.3 Attributes . 134

9.2.3.1 Sorts & Types . 134

9.2.3.2 Wellformedness . 134

9.3 Credit/Debit CompanyIntentional Pull 134

9.4 Credit/Debit CompanyCommands . 134

133

134 CHAPTER 9. CREDIT/DEBIT COMPANY

9.1 External Qualities

9.1.1 The Endurants

9.1.1.1 Endurant Sorts

9.1.1.2 An Endurant State

9.2 Internal Qualities

9.2.1 Unique Identification

9.2.1.1 Unique Identifier Sorts

9.2.1.2 A Unique Identifier State

9.2.2 Mereology

9.2.2.1 Sorts

9.2.2.2 Wellformedness

9.2.3 Attributes

9.2.3.1 Sorts & Types

9.2.3.2 Wellformedness

9.3 Credit/Debit CompanyIntentional Pull

9.4 Credit/Debit CompanyCommands

Chapter 10

Mortgage, Savings and Loan
Companies

Contents

10.1 External Qualities . 136

10.1.1 The Endurants . 136

10.1.1.1 Endurant Sorts . 136

10.1.1.2 An Endurant State . 136

10.2 Internal Qualities . 136

10.2.1 Unique Identification . 136

10.2.1.1 Unique Identifier Sorts 136

10.2.1.2 A Unique Identifier State 136

10.2.2 Mereology . 136

10.2.2.1 Sorts . 136

10.2.2.2 Wellformedness . 136

10.2.3 Attributes . 136

10.2.3.1 Sorts & Types . 136

10.2.3.2 Wellformedness . 136

10.3 Credit/Debit CompanyIntentional Pull 136

10.4 Credit/Debit CompanyCommands . 136

• https://corporatefinanceinstitute.com/resources/wealth-management/mortgage-
bank/

A mortgage bank is a bank specializing in mortgage loans. It can be involved in
originating or servicing mortgage loans, or both. The banks loan their own capital
to borrowers and either collect payments in installments along with a certain rate
of interest or sell their loans in the secondary market.

Mortgage Bankers vs. Mortgage Brokers

135

136 CHAPTER 10. MORTGAGE, SAVINGS AND LOAN COMPANIES

– In terms of loan origination, mortgage bankers risk their own capital to fund
loans. Also, they are not required to disclose the price at which they sell
mortgages.

– On the other hand, mortgage brokers originate loans in the name of financial
institutions and organizations. Regarding full disclosure, they need to disclose
the additional fee(s) charged to the consumer under federal and state laws.

•

• https://danskebank.dk/en/personal/products/loans/personal-loans

10.1 External Qualities

10.1.1 The Endurants

10.1.1.1 Endurant Sorts

10.1.1.2 An Endurant State

10.2 Internal Qualities

10.2.1 Unique Identification

10.2.1.1 Unique Identifier Sorts

10.2.1.2 A Unique Identifier State

10.2.2 Mereology

10.2.2.1 Sorts

10.2.2.2 Wellformedness

10.2.3 Attributes

10.2.3.1 Sorts & Types

10.2.3.2 Wellformedness

10.3 Credit/Debit CompanyIntentional Pull

10.4 Credit/Debit CompanyCommands

Part IV

Stocks: Brokers & Exchange

137

Chapter 11

Stock Brokers

TO BE WRITTEN

139

140 CHAPTER 11. STOCK BROKERS

Chapter 12

Stock Exchanges

• We refer to

– Appendix Chapter C, pages 241–256:

– An RSL model of the The Tokyo Stock Exchange.

• Also on the internet:

– www.imm.dtu.dk/˜db/todai/tse-1.pdf ,

– www.imm.dtu.dk/˜db/todai/tse-2.pdf

TO BE WRITTEN

141

142 CHAPTER 12. STOCK EXCHANGES

Part V

National, Regional & Global Banks

143

Chapter 13

National Banks: Endurants and
Commands

The Danish National Bank: We contribute to stable prices through the fixed exchange

rate policy. We ensure that payments can be effected in a secure and efficient manner. And

we are committed to ensuring stability in the financial sector.

Also: VP Securities and

13.1 Endurants

13.1.1 External Qualities

13.1.1.1 The Endurant Sorts

13.1.1.2 An Endurant State

13.1.2 Internal Qualities

13.1.2.1 Unique Identification

13.1.2.1.1 Unique Identifier Sorts

13.1.2.1.2 A Unique Identifier State

13.1.2.2 Mereology

13.1.2.3 Attributes

13.1.2.3.1 Attribute Sorts

13.1.2.3.2 Attribute Wellformedness

145

146 CHAPTER 13. NATIONAL BANKS: ENDURANTS AND COMMANDS

13.2 National Bank Intentional Pull

13.3 National Bank Commands

Chapter 14

Central Banks: Endurants and
Commands

14.1 Endurants

14.1.1 External Qualities

14.1.1.1 The Endurant Sorts

14.1.1.2 An Endurant State

14.1.2 Internal Qualities

14.1.2.1 Unique Identification

14.1.2.1.1 Unique Identifier Sorts

14.1.2.1.2 A Unique Identifier State

14.1.2.2 Mereology

14.1.2.3 Attributes

14.1.2.3.1 Attribute Sorts

14.1.2.3.2 Attribute Wellformedness

14.2 Regional Bank Intentional Pull

14.3 Regional Bank Commands

147

148 CHAPTER 14. CENTRAL BANKS: ENDURANTS AND COMMANDS

Chapter 15

IMF: Endurants and Commands

15.1 Endurants

15.1.1 External Qualities

15.1.1.1 The Endurant Sorts

15.1.1.2 An Endurant State

15.1.2 Internal Qualities

15.1.2.1 Unique Identification

15.1.2.1.1 Unique Identifier Sorts

15.1.2.1.2 A Unique Identifier State

15.1.2.2 Mereology

15.1.2.3 Attributes

15.1.2.3.1 Attribute Sorts

15.1.2.3.2 Attribute Wellformedness

15.2 IMF Intentional Pull

15.3 IMF Office Commands

149

150 CHAPTER 15. IMF: ENDURANTS AND COMMANDS

Chapter 16

The World Bank: Endurants and
Commands

16.1 Endurants

16.1.1 External Qualities

16.1.1.1 The Endurant Sorts

16.1.1.2 An Endurant State

16.1.2 Internal Qualities

16.1.2.1 Unique Identification

16.1.2.1.1 Unique Identifier Sorts

16.1.2.1.2 A Unique Identifier State

16.1.2.2 Mereology

16.1.2.3 Attributes

16.1.2.3.1 Attribute Sorts

16.1.2.3.2 Attribute Wellformedness

16.2 The World Bank Intentional Pull

16.3 The World Bank Commands

151

152 CHAPTER 16. THE WORLD BANK: ENDURANTS AND COMMANDS

Part VI

Closing

153

Chapter 17

Discussion

• The Banking Decomposition: I have chosen a “flat” structuring [i.e., decomposi-

tion] of the world banking system.

...

...

WBS

CA BA TWBIMF

See Fig. 3.1

Figure 17.1: One Rendition of a World Banking System

This is in contrast to a decomposition that “favours” structuring by nationality, etc.:

Figure 17.2: Another Rendition of a World Banking System

Figure 17.2 is under construction!̇

MORE TO COME

155

156 CHAPTER 17. DISCUSSION

• :

• :

• :

• :

Chapter 18

Conclusion

Contents

18.1 What Have We Achieved ? . 157

18.2 What Have We Not Achieved ? . 157

18.3 How Was This Domain Modelling Approached ? 157

18.4 A Prelude to a Professional Banking Domain R & D 157

18.5 What Next ? . 157

18.6 Acknowledgements . 157

18.7 References . 158

18.1 What Have We Achieved ?

18.2 What Have We Not Achieved ?

18.3 How Was This Domain Modelling Approached ?

18.4 A Prelude to a Professional Banking Domain R & D

18.5 What Next ?

18.6 Acknowledgements

157

158 BIBLIOGRAPHY

18.7 References

[1] J. L. Austin. How to Do Things with Words. Harvard University Press, Cambridge,
Mass., 2 edition, 1975. (William James Lectures).

[2] H. Bekič, D. Bjørner, W. Henhapl, C.B. Jones, and P. Lucas. A Formal Definition
of a PL/I Subset. Technical Report 25.139, Vienna, Austria, December 1974.

[3] Hans Bekič, Peter Lucas, Kurt Walk, and Many Others. Formal Definition of PL/I,
ULD Version III. IBM Laboratory, Vienna, 1969.

[4] D. Bjørner and O. Oest. Towards a Formal Description of Ada, volume 98 of LNCS.
Springer–Verlag, 1980.

[5] Dines Bjørner. Domain Case Studies:

• 2025: Documents – a Domain Description, Winter/Spring 2025,
www.imm.dtu.dk/ dibj/2025/documents/main.pdf

• 2023: Nuclear Power Plants, A Domain Sketch, 21 July, 2023
www.imm.dtu.dk/ dibj/2023/nupopl/nupopl.pdf

• 2021: Shipping , April 2021. www.imm.dtu.dk/ dibj/2021/ral/ral.pdf

• 2021: Rivers and Canals – Endurants, March 2021.
www.imm.dtu.dk/ dibj/2021/Graphs/Rivers-and-Canals.pdf

• 2021: A Retailer Market, January 2021.
www.imm.dtu.dk/ dibj/2021/Retailer/BjornerHeraklit27January2021.pdf

• 2019: Container Terminals, ECNU, Shanghai, China
www.imm.dtu.dk/ dibj/2018/yangshan/maersk-pa.pdf

• 2018: Documents, TongJi Univ., Shanghai, China
www.imm.dtu.dk/ dibj/2017/docs/docs.pdf

• 2017: Urban Planning , TongJi Univ., Shanghai, China
www.imm.dtu.dk/ dibj/2017/urban-planning.pdf

• 2017: Swarms of Drones, IS/CAS35, Peking, China
www.imm.dtu.dk/ dibj/2017/swarms/swarm-paper.pdf

• 2013: Road Transport, Techn. Univ. of Denmark
www.imm.dtu.dk/ dibj/road-p.pdf

• 2012: Credit Cards, Uppsala, Sweden
www.imm.dtu.dk/ dibj/2016/credit/accs.pdf

• 2012: Weather Information, Bergen, Norway
www.imm.dtu.dk/ dibj/2016/wis/wis-p.pdf

• 2010: Web-based Transaction Processing , Techn. Univ. of Vienna, Austria,
186 pages www.imm.dtu.dk/ dibj/wfdftp.pdf

• 2010: The Tokyo Stock Exchange, Tokyo Univ., Japan
www.imm.dtu.dk/ db/todai/tse-2.pdf

35Inst. of Softw., Chinese Acad. of Sci.

BIBLIOGRAPHY 159

• 2009: Pipelines, Techn. Univ. of Graz, Austria
www.imm.dtu.dk/ dibj/pipe-p.pdf

• 2007: A Container Line Industry Domain, Techn. Univ. of Denmark
www.imm.dtu.dk/ dibj/container-paper.pdf

• 2002: The Market, Techn. Univ. of Denmark
www.imm.dtu.dk/ dibj/themarket.pdf

• 1995–2004: Railways, Techn. Univ. of Denmark - a compendium
www.imm.dtu.dk/ dibj/train-book.pdf

Experimental research carried out to “discover”, try-out and refine method principles,
techniques and tools, 1995–2025.

[6] Dines Bjørner. Formal Software Techniques in Railway Systems. In Eckehard
Schnieder, editor, 9th IFAC Symposium on Control in Transportation Systems, pages
1–12, Technical University, Braunschweig, Germany, 13–15 June 2000. VDI/VDE-
Gesellschaft Mess– und Automatisieringstechnik, VDI-Gesellschaft für Fahrzeug– und
Verkehrstechnik. Invited talk.

[7] Dines Bjørner. Dynamics of Railway Nets: On an Interface between Automatic
Control and Software Engineering. In CTS2003: 10th IFAC Symposium on Con-
trol in Transportation Systems, Oxford, UK, August 4-6 2003. Elsevier Science
Ltd. Symposium held at Tokyo, Japan. Editors: S. Tsugawa and M. Aoki.
www2.imm.dtu.dk/ dibj/ifac-dynamics.pdf.

[8] Dines Bjørner. New Results and Trends in Formal Techniques for the Development
of Software for Transportation Systems. In FORMS2003: Symposium on Formal
Methods for Railway Operation and Control Systems. Institut für Verkehrssicherheit
und Automatisierungstechnik, Techn.Univ. of Braunschweig, Germany, 15–16 May
2003. Conf. held at Techn.Univ. of Budapest, Hungary. Editors: G. Tarnai and E.
Schnieder, Germany. www2.imm.dtu.dk/ dibj/dines-amore.pdf.

[9] Dines Bjørner. Software Engineering, Vol. 1: Abstraction and Modelling; Vol. 2:
Specification of Systems and Languages; Vol. 3: Domains, Requirements and Soft-
ware Design. Texts in Theoretical Computer Science, the EATCS Series. Springer,
Heidelberg, Germany, 2006.

[10] Dines Bjørner. From Domains to Requirements
www.imm.dtu.dk/ dibj/2008/ugo/ugo65.pdf. In Montanari Festschrift,
volume 5065 of Lecture Notes in Computer Science (eds. Pierpaolo Degano, Rocco
De Nicola and José Meseguer), pages 1–30, Heidelberg, May 2008. Springer.

[11] Dines Bjørner. Domain Engineering. In Paul Boca and Jonathan Bowen, editors,
Formal Methods: State of the Art and New Directions, Eds. Paul Boca and Jonathan
Bowen, pages 1–42, London, UK, 2010. Springer.

[12] Dines Bjørner. Domain Engineering. In Paul Boca and Jonathan Bowen, editors,
Formal Methods: State of the Art and New Directions, Eds. Paul Boca and Jonathan
Bowen, pages 1–42, London, UK, 2010. Springer.

160 BIBLIOGRAPHY

[13] Dines Bjørner. A Rôle for Mereology in Domain Science and Engineering. In
Mereology and the Sciences, Synthese Library (eds. Claudio Calosi and Pierluigi
Graziani), pages 323–357, Amsterdam, The Netherlands, October 2014. Springer.
https://www.imm.dtu.dk/ dibj/2011/urbino/urbino-colour.pdf.

[14] Dines Bjørner. Domain Analysis: Endurants – An Analysis & Description Process
Model www.imm.dtu.dk/ dibj/2014/kanazawa/kanazawa-p.pdf. In Shusaku
Iida and José Meseguer and Kazuhiro Ogata, editor, Specification, Algebra, and
Software: A Festschrift Symposium in Honor of Kokichi Futatsugi. Springer, Heidel-
berg, Garmany, May 2014.

[15] Dines Bjørner. Manifest Domains: Analysis & Description
www.imm.dtu.dk/ dibj/2015/faoc/faoc-bjorner.pdf. Formal Aspects
of Computing, 29(2):175–225, March 2017. Online: 26 July 2016.

[16] Dines Bjørner. Manifest Domains: Analysis & Description
www.imm.dtu.dk/ dibj/2015/faoc/faoc-bjorner.pdf. Formal Aspects
of Computing, 29(2):175–225, March 2017. Online: 26 July 2016.

[17] Dines Bjørner. Domain Analysis & Description – Principles, Techniques and Model-
ing Languages. www.imm.dtu.dk/ dibj/2018/tosem/Bjorner-TOSEM.pdf. ACM
Trans. on Software Engineering and Methodology, 28(2):66 pages, March 2019.

[18] Dines Bjørner. Domain Analysis & Description.
www.imm.dtu.dk/ dibj/2018/tosem/Bjorner-TOSEM.pdf. ACM
Trans. on Software Engineering and Methodology, 28(2):66 pages, March 2019.

[19] Dines Bjørner. Domain Science & Engineering – A Foundation for Software Develop-
ment. EATCS Monographs in Theoretical Computer Science. Springer, Heidelberg,
Germany, 2021. A revised version of this book is [24].

[20] Dines Bjørner. Domain Science & Engineering – A Foundation for Software Develop-
ment. EATCS Monographs in Theoretical Computer Science. Springer, Heidelberg,
Germany, 2021. A revised version of this book is [22].

[21] Dines Bjørner. Domain Modelling – A Primer. A short and significantly revised
version of [20]. xii+202 pages36, May 2023.

[22] Dines Bjørner. Domain Science & Engineering – A Foundation for Software Devel-
opment. Revised edition of [20]. xii+346 pages37, January 2023.

[23] Dines Bjørner. Double-entry Bookkeeping. Research, Institute of Mathematics
and Computer Science. Technical University of Denmark, DK-2800 Kgs.Lyngby,
Denmark, August 2023. http://www.imm.dtu.dk/~dibj/2023/doubleentry/-

dblentrybook.pdf. One in a series of planned studies: [26, 31, 30, 29].

36This book is currently being translated into Chinese by Dr. Yang ShaoFa, IoS/CAS (Institute of Software,

Chinese Academy of Sciences), Beijing and into Russian by Dr. Mikhail Chupilko and his colleagues, ISP/RAS

(Institute of Systems Programming, Russian Academy of Sciences), Moscow
37Due to copyright reasons no URL is given to this document’s possible Internet location. A primer version,

omitting certain chapters, is [21]

BIBLIOGRAPHY 161

[24] Dines Bjørner. Domain Modelling – A Primer. A significantly revised version of [19].
xii+202 pages38, Summer 2024.

[25] Dines Bjørner. Domain Models – A Compendium. Internet: http://www.imm.-

dtu.dk/~dibj/2024/models/domain-models.pdf, March 2024. This is a very
early draft. 19 domain models are presented.

[26] Dines Bjørner. Banking – A Domain Description. Sci. & techn. study, Technical
University of Denmark, Fredsvej 11, DK 2840 Holte, Denmark, March 2025. One in
a series of planned studies: [31, 30, 29, 23].

[27] Dines Bjørner. Domain Analysis & Description. To be submitted, page 33, March
2025. Institute of Mathematics and Computer Science. Technical University of Den-
mark.

[28] Dines Bjørner. Domain Modelling. Submitted to ACM FAC, page 18, February 2025.
Institute of Mathematics and Computer Science. Technical University of Denmark.

[29] Dines Bjørner. Health Care – A Domain Description. Sci. & techn. study, Technical
University of Denmark, Fredsvej 11, DK 2840 Holte, Denmark, March 2025. One in
a series of planned studies: [26, 31, 30, 23].

[30] Dines Bjørner. Insurance – A Domain Description. Sci. & techn. study, Technical
University of Denmark, Fredsvej 11, DK 2840 Holte, Denmark, March 2025. One in
a series of planned studies: [26, 31, 29, 23].

[31] Dines Bjørner. Transport – A Domain Description. Sci. & techn. study, Technical
University of Denmark, Fredsvej 11, DK 2840 Holte, Denmark, March 2025. One in
a series of planned studies: [26, 30, 29, 23].

[32] Dines Bjørner, Chris W. George, and Søren Prehn. Computing Systems for Rail-
ways — A Rôle for Domain Engineering. Relations to Requirements Engineering
and Software for Control Applications. In Integrated Design and Process Technol-
ogy. Editors: Bernd Kraemer and John C. Petterson, P.O.Box 1299, Grand View,
Texas 76050-1299, USA, 24–28 June 2002. Society for Design and Process Science.
www2.imm.dtu.dk/ dibj/pasadena-25.pdf.

[33] Dines Bjørner and Cliff B. Jones, editors. The Vienna Development Method: The
Meta-Language, volume 61 of LNCS. Springer, Heidelberg, Germany, 1978.

[34] Dines Bjørner and Cliff B. Jones, editors. Formal Specification and Software Devel-
opment. Prentice-Hall, London, England, 1982.

[35] Dines Bjørner and Ole N. Oest, editors. Towards a Formal Description of Ada,
volume 98 of LNCS. Springer, Heidelberg, Germany, 1980.

38This book is currently being translated into Chinese by Dr. Yang ShaoFa, IoS/CAS (Institute of Software,

Chinese Academy of Sciences), Beijing and into Russian by Dr. Mikhail Chupilko and colleagues, ISP/RAS

(Institute of Systems Programming, Russian Academy of Sciences), Moscow

162 BIBLIOGRAPHY

[36] Geert Bagge Clemmensen and Ole N. Oest. Formal specification and development of
an Ada compiler – a VDM case study. In Proc. 7th International Conf. on Software
Engineering, 26.-29. March 1984, Orlando, Florida, pages 430–440, New York, USA,
1984. IEEE.

[37] Patrick Cousot. Principles of Abstract Interpretation. The MIT Press, 2021.

[38] Peter Fettke and Wolfgang Reisig. Understanding the Digital World – Modeling with
HERAKLIT. Springer, 2024. To be published.

[39] John Fitzgerald and Peter Gorm Larsen. Modelling Systems – Practical Tools and
Techniques in Software Development. Cambridge University Press, The Edinburgh
Building, Cambridge CB2 2RU, UK, 1998. ISBN 0-521-62348-0.

[40] K. Futatsugi, A.T. Nakagawa, and T. Tamai, editors. CAFE: An Industrial–Strength
Algebraic Formal Method, Sara Burgerhartstraat 25, P.O. Box 211, NL–1000 AE
Amsterdam, The Netherlands, 2000. Elsevier. Proceedings from an April 1998 Sym-
posium, Numazu, Japan.

[41] Chris W. George, Peter Haff, Klaus Havelund, Anne Elisabeth Haxthausen, Robert
Milne, Claus Bendix Nielsen, Søren Prehn, and Kim Ritter Wagner. The RAISE Spec-
ification Language. The BCS Practitioner Series. Prentice-Hall, Hemel Hampstead,
England, 1992.

[42] Chris W. George, Anne Elisabeth Haxthausen, Steven Hughes, Robert Milne, Søren
Prehn, and Jan Storbank Pedersen. The RAISE Development Method. The BCS
Practitioner Series. Prentice-Hall, Hemel Hampstead, England, 1995.

[43] Chris W. George, Hung Dang Van, Tomasz Janowski, and Richard Moore. Case
Studies using The RAISE Method. FACTS (Formal Aspects of Computing: The-
ory and Software) and FME (Formal Methods Europe). Springer–Verlag, London,
2002. This book reports on a number of case studies using RAISE (Rigorous Ap-
proach to Software Engineering). The case studies were done in the period 1994–2001
at UNU/IIST, the UN University’s International Institute for Software Technology,
Macau (till 20 Dec., 1997, Chinese Teritory under Portuguese administration, now a
Special Administrative Region (SAR) of (the so–called People’s Republic of) China).

[44] Michael Hammer and James A. Champy. Reengineering the Corporation: A Mani-
festo for Business Revolution. HarperCollinsPublishers, 77–85 Fulham Palace Road,
Hammersmith, London W6 8JB, UK, May 1993. 5 June 2001, Paperback.

[45] Michael Hammer and Stephen A. Stanton. The Reengineering Revolutiuon: The
Handbook. HarperCollinsPublishers, 77–85 Fulham Palace Road, Hammersmith,
London W6 8JB, UK, 1996. Paperback.

[46] Michael Reichhardt Hansen and Hans Rischel. Functional Programming Using F#.
Cambridge University Press, 2013.

[47] Charles Anthony Richard Hoare. Communicating Sequential Processes. C.A.R. Hoare
Series in Computer Science. Prentice-Hall International, London, England, 1985.
Published electronically: usingcsp.com/cspbook.pdf (2004).

BIBLIOGRAPHY 163

[48] Gerard J. Holzmann. The SPIN Model Checker, Primer and Reference Manual.
Addison-Wesley, Reading, Massachusetts, 2003.

[49] Daniel Jackson. Software Abstractions: Logic, Language, and Analysis. The MIT
Press, Cambridge, Mass., USA, April 2006. ISBN 0-262-10114-9.

[50] Michael A. Jackson. Software Requirements & Specifications: a lexicon of practice,
principles and prejudices. ACM Press. Addison-Wesley, Reading, England, 1995.

[51] Michael A. Jackson. Problem Frames — Analyzing and Structuring Software De-
velopment Problems. ACM Press, Pearson Education. Addison-Wesley, England,
2001.

[52] Michael A. Jackson. Program Verification and System Dependability. In Paul Boca,
Jonathan Bowen, and Jawed Siddiqi, editors, Formal Methods: State of the Art and
New Directions, pages 43–78, London, UK, December 2009. Springer.

[53] W. Little, H.W. Fowler, J. Coulson, and C.T. Onions. The Shorter Oxford English
Dictionary on Historical Principles. Clarendon Press, Oxford, England, 1973, 1987.
Two vols.

[54] R. Milne and C. Strachey. A Theory of Programming Language Semantics. Chapman
and Hall, London, Halsted Press/John Wiley, New York, 1976.

[55] R. Milner, M. Tofte, and R. Harper. The Definition of Standard ML. The MIT Press,
Cambridge, Mass., USA and London, England, 1990.

[56] Charles W. Morris. Foundations of the theory of signs, volume I of International
encyclopedia of unified science. The University of Chicago Press, 1938.

[57] Karl R. Popper. Conjectures and Refutations. The Growth of Scientific Knowledge.
Routledge and Kegan Paul Ltd. (Basic Books, Inc.), 39 Store Street, WC1E 7DD,
London, England (New York, NY, USA), 1963,. . . ,1981.

[58] F. Pulvermüller. Brain mechanisms linking language and action. Nature Reviews:
Neuroscience, 6:576582, 2005. https://doi.org/10.1038/nrn1706.

[59] John R. Searle. Speech Acts: An Essay in the Philosophy of Language. Cambridge
University Press, 1969.

[60] Kai Sørlander. Det Uomgængelige – Filosofiske Deduktioner [The Inevitable – Philo-
sophical Deductions, with a foreword by Georg Henrik von Wright]. Munksgaard ·
Rosinante, Copenhagen, Denmark, 1994. 168 pages.

[61] Kai Sørlander. Under Evighedens Synsvinkel [Under the viewpoint of eternity].
Munksgaard · Rosinante, Copenhagen, Denmark, 1997. 200 pages.

[62] Kai Sørlander. Den Endegyldige Sandhed [The Final Truth]. Rosinante, Copenhagen,
Denmark, 2002. 187 pages.

[63] Kai Sørlander. Indføring i Filosofien [Introduction to The Philosophy]. Informations
Forlag, Copenhagen, Denmark, 2016. 233 pages.

164 BIBLIOGRAPHY

[64] Kai Sørlander. Den rene fornufts struktur [The Structure of Pure Reason]. Ellekær,
Slagelse, Denmark, 2022. See [65].

[65] Kai Sørlander. The Structure of Pure Reason. Springer, February 2025. This is an
English translation of [64] – done by Dines Bjørner in collaboration with the author.

[66] Tetsuo Tamai. Social Impact of Information System Failures. Computer, IEEE
Computer Society Journal, 42(6):58–65, June 2009.

[67] Hung Dang Van, Chris George, Tomasz Janowski, and Richard Moore, editors. Spec-
ification Case Studies in RAISE. Springer, 2002.

[68] Achille C. Varzi. On the Boundary between Mereology and Topology, pages 419–438.
Hölder-Pichler-Tempsky, Vienna, 1994.

[69] James Charles Paul Woodcock and James Davies. Using Z: Specification, Proof
and Refinement. Prentice Hall International Series in Computer Science, London,
England, 1996.

Part VII

Appendix

165

Appendix A

A Raise Specification Language

Primer

Contents

A.1 Types and Values . 169

A.1.1 Sort and Type Expressions . 169

A.1.1.1 Atomic Types: Identifier Expressions and Type Values . 169

A.1.1.2 Composite Types: Expressions and Type Values 170

A.1.2 Type Definitions . 171

A.1.2.1 Sorts — Abstract Types 171

A.1.2.2 Concrete Types . 172

A.1.2.3 Subtypes . 173

A.2 The Propositional and Predicate Calculi 174

A.2.1 Propositions . 174

A.2.1.1 Propositional Expressions 174

A.2.1.2 Propositional Calculus 174

A.2.2 Predicates . 175

A.2.2.1 Predicate Expressions 175

A.2.2.2 Predicate Calculus . 176

A.3 Arithmetics . 176

A.4 Comprehensive Expressions . 176

A.4.1 Set Enumeration and Comprehension 176

A.4.1.1 Set Enumeration . 176

A.4.1.2 Set Comprehension 177

A.4.1.3 Cartesian Enumeration 177

A.4.2 List Enumeration and Comprehension 177

A.4.2.1 List Enumeration . 177

A.4.2.2 List Comprehension 178

A.4.3 Map Enumeration and Comprehension 178

A.4.3.1 Map Enumeration . 178

167

168 APPENDIX A. A RAISE SPECIFICATION LANGUAGE PRIMER

A.4.3.2 Map Comprehension 178

A.5 Operations . 179

A.5.1 Set Operations . 179

A.5.1.1 Set Operator Signatures 179

A.5.1.2 Set Operation Examples 179

A.5.1.3 Informal Set Operator Explication 180

A.5.1.4 Set Operator Explications 180

A.5.2 Cartesian Operations . 181

A.5.3 List Operations . 181

A.5.3.1 List Operator Signatures 181

A.5.3.2 List Operation Examples 182

A.5.3.3 Informal List Operator Explication 182

A.5.3.4 List Operator Explications 183

A.5.4 Map Operations . 184

A.5.4.1 Map Operator Signatures 184

A.5.4.2 Map Operation Examples 184

A.5.4.3 Informal Map Operation Explication 184

A.5.4.4 Map Operator Explication 185

A.6 λ -Calculus + Functions . 186

A.6.1 The λ -Calculus Syntax . 186

A.6.2 Free and Bound Variables . 186

A.6.3 Substitution . 186

A.6.4 α-Renaming and β -Reduction 187

A.6.5 Function Signatures . 187

A.6.6 Function Definitions . 187

A.7 Other Applicative Expressions . 188

A.7.1 Simple let Expressions . 188

A.7.2 Recursive let Expressions . 189

A.7.3 Predicative let Expressions . 189

A.7.4 Pattern and “Wild Card” let Expressions 189

A.7.4.1 Conditionals . 190

A.7.5 Operator/Operand Expressions 190

A.8 Imperative Constructs . 191

A.9 Process Constructs . 191

A.9.1 Process Channels . 191

A.9.2 Process Composition . 191

A.9.3 Input/Output Events . 192

A.9.4 Process Definitions . 192

A.10 RSL Module Specifications . 192

A.11 Simple RSL Specifications . 192

A.12 RSL+: Extended RSL . 193

A.12.1 Type Names and Type Name Values 193

A.1. TYPES AND VALUES 169

A.12.1.1 Type Names . 193

A.12.1.2 Type Name Operations 193

A.12.2 RSL-Text . 193

A.12.2.1 The RSL-Text Type and Values 193

A.12.2.2 RSL-Text Operations 194

A.13 Distributive Clauses . 194

A.13.1 Over Simple Values . 194

A.13.2 Over Processes . 194

A.14 Space and Time . 194

A.14.1 Space . 195

A.14.2 Time . 195

We 39 present an RSL Primer. Indented text, in slanted font, such as this, presents

informal material and examples. Non-indented text, in roman font, presents narrative and

formal explanation of RSL constructs.

This RSL Primer omits treatment of a number of language constructs, notably the RSL

module concepts of schemes, classes and objects . Although we do cover the imperative lan-

guage construct of [declaration of] variables and, hence, assignment, we shall omit treatment

of structured imperative constructs like for ..., do s while b, while b do s loops.

Section A.12 on page 193 introduces additional language constructs, thereby moti-
vating the + in the RSL+ name40

A.1 Types and Values

I : Types are, in general, set-like structures41 of things, i.e., values, having common
characteristics.

A bunch of zero, one or more apples (type apples) may thus form a [sub]set of type
Belle de Boskoop apples. A bunch of zero, one or more pears (type pears) may thus form
a [sub]set of type Concorde pears. A union of zero, one or more of these apples and pears
then form a [sub]set of entities of type fruits.

A.1.1 Sort and Type Expressions

Sort and type expressions are expressions whose values are types, that is, possibly infinite
set-like structures of values (of “that” type).

A.1.1.1 Atomic Types: Identifier Expressions and Type Values

Atomic types have (atomic) values. That is, values which we consider to have no proper
constituent (sub-)values, i.e., cannot, to us, be meaningfully “taken apart”.

RSL has a number of [so-called] built-in atomic types. They are expressed in terms of
literal identifiers. These are the Booleans, integers, Natural numbers, Reals, Characters,

39The letter I shall designate begin of informal text.
40The symbol shall designate end-of-informal text.
41We shall not, in this primer, go into details as to the mathematics of types.

170 APPENDIX A. A RAISE SPECIFICATION LANGUAGE PRIMER

and Texts. Texts are free-form texts and are more general than just texts of RSL-like

formulas. RSL-Text’s will be introduced in Sect. A.12 on page 193.

We shall not need the base types Characters, nor the general type Texts for domain
modelling in this primer. They will be listed below, but not mentioned further.

The base types are:

Basic Types

type

[1] Bool

[2] Int

[3] Nat

[4] Real

[5] Char

[6] Text

1. The Boolean type of truth values false and true.

2. The integer type on integers ..., –2, –1, 0, 1, 2,

3. The natural number type of positive integer values 0, 1, 2, ...

4. The real number type of real values, i.e., values whose numerals can be written as
an integer, followed by a period (“.”), followed by a natural number (the fraction).

5. The character type of character values ′′a′′, ′′bbb′′, ...

6. The text type of character string values ′′aa′′, ′′aaa′′, ..., ′′abc′′, ...

A.1.1.2 Composite Types: Expressions and Type Values

Composite types have composite values. That is, values which we consider to have proper
constituent (sub-)values, i.e., can, to us, be meaningfully “taken apart”.

From these one can form type expressions: finite sets, infinite sets, Cartesian products,
lists, maps, etc.

Let A, B and C be any type names or type expressions, then these are the composite
types, hence, type expressions:

Composite Type Expressions

[7] A-set

[8] A-infset

[9] A × B × ... × C
[10] A∗

[11] Aω

[12] A →m B
[13] A → B

A.1. TYPES AND VALUES 171

[14] A
∼
→ B

[15] A | B | ... | C
[16] mk id(sel a:A,...,sel b:B)
[17] sel a:A ... sel b:B

The following are generic type expressions:

7. The set type of finite cardinality set values.

8. The set type of infinite and finite cardinality set values.

9. The Cartesian type of Cartesian values.

10. The list type of finite length list values.

11. The list type of infinite and finite length list values.

12. The map type of finite definition set map values.

13. The function type of total function values.

14. The function type of partial function values.

15. The postulated disjoint union of types A, B, . . . , and C.

16. The record type of mk id-named record values mk id(av,...,bv), where av, . . . , bv,
are values of respective types. The distinct identifiers sel a, etc., designate selector
functions.

17. The record type of unnamed record values (av,...,bv), where av, . . . , bv, are values
of respective types. The distinct identifiers sel a, etc., designate selector functions.

Section A.12 on page 193 introduces the extended RSL concepts of type name values and
the type, T, of type names.

A.1.2 Type Definitions

A.1.2.1 Sorts — Abstract Types

Types can be (abstract) sorts in which case their structure is not specified:

Sorts

type

A, B, ..., C

172 APPENDIX A. A RAISE SPECIFICATION LANGUAGE PRIMER

A.1.2.2 Concrete Types

Types can be concrete in which case the structure of the type is specified by type expres-
sions:

Type Definition

type

A = Type expr

RSL Example: Sets. Narrative: H stand for the domain type of street intersections –
we shall call then hubs, and let L stand for the domain type of segments of streets between
immediately neighboring hubs – we shall call then links. Then Hs and Ls are to designate
the types of finite sets of zero, one or more hubs, respectively links. Formalisation:

type H, L, Hs=H-set, Ls=L-set •

RSL Example: Cartesians. Narrative: Let RN stand for the domain type of road nets

consisting of hub aggregates, HA, and link aggregates, LA. Hub and link aggregates can be

observed from road nets, and hub sets and link sets can be observed from hub, respectively

link aggregates. Formalisation:

type RN = HA×LA, Hs, Ls
value obs HA: RN→HA, obs LA: RN− LA, obs Hs: HA→Hs, obs Ls: LA→Ls

Observer functions, obs ... are not further defined – beyond their signatures. They will

(subsequently) be defined through axioms over their results •

Some schematic type definitions are:

Variety of Type Definitions

[18] Type name = Type expr /∗ without | s or subtypes ∗/
[19] Type name = Type expr 1 | Type expr 2 | ... | Type expr n
[20] Type name ==

mk id 1(s a1:Type name a1,...,s ai:Type name ai) |
... |
mk id n(s z1:Type name z1,...,s zk:Type name zk)

[21] Type name :: sel a:Type name a ... sel z:Type name z
[22] Type name = {| v:Type name′ • P(v) |}

where a form of [19–20] is provided by combining the types:

Record Types

[23] Type name = A | B | ... | Z
[24] A == mk id 1(s a1:A 1,...,s ai:A i)

A.1. TYPES AND VALUES 173

[25] B == mk id 2(s b1:B 1,...,s bj:B j)
[26] ...
[27] Z == mk id n(s z1:Z 1,...,s zk:Z k)

Of these we shall almost exclusively make use of [23–27].

Disjoint Types. Narrative: A pipeline consists of a finite set of zero, one or more

[interconnected]42 pipe units. Pipe units are either wells, or are pumps, or are valves, or are

joins, or are forks, or are sinks. Formalisation:

type PL = P-set, P == WU|PU|VA|JO|FO|SI, Wu,Pu,Vu,Ju,Fu,Su
WU::mkWU(swu:Wu), PU::mkPU(spu:Pu), VA::mkVU(svu:Vu),
JO::mkJu(sju:Ju), FO::mkFu(sfu:Fu), SI::mkSi(ssu:Su)

where we leave types Wu, Pu, Vu, Ju, Fu and Su further undefined •
Types A, B, ..., Z are disjoint, i.e., shares no values, provided all mk id k are distinct and

due to the use of the disjoint record type constructor ==.

axiom

∀ a1:A 1, a2:A 2, ..., ai:Ai •

s a1(mk id 1(a1,a2,...,ai))=a1 ∧ s a2(mk id 1(a1,a2,...,ai))=a2 ∧
... ∧ s ai(mk id 1(a1,a2,...,ai))=ai ∧

∀ a:A • let mk id 1(a1′,a2′,...,ai′) = a in

a1′ = s a1(a) ∧ a2′ = s a2(a) ∧ ... ∧ ai′ = s ai(a) end

Note: Values of type A, where that type is defined by A::B×C×D, can be expressed A(b,c,d)
for b:B, c:D, d:D.

A.1.2.3 Subtypes

In RSL, each type represents a set of values. Such a set can be delimited by means of pred-

icates. The set of values b which have type B and which satisfy the predicate P , constitute

the subtype A:

Subtypes

type

A = {| b:B • P(b) |}

Subtype. Narrative: The subtype of even natural numbers.

Formalisation: type ENat = {| en | en:Nat • is even natural number(en) |} •

174 APPENDIX A. A RAISE SPECIFICATION LANGUAGE PRIMER

A.2 The Propositional and Predicate Calculi

A.2.1 Propositions

In logic, a proposition is the meaning of a declarative sentence. [A declarative sentence is a

type of sentence that makes a statement]

A.2.1.1 Propositional Expressions

Propositional expressions, informally speaking, are quantifier-free expressions having truth

(or chaos) values. ∀, ∃ and ∃ ! are quantifiers, see below.

Below, we will first treat propositional expressions all of whose identifiers denote truth

values. As we progress, in sections on arithmetic, sets, list, maps, etc., we shall extend the

range of propositional expressions

Let identifiers (or propositional expressions) a, b, ..., c designate Boolean values (true

or false [or chaos]). Then:

Propositional Expressions

false, true

a, b, ..., c ∼a, a∧b, a∨b, a⇒b, a=b, a 6=b

are propositional expressions having Boolean values. ∼, ∧, ∨, ⇒, =, 6= and � are Boolean

connectives (i.e., operators). They can be read as: not, and, or, if then (or implies), equal,
not equal and always.

A.2.1.2 Propositional Calculus

I : Propositional calculus is a branch of logic. It is also called propositional logic, statement

logic, sentential calculus, sentential logic, or sometimes zeroth-order logic. It deals with

propositions (which can be true or false) and relations between propositions, including the

construction of arguments based on them. Compound propositions are formed by connecting

propositions by logical connectives. Propositions that contain no logical connectives are

called atomic propositions Wikipedia

A simple two-value Boolean logic can be defined as follows:

type

Bool

value

true, false

∼: Bool → Bool

∧, ∨, ⇒, =, 6=, ≡: Bool × Bool → Bool

axiom

∀ b,b′:Bool •

∼b ≡ if b then false else true end

b ∧ b′ ≡ if b then b′
else false end

A.2. THE PROPOSITIONAL AND PREDICATE CALCULI 175

b ∨ b′ ≡ if b then true else b′ end

b ⇒ b′ ≡ if b then b′ else true end

b = b′ ≡ if (b∧b′)∨(∼b∧∼b′) then true else false end

(b 6= b′) ≡ ∼(b = b′)
(b ≡ b′) ≡ (b = b′)

We shall, however, make use of a three-value Boolean logic. The model-theory explanation

of the meaning of propositional expressions is now given in terms of the truth tables for the

logic connectives:

∨,∧, and ⇒ Syntactic Truth Tables

∨ true false chaos

true true true true

false true false chaos

chaos chaos chaos chaos

∧ true false chaos

true true false chaos

false false false false

chaos chaos chaos chaos

⇒ true false chaos

true true false chaos

false true true true

chaos chaos chaos chaos

The two-value logic defined earlier ‘transpires’ from the true,false columns and rows of the

above truth tables.

A.2.2 Predicates

I : Predicates are mathematical assertions that contains variables, sometimes referred to as

predicate variables, and may be true or false depending on those variables’ value or values43

A.2.2.1 Predicate Expressions

Let x, y, ..., z (or term expressions) designate non-Boolean values, and let P(x), Q(y) and

R(z) be propositional or predicate expressions, then:

Simple Predicate Expressions

[28] ∀x:X • P(x)
[29] ∃y:Y • Q(y)
[30] ∃!z:Z • R(z)

are quantified, i.e., predicate expressions. ∀, ∃ and ∃ ! are the quantifiers.

43https://calcworkshop.com/logic/predicate-logic/, and: predicate logic, first-order logic or quantified logic is

a formal language in which propositions are expressed in terms of predicates, variables and quantifiers. It is

different from propositional logic which lacks quantifiers https://brilliant.org/wiki/predicate-logic/.

176 APPENDIX A. A RAISE SPECIFICATION LANGUAGE PRIMER

A.2.2.2 Predicate Calculus

They are “read” as:

[28] For all x (values in type X) the predicate P(x) holds – if that is not the case the

expression yields truth value false.

[29] There exists (at least) one y (value in type Y) such that the predicate Q(y) holds – if

that is not the case the expression yields truth value false.

[30] There exists a unique z (value in type Z) such that the predicate R(z) holds – if that

is not the case the expression yields truth value false.

[28–30] The predicates P(x), Q(y) or R(z) may yield chaos in which case the whole

expression yields chaos.

A.3 Arithmetics

I : RSL offers the usual set of arithmetic operators. From these the usual kind of arithmetic

expressions can be formed.

Arithmetic

type

Nat, Int, Real

value

+,−,∗: Nat×Nat→Nat | Int×Int→Int | Real×Real→Real

/: Nat×Nat
∼
→Nat | Int×Int

∼
→Int | Real×Real

∼
→Real

<,≤,=,6=,≥,> (Nat|Int|Real) → (Nat|Int|Real)

A.4 Comprehensive Expressions

I : Comprehensive expressions are common in mathematics texts. They capture properties

conveniently abstractly

A.4.1 Set Enumeration and Comprehension

A.4.1.1 Set Enumeration

Let the below a’s denote values of type A:

Set Enumerations

{{}, {a}, {e1,e2,...,en}, ...} ∈ A-set

{{}, {a}, {e1,e2,...,en}, ..., {e1,e2,...}} ∈ A-infset

A.4. COMPREHENSIVE EXPRESSIONS 177

A.4.1.2 Set Comprehension

The expression, last line below, to the right of the ≡, expresses set comprehension. The

expression “builds” the set of values satisfying the given predicate. It is abstract in the sense

that it does not do so by following a concrete algorithm.

Set Comprehension

type

A, B
P = A → Bool

Q = A
∼
→ B

value

comprehend: A-infset × P × Q → B-infset

comprehend(s,P,Q) ≡ { Q(a) | a:A • a ∈ s ∧ P(a)}

A.4.1.3 Cartesian Enumeration

Let e range over values of Cartesian types involving A, B, . . ., C, then the below expressions

are simple Cartesian enumerations:

Cartesian Enumerations

type

A, B, ..., C
A × B × ... × C

value

(e1,e2,...,en)

A.4.2 List Enumeration and Comprehension

A.4.2.1 List Enumeration

Let a range over values of type A, then the below expressions are simple list enumerations:

List Enumerations

{〈〉, 〈e〉, ..., 〈e1,e2,...,en〉, ...} ∈ A∗

{〈〉, 〈e〉, ..., 〈e1,e2,...,en〉, ..., 〈e1,e2,...,en,... 〉, ...} ∈ Aω

〈 a i .. a j 〉

The last line above assumes ai and a j to be integer-valued expressions. It then expresses the

set of integers from the value of ei to and including the value of e j. If the latter is smaller

178 APPENDIX A. A RAISE SPECIFICATION LANGUAGE PRIMER

than the former, then the list is empty.

A.4.2.2 List Comprehension

The last line below expresses list comprehension.

List Comprehension

type

A, B, P = A → Bool, Q = A
∼
→ B

value

comprehend: Aω × P × Q
∼
→ Bω

comprehend(l,P,Q) ≡ 〈 Q(l(i)) | i in 〈1..len l〉 • P(l(i))〉

A.4.3 Map Enumeration and Comprehension

A.4.3.1 Map Enumeration

Let (possibly indexed) u and v range over values of type T 1 and T 2, respectively, then the

below expressions are simple map enumerations:

Map Enumerations

type

T1, T2
M = T1 →m T2

value

u,u1,u2,...,un:T1, v,v1,v2,...,vn:T2
[], [u 7→v], ..., [u17→v1,u27→v2,...,un 7→vn] ∀ ∈ M

A.4.3.2 Map Comprehension

The last line below expresses map comprehension:

Map Comprehension

type

U, V, X, Y
M = U →m V

F = U
∼
→ X

G = V
∼
→ Y

P = U → Bool

value

comprehend: M×F×G×P → (X →m Y)

A.5. OPERATIONS 179

comprehend(m,F,G,P) ≡ [F(u) 7→ G(m(u)) | u:U • u ∈ dom m ∧ P(u)]

A.5 Operations

A.5.1 Set Operations

A.5.1.1 Set Operator Signatures

Set Operator Signatures

value

18 ∈: A × A-infset → Bool

19 6∈: A × A-infset → Bool

20 ∪: A-infset × A-infset → A-infset

21 ∪: (A-infset)-infset → A-infset

22 ∩: A-infset × A-infset → A-infset

23 ∩: (A-infset)-infset → A-infset

24 \: A-infset × A-infset → A-infset

25 ⊂: A-infset × A-infset → Bool

26 ⊆: A-infset × A-infset → Bool

27 =: A-infset × A-infset → Bool

28 6=: A-infset × A-infset → Bool

29 card: A-infset
∼
→ Nat

A.5.1.2 Set Operation Examples

Set Operation Examples

examples

a ∈ {a,b,c}
a 6∈ {}, a 6∈ {b,c}
{a,b,c} ∪ {a,b,d,e} = {a,b,c,d,e}
∪{{a},{a,b},{a,d}} = {a,b,d}
{a,b,c} ∩ {c,d,e} = {c}
∩{{a},{a,b},{a,d}} = {a}
{a,b,c} \ {c,d} = {a,b}
{a,b} ⊂ {a,b,c}
{a,b,c} ⊆ {a,b,c}
{a,b,c} = {a,b,c}
{a,b,c} 6= {a,b}

180 APPENDIX A. A RAISE SPECIFICATION LANGUAGE PRIMER

card {} = 0, card {a,b,c} = 3

A.5.1.3 Informal Set Operator Explication

The following is not a definition of RSL semantics. In RSL formulas we present an explication

of RSL operators. Read, what appears as definitions, ≡, as [a kind of] identities.

18. ∈: The membership operator expresses that an element is a member of a set.

19. 6∈: The nonmembership operator expresses that an element is not a member of a set.

20. ∪: The infix union operator. When applied to two sets, the operator gives the set whose

members are in either or both of the two operand sets.

21. ∪: The distributed prefix union operator. When applied to a set of sets, the operator

gives the set whose members are in some of the operand sets.

22. ∩: The infix intersection operator. When applied to two sets, the operator gives the set

whose members are in both of the two operand sets.

23. ∩: The prefix distributed intersection operator. When applied to a set of sets, the

operator gives the set whose members are in some of the operand sets.

24. \: The set complement (or set subtraction) operator. When applied to two sets, the

operator gives the set whose members are those of the left operand set which are not

in the right operand set.

25. ⊆: The proper subset operator expresses that all members of the left operand set are

also in the right operand set.

26. ⊂: The proper subset operator expresses that all members of the left operand set are

also in the right operand set, and that the two sets are not identical.

27. =: The equal operator expresses that the two operand sets are identical.

28. 6=: The nonequal operator expresses that the two operand sets are not identical.

29. card: The cardinality operator gives the number of elements in a finite set.

A.5.1.4 Set Operator Explications

The set operations can be “equated” as follows:

Set Operator Explications

value

s′ ∪ s′′ ≡ { a | a:A • a ∈ s′ ∨ a ∈ s′′ }
s′ ∩ s′′ ≡ { a | a:A • a ∈ s′ ∧ a ∈ s′′ }
s′ \ s′′ ≡ { a | a:A • a ∈ s′ ∧ a 6∈ s′′ }

A.5. OPERATIONS 181

s′ ⊆ s′′ ≡ ∀ a:A • a ∈ s′ ⇒ a ∈ s′′

s′ ⊂ s′′ ≡ s′ ⊆ s′′ ∧ ∃ a:A • a ∈ s′′ ∧ a 6∈ s′

s′ = s′′ ≡ ∀ a:A • a ∈ s′ ≡ a ∈ s′′ ≡ s⊆s′ ∧ s′⊆s
s′ 6= s′′ ≡ s′ ∩ s′′ 6= {}
card s ≡

if s = {} then 0 else

let a:A • a ∈ s in 1 + card (s \ {a}) end end

pre s /∗ is a finite set ∗/
card s ≡ chaos /∗ tests for infinity of s ∗/

A.5.2 Cartesian Operations

Cartesian Operations

type

A, B, C
g0: G0 = A × B × C
g1: G1 = (A × B × C)
g2: G2 = (A × B) × C
g3: G3 = A × (B × C)

value

va:A, vb:B, vc:C, vd:D
(va,vb,vc):G0,

(va,vb,vc):G1
((va,vb),vc):G2
(va3,(vb3,vc3)):G3

decomposition expressions

let (a1,b1,c1) = g0,
(a1′,b1′,c1′) = g1 in .. end

let ((a2,b2),c2) = g2 in .. end

let (a3,(b3,c3)) = g3 in .. end

A.5.3 List Operations

A.5.3.1 List Operator Signatures

List Operator Signatures

value

hd: Aω ∼
→ A

tl: Aω ∼
→ Aω

len: Aω ∼
→ Nat

inds: Aω → Nat-infset

elems: Aω → A-infset

.(.): Aω × Nat
∼
→ A

:̂ A∗ × Aω → Aω

=: Aω × Aω → Bool

182 APPENDIX A. A RAISE SPECIFICATION LANGUAGE PRIMER

6=: Aω × Aω → Bool

A.5.3.2 List Operation Examples

List Operation Examples

examples

hd〈a1,a2,...,am〉=a1
tl〈a1,a2,...,am〉=〈a2,...,am〉
len〈a1,a2,...,am〉=m
inds〈a1,a2,...,am〉={1,2,...,m}
elems〈a1,a2,...,am〉={a1,a2,...,am}
〈a1,a2,...,am〉(i)=ai
〈a,b,c〉̂〈a,b,d〉 = 〈a,b,c,a,b,d〉
〈a,b,c〉=〈a,b,c〉
〈a,b,c〉 6= 〈a,b,d〉

A.5.3.3 Informal List Operator Explication

The following is not a definition of RSL semantics. In RSL formulas we present an explication

of RSL operators. Read, what appears as definitions, ≡, as [a kind of] identities.

• hd: Head gives the first element in a nonempty list.

• tl: Tail gives the remaining list of a nonempty list when Head is removed.

• len: Length gives the number of elements in a finite list.

• inds: Indices give the set of indices from 1 to the length of a nonempty list. For empty

lists, this set is the empty set as well.

• elems: Elements gives the possibly infinite set of all distinct elements in a list.

• ℓ(i): Indexing with a natural number, i larger than 0, into a list ℓ having a number of

elements larger than or equal to i, gives the i th element of the list.

• :̂ Concatenates two operand lists into one. The elements of the left operand list are

followed by the elements of the right. The order with respect to each list is maintained.

• =: The equal operator expresses that the two operand lists are identical.

• 6=: The nonequal operator expresses that the two operand lists are not identical.

The operations can also be defined as follows:

A.5. OPERATIONS 183

A.5.3.4 List Operator Explications

The following is not a definition of RSL semantics. In RSL formulas we present an explication

of RSL operators. Read, what appears as definitions, ≡, as [a kind of] identities.

List Operator Explications

value

is finite list: Aω → Bool

len q ≡
case is finite list(q) of

true → if q = 〈〉 then 0 else 1 + len tl q end,
false → chaos end

inds q ≡
case is finite list(q) of

true → { i | i:Nat • 1 ≤ i ≤ len q },
false → { i | i:Nat • i 6=0 } end

elems q ≡ { q(i) | i:Nat • i ∈ inds q }

q(i) ≡
if i=1

then

if q 6=〈〉
then let a:A,q′:Q • q=〈a〉̂q′ in a end

else chaos end

else q(i−1) end

fq ̂ iq ≡
〈 if 1 ≤ i ≤ len fq then fq(i) else iq(i − len fq) end

| i:Nat • if len iq 6=chaos then i ≤ len fq+len end 〉
pre is finite list(fq)

iq′ = iq′′ ≡
inds iq′ = inds iq′′ ∧ ∀ i:Nat • i ∈ inds iq′ ⇒ iq′(i) = iq′′(i)

iq′ 6= iq′′ ≡ ∼(iq′ = iq′′)

184 APPENDIX A. A RAISE SPECIFICATION LANGUAGE PRIMER

A.5.4 Map Operations

A.5.4.1 Map Operator Signatures

Map Operator Signatures

value

[30] ·(·): M → A
∼
→ B

[31] dom: M → A-infset [domain of map]
[32] rng: M → B-infset [range of map]
[33] †: M × M → M [override extension]
[34] ∪: M × M → M [merge ∪]
[35] \: M × A-infset → M [restriction by]
[36] /: M × A-infset → M [restriction to]
[37] =,6=: M × M → Bool

[38] ◦: (A →m B) × (B →m C) → (A →m C) [composition]

A.5.4.2 Map Operation Examples

Map Operation Examples

value

[30] m(a) = b
[31] dom [a17→b1,a27→b2,...,an 7→bn] = {a1,a2,...,an}
[32] rng [a17→b1,a27→b2,...,an 7→bn] = {b1,b2,...,bn}
[33] [a 7→b,a′7→b′,a′′7→b′′] † [a′7→b′′,a′′7→b′] = [a 7→b,a′7→b′′,a′′ 7→b′]
[34] [a 7→b,a′7→b′,a′′7→b′′] ∪ [a′′′7→b′′′] = [a 7→b,a′7→b′,a′′ 7→b′′,a′′′7→b′′′]
[35] [a 7→b,a′7→b′,a′′7→b′′]\{a} = [a′7→b′,a′′7→b′′]
[37] [a 7→b,a′7→b′,a′′7→b′′]/{a′,a′′} = [a′7→b′,a′′7→b′′]
[38] [a 7→b,a′7→b′] ◦ [b 7→c,b′ 7→c′,b′′7→c′′] = [a 7→c,a′7→c′]

A.5.4.3 Informal Map Operation Explication

• m(a): Application gives the element that a maps to in the map m.

• dom: Domain/Definition Set gives the set of values which maps to in a map.

• rng: Range/Image Set gives the set of values which are mapped to in a map.

• †: Override/Extend. When applied to two operand maps, it gives the map which is like

an override of the left operand map by all or some “pairings” of the right operand map.

• ∪: Merge. When applied to two operand maps, it gives a merge of these maps.

A.5. OPERATIONS 185

• \: Restriction. When applied to two operand maps, it gives the map which is a restric-

tion of the left operand map to the elements that are not in the right operand set.

• /: Restriction. When applied to two operand maps, it gives the map which is a restric-

tion of the left operand map to the elements of the right operand set.

• =: The equal operator expresses that the two operand maps are identical.

• 6=: The nonequal operator expresses that the two operand maps are not identical.

• ◦: Composition. When applied to two operand maps, it gives the map from definition

set elements of the left operand map, m1, to the range elements of the right operand

map, m2, such that if a is in the definition set of m1 and maps into b, and if b is in the

definition set of m2 and maps into c, then a, in the composition, maps into c.

A.5.4.4 Map Operator Explication

The following is not a definition of RSL semantics. In RSL formulas we present an explication

of RSL operators. Read, what appears as definitions, ≡, as [a kind of] identities.

The map operations can also be defined as follows:

Map Operator Explications

value

rng m ≡ { m(a) | a:A • a ∈ dom m }

m1 † m2 ≡
[a 7→b | a:A,b:B •

a ∈ dom m1 \ dom m2 ∧ b=m1(a) ∨ a ∈ dom m2 ∧ b=m2(a)]

m1 ∪ m2 ≡ [a 7→b | a:A,b:B •

a ∈ dom m1 ∧ b=m1(a) ∨ a ∈ dom m2 ∧ b=m2(a)]

m \ s ≡ [a 7→m(a) | a:A • a ∈ dom m \ s]
m / s ≡ [a 7→m(a) | a:A • a ∈ dom m ∩ s]

m1 = m2 ≡
dom m1 = dom m2 ∧ ∀ a:A • a ∈ dom m1 ⇒ m1(a) = m2(a)

m1 6= m2 ≡ ∼(m1 = m2)

m◦n ≡
[a 7→c | a:A,c:C • a ∈ dom m ∧ c = n(m(a))]
pre rng m ⊆ dom n

186 APPENDIX A. A RAISE SPECIFICATION LANGUAGE PRIMER

A.6 λ -Calculus + Functions

I : The λ -Calculus is a foundation for the abstract specification language that RSL is

A.6.1 The λ -Calculus Syntax

λ -Calculus Syntax

type /∗ A BNF Syntax: ∗/
〈L〉 ::= 〈V〉 | 〈F〉 | 〈A〉 | (〈A〉)
〈V〉 ::= /∗ variables, i.e. identifiers ∗/
〈F〉 ::= λ 〈V〉 • 〈L〉
〈A〉 ::= (〈L〉〈L〉)

value /∗ Examples ∗/
〈L〉: e, f, a, ...
〈V〉: x, ...
〈F〉: λ x • e, ...
〈A〉: f a, (f a), f(a), (f)(a), ...

A.6.2 Free and Bound Variables

Free and Bound Variables
Let x,y be variable names and e, f be λ -expressions.

• 〈V〉: Variable x is free in x.

• 〈F〉: x is free in λy •e if x 6= y and x is free in e.

• 〈A〉: x is free in f (e) if it is free in either f or e (i.e., also in both).

A.6.3 Substitution

In RSL, the following rules for substitution apply:

Substitution

• subst([N/x]x) ≡ N;

• subst([N/x]a) ≡ a,

for all variables a 6= x;

• subst([N/x](P Q)) ≡ (subst([N/x]P) subst([N/x]Q));

• subst([N/x](λx•P)) ≡ λ y•P;

A.6. λ -CALCULUS + FUNCTIONS 187

• subst([N/x](λ y•P)) ≡ λy• subst([N/x]P),

if x 6=y and y is not free in N or x is not free in P;

• subst([N/x](λy•P)) ≡ λz•subst([N/z]subst([z/y]P)),

if y 6=x and y is free in N and x is free in P

(where z is not free in (N P)).

A.6.4 α-Renaming and β -Reduction

α and β Conversions

• α-renaming: λx•M

If x, y are distinct variables then replacing x by y in λx•M results in

λy•subst([y/x]M). We can rename the formal parameter of a λ -function expression

provided that no free variables of its body M thereby become bound.

• β -reduction: (λx•M)(N)

All free occurrences of x in M are replaced by the expression N provided that no free

variables of N thereby become bound in the result. (λx•M)(N) ≡ subst([N/x]M)

A.6.5 Function Signatures

For sorts we may want to postulate some functions:

Sorts and Function Signatures

type

A, B, C
value

obs B: A → B,
obs C: A → C,
gen A: B×C → A

A.6.6 Function Definitions

Functions can be defined explicitly:

Explicit Function Definitions

value

188 APPENDIX A. A RAISE SPECIFICATION LANGUAGE PRIMER

f: Arguments → Result
f(args) ≡ DValueExpr

g: Arguments
∼
→ Result

g(args) ≡ ValueAndStateChangeClause
pre P(args)

Or functions can be defined implicitly:

Implicit Function Definitions

value

f: Arguments → Result
f(args) as result
post P1(args,result)

g: Arguments
∼
→ Result

g(args) as result
pre P2(args)
post P3(args,result)

The symbol
∼
→ indicates that the function is partial and thus not defined for all arguments.

Partial functions should be assisted by preconditions stating the criteria for arguments to be

meaningful to the function.

A.7 Other Applicative Expressions

I : RSL offers the usual collection of applicative constructs that functional programming

languages (Standard ML [55, 55] or F# [46]) offer

A.7.1 Simple let Expressions

Simple (i.e., nonrecursive) let expressions:

Let Expressions

let a = Ed in Eb(a) end

is an “expanded” form of:

(λa.Eb(a))(Ed)

A.7. OTHER APPLICATIVE EXPRESSIONS 189

A.7.2 Recursive let Expressions

Recursive let expressions are written as:

Recursive let Expressions

let f = λa:A • E(f) in B(f,a) end

is “the same” as:

let f = YF in B(f,a) end

where:

F ≡ λg•λa•(E(g)) and YF = F(YF)

A.7.3 Predicative let Expressions

Predicative let expressions:

Predicative let Expressions

let a:A • P(a) in B(a) end

express the selection of a value a of type A which satisfies a predicate P(a) for evaluation

in the body B(a).

A.7.4 Pattern and “Wild Card” let Expressions

Patterns and wild cards can be used:

Patterns

let {a} ∪ s = set in ... end

let {a, } ∪ s = set in ... end

let (a,b,...,c) = cart in ... end

let (a, ,...,c) = cart in ... end

let 〈a〉̂ℓ = list in ... end

let 〈a, ,b〉̂ℓ = list in ... end

let [a 7→b] ∪ m = map in ... end

let [a 7→b,] ∪ m = map in ... end

190 APPENDIX A. A RAISE SPECIFICATION LANGUAGE PRIMER

A.7.4.1 Conditionals

Various kinds of conditional expressions are offered by RSL:

Conditionals

if b expr then c expr else a expr
end

if b expr then c expr end ≡ /∗ same as: ∗/
if b expr then c expr else skip end

if b expr 1 then c expr 1
elsif b expr 2 then c expr 2
elsif b expr 3 then c expr 3
...
elsif b expr n then c expr n end

case expr of

choice pattern 1 → expr 1,
choice pattern 2 → expr 2,
...
choice pattern n or wild card → expr n

end

A.7.5 Operator/Operand Expressions

Operator/Operand Expressions

〈Expr〉 ::=
〈Prefix Op〉 〈Expr〉
| 〈Expr〉 〈Infix Op〉 〈Expr〉
| 〈Expr〉 〈Suffix Op〉
| ...

〈Prefix Op〉 ::=
− | ∼ | ∪ | ∩ | card | len | inds | elems | hd | tl | dom | rng

〈Infix Op〉 ::=
= | 6= | ≡ | + | − | ∗ | ↑ | / | < | ≤ | ≥ | > | ∧ | ∨ | ⇒
| ∈ | 6∈ | ∪ | ∩ | \ | ⊂ | ⊆ | ⊇ | ⊃ | ̂ | † | ◦

〈Suffix Op〉 ::= !

A.8. IMPERATIVE CONSTRUCTS 191

A.8 Imperative Constructs

We ski taerptment of the imperative constructs of RSL !

A.9 Process Constructs

I : RSL offers several of the constructs that CS [47] offers

A.9.1 Process Channels

As for channels we deviate from common RSL [41] in that we directly declare channels – and

not via common RSL objects etc.

Let A and B stand for two types of (channel) messages and i:KIdx for channel array

indexes, then:

Process Channels

channel c:A
channel { k[i]:B • i:Idx }
channel { k[i,j,...,k]:B • i:Idx,j:Jdx,...,k:Kdx }

declare a channel, c, and a set (an array) of channels, k[i], capable of communicating values

of the designated types (A and B).

A.9.2 Process Composition

Let P and Q stand for names of process functions, i.e., of functions which express willingness

to engage in input and/or output events, thereby communicating over declared channels. Let

P() and Q stand for process expressions, then:

Process Composition

P ‖ Q Parallel composition
P ⌈⌉⌊⌋ Q Nondeterministic external choice (either/or)
P ⌈⌉ Q Nondeterministic internal choice (either/or)
P –‖ Q Interlock parallel composition

express the parallel (‖) of two processes, or the nondeterministic choice between two pro-

cesses: either external (⌈⌉⌊⌋) or internal (⌈⌉). The interlock (–‖) composition expresses that the

two processes are forced to communicate only with one another, until one of them termi-

nates.

192 APPENDIX A. A RAISE SPECIFICATION LANGUAGE PRIMER

A.9.3 Input/Output Events

Let c, k[i] and e designate channels of type A and B, then:

Input/Output Events

c ?, k[i] ? Input
c ! e, k[i] ! e Output

expresses the willingness of a process to engage in an event that “reads” an input, respectively

“writes” an output.

A.9.4 Process Definitions

The below signatures are just examples. They emphasise that process functions must some-

how express, in their signature, via which channels they wish to engage in input and output

events.

Process Definitions

value

P: Unit → in c out k[i]
Unit

Q: i:KIdx → out c in k[i] Unit

P() ≡ ... c ? ... k[i] ! e ...
Q(i) ≡ ... k[i] ? ... c ! e ...

The process function definitions (i.e., their bodies) express possible events.

A.10 RSL Module Specifications

We shall not include coverage nor use of the RSL module concepts of schemes, classes and

objects .

A.11 Simple RSL Specifications

Often, we do not want to encapsulate small specifications in schemas, classes, and objects, as

is often done in RSL. An RSL specification is simply a sequence of one or more types, values

(including functions), variables, channels and axioms:

Simple RSL Specifications

type

...

A.12. RSL+: EXTENDED RSL 193

variable

...
channel

...
value

...
axiom

...

A.12 RSL
+: Extended RSL

Section A.1 on page 169 covered standard RSL types. To them we now add two new
types: Type names and RSL-Text.

A.12.1 Type Names and Type Name Values

A.12.1.1 Type Names

• Let T be a type name.

• Then ηT is a type name value.

• And ηT is the type of type names.

A.12.1.2 Type Name Operations

• η can be considered an operator.

– It (prefix) applies, then, to type (T) identifiers and yields the name of that
type.

– Two type names, nTi, nT j, can be compared for equality: nTi = nT j iff i = j.

• It, vice-versa, suffix applies to type name (nT) identifiers and yields the name, T,
of that type: nTη = T.

A.12.2 RSL-Text

A.12.2.1 The RSL-Text Type and Values

• RSL-Text is the type name for ordinary, non-extended RSL texts.

We shall not here give a syntax for ordinary, non-extended RSL texts – but refer to [41].

194 APPENDIX A. A RAISE SPECIFICATION LANGUAGE PRIMER

A.12.2.2 RSL-Text Operations

• RSL-Texts can be compared and concatenated:

– rsl-texta=rsl-textb

– rsl-texta r̂sl-textb

The ̂ operator thus also applies, besides, lists (tuples), to RSL texts – treating RSL texts
as (if they were) lists of characters.

A.13 Distributive Clauses

We clarify:

A.13.1 Over Simple Values

⊕ { a | a:A • a ∈ {a 1,a 2,...,a n} } =
if n>0 then a 1⊕a 1⊕...⊕a n else

case ⊕ of

+ → 0, − → 0, ∗ → 1, / → chaos, ∪ → {}, ∩ → {}, ...
end end

(f 1,f 2,...,f n)(a) ≡ if n>0 then (f 1(a),f 2(a),...,f n(a)) else chaos end

A.13.2 Over Processes

‖ { p(i) | i:I • i ∈ {i 1,i 2,...,i n} } ≡ if n>0 then p(i 1)‖p(i 2)‖...‖p(i n) else () end

⌈⌉ { p(i) | i:I • i ∈ {i 1,i 2,...,i n} } ≡ if n>0 then p(i 1)⌈⌉p(i 2)⌈⌉...⌈⌉p(i n) else () end

⌈⌉⌊⌋ { p(i) | i:I • i ∈ {i 1,i 2,...,i n} } ≡ if n>0 then p(i 1)⌈⌉⌊⌋p(i 2)⌈⌉⌊⌋...⌈⌉⌊⌋p(i n) else () end

A.14 Space and Time

The concepts of space and time can be transcendentally deduced , by rational reasoning, as

has been shown in [60, 61, 62, 63, 64, Kai Sørlander], from the facts of symmetry, asymme-
try, transitivity and intransitivity relations.

They are therefore facts of every possible universe.

In this section, i.e., Sect. A.14, we shall distinguish between mathematical “types” and
RSL-Text types.

A.14. SPACE AND TIME 195

A.14.1 Space

There is one given space. As a mathematical type we name it SPACE. We do not present
models of SPACE. But we do introduce such the mathematical type notion of POINT

(with SPACE being some dense and infinite collection of points), and a corresponding
RSL-Text type notion of LOCATION: as the location in space of some endurant e:E44;
We do not bother, here, about textual representation of spatial locations, but here is an
example that would work in or near this globe we call our earth: Latitude55.805600,

Longitude12.448160, Altitude35 m45.

value record LOCATION: E → LOCATION

We leave it unspecified as to which POINT of the subSPACE taken up by the endurant e

that serves as a (or the) location reference point.

Further RSL-Text types are: CURVE: as an infinite collection of locations forming a

mathematical curve – having a (finite or infinite) length; SURFACE: as an infinite col-

lection of locations forming a mathematical surface – having a (finite or infinite) area; and

VOLUME: as an infinite collection of locations forming a mathematical volume – having a

(finite or infinite) volume. The derived notios of LENGTH, AREA, VOLUME are RSL-Text
types:

LENGTH m, AREA m2, and VOLUME m3

We suggest, as a domain science & engineering research topic, that somebody studies a
calculus or calculi of spatial modelling .

A.14.2 Time

There is one given time. As a mathematical and also as an RSL-Text type we name it TIME.

We do not bother, here, about textual representation of time, but here is an example: August

18, 2025: 12:03 46. But we do introduce such crucial notions as (“positive” or “nega-

tive” valued) time intervals TI and operations on TIME and TI:

value

−: TIME×TIME→TI

+: TIME×TI→TIME

∗: Real×TI→TI

A crucial time-related operation is that of record TIME. It applies to “nothing”: record TIME()
and yields TIME.

value record TIME: Unit → TIME

44Endurant is a notion defined in [20]
45An approximation of the author’s house location !
46The time this text was last compiled !

196 APPENDIX A. A RAISE SPECIFICATION LANGUAGE PRIMER

Appendix B

The Domain Modeling Theory

Contents

B.1 Domains . 200

B.1.1 What are They ? . 200

B.1.2 Some Introductory Remarks . 201

B.1.2.1 A Discussion of Our Characterization of a Concept of

Domain . 201

B.1.2.2 Formal Methods and Description Language 201

B.1.2.3 Programming Languages versus Domain Semantics . . 201

B.1.2.4 A New Universe . 202

B.2 Six Languages . 202

B.2.1 The 6 Languages . 202

B.2.2 Semiotics . 203

B.2.3 Speech Acts . 204

B.3 Endurants and Perdurants, I . 204

B.4 A Domain Analysis & Description Ontology 204

B.4.1 The Chosen Ontology . 204

B.4.2 Discussion of The Chosen Ontology 206

B.5 The Name, Type and Value Concepts 207

B.5.1 Names . 207

B.5.2 Types . 207

B.5.3 Values . 207

B.6 Phenomena and Entities . 208

B.7 Endurants and Perdurants, II . 208

B.7.1 Endurants . 209

B.7.2 Perdurants . 209

B.7.3 Ontological Choice . 209

B.8 External and Internal Endurant Qualities 209

B.8.1 External Qualities – Tangibles 210

B.8.1.1 The Universe of Discourse 210

197

198 APPENDIX B. THE DOMAIN MODELING THEORY

B.8.1.2 Solid and Fluid Endurants 211

B.8.1.3 Parts and Living Species Endurants 212

B.8.1.4 States . 216

B.8.1.5 Validity of Endurant Observations 216

B.8.1.6 Summary of Endurant Analysis Predicates 216

B.8.1.7 “Trees are Not Recursive” 217

B.8.2 Internal Qualities – Intangibles 217

B.8.2.1 Unique Identity . 218

B.8.2.2 Mereology . 219

B.8.2.3 Attributes . 220

B.8.3 Intentional Pull . 223

B.8.4 Summary of Endurants . 224

B.9 Perdurant Concepts . 224

B.9.1 “Morphing” Parts into Behaviours 224

B.9.2 Transcendental Deduction . 225

B.9.3 Actors – A Synopsis . 225

B.9.3.1 Action . 225

B.9.3.2 Event . 226

B.9.3.3 Behaviour . 226

B.9.4 Channel . 226

B.9.5 Behaviours . 227

B.9.5.1 Behaviour Signature 227

B.9.5.2 Inert Arguments: Some Examples 228

B.9.5.3 Behaviour Definitions 228

B.9.5.4 Action Definitions . 230

B.9.5.5 Behaviour Invocation 231

B.9.5.6 Argument References 232

B.9.5.7 Behaviour Description – Examples 233

B.9.6 Behaviour Initialization. 235

B.10 Facets . 235

B.10.1 Intrinsics . 235

B.10.2 Support Technology . 236

B.10.3 Rules & Regulations . 236

B.10.4 Scripts . 236

B.10.5 License Languages . 236

B.10.6 Management & Organization . 236

B.10.7 Human Behaviour . 237

B.11 Conclusion . 237

B.11.1 Previous Literature . 237

B.11.2 The Method . 238

B.11.3 Specification Units . 238

B.11.4 Object Orientation . 238

199

B.11.5 Other Domain Modeling Approaches 238

B.11.6 How Much ? How Little ? . 239

B.11.7 Correctness . 239

B.11.8 Domain Facets . 239

B.11.9 Perspectives . 239

B.11.10The Semantics of Domain Models 240

B.11.11Further on Domain Modeling 240

B.11.12Software Development . 240

B.11.13Modeling . 240

B.11.14Philosophy of Computing . 240

B.11.15A Manifesto . 240

The Triptych Dogma

In order to specify Software, we must understand its Requirements.

In order to prescribe Requirements we must understand the Domain.

So we must study, analyze and describe Domains.

D,S |= R:

In proofs of Software correctness,
with respect to Requirements,

assumptions are made with respect to the Domain.

We present a systematic method , its principles , procedures , techniques and tools , for effi-

ciently analyzing & describing domains. This paper is based on [16, 17, 20]. It simplifies

the methodology of these considerably – as well as introduces some novel presentation and

description language concepts.

• • •

Alert: Before You start reading this paper, You are kindly informed of the following:

Highlight: 1 What The Paper is All About: The Triptych Dogma, above, says it all: this

paper is about a new area of computing science – that of domains . It is about what domains

are. How to model them. And their role in software development. There are many “domain

things” it is not about: it is not about ‘derived’ properties of domains – beyond, for example,

intentional pull [Sect. B.8.3 on page 223]. Such are left for studies of domains based on
the kind of formal domain descriptions such as those advocated by this paper

Highlight: 2 A Radically New Approach to Software Development: The Triptych Ap-
proach to Software Development , calls for software to be developed on the basis of re-
quirements prescriptions , themselves developed on the basis of domain descriptions . We

furthermore advocate these specifications and their development be formal. That is: there are

formal methods for the development of either of these three kinds of specifications:

• Development of domain descriptions is outlined in this paper.

200 APPENDIX B. THE DOMAIN MODELING THEORY

• Development of requirements, from domain descriptions, is outlined in [20, Chapter
9].

• Development of software, from requirements prescriptions, is treated, extensively, in

[9].

The reader should understand that the current paper, with its insistence of strictly following

a method, formally, is at odds with current ‘software engineering’ practices.

Highlight: 3 Characterizations rather than Definitions: The object of domain study, analy-

sis and description, i.e., the domains, are, necessarily, informal. A resulting domain descrip-

tion is formal. So the domain items being studied and analyzed cannot be given a formal

definition. Conventionally [so-called theoretical] computer scientists expect and can seem-

ingly only operate in a world of clearly defined concepts. Not so here. It is not possible.

Hence we use the term ‘characterization’ in lieu of ‘definition’

Highlight: 4 Seemingly Fragmented Texts: The text of this paper is a sequence of enu-

merated sections, subsections, sub-subsections and paragraphs, with short HIGHLIGHTS,

CHARACTERIZATIONS, EXAMPLES, ONTOLOGICAL CHOICES, PROMPTS, SCHEMAS and

ordinary short texts. The brevity is intentional. Each and all of these units outline important

concepts. Each contain a meaning and can be read “in isolation”

B.1 Domains

We start by delineating the informal concept of domain,47

B.1.1 What are They ?

What do we mean by ‘domain’ ?

Characterization: 1 Domain: By a domain we shall understand a rationally describable
segment of a discrete dynamics fragment of a human assisted reality: the world that we daily

observe – in which we work and act, a reality made significant by human-created entities. The

domain embody endurants and perdurants

Example: 1 Some Domain Examples: A few, more-or-less self-explanatory examples:

• Rivers – with their natural sources, deltas, tributaries, waterfalls, etc., and their man-

made dams, harbours, locks, etc. – and their conveyage of materials (ships etc.) [25,

Chapter B].

• Road nets – with street segments and intersections, traffic lights and automobiles –

and the flow of these [25, Chapter E].

• Pipelines – with their liquids (oil, or gas, or water), wells, pipes, valves, pumps, forks,

joins and wells and the flow of fluids [25, Chapter I].

47Our use of the term ‘domain’ should not be confused with that of Dana Scott’s Domain Theory: https://-

en.wikipedia.org/wiki/Scott domain.

B.1. DOMAINS 201

• Container terminals – with their container vessels, containers, cranes, trucks, etc. –

and the movement of all of these[25, Chapter K]

Characterization 1 on the preceding page relies on the understanding of the terms ‘rationally
describable’, ‘discrete dynamics’, ‘human assisted’ , ‘solid’ and ‘fluid’. The last two will

be explained later. By rationally describable we mean that what is described can be un-

derstood, including reasoned about, in a rational, that is, logical manner – in other words

logically tractable.48 By discrete dynamics we imply that we shall basically rule out

such domain phenomena which have properties which are continuous with respect to their

time-wise, i.e., dynamic, behaviour. By human-assisted we mean that the domains – that

we are interested in modeling – have, as an important property, that they possess man-made

entities.

B.1.2 Some Introductory Remarks

B.1.2.1 A Discussion of Our Characterization of a Concept of Domain

Characterization 1 on the facing page is our attempt to delineate the subject area. That is,

“our” concept of ‘domain’ is ‘novel’: new and not resembling something formerly known
or used . As such it may be unfamiliar to most readers. So it takes time to digest that

characterization. So the reader may have to return to the page, Page 200, to be reminded of

the definition.

B.1.2.2 Formal Methods and Description Language

The reader is assumed to have a reasonable grasp of formal methods – such as espoused in

[33, 34, 9, 69].

The descriptions evolving from the modeling approach of this paper are in the abstract,

model-oriented specification language RSL [41] of the Raise49 Specification Language. But

other abstract specification languages could be used: VDM [33, 34, 39], Z [69], Alloy [49],

CafeOBJ [40], etc. We have chosen RSL since it embodies a variant of CSP [47] – being used

to express domain behaviours.

B.1.2.3 Programming Languages versus Domain Semantics

From around the late 1960s, spurred on by the works of John McCarthy, Peter Landin,
Christopher Strachey, Dana Scott and others, it was not unusual to see publications of

entire formal definitions of programming language semantics. Widespread technical reports

were [3, 2, 1969, 1974] Notably so was [54, 1976]. There was the 1978 publication [33,

Chapter 5, Algol 60 , 1978]. Others were [34, Chapters 6–7, Algol 60 and Pascal , 1982]

As late as into the 1980s there were such publications [4, 1980].

Formal descriptions of domains, such as we shall unravel a method for their study, analy-

sis and description, likewise amount to semantics for the terms of the professional languages

spoken by stakeholders of domains. So perhaps it is time to take the topic serious.

48Another, “upside–down” – after the fact – [perhaps ‘cheating’] way of defining ‘describable’ is: is it describ-

able in terms of the method of this paper !
49RAISE stands for Rigorous Approach to Industrial Software Engineering [42].

202 APPENDIX B. THE DOMAIN MODELING THEORY

B.1.2.4 A New Universe

The concept of domain – such as we shall delineate and treat it – is novel. That is: new and not

treated in this way before. Its presentation, therefore, necessarily involves the introduction

of a new universe of concepts. Not the neat, well-defined concepts of neither “classical”

computer science nor software engineering. It may take some concentration on the part of

the reader to get used to this !

You will therefore be introduced to quite a universe of new concepts. You will find these

concepts named in most display lines50 and in Figs. B.1 on page 205 and B.2 on page 222.

B.2 Six Languages

This section is an artifice, an expedient.

It summarizes, from an unusual angle, an aspect of the presentation style of this paper.

The road ahead of us introduces rather many new and novel concepts. It is easy to get lost.

The presentation alternates, almost sentence-by-sentence, between 5 languages. The below

explication might help You to keep track of where the paper eventually shall lead us ! This

section, in a sense, tells the story backwards !51

B.2.1 The 6 Languages

There are 6 languages at play in this paper:

• (i) technical English, as in most papers;

• (ii) RSL, the RAISE Specification Language [41];

• (iii) an augmented RSL language;

• (iv) the domain modeling language – which we can view as the composition of clauses

from two [sub-ordinate] languages:

– (v) a domain analysis language; and

– (vi) a domain specification

language.

(i) Technical English is the main medium, as in most papers, of what is conveyed. (ii) Do-

main descriptions are (to be) expressed in RSL. (iii) The [few places where we resort to the]

augmented RSL language is needed for expressing names of RSL types as values. (iv) The do-

main modeling language consists of finite sequences domain analysis and domain description

clauses. (v) The domain analysis language just consists of prompts, i.e., predicate functions

used informally by the domain analyzer in inquiring the domain. They yield either truth val-

ues or possibly augmented RSL texts. (vi) The domain description language consists of a few

RSL text yielding prompts.

50– that is, section, subsection, sub-subsection, paragraph and sub-paragraph lines
51Søren Kierkegaard: Life is lived forwards but is understood backwards [1843].

B.2. SIX LANGUAGES 203

We presume that the reader is familiar with such languages as RSL. That is: VDM [33, 34,

39], Z [69], Alloy [49], etc. They could all be use instead of, as here, RSL.

We summarize some of the language issues.

The Domain Analysis Language: We list a few, cf. Fig. B.1 on page 205, of the predi-

cate prompts, i.e., language prompts: is entity [pg 208], is endurant [pg 209], is perdurant [pg 209],

is solid [pg 211], is fluid [pg 211], is part [pg 212], atomic [pg 212], is compound [pg 213],

is Cartesian [pg 213], or is part-set [pg 214]; and the extended RSL text yielding analysis

prompts: record Cartesian type names [pg 215], record part set type names [pg 215] and record attri-

bute type names [pg 221].

The Domain Description Language: RSL. We shall us a subset of RSL. That subset

is a simple, discrete mathematics, primarily functional specification language in the style of

VDM [33, 34, 39]. Emphasis is on sets, Cartesians, lists, and maps (i.e., finite definition set,

enumerable functions).

Domain Description: A domain description consists of one or more domain specifica-

tion units. A specification unit is of either of 10 kinds, all expressed in RSL. (1) a universe-

of-discourse type clause [pg 210]; (2) a part type and obs erver value clause [pg 215];

(3) a value clause; (4) a unique identifier type and (uid) observer value (function) clause

[pg 218]; (5) a mereology type and (mereo) observer value (function) clause [pg 220]; (6)

an attribute type and (attr) observer value (function) definition clause [pg 221]; (7) an ax-
iom clause; (8) a channel declaration clause [pg 226]; (9) a behaviour value (signature and

definition) clause [pg 227 & pg 231]; and (10) a domain initialization clause [Sect. B.9.6 on
page 235]. These clauses are often combined in 2-3 such clauses, and may, and usually
do, include further RSL clauses.

The use of RSL “outside” the domain specification units should not be confused with
the RSL of the specification unit schemas and examples.

B.2.2 Semiotics

In Foundations of the theory of signs [56] defines semiotics as “consisting” of syntax,
semantics and pragmatics.

• Syntax: The syntax of domain analysis and domain description clauses are simple
atomic clauses consisting of a prompt (predicate or function) identifier, see above,
and an identifier denoting a domain entity. The syntax of the domain modeling lan-
guage prescribes a sequence of one or more domain analysis and domain description
clauses.

• Semantics: The meaning of a domain analysis clause is that of a function from a
domain entity to either a truth value or some augmented RSL text. The meaning of
a domain description clause is that of a function from a domain entity to a domain
specification unit.

• Pragmatics: The pragmatics of a domain analysis predicate clause, as applied to a
domain entity e, is that of prompting the domain analyzer to a next domain analysis
step: either that of applying a [subsequent, cf. Fig. B.1] domain analysis predicate
prompt to e; or applying a [subsequent, cf. Fig. B.1] domain analysis function to e,
and noting – as writing down on a “to remember board” – the result of the [latter]

204 APPENDIX B. THE DOMAIN MODELING THEORY

query; or applying a [subsequent, cf. Fig. B.1] domain description function to e. The
pragmatics of a domain description function is that of including the resulting RSL

domain description text in the emerging domain description. There is no hint as to
what to do next !

B.2.3 Speech Acts

The above explication of a pragmatics for the domain modeling language relates to the
concepts of speech acts. We refer to [1, How to do things with words], [59, Speech Acts:
An Essay in the Philosophy of Language] and [58, Brain mechanisms linking language
and action]. A further study of the illocutionary and locutionary aspects of the domain
analysis language seems in place.

B.3 Endurants and Perdurants, I

The above characterization hinges on the characterizations of endurants and perdurants.

Characterization: 2 Endurants: Endurants are those quantities of domains that we can

observe (see and touch), in space, as “complete” entities at no matter which point in time –

“material” entities that persists, endures – capable of enduring adversity, severity, or hardship

[Merriam Webster]

Endurants are either natural [“God-given”] or artefactual [“man-made”]. Endurants

may be either solid (discrete) or fluid, and solid endurants, called parts, may be considered

atomic or compound parts; or, as in this report solid endurants may be further unanalysed

living species: plants and animals – including humans .

Characterization: 3 Perdurants: Perdurants are those quantities of domains for which

only a fragment exists, in space, if we look at or touch them at any given snapshot in time
[Merriam Webster]

Perdurants are here considered to be actions , events and behaviours .

• • •

We exclude, from our treatment of domains, issues of living species, ethics, biology and

psychology.

B.4 A Domain Analysis & Description Ontology

B.4.1 The Chosen Ontology

Figure B.1 expresses an ontology52 for our analysis of domains. Not a taxonomy53 for any

one specific domain.

52An ontology is the philosophical study of being. It investigates what types of entities exist, how they are

grouped into categories, and how they are related to one another on the most fundamental level (and whether

there even is a fundamental level) Wikipedia.
53A taxonomy (or taxonomic classification) is a scheme of classification, especially a hierarchical classifica-

tion, in which things are organized into groups or types Wikipedia.

B.4. A DOMAIN ANALYSIS & DESCRIPTION ONTOLOGY 205

External Qualities

Describer "states"

PerdurantsEndurants

Phenomena of Natural and Artefactual Universes of Discourse

E

Perdurant

Action
Event Actor

Channel Behaviour

FluidSolid

Part
Living Specie

Animal Plant

O
th

er

Unique Identifiers
Mereologies
Attributes

transcendental injection of endurants into perdurants

Internal Qualities

Cartesian Part

E1,...,Ec

is
_m

an
if

es
t

is
_m

an
if

es
t

is
_m

an
if

es
t

E

P

F

Part Set

Ps=P−set

H
u

m
an

s

CompoundAtomic

Transcendental Deduction

Endurant

Entity

TIME,SPACE
Tanscendentally Deduced Phenomena

Indescribable

Figure B.1: A Domain Analysis & Description Ontology

The idea of Fig. B.1 is the following:

• It presents a recipe for how to analyze a domain.

• You, the domain analyzer cum describer , are ‘confronted’54 with, or by a domain.

• You have Fig. B.1 in front of you, on a piece of paper, or in Your mind, or both.

• You are then asked, by the domain analysis & description method of this paper, to

“start” at the uppermost •, just below and between the ‘r’ and the first ‘s’ in the main

title, Phenomena of Natural and Artefactual Universes of Discourse.

• The analysis & description ontology of Fig. B.1 then directs You to inquire as to

whether the phenomenon – whichever You are ”looking at/reading about/...” – is either

rationally describable, i.e., is an entity (is entity) or is indescribable.

• That is, You are, in general, “positioned” at a bullet, •, labeled α , “below” which there

may be two alternative bullets, one, β , to the right and one to the left, γ .

54By ‘confronted’ we mean: You are reading about it, in papers, in books, in postings on the Internet,

visiting it, talking with domain stakeholders: professional people working “in” the domain; You may, yourself,

“be an entity” of that domain !

206 APPENDIX B. THE DOMAIN MODELING THEORY

• It is Your decision whether the answer to the “query” that each such situation warrants,

is yes, is β , or no, is γ .

• The characterizations of the concepts whose names, α ,β ,γ etc., are attached to the •s

of Fig. B.1 are given in the following sections.

• Whether they are precise enough to guide You in Your obtaining reasonable answers,

“yes” or “no”, to the •ed queries is, of course, a problem. I hope they are.

• If Your answer is “yes”, then Your analysis is to proceed “down the tree”, usually

indicated by “yes” or “no” answers.

• If one, or the other is a “leaf” of the ontology tree, then You have finished examining

the phenomena You set out to analyze.

• If it is not a leaf, then further analysis is required.

• (We shall, in this report, leave out the analysis and hence description of living species .)

• If an analysis of a phenomenon has reached one of the (only) two ’s, then the analysis
at that • results in the domain describer describing some of the properties of that

phenomenon.

• That analysis involves “setting aside”, for subsequent analysis & description, one or

more [thus analysis etc.-pending] phenomena (which are subsequently to be tackled

from the “root” of the ontology).

We do not [need to] prescribe in which order You analyze & describe the phenomena that has

been “set aside”.

• • •

In Fig. B.1 on the previous page You will have noticed the positioning of the concepts of

TIME and SPACE “right under” the Phenomena bullet •. These two concepts are neither

endurants not perdurants. And they are not attributes of either. They can, however, as shown

by Sørlander [65], be transcendentally deduced by rational reasoning.

B.4.2 Discussion of The Chosen Ontology

We shall in the following motivate the choice of the ontological classification reflected in

Fig B.1 on the preceding page. We shall argue that this classification is not “an accidental

choice”. In fact, we shall try justify the classification with reference to the philosophy of Kai
Sørlander [60, 63, 64, 65]55. Kai Sørlander’s aim in these books is to examine that which
is absolutely necessary, inevitable, in any description of the world. In [20, Chapter 2]

we present a summary of Sørlander’s philosophy. In paragraphs, in the rest of this paper,

marked ONTOLOGICAL CHOICE, we shall relate Sørlander’s philosophy’s “inevitability” to

the ontology for studying domains.

55The 2022 book, [64], is presently a latest in Kai Sørlander’s work. It refines and further develops the theme

of the earlier, 1994–2016 books. [65] is an English translation of [64]

B.5. THE NAME, TYPE AND VALUE CONCEPTS 207

B.5 The Name, Type and Value Concepts

Domain modeling , as well as programming , depends, in their specification, on separation of
concerns: which kind of values are subjectable to which kinds of operations , etc., in order to

achieve ease of understanding a model or a program, ease of proving properties of a model,

or correctness of a program.

B.5.1 Names

We name things in order to refer to them in our speech, models and programs. Names of types

and values in models and programs are usually not so-called “first-citizens”, i.e., values that

can be arguments in functions, etc. The “science of names” is interesting.56 In botanical-

society.org.za/the-science-of-names-an-introduction-to-plant-taxonomy the

authors actually speak of a “science of names” in connection with plant taxonomy: the “art”

of choosing such names that reflect some possible classification of what they name.

B.5.2 Types

The type concept is crucial to programming and modeling.

Characterization: 4 Type: A type is a class, i.e., a further undefined set, of values (“of the

same kind”)

We name types.

Example: 2 Type Names: Some examples of type names are:

• RT – the class of all road transport instances: the Metropolitan London Road Trans-
port , the US Federal Freeway System, etc.

• RN – the class of all road net instances (within a road transport).

• SA – the class of all automobiles (within a road transport)

You, the domain describer, choose type names. Choosing type names is a “serious affair”.

It must be done carefully. You can choose short (as above) or long names: Road Transport,
Road Net, etc. We prefer short, but not cryptic names, like X, Y, Z, Names that are easy

to memorize, i.e., mnemonics .

B.5.3 Values

Values are what programming and modeling, in a sense, is all about”. In programming, values

are the data “upon” which the program code specifies computations. In modeling values are,

for example, what we observe: the entities in front of our eyes.

56The study of names is called onomastics or onomatology . Onomastics covers the naming of all things,

including place names (toponyms) and personal names (anthroponyms).

208 APPENDIX B. THE DOMAIN MODELING THEORY

B.6 Phenomena and Entities

Characterization: 5 Phenomena: By a phenomenon we shall understand a fact that is

observed to exist or happen

Some phenomena are rationally describable – to some degree57 – others are not.

Characterization: 6 Entities: By an entity By an entity we shall understand a more-or-less

rationally describable phenomenon

Cue: 1 is entity : We introduce the informal presentation language predicate is entity.

It holds for phenomena φ if φ is describable

A prompt58 is an informal “advice” to the domain analyzer to “perform” a mental inquiry

wrt. the real-life domain being studied.

Example: 3 Phenomena and Entities: Some, but not necessarily all aspects of a river can

be rationally described, hence can be still be considered entities. Similarly, many aspects of

a road net can be rationally described, hence will be considered entities

If You are not happy with this ‘characterization’, then substitute “rationally describable”

with: describable in terms of the endurants and perdurants brought forward in this paper:

their external and internal qualities, unique identifiers, mereologies amd attributes, channels

and behaviours !

Ontological Choice: 1 Phenomena: We choose to “initialize” our ontological “search” to

a question of whether a phenomenon is rationally describable – based on the tenet of Kai
Sørlander’s philosophy, namely that “whatever” we postulate is either true or false and that

a principle of contradiction holds: whatever we so express can not both hold and not
hold

Kai Sørlander then develops his inquiry – as to what is absolutely necessary in any
description of the world – into the rationality of such descriptions necessarily be based

on time and space and, from there, by a series of transcendental deductions, into a base in

Newton’s physics. We shall, in a sense, stop there. That is, in the domain concept, such as

we have delineated it, we shall not need to go into Einsteinian physics.

B.7 Endurants and Perdurants, II

We repeat our characterizations of endurants and perdurants.

57That is: It is up to the domain analyzer cum describer to decide as to how many rationally describable

phenomena to select for analysis & description. Also in this sense one practices abstraction by “abstracting

away” [the analysis & description of] phenomena that are irrelevant for the “current” (!) domain description.
58French: mot-clé, German: stichwort, Spanish: palabra clave

B.8. EXTERNAL AND INTERNAL ENDURANT QUALITIES 209

B.7.1 Endurants

We repeat characterization 2 on page 204.

Characterization: 7 Endurant: Endurants are those quantities of domains that we can

observe (see and touch), in space, as “complete” entities at no matter which point in time –

“material” entities that persists, endures – capable of enduring adversity, severity, or hardship

[Merriam Webster]

Example: 4 Endurants: Examples of endurants are: a street segment [link], a street inter-

section [hub], an automobile

Cue: 2 is endurant : We introduce the informal presentation language predicate is endurant

to hold for entity e if is endurant(e) holds

B.7.2 Perdurants

We repeat characterization 3 on page 204.

Characterization: 8 Perdurant: Perdurants are those quantities of domains for which

only a fragment exists, in space, if we look at or touch them at any given snapshot in time
[Merriam Webster]

Example: 5 Perdurant: A moving automobile is an example of a perdurant

Cue: 3 is perdurant : We introduce the informal presentation language predicate is perdurant

to hold for entity e if is perdurant(e) holds

B.7.3 Ontological Choice

The ontological choice of entities being “viewed” as either endurants or perdurants is mo-

tivated as follows: The concept of endurants can be justified in terms of Newton’s physics

without going into kinematics, i.e., without including time considerations. The concept of

perdurants can then, on one hand, be justified in terms of Newton’s physics now taking time

into consideration, hence kinematics, and from there causality, etc.; and, on the other hand,

and as we shall see, by transcendentally deducing perdurants from solid endurants

B.8 External and Internal Endurant Qualities

The main contribution of this section is that of a calculus of domain analysis and description

prompts. Two facets are being presented. Aspects of a domain science: of how we suggest

domains can, and should, be viewed – ontologically. And aspects of a domain engineering:

of how we suggest domains can, and should, be analyzed and described.

We begin by characterizing the two concepts: external and internal qualities.

210 APPENDIX B. THE DOMAIN MODELING THEORY

Characterization: 9 External Qualities: External qualities of endurants of a manifest

domain are, in a simplifying sense, those we can see, touch and have spatial extent. They, so

to speak, take form.

Characterization: 10 Internal Qualities: Internal qualities are those properties [of en-

durants] that do not occupy space but can be measured or spoken about

Perhaps we should instead label these two qualities tangible and intangible qualities.

Ontological Choice: 2 Rationality : The rational, analytic philosophy issues of the inevitabil-

ity of these qualities is this: (i) can they be justified as inevitable, and (ii) can they be suitably

“separated”, i.e., both disjoint and exhaustive ? Or are they merely of empirical nature ? The

choice here is also that we separate our inquiry into examining both external and internal
qualities of endurants [not ‘either or’]

B.8.1 External Qualities – Tangibles

Example: 6 External Qualities: An example of external qualities of a domains is: the

Cartesian59 of sets of solid atomic street intersections, and of sets of solid atomic street

segments, and of sets of solid automobiles of a road transport system where Cartesian, sets,

atomicity, and solidity reflect external qualities

B.8.1.1 The Universe of Discourse

The most immediate external quality of a domain is the “entire” domain – “itself” ! So any

domain analysis starts by identifying that “entire” domain ! By giving it a name, say UoD,

for universe of discourse, Then describing it, in narrative form, that is, in natural language

containing terms of professional/technical nature, the domain. And, finally, formalizing just

the name: giving the name “status” of being a type name, that is, of the type of a class of

domains whose further properties will be described subsequently.

Axiom: 1 The Universe of Discourse:

Narration:
The name, and hence the type, of the domain is UoD
The UoD domain can be briefly characterized by ...

Formalization:
type UoD

59Cartesian after the French philosopher, mathematician, scientist René Descartes (1596–1650)

B.8. EXTERNAL AND INTERNAL ENDURANT QUALITIES 211

B.8.1.2 Solid and Fluid Endurants

Given then that there are endurants we now postulate that they are either [mutually exclusive]

solid (i.e., discrete) or fluid.

Ontological Choice: 3 Solids vs. Fluids: Here we [seem to] make a practical choice, not

one based on a philosophical argument, one of logical necessity, but one based on empirical

evidence. It is possible for endurants to either be solid or fluid; and here we shall not consider

the case where solid [fluid] endurants, due to being heated [cooled], enters a fluid state [or

vice versa]

B.8.1.2.1 Solid cum Discrete Endurants.

Characterization: 11 Discrete cum Solid Endurants: By a solid cum discrete endurant we

shall understand an endurant which is separate, individual or distinct in form or concept, or,

rephrasing, have body (or magnitude) of three-dimensions: length (or height), breadth and

depth [53, OED, Vol. II, pg. 2046]

Example: 7 Solid Endurants: Pipeline system examples of solid endurants are wells, pipes,

valves, pumps, forks, joins and sinks of pipelines. (These units may, however, and usually

will, contain fluids, e.g., oil, gas or water.)

Cue: 4 is solid : We introduce the informal presentation language predicate is solid to

hold for endurant e if is solid(e) holds

B.8.1.2.2 Fluids.

Characterization: 12 Fluid Endurants: By a fluid endurant we shall understand an en-

durant which is prolonged, without interruption, in an unbroken series or pattern; or, rephras-

ing: a substance (liquid, gas or plasma) having the property of flowing, consisting of particles

that move among themselves [53, OED, Vol. I, pg. 774]

Example: 8 Fluid Endurants: Examples of fluid endurants are: water, oil, gas, compressed

air, smoke

Fluids are otherwise liquid, or gaseous, or plasmatic, or granular60, or plant products, i.e.,

chopped sugar cane, threshed, or otherwise61, et cetera. Fluid endurants will be analyzed and

described in relation to solid endurants, viz. their “containers”.

Cue: 5 is fluid : We introduce the informal presentation language predicate is fluid to

hold for endurant e if is fluid(e) holds

60 This is a purely pragmatic decision. “Of course” sand, gravel, soil, etc., are not fluids, but for our modeling

purposes it is convenient to “compartmentalise” them as fluids !
61See footnote 60.

212 APPENDIX B. THE DOMAIN MODELING THEORY

B.8.1.3 Parts and Living Species Endurants

Given then that there are solid endurants we now postulate that they are either [mutually

exclusive] parts or living species.

Ontological Choice: 4 Parts and Living Species: With Sørlander, [65, Sect. 5.7.1, pages 71–
72] we reason that one can distinguish between parts and living species

B.8.1.3.1 Parts

Characterization: 13 Parts: The non-living solid species are what we shall call parts

Parts are the “work-horses” of man-made domains. That is, we shall mostly be concerned

with the analysis and description of endurants into parts.

Example: 9 Parts: Example 7, of solids, is an example of parts

Cue: 6 is part : We introduce the informal presentation language predicate is part to

hold for solid endurants e if is part(e) holds

We distinguish between atomic and compound parts.

Ontological Choice: 5 Atomic and Compound Parts: It is an empirical fact that parts can

be composed from parts. That possibility exists. Hence we can [philosophy-wise] reason

likewise

B.8.1.3.1.1 Atomic Parts.

Characterization: 14 Atomic Part: By an atomic part we shall understand a part which

the domain analyzer considers to be indivisible in the sense of not meaningfully consist of

sub-parts

Example: 10 Atomic Parts: Examples of atomic parts are: hubs, H, i.e., street intersec-

tions; links, L, i.e., the stretches of roads between two neighbouring hubs; and automobiles,

A:

type H, L, A

Cue: 7 is atomic : We introduce the informal presentation language predicate is atomic

to hold for parts p if is atomic(p) holds

B.8. EXTERNAL AND INTERNAL ENDURANT QUALITIES 213

B.8.1.3.1.2 Compound Parts.

Characterization: 15 Compound Part: Compound parts are those which are observed to

[potentially] consist of several parts

Example: 11 Compound Parts: An example of a compound parts is: a road net consisting

of a set of hubs, i.e., street intersections or “end-of-streets”, and a set of links, i.e., street

segments (with no contained hubs), is a Cartesian compound; and the sets of hubs and the

sets of links are part set compounds

Cue: 8 is compound : We introduce the informal presentation language predicate is compound

to hold for parts p if is compound(p) holds

We, pragmatically, distinguish between Cartesian product- and set-oriented parts.

Ontological Choice: 6 Cartesians: The Cartesian versus set parts is an empirical choice.

It is not justified in terms of philosophy, but in terms of mathematics – of mathematical

expediency !

B.8.1.3.1.3 Cartesians. Cartesians are product-like types – and are named after the French

philosopher, scientist and mathematician René Descartes (1596–1640) Wikipedia.

Characterization: 16 Cartesians: Cartesian parts are those compound parts which are

observed to consist of two or more distinctly sort-named endurants (solids or fluids)

Example: 12 Cartesians: Road Transport: A road transport, rt:RT, is observed to consist

of an aggregate of a road net, rn:RN, and a set of automobiles, SA, where the road net is

observed, i.e., abstracted, as a Cartesian of a set of hubs, ah:AH, i.e., street intersections (or

specifically designated points segmenting an otherwise “straight” street into two such), and

a set of links, al:AL, i.e., street segments between two “neighbouring” hubs.

type

RT, RN, SA, AH = H-set, AL = L-set

value

obs RN: RT → RN, obs SA: RT → SA,, obs AH: RN → AH, obs AL: RN → AL

Cue: 9 is Cartesian : We introduce the informal presentation language predicate is Cartesian

to hold for compound parts p if is Cartesian(p) holds

Once a part, say p:P, has been analyzed into a Cartesian, we inquire as to the type names of

the endurants62 of which it consists. The inquiry: record Cartesian part type names(p:P),

we decide, then yields the type of the constituent endurants.

62We emphasize that the observed elements of a Cartesian part may be both solids, at least one, and fluids.

214 APPENDIX B. THE DOMAIN MODELING THEORY

Cue: 10 record-Cartesian-part-type-names:

value

record Cartesian part type names: P → T-set

record Cartesian part type names(p) as {ηE1,ηE2,...,ηEn}

Here T is the name of the type of all type names, and ηEi is the name of type Ei.
Please note the novel introduction of type names as values. Where a type identifier, say

T, stands for, denotes, a class of values of that type, ηT denotes the name of type T.

Please also note that record Cartesian part type names is not a description lan-

guage construct. It is an analysis language, i.e., an informal natural language, here English,

construct. As such it is being used by the domain analyzer cum describer who “applies” it

to an observed endurant and notes down, in her mind or jots it on a scratch of paper, her

decision as to appropriate [new] type names.

Example: 13 Cartesian Parts: The Cartesian parts of a road transport, rt:RT, is thus ob-

served to consists of

• an aggregate of a road net, rn:RN, and

• an aggregate set of automobiles, sa:SA:

that is:

• record Cartesian part type names(rt:RT) = {ηRN,ηSA}

where the type name ηRT was – and the type names ηRN and ηSA are – coined, i.e., more-

or-less freely chosen, by the domain analyzer cum describer

B.8.1.3.1.4 Part Sets.

Characterization: 17 Part Sets: Part sets are those compound parts which are observed to

consist of an indefinite number of zero, one or more parts

Cue: 11 is part set : We introduce the informal presentation language predicate is part set

to hold for compound parts e if is part set(e) holds

Once a part, say e:E, has been analyzed into a part set we inquire as to the set of parts

and their type of which it consists. The inquiry: record part set part type names, we

decide, then yields the (single) type of the constituent parts.

Cue: 12 record-part-set-part-type-names:

value

record part set part type names: E → TPs×TP
record part set part type names(e:E) as (η Ps,η P)

Here the name of the value, e, and the type names η Ps and η P are coined, i.e., more-or-less

freely chosen, by the domain analyzer cum describer

B.8. EXTERNAL AND INTERNAL ENDURANT QUALITIES 215

Please also note that record part set part type names is not a description language

construct. It is an analysis language, i.e., an informal natural language, here English, con-

struct. As such it is being used by the domain analyzer cum describer who “applies” in to an

observed endurant and notes down, in her mind or jots it on a scratch of paper, her decision

as to appropriate [new] type names.

Example: 14 Part Sets: Road Transport: The road transport contains a set of automobiles.

The part set type name has been chosen to be SA. It is then determined (i.e., analyzed) that

SA is a set of Automobile of type A

• record part set part type names(sa:SA) = (η As,η A)

B.8.1.3.1.5 Compound Observers. Once the domain analyzer cum describer has decided

upon the names of atomic and compound parts, obs erver functions can be applied to Carte-

sian and part set, e:E, parts:

Schema 1 Describe Cartesians and Part Set Parts

value

let {η P1,η P2,...,η Pn} = record Cartesian part type names(e:E) in

“ type

P1, P2, ..., Pn;
value

obs P1: E→P1, obs P2: E→P2,...n obs Pn: E→Pn ”
end

respectively:

let (η Ps,η P) = record part set part type names(e:E) in

“ type

P, Ps = P-set,
value

obs Ps: E→Ps ”
end

The “ ...” texts are the RSL texts “generated”, i.e., written down, by the domain describer.

They are domain model specification units . The “surrounding” RSL-like texts are not written

down as phrases, elements, of the domain description. They are elements of the domain

describers’ “notice board”, and, as such, elements of the development of domain models.

We have introduced a core domain modeling tool the obs ... observer function, one to be

“applied” mentally by the domain describer, and one that appears in (RSL+-Text) domain

descriptions The obs ... observer function is “applied” by the domain describer, it is not a

computable function.

Please also note that Describe Cartesians and Part Set Parts schema, 1, is not

a description language construct. It is an analysis language, i.e., an informal natural language,

here English, construct. As such it is being used by the domain analyzer cum describer who

“applies” in to an observed endurant and notes down, but now in a final form, elements, that

is domain description units .

216 APPENDIX B. THE DOMAIN MODELING THEORY

• • •

A major step of the development of domain models has now been presented: that of the

analysis & description of the external qualities of domains.

Schema 1 on the previous page is the first manifestation of the domain analysis & de-

scription method leading to actual domain description elements.

From unveiling a science of domains we have “arrived” at an engineering of domain
descriptions.

B.8.1.4 States

Characterization: 18 States: By a state we shall mean any subset of the parts of a domain

Example: 15 Road Transport State:

variable

hs:AH := obs AH(obs RN(rt)),
ls:AL := obs AL(obs RN(rt)),
as:SA := obs SA(rt),
σ :(H|L|A)-set := hs∪ls∪as

We have chosen to model domain states as variables rather than as values. The reason for

this is that the values of monitorable, including biddable part attributes63 can change, and

that domains are often extended and “shrunk” by the addition, respectively removal of parts:

Example: 16 Road Transport Development: adding or removing hubs, links and automo-

biles

We omit coverage of the aspect of bidding changes to monitorable part attributes.

B.8.1.5 Validity of Endurant Observations

We remind the reader that the obs erver functions, as all later such functions: uid -, mereo -

and attr -functions, are applied by humans and that the outcome of these “applications” is

the result of human choices, and possibly biased by inexperience, taste, preference, bias,

etc. How do we know whether a domain analyzer & describer’s description of domain parts

is valid ? Whether relevantly identified parts are modeled reasonably wrt. being atomic,

Cartesians or part sets Whether all relevant endurants have been identified ? Etc. The short

answer is: we never know. Our models are conjectures and may be refuted [57]. A social

process of peer reviews, by domain stakeholders and other domain modelers is needed – as

may a process of verifying64 properties of the domain description held up against claimed

properties of the (real) domain.

B.8.1.6 Summary of Endurant Analysis Predicates

Characterizations 6–17 imply the following analysis predicates (Char.: δ , Page π):

63The concepts of monitorable, including biddable part attributes is treated in Sect.B.8.2.3.2.
64testing, model checking and theorem proving

B.8. EXTERNAL AND INTERNAL ENDURANT QUALITIES 217

• is entity, δ6 π 208

• is endurant, δ7 π 209

• is perdurant, δ8 π 209

• is solid, δ11 π 211

• is fluid, δ12 π 211

• is part, δ13 π 212

• is atomic, δ14 π 212

• is compound, δ15 π 213

• is Cartesian, δ16 π 213

• is part set, δ17 π 214

We remind the reader that the above predicates represent “formulas” in the presentation,

not the description, language. They are not RSL+-Text clauses. They are in the mind of

the domain analyzers cum describers. They are “executed” by such persons. Their result,

whether true, false or chaos65, are noted by these persons and determine their next step of

domain analysis.

B.8.1.7 “Trees are Not Recursive”

A ‘fact’, that seems to surprise many, is that parts are not “recursive”. Yes, in all our domain

modeling experiments, [25], we have not come across the need for recursively observing

compound parts. Trees, for example, are not recursive in this sense. Trees have roots. Sub-

trees not. Banyan trees66 have several “intertwined trees”. But it would be ‘twisting’ the

modeling to try fit a description of such trees to a ‘recursion wim’ ! Instead, trees are defined

as nets, such as are road nets, where these nets then satisfy certain constraints [25, Chapter
B] – usually modeled by a mereology, see Sect. B.8.2.2 on page 219.

B.8.2 Internal Qualities – Intangibles

The previous section has unveiled an ontology of the external qualities of endurants. The
unveiling consisted of two elements: a set of analysis predicates, predicates 6–17, and
analysis functions, schemas 10–12, and a pair of description functions, schema 1 on
page 215.

The application of description functions result in RSL-Text.
That text conveys certain properties of domains: that they consists of such-and-such

endurants, notably parts, and that these endurants “derive” from other endurants. But
the RSL-Text description texts do not “give flesh & blood” to these endurants. Questions
like: ‘what are their spatial extents ?’, ‘how much do the weigh ?’, ‘what colour do they
have ?’, et cetera, are left unanswered. In the present section we shall address such issues.
We call them internal qualities.

Characterization: 19 Internal Qualities: Internal qualities are those properties [of en-

durants] that do not occupy space but can be measured or spoken about

Example: 17 Internal qualities: Examples of internal qualities are the unique identity of

a part, the mereological relation of parts to other parts, and the endurant attributes such as

temperature, length, colour, etc.

65The outcome of applying an analysis predicate of the prescribed kind may be chaos if the prerequisites for

its application does not hold.
66https://www.britannica.com/plant/banyan

218 APPENDIX B. THE DOMAIN MODELING THEORY

This section therefore introduces a number of domain description tools:

• uid : the unique identifier observer of parts;

• mereo : the mereology observer of parts;

• attr : (zero,) one or more attribute observers of endurants; and

• attributes : the attribute query of endurants.

B.8.2.1 Unique Identity

Ontological Choice: 7 Unique Identity : We postulate that separately discernible parts have

unique identify. The issue, really, is a philosophical one. We refer to [20, Sects. 2.2.2.3–
2.2.2.4, pages 14–15] for a discussion of the existence and uniqueness of entities

Characterization: 20 Unique Identity : A unique identity is an immaterial property that

distinguishes any two spatially distinct solids67

The unique identity of a part p of type P is obtained by the postulated observer uid P:

Schema 2 Describe-Unique-Identity-Part-Observer

“ type

P,PI
value

uid P: P → PI”

Here PI is the type of the unique identifiers of parts of type P.

Example: 18 Unique Road Transport Identifiers: The unique identifierss of a road trans-

port, rt:RT, consists of the unique identifiers of the

• road transport – rti:RTI,

• (Cartesian) road net – rni:RNI,

• (set of) automobiles – sa:SAI,

• automobile, ai:AI,

• (set of) hubs, hai:AHI,

• (set of) links, lai:LAI,

• hub, hi:HI, and

• link, li:LI,

where the type names are all coined, i.e., more-or-less freely chosen, by the domain analyzer

cum describer – though, as You can see, these names were here formed by “suffixing” Is to

relevant part names

We have thus introduced a core domain modeling tool the uid ... observer function,

one to be “applied” mentally by the domain describer, and one that appears in (RSL+-Text)

domain descriptions The uid ... observer function is “applied” by the domain describer, it is

not a computable function.

67For pragmatic reasons we do not have to speculate as to whether “bodies” of fluids can be ascribed unique

identity. The pragmatics is that we, in our extensive modeling experiments have not found a need for such

ascription !

B.8. EXTERNAL AND INTERNAL ENDURANT QUALITIES 219

B.8.2.1.1 Uniqueness of Parts No two parts have the same unique identifier.

Example: 19 Road Transport Uniqueness:

variable

hsuids:HI-set := { uid H(h) | h:H•u∈σ }
lsuids:LI-set := { uid L(l) | l:L•u∈σ }
asuids:AI-set := { uid A(a) | a:A•u∈σ }
σ uids:(HI|LI|AI)-set := { uid (H|L|A)(u) | u:(H|L|A)•u∈σ }

axiom

� card σ = card σ uids For σ see Sect. B.8.1.4 on page 216.

We have chosen, for the same reason as given in Sect. B.8.1.4, to model a unique identifier
state. The � [always] prefix in the axiom then expresses that changes of parts or addition
of parts to and deletions of parts from the domain shall maintain their uniqueness over
time (i.e., always).

B.8.2.2 Mereology

The concept of mereology is due to the Polish mathematician, logician and philosopher
Stanis law Leśniewski (1886–1939) [68, 13].

Characterization: 21 Mereology : Mereology is a theory of [endurant] part-hood rela-

tions: of the relations of an [endurant] parts to a whole and the relations of [endurant] parts

to [endurant] parts within that whole

Ontological Choice: 8 Mereology : Stanisław Leśniewski was not satisfied with Bertrand

Russell’s “repair” of Gottlob Frege’s axiom systems for set theory. Instead he put forward

his axiom system for, as he called it, mereology. Both as a mathematical theory and as a

philosophical reasoning

Example: 20 Mereology : Examples of mereologies are that a link is topologically con-

nected to exactly one or, usually, two specific hubs, that hubs are connected to zero, one

or more specific links, and that links and hubs are open to the traffic of specific subsets of

automobiles

Mereologies can be expressed in terms of unique identifiers.

Example: 21 Mereology Representation: For our ‘running road transport example’ the

mereologies of links, hubs and automobiles can thus be expressed as follows:

• mereo L(l) = {hi′,hi′′} where hi,hi′,hi′′ are the unique identifiers of the hubs that the

link connects, i.e., are in hsuids;

• mereo H(h) = {li1,li2,...,lin} where li1,li2,...,lin are the unique identifiers of the links

that are imminent upon (i.e., emanates from) the hub, i.e., are in lsuids; and

220 APPENDIX B. THE DOMAIN MODELING THEORY

• mereo A(a) = {ri1,ri2,...,rim} where ri1,ri2,...,rim are unique identifiers of the road

(hub and link) elements that make up the road net, i.e., are in hsuids∪lsuids

Once the unique identifiers of all parts of a domain has been described we can analyses and

describe their mereologies. The inquiry: mereo P(p) yields a mereology type (name), say

PMer, and its description68 :

Schema 3 Describe-Mereology

“ type

PMer = M (PI1,PI2,...,PIm)
value

mereo P: P → PMer
axiom

A (pm:PMer) ”

where M (PI1,PI2,...,PIm) is a type expression over unique identifier types of the domain;

mereo P is the mereology observer function for parts p:P; and A (pm:PMer) is an axiom

that secures that the unique identifiers of any part are indeed of parts of the domain.

B.8.2.3 Attributes

Attributes are what finally gives “life” to endurants: The external qualities “only” named and

gave structure to their atomic or compound types. The internal qualities of uniqueness and

mereology are intangible quantities. The internal quality of attributes gives “flesh & blood”

to endurants: they let us express endurant properties that we can more easily, i.e., concretely,

relate to.

B.8.2.3.1 General

Characterization: 22 Attributes: Attributes are properties of endurants that can be mea-

sured either physically (by means of length (ruler) and spatial quantity measuring equipment,

electronically, chemically, or otherwise) or can be objectively spoken about

Ontological Choice: 9 Attributes: First some empirical observation: in reasoning about

“the world around us” we express its properties in terms of predicates. These predicates, for

example: “that building’s wall is red”, building refers to an endurant part whereas wall and

red refers to attributes. Now the “rub”: endurant attributes is what give “flesh & blood” to

domains

Attributes are of types and, accordingly have values.

We postulate an informal domain analysis function, record attribute type names:

The domain analyzer, in observing a part, p:P, analyzes it into the set of attribute names of

parts p:P

68Cf. Sect.B.8.1.3.1.5

B.8. EXTERNAL AND INTERNAL ENDURANT QUALITIES 221

Schema 4 record-attribute-type-names

value

record attribute type names: P → ηT-set
record attribute type names(p:P) as ηT-set

Example: 22 Road Net Attributes, I : Examples of attributes are: hubs have states, hσ :HΣ:

the set of pairs of link identifiers, (f li,tli), of the links f rom and to which automobiles may

enter, respectively leave the hub; and hubs have state spaces, hω :HΩ: the set of hub states

“signaling” which states are open/closed, i.e., green/red; links that have lengths, LEN; and

automobiles have road net positions, APos, either at a hub, atH, or on a link , onL, some

fraction, f:Real, down a link, identified by li, from a hub, identified by fhi, towards a hub,

identified by thi. Hubs and links have histories: time-stamped, chronologically ordered se-

quences of automobiles entering and leaving links and hubs, with automobile histories simi-

larly recording hubs and links entered and left.

type

HΣ = (LI×LI)-set

HΩ = HΣ-set

LEN = Nat m
APos = atH | onL
atH :: HI
onL :: LI × (fhi:HI × f:Real × thi:HI)
HHis,LHis = (TIME×AI)∗

AHis = (TIME×(HI|LI))∗

value

attr HΣ: H → HΣ

attr HΩ: H → HΩ

attr LEN: L → LEN
attr APos: A → APos
attr HHis: H → HHis
attr LHis: L → LHis
attr AHis: A → AHis

axiom

∀ (li,(fhi,f,thi)):onL • 0<f<1
∧li∈lsuids∧{fhi,thi}⊆hsuids∧...

Schema 5 Describe-endurant-attributes(e:E)

let {η A1,ηA2,...,ηAn} = record attribute type names(e:E) in

“ type

A1, A2, ..., An
value

attr A1: E → A1, attr A2: E → A2, ..., attr An: E → An
axiom

∀ a1:A1, a2:A2, ..., an:An: A (a1,a2,...,an) ”
end

222 APPENDIX B. THE DOMAIN MODELING THEORY

B.8.2.3.2 Michael A. Jackson’s Attribute Categories Michael A. Jackson [50] has sug-

gested a hierarchy of attribute categories:from static (is static69) to dynamic (is dynamic70)

values – and within the dynamic value category: inert values (is inert71), reactive val-

ues (is reactive72), active values (is active73) – and within the dynamic active value

category: autonomous values (is autonomous74), biddable values (is biddable75), and

programmable values (is programmable76). We postulate informal domain analysis predi-

cates, “performed” by the domain analyzer:

value

is static,is autonomous,is biddable,is programmable [etc.]: η T→Bool

We refer to [50] and [20] [Chapter 5, Sect. 5.4.2.3] for details. We suggest a minor revision

of Michael A. Jackson’s attribute categorization, see left side of Fig. B.2. We single out the

inert from the ontology of Fig. B.2, left side. Inert attributes seem to be “set externally”

to the endurant. So we now distinguish between is external and is internal dynamic

attributes. We summarize Jackson’s attribute and our revised categorization in Fig. B.2.

dynamic

active

endurant

autonomous programmable

static

attributes

attributes

inert reactive

monitorable attributes

biddableattributes

monitorable
only

dynamicstatic

endurant

internal

reactive

biddable

external = inert

programmable autonomous

active

monitorable attributes

Figure B.2: Michael Jackson’s [Revised] Attribute Categories

This distinction has [pragmatic] consequences for how we treat arguments of the be-

haviours of parts, cf. Sect. B.9.5.1 (page 227).

Example: 23 Road Net Attributes, II : The link length and hub state space attributes are

static, hub states and automobile positions programmable. Automobile speed and accelera-

tion attributes, which we do not model, are monitorable

The attributes categorization determines, in the next major section on perdurants, the treat-

ment of hub, link and automobile behaviours.

69static: values are constants, cannot change
70dynamic: values are variable, can change
71inert: values can only change as the result of external stimuli where these stimuli prescribe new values
72reactive: values, if they vary, change in response to external stimuli, where these stimuli either come from

outside the domain of interest or from other endurants.
73active: values can change (also) on their own volition
74autonomous: values change only “on their own volition”; the values of an autonomous attributes are a “law

onto themselves and their surroundings”.
75biddable: values are prescribed but may fail to be observed as such
76programmable: values can be prescribed

B.8. EXTERNAL AND INTERNAL ENDURANT QUALITIES 223

B.8.2.3.3 Analytic Attribute Extraction Functions: For later purpose we need characterize

three specific attribute category extraction functions: static attributes, monitorable at-

tributes, and programmable attributes:

value

p:P
tns = record attribute type names(p)

static attributes: ηT -set → ηT -set

static attributes(tns) ≡ { ηtn | ηtn:ηT • ηtn ∈ tns ∧ is static(tn) }

inert attributes: ηT -set → ηT -set

inert attributes(tns) ≡ { ηtn | ηtn:ηT • ηtn ∈ tns ∧ is inert(tn) }

monitorable attributes ηT -set → ηT -set

monitorable attributes(tns) ≡ { ηtn | ηtn:ηT • ηtn ∈ tns ∧ is monitorable(tn) }

programmable attributes ηT -set → ηT -set

programmable attributes(tns) ≡ { ηtn | ηtn:ηT • ηtn ∈ tns ∧ is programmable(tn) }

is monitorable: T → Bool

is monitorable(t) ≡ ∼is static(t) ∧ ∼is inert(t) ∧ ∼is programmable(t)

Please be reminded that these functions are informal. They are part of the presentation lan-

guage. Do not be confused by their RSL-Text-like appearance.

B.8.3 Intentional Pull

Ontological Choice: 10 Intentional Pull : In [63, pages 167–168] Sørlander argues wrt.

“how can entities be the source of forces ?” and thus reasons for gravitational pull .
That same kind of reasoning, with proper substitution of terms, leads us to the concept of

intentional pull

Two or more parts of different sorts, but with overlapping sets of intents77 may excert an

intentional “pull” on one another. This intentional “pull” may take many forms. Let px : X

and py : Y be two parts of different sorts (X ,Y), and with common intent , ι . Manifestations
of these, their common intent must somehow be subject to constraints , and these must be

expressed predicatively .

When a compound artifact models “itself” as put together with a number of other en-

durants then it does have an intentionality and the components’ individual intentionalities

does, i.e., shall relate to that.

Example: 24 Road Transport Intentionality : Automobiles include the intent: transport,

and so do hubs and links . Manifestations of transport are reflected in hubs, links and

automobiles having the history attribute. The intentional “pull” of these manifestations is

77Intent: purpose; God-given or human-imposed !

224 APPENDIX B. THE DOMAIN MODELING THEORY

this: For every automobile, if it records being in some hub or on some link at time τ , then the

designated hub, respectively link, records exactly that automobile; and vice versa: for every

hub [link], if it records the visit of some automobile at time τ , then the designated automobile

records exactly that hub [link]. We leave the formalization of the above to the reader

Example: 25 Double-entry Bookkeeping : Another example of intentional “pull” is that of

double-entry bookkeeping. Here the income/expense ledger must balance the actives/passives

ledger

Example: 26 The Henry George Theorem.: The Henry George theorem states that under

certain conditions, aggregate spending by government on public goods will increase aggre-

gate rent based on land value (land rent) more than that amount, with the benefit of the last

marginal investment equaling its cost 78,79

B.8.4 Summary of Endurants

We have completed our treatment of endurants. That treatment was based on an ontology for

the observable phenomena of domains – such as we have delineated the concept of domains.

The treatment was crucially based on an ontology for the structure of domain phenomena,

and, in a sense, “alternated” between analysis predicates, analysis functions, and description

functions. We have carefully justified this ontology in ‘Ontological Choice’ paragraphs

B.9 Perdurant Concepts

The main contribution of this section is that of transcendentally deducing perdurants from

endurant parts, in particular behaviours “of” parts.

Major perdurants are those of actions, events and behaviours with behaviours generally

being sets of sequences of actions, events and behaviours.

B.9.1 “Morphing” Parts into Behaviours

As already indicated we shall transcendentally deduce (perdurant) behaviours from those

(endurant) parts which we, as domain analyzers cum describers, have endowed with all three

kinds of internal qualities: unique identifiers, mereologies and attributes. We shall use the

CSP [47] constructs of RSL-Text (derived from RSL [41]) to model concurrent behaviours.

78Stiglitz, Joseph (1977). “The Theory of Local Public Goods”. In Feldstein, M.S.; Inman, R.P. (eds.). The

Economics of Public Services. Palgrave Macmillan, London. pp. 274333. doi:10.1007/978-1-349-02917-4 12.

ISBN 978-1-349-02919-8.
79Henry George (September 2, 1839 – October 29, 1897) was an American political economist and journalist.

His writing was immensely popular in 19th-century America and sparked several reform movements of the

Progressive Era. He inspired the economic philosophy known as Georgism, the belief that people should own the

value they produce themselves, but that the economic value of land (including natural resources) should belong

equally to all members of society. George famously argued that a single tax on land values would create a more

productive and just society.

B.9. PERDURANT CONCEPTS 225

B.9.2 Transcendental Deduction

Transcends is the basic ground concept from the word’s literal meaning of climbing or going

beyond, albeit with varying connotations in its different historical and cultural stages.

Characterization: 23 Transcendence: By transcendence we shall understand the notion:

the a priori or intuitive basis of knowledge, independent of experience

A priori knowledge or intuition is central: By a priori we mean that it not only precedes, but

also determines rational thought.

Characterization: 24 Transcendental Deduction: By a transcendental deduction we

shall understand the philosophical notion: a transcendental “conversion” of one kind
of knowledge into a seemingly different kind of knowledge

Example: 27 Transcendental Deductions – Informal Examples: We give some intuitive

examples of transcendental deductions. They are from the “domain” of programming lan-

guages. There is the syntax of a programming language, and there are the programs that

supposedly adhere to this syntax. Given that, the following are now transcendental deduc-

tions.

The software tool, a syntax checker, that takes a program and checks whether it satisfies

the syntax, including the statically decidable context conditions, i.e., the statics semantics –

such a tool is one of several forms of transcendental deductions.

The software tools, an automatic theorem prover and a model checker, for example

SPIN [48], that takes a program and some theorem, respectively a Promela statement, and

proves, respectively checks, the program correct with respect the theorem, or the statement.

A compiler and an interpreter for any programming language.

Yes, indeed, any abstract interpretation [37] reflects a transcendental deduction: firstly,

these examples show that there are many transcendental deductions; secondly, they show that

there is no single-most preferred transcendental deduction

Ontological Choice: 11 Transcendental Deduction of Behaviours from Parts: So this,

then, is, in a sense, our “final” ontological choice: that of transcendentally deducing be-

haviours from parts

B.9.3 Actors – A Synopsis

This section provides a summary overview.

Characterization: 25 Actors: An actor is anything that can initiate an action, event or

behaviour

B.9.3.1 Action

Characterization: 26 Actions: An action is a function that can purposefully change a

state

Example: 28 Road Net Actions: These are some road transport actions: an automobile

leaving a hub, entering a link; leaving a link, entering a hubs; entering the road net; and

leaving the road net

226 APPENDIX B. THE DOMAIN MODELING THEORY

B.9.3.2 Event

Characterization: 27 Events: An event is a function that surreptitiously changes a state

Example: 29 Road Net Events: These are some road net events: The blocking of a link

due to a mud slide; the failing of a hub traffic signal due to power outage; an automobile

failing to drive; and the blocking of a link due to an automobile accident

We shall not formalize events.

B.9.3.3 Behaviour

Characterization: 28 Behaviours: Behaviours are sets of sequences of actions, events and

behaviours

Concurrency is modeled by the sets of sequences. Synchronization and communication of

behaviours are effected by CSP output/inputs: ch[{i,j}] !value/ch[{i,j}] ?.

Example: 30 Road Net Traffic : Road net traffic can be seen as a behaviour of all the be-

haviours of automobiles, where each automobile behaviour is seen as sequence of start, stop,

turn right, turn left, etc., actions; of all the behaviours of links where each link behaviour is

seen as a set of sequences (i.e., behaviours) of “following” the link entering, link leaving, and

movement of automobiles on the link; of all the behaviours of hubs (etc.); of the behaviour of

the aggregate of roads, viz. The Department of Roads , and of the behaviour of the aggregate

of automobiles, viz, The Department of Vehicles .

B.9.4 Channel

Characterization: 29 Channel : A channel is anything that allows synchronization and

communication of values between behaviours

Schema 6 Channel

We suggest the following schema for describing channels:

channel { ch[{ui,uj}] | ui,ij:UI • ... } : M

where ch is the describer-chosen name for an array of channels, ui,uj are channel array indices

of the unique identifiers, UI, of the chosen domain

Example: 31 Road Transport Interaction Channel :

channel { ch[{ui,uj}] | {ui,ij}:(HI|LI|AI)-set • ui 6=uj∧{ui,uj}⊆σ uids } : M

Channel array ch is indexed by a “pair” of distinct unique part identifiers of the domain. We

shall later outline M, the type of the “messages” communicated between behaviours

B.9. PERDURANT CONCEPTS 227

B.9.5 Behaviours

We single out the perdurants of behaviours – as they relate directly to the parts of Sect. B.8.
The treatment is “divided” into three sections.

B.9.5.1 Behaviour Signature

Schema 7 Behaviour Signature

By the behaviour signature, for a part p, we shall understand a pair: the name of the be-

haviour, Bp, and a function type expression as indicated:

value

Bp: Uidp→
80 Mereop→Sta Valsp→Inert Valsp→Mon Refsp→Prgr Valsp → { ch[{i,j}] | ... }

Unit

We explain:

• Uidp is the type of unique identifiers of part p, uid P(p) = Uidp;

• Mereop is the type of the mereology of part p, mereo P(p) = Mereop;

• Sta Valsp is a Cartesian of the type of inert attributes of part p. Given record attribu-

te type names(p) static attributes(record attribute type names(p)) yields

Sta Valsp;

• Inert Valsp is a Cartesian of the type of static attributes of part p. Given record attribu-

te type names(p) inert attributes(record attribute type names(p)) yields

Inert Valsp;

• Mon Refsp is a Cartesian of the attr ibute observer functions of the types of moni-

torable attributes of part p. Given record attribute type names(p) analysis func-

tion monitorable attributes(record attribute type names(p)) yields Mon Valsp;

• Prgr Valsp is a Cartesian of the type of programmable attributes of part p. Given

record attribute type names(p) analysis function programmable attributes(re-

cord attribute type names(p)). yields Prgr Valsp;

• { ch[{i,j}] | ... } specifies the channels over which part p behaviours, Bp, may com-

municate; and

• Unit is the type name for the () value81

The Cartesian arguments may “degenerate” to the non-Cartesian of no, or just one type iden-

tifier, In none, i.e., (), then () may be skipped. If one, e.g., (a), then (a) is listed.

Example: 32 Road Transport Behaviour Signatures:

80We have Schönfinckel’ed https://en.wikipedia.org/wiki/Moses Schönfinkel#Further reading

(Curried https://en.wikipedia.org/wiki/Currying) the function type
81– You may “read’ () as the value yielded by a statement, including a never-terminating function

228 APPENDIX B. THE DOMAIN MODELING THEORY

value

hub: HI→MereoH→(HΩ×...)→(...)→(HHist×...)
→{ch[{uid H(p),ai}]|ai:AI•ai∈asuid} Unit

link: LI→MereoL→(LEN×...)→(...)→(LHist×...)
→{ch[{uid L(p),ai}]|ai:AI•ai∈asuid} Unit

automobile: AI→MereoA→(...)→(attr AVel×attr HAcc×...)→(APos×AHist×...)
→{ch[{uid H(p),ri}]|ri:(HI|LI)•ri∈hsuid∪lsuid} Unit

Here we have suggested additional part attributes: monitorable automobile velocity and ac-

celeration, AVel, AAcc, and omitted other attributes

B.9.5.2 Inert Arguments: Some Examples

Let us give some examples of inert attributes of automobiles. (i) Driving uphill, one a level

road, or downhill, excert some inert “drag” or “pull”. (ii) Velocity can be treated as a

reactive attribute – but it can be [approximately] calculated on the basis of, for example,

these inert attributes: drag/pull and accelerator pedal pressure, and the static engine

power attribute.

B.9.5.3 Behaviour Definitions

A typical, informal rendition of abstracted behaviours, BA, BC, BD, ... is shown in

Fig. B.9.5.3 on the next page.
Figure B.9.5.3 on the facing page should be understood as follows:82 The bold

faced labels BA, BB, BC, ... are meant to designate behaviours. The black arrows,
from behaviour Bx to behaviour By are meant to designate CSP-like communications
from Bx to By. The open arrows (“white”), from behaviour Bx to behaviour By
are meant to designate possible CSP-like communications from Bx to By. These latter
communications, the “possible” ones, are then thought of as in response to the “earlier”,
in the figure: “immediately prior, next to” communication from Bx to By.

Figure B.9.5.3 on the next page is now given a more precise “meaning” – with this
“meaning” suggesting a general “pattern” for behaviour definitions:

30. There are behaviours B, ... with identities bi,

(a) These behaviours,typically, have the form of internal, ⌈⌉, non-deterministically
“choosing” between

(b) pro-actively initiating communications with other behaviors

(c) and re-actively responding to such initiatives.

value

30a. B(bi)(mereo)(stat)(mon)(prg) ≡
30b. pro active B(bai)(mereo)(stat)(mon)(prg)
30c. ⌈⌉ re active B(bai)(mereo)(stat)(mon)(prg)

82The explanation of Fig.B.9.5.3 is in now way an attempt to explain the semantics of behaviours. That
is left to the RSL+ formalization’s.

B.9. PERDURANT CONCEPTS 229

C
A

B
1−> <−C

B
A

1

<−C
B

A
1

Legend:

Etcetera

Etcetera

BA

BB BC

<−
C

A
B

i

C
B

A
i−

>

C
A

B
1−>

BA, BB, BC, .. behaviours

CXY−> communication from behaviour X to Y

<−CYX communication from behaviour Y ro X

initial comm.

possible reply comm.

Figure B.3: Communicating Behaviours

31. ι30b π228 The pro-active behaviour (B) internal deterministically (⌈⌉) choosing be-

tween a number of initiating actions:

(a) action 1,

(b) action 2,

(c) ...,

(d) action n.

value

31., ι30b π228. pro active B(bi)(mereo)(stat)(mon)(prg) ≡
31a. B action 1(bi)(mereo)(stat)(mon)(prg)
31b. ⌈⌉ B action 2(bi)(mereo)(stat)(mon)(prg)
31c. ⌈⌉ ...
31d. ⌈⌉ B action m(bi)(mereo)(stat)(mon)(prg)

230 APPENDIX B. THE DOMAIN MODELING THEORY

32. ι30b π228. The responding behaviour (B) reacts to a number of such initiating actions

by

(a) external non-deterministically (⌈⌉⌊⌋) offering to accept messages from responding

behaviours,

(b) and then performing corresponding actions.

value

32a., ι30b π228. respond B(bi)(mereo)(stat)(mon)(prg) ≡
32a. let msg = ⌈⌉⌊⌋ { comm[{bj,bi}] ? | bj:BI • bj∈ bis } in

32b. react behaviour B(bi)(mereo)(stat)(mon)(prg)(msg) end

33. The react behaviour B inquires as to the type of the message, say, a command,

received (?): if it is:

(a) of type Cmd i then it performs action act cmd i,

(b) of type Cmd j then it performs action act cmd j,

(c) ..., or

(d) of type Cmd k then it performs action act cmd k.

(e) If it is of neither of these types then it “skips” treatment of that response by

resuming to be the behaviour B.

value

33. react behaviour B(bi)(mereo)(stat)(mon)(prg)(msg) ≡
33a. is action i(msg) → B action i(bi)(mereo)(stat)(mon)(prg)(msg),
33b. is action j(msg) → B action j(bi)(mereo)(stat)(mon)(prg)(msg),
33c. ...,
33d. is action k(msg) → B action k(bi)(mereo)(stat)(mon)(prg)(msg),
33e. → B(bi)(mereo)(stat)(mon)(prg)

B.9.5.4 Action Definitions

“Actions are what makes behaviours meaningful” We remind the reader that our function

(incl. behaviour) definitions are expressed in a functional, “applicative”, style. [that is, there

are no assignable variables] The actions elaborate to values. These values may be Booleans,

numbers, sets, Cartesians, lists, maps and functions (over these), or the values by be (), of

type Unit, as are the values (also of never-ending) behaviours.

Action signatures usually “follow that”, i.e., are the same as “their” initiating behaviour

signatures.

B.9. PERDURANT CONCEPTS 231

34. Actions, as semantic quantities,

(a) evaluate some values,

(b) typically change some programmable attributes,

(c) and may communicate, “issue” or inform, to some other behaviours, some re-

quests, respectively information –

(d) whereupon the “revert”, “tail-recursively” to the activating Behaviour.

34. action i(bi)(mereo)(stat)(mon)(prg) ≡
34a. let v = evaluate i(bi)(mereo)(stat)(mon)(prg) in

34b. let (bj,prg′) = elaborate i(v)(bi)(mereo)(stat)(mon)(prg) in

34c. comm[{bi,bj}] ! E (prg′) ;
34d. behaviour(bi)(mereo)(stat)(mon)(prg′)
34. end end

Variants of Item ι34c π231 are also used:

{ comm[{bi,bj}] !E (prg′) | bj ∈ bis } ;

where bj ranges over bis, a set of behaviour identities.

B.9.5.5 Behaviour Invocation

Schema 8 Behaviour Invocation

Behaviours are invoked as follows:

“Bp(uid p(p))83

(mereo P(p))
(attr staA1(p),...,attr staAs(p))

(attr inertA1(p),...,attr inertAi(p))
(attr monA1,...,attr monAm)

(attr prgA1(p),...,attr prgAp(p)) ”

• All arguments are passed by value.

• The uid value is never changed.

• The mereology value is usually not changed.

• The static attribute values are fixed, never changed.

83We show the arguments of the invocation on separate lines only for readability. That is: normally we show

the invocation arguments as B(...)(...)(...)(...)(...).

232 APPENDIX B. THE DOMAIN MODELING THEORY

• The inert attribute values are fixed, but can be updated by receiving explicit input

communications.

• The monitorable attribute values are functions, i.e., it is as if the “actual” monitorable

values are passed by name !

• The programmable attribute values are usually changed, “updated”, by actions de-

scribed in the behaviour definition

B.9.5.6 Argument References

Within behaviour descriptions, see next section, references are made to the behaviour argu-

ments. References, a, to unique identifier, mereology, static and progammable attribute
arguments yield their value. References, a, to monitorable attribute arguments also yield

their value. This value is an attr A observer function. To yield, i.e., read, the monitorable

attribute value this function is applied to that behaviour’s uniquely identified part, puid , in

the global part state, σ . To update,, i.e., write, say, to a value v, for the case of a biddable,
monitorable attribute, that behaviour’s uniquely identified part, puid , in the global part state,

σ , shall have part puid’s A attribute changed to v – with all other attribute values of puid

unchanged. Common to both the read and write functions is the retrieve part function:

* Given a unique part identifier, pi, assumed to be that of an existing domain part,

* retr part reads the global [all parts] variable σ to retrieve that part p whose unique

part identifier is pi.

value

[∗] retr part: PI → P read

[∗] retr part(pi) ≡ let p:P • p ∈ cσ ∧ uid P(p)=pi in p end

[∗] pre: ∃ p:P • p ∈ cσ ∧ uid P(p)=pi

You may think of the functions being illustrated in this section, Sect. B.9.5.6, retr part,
read A from P and update P with A, as “belonging” to the description language, but
here suitably expressed for any domain, that is, with suitable substitutions for A and P.

B.9.5.6.1 Evaluation of Monitorable Attributes.

35. Let pi:PI be the unique identifier of any part, p, with monitorable attributes, let A
be a monitorable attribute of p, and let ηA be the name of attribute A.

36. Evaluation of the [current] attribute A value of p is defined by function read A -
from P.

value

35. pi:PI, a:A, ηA:ηT

36. read A from P: PI × T → read σ A
36. read A(pi,ηA) ≡ attr A(retr part(pi))

B.9. PERDURANT CONCEPTS 233

B.9.5.6.2 Update of Biddable Attributes

37. The update of a monitorable attribute A, with attribute name ηA of part p, identified

by pi, to a new value writes to the global part state σ .

38. Part p is retrieved from the global state.

39. A new part, p′ is formed such that p′ is like part p:

(a) same unique identifier,

(b) same mereology,

(c) same attributes values,

(d) except for A.

40. That new p′ replaces p in σ .

value

37. σ , a:A, pi:PI, ηA:ηT

37. update P with A: PI × A × ηT → write σ

37. update P with A(pi,a,ηA) ≡
38. let p = retr part(pi) in

39. let p′:P •

39a. uid P(p′)=pi
39b. ∧ mereo P(p)=mereo P(p′)
39c. ∧ ∀ ηA′ ∈ record attribute type names(p)\{ηA}
39c. ⇒ attr A′(p)=attr A′(p′)
39d. ∧ attr A(p′)=a in

40. σ := cσ \ {p} ∪ {p′}
37. end end

38. pre: ∃ p:P • p ∈ cσ ∧ uid P(p)=pi

B.9.5.7 Behaviour Description – Examples

Behaviour descriptions rely strongly on CSPs’ [47] expressivity. Leaving out some details (,

‘...’), and without “further ado”, we exemplify.

Example: 33 Automobile Behaviour at Hub:

41. We abstract automobile behaviour at a Hub (hi).

(a) Either the automobile remains in the hub,

(b) or, internally non-deterministically,

(c) leaves the hub entering a link,

(d) or, internally non-deterministically,

234 APPENDIX B. THE DOMAIN MODELING THEORY

(e) stops.

41 automobile(ai)(ris)(...)(atH(hi),ahis,) ≡
41a automobile remains in hub(ai)(ris)(...)(atH(hi),ahis,)
41b ⌈⌉
41c automobile leaving hub(ai)(ris)(...)(atH(hi),ahis,)
41d ⌈⌉
41e automobile stop(ai)(ris)(...)(atH(hi),ahis,)

42. [41a] The automobile remains in the hub:

(a) time is recorded,

(b) the automobile remains at that hub, “idling”,

(c) informing (“first”) the hub behaviour.

42 automobile remains in hub(ai)(ris)(...)(atH(hi),ahis,) ≡
42a let τ = record TIME in

42c ch[{ai,hi}] ! τ ;
42b automobile(ai)(ris)(...)(atH(hi),〈(τ ,hi)〉̂ahis,) end

43. [41c] The automobile leaves the hub entering link li:

(a) time is recorded;

(b) hub is informed of automobile leaving and link that it is entering;

(c) “whereupon” the vehicle resumes (i.e., “while at the same time” resuming) the

vehicle behaviour positioned at the very beginning (0) of that link.

43 automobile leaving hub(ai)({li}∪ris)(...)(atH(hi),ahis,) ≡
43a let τ = record TIME in

43b (ch[{ai,hi}] ! τ ‖ ch[{ai,li}] ! τ) ;
43c automobile(ai)(ris)(...)(onL(li,(hi,0,)),〈(τ ,li)〉̂ahis,) end

43 pre: [hub is not isolated]

The choice of link entered is here expressed (43) as a non-deterministic choice84. One can

model the leave hub/enter link otherwise.

44. [41e] Or the automobile “disappears — off the radar” !

44 automobile stop(ai)(ris),(...)(atH(hi),ahis,) ≡ stop

rm

84– as indicated by the pre- condition: the hub mereology must specify that it is not isolated. Automobiles can

never leave isolated hubs.

B.10. FACETS 235

B.9.6 Behaviour Initialization.

For every manifest part it must be described how its behaviour is initialized.

Example: 34 Road Transport Initialization: We “wrap up” the main example of this report-

paperreport: We omit treatment of monitorable attributes.

45. Let us refer to the system initialization as an action.

46. All hubs are initialized,

47. all links are initialized, and

48. all automobiles are initialized.

value

45. rts initialisation: Unit → Unit

45. rts initialisation() ≡
46. ‖ { hub(uid H(l))(mereo H(l))(attr HΩ(l),...)(attr HΣ(l),...)| h:H • h ∈ hs }
47. ‖ ‖ { link(uid L(l))(mereo L(l))(attr LEN(l),...)(attr LΣ(l),...)| l:L • l ∈ ls }
48. ‖ ‖ { automobile(uid A(a))(mereo A(a))(attr APos(a)attr AHis(a),...) | a:A • a ∈ as }

We have here omitted possible monitorable attributes. For hs, ls,as we refer to Sect. B.8.1.4

B.10 Facets

In this section we shall briefly overview the concept of facets. By a domain facet we shall

understand one amongst a finite set of generic ways of analyzing a domain: a view of the

domain, such that the different facets cover conceptually different views, and such that these

views together cover the domain.

We leave it to [20, Chapter 8, pages 205–240] to detail the principles, procedures, tech-

niques and tool for describing facets.

These are the facets that we have so far identified:

• intrinsics

• support technology

• rules & regulations

• scripts

• license languages

• management & organization

• human behaviour

B.10.1 Intrinsics

By domain intrinsics we shall understand those phenomena and concepts of a domain which

are basic to any of the other facets, with such domain intrinsics initially covering at least one

specific, hence named, stakeholder view.

236 APPENDIX B. THE DOMAIN MODELING THEORY

B.10.2 Support Technology

By a domain support technology we shall understand ways and means of implementing cer-

tain observed phenomena or certain conceived concepts.

B.10.3 Rules & Regulations

• By a domain rule we shall understand some text (in the domain) which prescribes how

people or equipment are expected to behave when dispatching their duties, respectively

when performing their functions.

• By a domain regulation we shall understand some text (in the domain) which pre-

scribes what remedial actions are to be taken when it is decided that a rule has not been

followed according to its intention.

B.10.4 Scripts

By a domain script we shall understand the structured, almost, if not outright, formally ex-

pressed, wording of a procedure on how to proceed, one that has legally binding power, that

is, which may be contested in a court of law.

A special “subclass” of scripts are those of commands.

Commands are syntactic entities. Semantically they denote state changes. The state

referred to is the state of the domain. Domain facets, as a wider concept than just commands,

were first treated in [19, Chapter 8] which places facets in the wider context of domain

modeling. Commands are but just one of the many kinds of script facets.

Commands are defined syntactically, and given semantics in the definition of perdurant

behaviours, one set of simple actions per command.

B.10.5 License Languages

A license is a right or permission granted in accordance with law by a competent authority

to engage in some business or occupation, to do some act, or to engage in some transaction

which but for such license would be unlawful.

A license language is a [“small”] language (with syntax, semantics and pragmatics) in

which to describe licenses.

B.10.6 Management & Organization

• By domain management we shall understand such people (such decisions) (i) who

(which) determine, formulate and thus set standards (cf. rules and regulations, Sect.

8.4) concerning strategic, tactical and operational decisions; (ii) who ensure that these

decisions are passed on to (lower) levels of management and to floor staff; (iii) who

make sure that such orders, as they were, are indeed carried out; (iv) who handle

undesirable deviations in the carrying out of these orders cum decisions; and (v) who

“backstops” complaints from lower management levels and from “floor” staff.

B.11. CONCLUSION 237

• By domain organization we shall understand (vi) the structuring of management and

non-management staff “oversee-able” into clusters with “tight” and “meaningful” rela-

tions; (vii) the allocation of strategic, tactical and operational concerns to within man-

agement and non-management staff clusters; and hence (viii) the “lines of command”:

who does what, and who reports to whom, administratively and functionally.

B.10.7 Human Behaviour

By domain human behaviour we shall understand any of a quality spectrum of carrying out

assigned work: from (i) careful, diligent and accurate, via (ii) sloppy dispatch, and (iii)

delinquent work, to (iv) outright criminal pursuit.

B.11 Conclusion

We have summarized a method to be used by [human] domain analyzers cum describers in

studying and modeling domains. Our previous publications [16, 17, 20] have, with this paper,

found its most recent, we risk to say, for us, final form.

Of course, domain models can be developed without the calculi presented in this paper.

And was for many years. From the early 1990s a number of formal models of railways

were worked out [43, 6, 8, 32, 7]. The problem, though, was still, between 1992 and 2016,

“where to begin, how to proceed and when to end”. The domain analysis & description

ontology and, hence calculus, of this paper shows how. The systematic approach to domain

modeling of this ontology and calculus has stood its test of time. The Internet ‘publica-

tion’ https://www.imm.dtu.dk/~dibj/2021/dd/dd.pdf include the following domain

models85 from the 2007–2024 period. Their development has helped hone the method of the

present paper.

B.11.1 Previous Literature

To the best of my knowledge there is no prior, comparable publications in the field of domain

science and engineering. Closest would be Michael A. Jackson’s [52]. Well, most computer

scientists working in the field of correctness of programs, from somewhat “early on”, stressed

the importance of making proper assumptions about the domain, They would then express

these “in-line”, as appropriate predicates, with their proofs. Michael A. Jackson, lifted this,

to a systematic treatment of the domain in his triplet ‘Problem Frame Approach’: program,
machine, domain [51]. But Jackson did not lift his problem frame concern into a proper

study of domains.

85

• Graphs ,

• Rivers ,

• Canals ,

• Railways ,

• Road Transport,

• The “7 Seas”,

• The “Blue

Skies”,

• Credit Cards ,

• Weather Infor-

mation,

• Documents ,

• Urban Planning ,

• Swarms of

Drones ,

• Container Termi-

nals ,

• A Retailer Mar-

ket,

• Assembly Lines ,

• Bookkeeping ,

• Shipping ,

• Stock Ex-

changes ,

• Web Transac-

tions , etc.

238 APPENDIX B. THE DOMAIN MODELING THEORY

B.11.2 The Method

So the method procedure is this: (1) First analyze and describe the external qualities of the

chosen domain. (2) For each of the so-described endurants You then analyze and describe

their internal qualities. (2.1) First their unique identification. (2.2) Then their mereology.
(2.3) Then their attributes. (2.4) And finally possible intentional pulls. (3) First then are You

ready to tackle the issue of perdurants. (3.1) Decide upon the state. (That may already have

been done in connection with (1).) (3.2) Then describe the channels. (3.3) Then analyze and

describe [part] behaviour signatures. (3.4) Then describe behaviour invocation. (3.5) Then

behaviour (body) definitions. (4) Finally describe domain initialization.

B.11.3 Specification Units

The method thus focuses, step-by-step, on the development of the following specification
units: type specification units, value specification units, axiom specification units, variable
declaration units, and channel declaration units.

There are two forms of type specifications: (α) introduction of sorts, i.e., type names,

and (β) specification of types: pairs of new type names and type expressions – as atomic,

alternate or composite types: set, Cartesian, list, map or function types.

There are basically three forms of value specification units: (i) (“simple”) naming of

values, (ii) signature of functions: function name and function type, and (iii) signature of

(endurant obs , unique identifier uid , mereology, mereo , and attribute attr) observer

functions.

B.11.4 Object Orientation

So far we have not used the term ‘object’ !

We shall now venture the following:

The combined description of endurant parts and their perdurant behaviour form an
object definition.

You can then, for yourself, develop a way of graphically presenting these object defini-

tions such that each part type is represented by a box that contains the specification units

for [all] external and internal endurant qualities as well as for the perdurant [part] behaviour

signatures and definitions; and such that the mereologies of these parts is represented by

[possibly directed] lines connecting relevant boxes.

That is, an object concept solely based on essentially inescapable world description facts

– as justified by Sørlander’s Philosophy [60, 63, 64, 65] ! No “finicky” programming lan-

guage “tricks” !

We leave it to the reader to compare this definition to those of so-called object-oriented

programming languages.

B.11.5 Other Domain Modeling Approaches

[67] shows fragments of a number of expertly expressed domain models. They are all ex-

pressed in RAISE.86 But they are not following the method of this paper. In other words, it is

86Other approaches could also be used: VDM [33, 34, 39], Z [69], Alloy [49], CafeOBJ [40], etc.

B.11. CONCLUSION 239

possible to develop domain models not using the method ! This author has found, however,

that following the method – developed after the projects reported in [67] – leads to far less

problematic situations – in contrast to my not adhering strictly to the method. In other words,

based on this subjective observation, we advice using the method.

There is thus no proof that following the method does result in simpler, straightforward

developments.

But we do take the fact that we can justify the method, cf. Fig. B.1 on page 205, on the

basis on the inevitability of describing the world as per philosophy of Kai Sørlander [60,

63, 64, 65], and that that may have a bearing on the experienced shorter domain description

development efforts.

B.11.6 How Much ? How Little ?

How wide must we cast the net when studying a domain ? The answer to that question

depends, we suggest, on whether our quest is for studying a domain in general, to see what

might come out, or whether it is a study aiming at a specific model for a specific software

development. In the former case we cast the net as we please – we suggest: as wide as

possible, wider that for specific quests. In the latter case we should cast the net as “narrowly”

as is reasonable: to fit those parts of a domain that we expect the requirements and software to

deal with ! In this latter case we should assume that someone, perhaps the same developers,

has first “tried their hand” on a wider domain.

B.11.7 Correctness

Today, 2024, software correctness appears focused on the correctness of algorithms, possibly

involving concurrency. Correctness, of software, in the context of a specific domain, means

that the software requirements are “correctly” derived from a domain description, and that

the software design is correctly derived from the domain requirements, that is: D,S |= R.
Advances in program proofs helps little if not including proper domain and requirements

specifications.

B.11.8 Domain Facets

There is more to domain modeling than covered in this paper. In [12] and in [20, Chapter
8] we cover the concept of domain facets . General examples of domain facets are support
technologies, rules & regulations, scripts, license languages, management & organization,
and human behaviour .

B.11.9 Perspectives

Domain models can be developed for either of a number of reasons:

• (i) in order to understand a human-artifact domain;

• (ii) in order to re-engineer the business processes of a human-artifact domain; or

• (iii) in order to develop requirements prescriptions and, subsequently software appli-
cation “within” that domain.

240 APPENDIX B. THE DOMAIN MODELING THEORY

[(ii)] We refer to [44, 45] and [9, Vol. 3, Chapter 19, pages 404–412] for the concept of busi-
ness process engineering . [(iii)] We refer to [20, Chapter 9] for the concept of requirements
engineering .

B.11.10 The Semantics of Domain Models

The meaning of domain models, such as we describe them in this paper, is, “of course”, the

actual, real domain “out there” ! One could, and, perhaps one should, formulate a mathemat-

ical semantics of the models, that is, of the is ..., obs ..., uid ..., mereo ... and attr ...
analysis and description functions and what they entail (e.g., the type name labels: ηT’s;

etc.). An early such semantics description is given in [14].

B.11.11 Further on Domain Modeling

Additional facets of domain modeling are covered in [10] and [20, Chapter 8: Domain
Facets.]

B.11.12 Software Development

[10] and [20, Chapter 9 Requirements] show how to develop Requirements prescriptions

from Domain descriptions. [9] shows how to develop S oftware designs from Requirements

prescriptions.

B.11.13 Modeling

Domain descriptions, such as outlined in this paper, are models of domains, that is, of some

reality. They need not necessarily lead to or be motivated by possible development of soft-

ware for such domains. They can be experimentally researched and developed just for the

sake of understanding domains in which man has had an significantly influence. They are

models. We refer to [38] for complementary modeling based on Petri nets. The current au-

thor is fascinated by the interplay between graphical and textual descriptions of HERAKLIT,

well, in general Petri Nets.

B.11.14 Philosophy of Computing

The Danish philosopher Kai Sørlander [60, 63, 64, 65] has shown that there is a foundation in

philosophy for domain analysis and description. We refer to [21, Chapter 2] for a summary

of his findings.

B.11.15 A Manifesto

So there is no excuse, anymore ! Of course we have developed interpreters and compilers for

programming languages by first developing formal semantics for those languages [35, 36].

Likewise we must now do for the languages of domain stakeholders, at least for the domains

covered by this paper. There really is no excuse !

Appendix C

The Tokyo Stock Exchange

This chapter was begun on January 24, 2010. It is being released, first time, January 28.

C.1 Introduction

This chapter shall try describe: narrate and formalise some facets of the (now “old”87) stock

trading system of the TSE: Tokyo Stock Exchange (especially the ‘matching’ aspects).

C.2 The Problem

The reason that I try tackle a description (albeit of the “old” system) is that Prof. Tetsuo

Tamai published a delightful paper [66, IEEE Computer Journal, June 2009 (vol. 42 no. 6)

pp. 58-65)], Social Impact of Information Systems, in which a rather sad story is unfolded:

a human error key input: an offer for selling stocks, although “ridiculous” in its input data

(“sell 610 thousand stocks, each at one (1) Japanese Yen”, whereas one stock at 610,000

JPY was meant), and although several immediate — within seconds — attempts to cancel

this “order”, could not be canceled ! This lead to a loss for the selling broker at around

42 Billion Yen, at today’s exchange rate, 26 Jan. 2010, 469 million US $s !88 Prof. Tetsuo

Tamai’s paper gives a, to me, chilling account of what I judge as an extremely sloppy and

irresponsible design process by TSE and Fujitsu. It also leaves, I think, a strong impression

of arrogance on the part of TSE. This arrogance, I claim, is still there in the documents listed

in Footnote 87.

So the problem is a threefold one of

87 We write “old” since, as of January 4, 2010, that ‘old’ stock trading system has been replaced by the

so-called arrowhead system. We refer to the following documents:

• http://www.tse.or.jp/english/rules/equities/arrowhead/pamphlet.html

• http://www.tse.or.jp/english/rules/equities/arrowhead/pamphlet-e.pdf

• http://www.tse.or.jp/english/rules/equities/arrowhead/pamphlet1e.pdf

• http://www.tse.or.jp/english/rules/equities/arrowhead/pamphlet2e.html

88So far three years of law court case hearing etc., has, on Dec. 4, 2009, resulted in complainant being

awarded 10.7 billion Yen in damages. See http://www.ft.com/cms/s/0/e9d89050-e0d7-11de-9f58-

-00144feab49a.html.

241

242 APPENDIX C. THE TOKYO STOCK EXCHANGE

• Proper Requirements: How does one (in this case a stock exchange) prescribe (to

the software developer) what is required by an appropriate hardware/software system

for, as in this case, stock handling: acceptance of buy bids and sell offers, the possible

withdrawal (or cancellation) of such submitted offers, and their matching (i.e., the

actual trade whereby buy bids are marched in an appropriate, clear and transparent

manner).

• Correctness of Implementation: How does one make sure that the software/hardware

system meets customers’ expectations.

• Proper Explanation to Lay Users: How does one explain, to the individual and in-

stitutional customers of the stock exchange, those offering stocks for sale of bids for

buying stocks – how does one explain – in a clear and transparent manner the applica-

ble rules governing stock handling.89

I shall only try contribute, in this document, to a solution to the first of these sub-problems.

C.3 A Domain Description

C.3.1 Market and Limit Offers and Bids

49. A market sell offer or buy bid specifies

(a) the unique identification of the stock,

(b) the number of stocks to be sold or bought, and

(c) the unique name of the seller.

50. A limit sell offer or buy bid specifies the same information as a market sell offer or buy

bid (i.e., Items 49a–49c), and

(d) the price at which the identified stock is to be sold or bought.

51. A trade order is either a (mkMkt marked) market order or (mkLim marked) a limit

order.

52. A trading command is either a sell order or a buy bid.

53. The sell orders are made unique by the mkSell “make” function.

54. The buy orders are made unique by the mkBuy “make” function.

type

49 Market = Stock id × Number of Stocks × Name of Customer
49a Stock id
49b Number of Stocks = {|n•n:Nat∧n≥1|}

89The rules as explained in the Footnote 87 on the preceding page listed documents are far from clear and

transparent: they are full of references to fast computers, overlapping processing, etc., etc.: matters with which

these buying and selling customers should not be concerned — so, at least, thinks this author !

C.3. A DOMAIN DESCRIPTION 243

49c Name of Customer
50 Limit = Market × Price
50d Price = {|n•n:Nat∧n≥1|}
51 Trade == mkMkt(m:Market) | mkLim(l:Limit)
52 Trading Command = Sell Order | Buy Bid
53 Sell Order == mkSell(t:Trade)
54 Buy Bid == mkBuy(t:Trade)

C.3.2 Order Books

55. We introduce a concept of linear, discrete time.

56. For each stock the stock exchange keeps an order book.

57. An order book for stock sid : SI keeps track of limit buy bids and limit sell offers (for

the identified stock, sid), as well as the market buy bids and sell offers; that is, for each

price

(d) the number of stocks, designated by unique order number, offered for sale at that

price, that is, limit sell orders, and

(e) the number of stocks, by unique order number, bid for buying at that price, that

is, limit buy bid orders;

(f) if an offer is a market sell offer, then the number of stocks to be sold is recorded,

and if an offer is a market buy bid (also an offer), then the number of stocks to be

bought is recorded,

58. Over time the stock exchange displays a series of full order books.

59. A trade unit is a pair of a unique order number and an amount (a number larger than 0)

of stocks.

60. An amount designates a number of one or more stocks.

type

55 T, On [Time, Order number]
56 All Stocks Order Book = Stock Id →m Stock Order Book
57 Stock Order Book = (Price →m Orders) × Market Offers
57 Orders:: so:Sell Orders × bo:Buy Bids
57d Sell Orders = On →m Amount
57e Buy Bids = On →m Amount
57f Market Offers :: mkSell(n:Nat) × mkBuy(n:Nat)
58 TSE = T →m All Stocks Order Book
59 TU = On × Amount
60 Amount = {|n•Nat∧n≥1|}

244 APPENDIX C. THE TOKYO STOCK EXCHANGE

C.3.3 Aggregate Offers

61. We introduce the concepts of aggregate sell and buy orders for a given stock at a given

price (and at a given time).

62. The aggregate sell orders for a given stock at a given price is

(g) the stocks being market sell offered and

(h) the number of stocks being limit offered for sale at that price or lower

63. The aggregate buy bids for a given stock at a given price is

(i) including the stocks being market bid offered and

(j) the number of stocks being limit bid for buying at that price or higher

value

62 aggr sell: All Stocks Order Book × Stock Id × Price → Nat

62 aggr sell(asob,sid,p) ≡
62 let ((sos,),(mkSell(ns),)) = asob(sid) in

62g ns +
62h all sell summation(sos,p) end

63 aggr buy: All Stocks Order Book × Stock Id × Price → Nat

63 aggr buy(asob,sid,p) ≡
63 let ((,bbs),(,mkBuy(nb))) = asob(sid) in

63i nb +
63j nb + all buy summation(bbs,p) end

all sell summation: Sell Orders × Price → Nat

all sell summation(sos,p) ≡
let ps = {p′|p′:Prices • p′ ∈ dom sos ∧ p′ ≥ p} in accumulate(sos,ps)(0) end

all buy summation: Buy Bids × Price → Nat

all buy summation(bbs,p) ≡
let ps = {p′|p′:Prices • p′ ∈ dom bos ∧ p′ ≤ p} in accumulate(bbs,ps)(0) end

The auxiliary accumulate function is shared between the all sell summation and the all -
buy summation functions. It sums the amounts of limit stocks in the price range of the

accumulate function argument ps. The auxiliary sum function sums the amounts of limit

stocks — “pealing off” the their unique order numbers.

value

accumulate: (Price →m Orders) × Price-set → Nat → Nat

accumulate(pos,ps)(n) ≡
case ps of {} → n, {p}∪ ps′ → accumulate(pos,ps′)(n+sum(pos(p)){dom pos(p)}) end

sum: (Sell Orders|Buy Bids) → On-set → Nat

sum(ords)(ns) ≡
case ns of {} → 0, {n}∪ ns′ → ords(n)+sum(ords)(ns′) end

C.3. A DOMAIN DESCRIPTION 245

To handle the sub limit sells and sub limit buys indicated by Item 65c of the Itayose “algo-

rithm” we need the corresponding sub sell summation and sub buy summation functions:

value

sub sell summation: Stock Order Book × Price → Nat

sub sell summation(((sos,),(ns,)),p) ≡ ns +
let ps = {p′|p′:Prices • p′ ∈ dom sos ∧ p′ > p} in accumulate(sos,ps)(0) end

sub buy summation: Stock Order Book × Price → Nat

sub buy summation(((,bbs),(,nb)),p) ≡ nb +
let ps = {p′|p′:Prices • p′ ∈ dom bos ∧ p′ < p} in accumulate(bbs,ps)(0) end

C.3.4 The TSE Itayose “Algorithm”

64. The TSE practices the so-called Itayose “algorithm” to decide on opening and closing

prices90. That is, the Itayose “algorithm” determines a single so-called ‘execution’

price, one that matches sell and buy orders91:

65. The “matching sell and buy orders” rules:

(a) All market orders must be ‘executed’92.

(b) All limit orders to sell/buy at prices higher/lower93 than the ‘execution price’94

must be executed.

(c) The following amount of limit orders to sell or buy at the execution prices must

be executed: the entire amount of either all sell or all buy orders, and at least one

‘trading unit’95 from ‘the opposite side of the order book’96.

• The 28 January 2010 version had lines

– 65c′∃ name some priced buys, should have been, as now, some priced sells and

– 65c′′∀ name all priced buys, should have been, as now, all priced sells.

• My current understanding of and assumptions about the TSE is

– that each buy bid or sell order concerns a number, n, of one or more of the same

kind of stocks (i.e. sid).

– that each buy bid or sell order when being accepted by the TSE is assigned a

unique order number on, and

90[66, pp 59, col. 1, lines 4-3 from bottom, cf. Page 250]
91[66, pp 59, col. 2, lines 1–3 and Items 1.–3. after yellow, four line ‘insert’, cf. Page 250] These items 1.–3.

are reproduced as “our” Items 65a–65c.
92To execute an order: ?????
93Yes, it should be: “higher/lower”
94Execution price: ?????
95Trading unit: ?????
96The opposite side of the order book: ?????

246 APPENDIX C. THE TOKYO STOCK EXCHANGE

– that this is reflected in some Sell Orders or Market Bids entry being augmented.97

• For current (Monday 22 Feb., 2010) lack of a better abstraction98 , I have structured the

Itayose “Algorithm” as follows:

– (65′) either a match can be made based on

* all buys and

* some sells,

– (65′∨) or

– (65′′) a match can be made based on

* aome buys and

* all sells.

value

65 match: All Stocks Order Book × Stock Id → Price-set

65 match(asob,sid) as ps
65 pre: sid ∈ dom asob
65 post: ∀ p′:Price • p′ ∈ ps ⇒
65′ all buys some sells(p′,ason,sid,ps) ∨
65′∨ ∨
65′′ some buys all sells(p′,ason,sid,ps)

• (65′) The all buys some sells part of the above disjunction “calculates” as follows:

– The all buys... part includes

* all the market buys

* all the buys properly below the stated price, and

* all the buys at that price.

– The ...some sells part includes

* all the market sells

* all the sells properly below the stated price, and

* some of the buys at that price.

65′ all buys some sells(p′,ason,sid,ps) ≡
65′ ∃ os:On-set •

65a′ all market buys(asob(sid))
65b′ + all sub limit buys(asob(sid))(p′)
65c′ + all priced buys(asob(sid))(p′)
65a′ = all market sells(asob(sid))
65b′ + all sub limit sells(asob(sid))(p′)
65c′∃ + some priced sells(asob(sid))(p′)(os)

97The present, 22.2.2010, model “lumps” all market orders. This simplification must be corrected, as for the

Sell Orders and Market Bids, the Market Offers must be modeled as are Orders.
98One that I am presently contemplating is based on another set of pre/post conditions.

C.3. A DOMAIN DESCRIPTION 247

• (65′′) As for the above, only “versed”.

65′′ some buys all sells(p′,ason,sid,ps) ≡
65′′ ∃ os:On-set •

65a′′ all market buys(asob(sid))
65b′′ + all sub limit buys(asob(sid))(p′)
65c′′ + some priced buys(asob(sid))(p′)(os)
65a′′ = all market sells(asob(sid))
65b′′ + all sub limit sells(asob(sid))(p′)
65c′′∀ + all priced sells(asob(sid))(p′) ∨

The match function calculates a set of prices for each of which a match can be made. The set

may be empty: there is no price which satisfies the match rules (cf. Items 65a–65c below).

The set may be a singleton set: there is a unique price which satisfies match rules Items 65a–

65c. The set may contain more than one price: there is not a unique price which satisfies

match rules Items 65a–65c. The single (′) and the double (′′) quoted (65a–65c) group of

lines, in the match formulas above, correspond to the Itayose “algorithm”s Item 65c ‘opposite

sides of the order book’ description. The existential quantification of a set of order numbers

of lines 65′ and 65′′ correspond to that “algorithms” (still Item 65c) point of at least one

‘trading unit’. It may be that the post condition predicate is only fulfilled for all trading units

– so be it.

value

all market buys: Stock Order Book → Amount
all market buys((,(,mkBuys(nb))),p) ≡ nb

all market sells: Stock Order Book → Amount
all market sells((,(mkSells(ns),)),p) ≡ ns

all sub limit buys: Stock Order Book → Price → Amount
all sub limit buys(((,bbs),))(p) ≡ sub buy summation(bbs,p)

all sub limit sells: Stock Order Book → Price → Amount
all sub limit sells((sos,))(p) ≡ sub sell summation(sos,p)

all priced buys: Stock Order Book → Price → Amount
all priced buys((,bbs),)(p) ≡ sum(bbs(p))

all priced sells: Stock Order Book → Price → Amount
all priced sells((sos,),)(p) ≡ sum(sos(p))

some priced buys: Stock Order Book → Price → On-set → Amount
some priced buys((,bbs),)(p)(os) ≡

248 APPENDIX C. THE TOKYO STOCK EXCHANGE

let tbs = bbs(p) in if {}6=os∧os⊆dom tbs then sum(tbs)(os) else 0 end end

some priced sells: Stock Order Book → Price → On-set → Amount
some priced sells((sos,),)(p)(os) ≡

let tss = sos(p) in if {}6=os∧os⊆dom tss then sum(tss)(os) else 0 end end

The formalization of the Itayose “algorithm”, as well as that “algorithm” [itself], does not

guarantee a match where a match “ought” be possible. The “stumbling block” seems to be

the Itayose “algorithm”s Item 65c. There it says: ‘at least one trading unit’. We suggest that a

match could be made in which some of the stocks of a candidate trading unit be matched with

the remaining stocks also being traded, but now with the stock exchange being the buyer and

with the stock exchange immediately “turning around” and posting those remaining stocks

as a TSE marked trading unit for sale.

66. It seems to me that the Tetsuo Tamai paper does not really handle

(a) the issue of order numbers,

(b) therefore also not the issue of the number of stocks to be sold or bought per order

number.

67. Therefore the Tetsuo Tamai paper does not really handle

(a) the situation where a match “only matches” part of a buy or a sell order.

For private, limited circulation only, I take the liberty of enclosing Tetsuo Tamai’s IEEE

Computer Journal paper.

C.3. A DOMAIN DESCRIPTION 249

250 APPENDIX C. THE TOKYO STOCK EXCHANGE

C.3. A DOMAIN DESCRIPTION 251

252 APPENDIX C. THE TOKYO STOCK EXCHANGE

C.3. A DOMAIN DESCRIPTION 253

254 APPENDIX C. THE TOKYO STOCK EXCHANGE

C.3. A DOMAIN DESCRIPTION 255

256 APPENDIX C. THE TOKYO STOCK EXCHANGE

Appendix D

Indexes

D.1 RSL Index

Literals , 162–174

η , 176

false, 150

true, 150

RSL-Text, 176

,̂ 176

=, 176

Unit, 174

chaos, 162, 164, 165

false, 155

true, 155

Arithmetic Constructs, 157

ai*a j, 157

ai+a j, 157

ai/a j, 157

ai=a j, 157

ai≥a j, 157

ai>a j, 157

ai≤a j, 157

ai<a j, 157

ai 6=a j, 157

ai−a j, 157

�, 155

⇒, 155

=, 155

6=, 155

∼, 155

∨, 155

∧, 155

Cartesian Constructs, 158, 162–163

(e1,e2,...,en) , 158

Combinators, 170–173

... elsif ... , 172

case be of pa1 → c1, ... pan → cn end , 172

if be then cc else ca end , 172

let a:A • P(a) in c end , 171

let pa = e in c end , 170

Function Constructs, 169–170

post P(args,result), 170

pre P(args), 170

f(args) as result, 170

f(a), 168

f(args) ≡ expr, 170

List Constructs, 158–159, 163–165

<Q(l(i))|i in<1..lenl> •P(a)> , 159

<> , 158

ℓ(i) , 163

ℓ′= ℓ′′ , 163

ℓ′ 6= ℓ′′ , 163

ℓ′̂ℓ′′ , 163

elems ℓ , 163

hd ℓ , 163

inds ℓ , 163

len ℓ , 163

tl ℓ , 163

e1 <e2,e2,...,en > , 158

Logic Constructs, 154–157

257

258 APPENDIX D. INDEXES

bi ∨ b j , 155

∀ a:A • P(a) , 156

∃! a:A • P(a) , 156

∃ a:A • P(a) , 156

∼ b , 155

false, 150

true, 150

false, 155

true, 155

bi ⇒ b j , 155

bi ∧ b j , 155

Map Constructs, 159–160, 165–167

mi \m j , 165, 166

mi ◦ m j , 165, 166

mi / m j , 165, 166

dom m , 165, 166

rng m , 165, 166

mi † m j , 165, 166

mi =m j , 165

mi ∪m j , 165, 166

mi 6=m j , 165

m(e) , 165, 166

[] , 159

[u1 7→v1,u2 7→v2,...,un 7→vn] , 159

[F(e)7→G(m(e))|e:E•e∈dom m∧P(e)] , 160

Process Constructs, 173–174

channel c:T , 173

channel {k[i]:T•i:Idx} , 173

c ! e , 174

c ? , 174

k[i] ! e , 174

k[i] ? , 174

pi⌈⌉⌊⌋p j , 173

pi⌈⌉p j , 173

pi‖p j , 173

pi–‖p j , 174

P: Unit→ in c out k[i] Unit , 174

Q: i:KIdx → out c in k[i] Unit, 174

Set Constructs, 157–158, 160–162

∩{s1,s2,...,sn} , 160

∪{s1,s2,...,sn} , 160

card s , 160

e∈s , 160

e6∈s , 160

si=s j , 160

si∩s j , 160

si∪s j , 160

si⊂s j , 160

si⊆s j , 160

si 6=s j , 160

si\s j , 160

{} , 157

{e1,e2, ...,en} , 157

{Q(a)|a:A•a∈s∧P(a)} , 158

Type Expressions, 150, 152

(T1×T2×... ×Tn) , 151

Bool, 150

Char, 150

Int, 150

Nat, 150

Real, 150

Text, 150

mk id(s1:T1,s2:T2,...,sn:Tn) , 151

s1:T1 s2:T2 ... sn:Tn , 151

T∗ , 151

Tω , 151

T1 × T2 × ... × Tn , 151

T1 | T2 | ... | T1 | Tn , 151

Ti →m T j , 151

Ti
∼
→T j , 151

Ti→T j , 151

T-infset, 151

T-set, 151

Type Definitions, 152–154

T = Type Expr, 152

T={| v:T′• P(v)|} , 153, 154

T==TE1 | TE2 | ... | TEn , 153

Space & Time, 177–178

CURVE, 178

LOCATION, 177

POINT, 177, 178

SPACE, 177

SURFACE, 178

TIME, 178

TI, 178

VOLUME, 178

AREA m2, 178

D.2. A DOMAIN MODELING INDEX 259

LENGTH m, 178

VOLUME m3, 178

*, 178

+, 178

-, 178

record LOCATION, 177

record TIME, 178

D.2 A Domain Modeling Index

General
Domain Modeling Method: By a systematic domain analysis & description method

we mean a set of principles , procedures , techniques and tools , for efficiently ana-
lyzing & describing domains., 185

Domain: By a domain we shall understand a rationally describable segment of a dis-
crete dynamics fragment of a human assisted reality: the world that we daily ob-

serve – in which we work and act, a reality made significant by human-created

entities. The domain embody endurants and perdurants ., 187

Endurants are those quantities of domains that we can observe (see and touch), in

space, as “complete” entities at no matter which point in time – “material” entities

that persists, endures – capable of enduring adversity, severity, or hardship [Merriam

Webster], 190

Entity: By an entity By an entity we shall understand a more-or-less rationally describ-

able phenomenon., 194

Perdurants are those quantities of domains for which only a fragment exists, in space,

if we look at or touch them at any given snapshot in time, 191

Phenomena: By a phenomenon we shall understand a fact that is observed to exist or

happen., 194

Prompt: By a prompt we shall understand an informal “advice” to the domain analyzer

to “perform” a mental inquiry wrt. the real-life domain being studied., 194

Rationality: The rational, analytic philosophy issues of the inevitability of these ex-

ternal and internal qualities is this: (i) can they be justified as inevitable, and (ii)

can they be suitably “separated”, i.e., both disjoint and exhaustive ? Or are they

merely of empirical nature ? The choice here is also that we separate our inquiry

into examining both external and internal qualities of endurants [not ‘either or’],

196

Transcendence: By transcendence we shall understand the philosophical notion: the a

priori or intuitive basis of knowledge, independent of experience, 212

Transcendental Deduction: By a transcendental deduction we shall understand the

notion: a “conversion” of one kind of knowledge into a seemingly different kind of

knowledge, 212

T: the name of the type of all type names., 200

Endurants
External Qualities
Atomic Part: y an atomic part we shall understand a part which the domain analyzer

considers to be indivisible in the sense of not meaningfully consist of sub-parts.,

199

Cartesian and Part Sets: A description prompt, 202

260 APPENDIX D. INDEXES

Cartesians: Cartesian parts are those compound parts which are observed to consist

of two or more distinctly sort-named endurants (solids or fluids). , 200

Compound Part: Compound parts are those which are observed to [potentially]

consist of several parts, 199

Domain Description Schema. Cartesian and Part Sets: ..., 202

Domain Description Schema. Describe Attributes: ..., 208

Domain Description Schema. Describe Unique Identity: ..., 205

Domain Description Schema: Describe Mereology: ..., 207

External Quality: External qualities of endurants of a manifest domain are, in a

simplifying sense, those we can see, touch and have spatial extent. They, so to

speak, take form. , 196

Fluid Endurant: By a fluid endurant we shall understand an endurant which is

prolonged, without interruption, in an unbroken series or pattern; or, rephrasing:

a substance (liquid, gas or plasma) having the property of flowing, consisting of

particles that move among themselves; , 198

Part Sets: Part sets are those compound parts which are observed to consist of an

indefinite number of zero, one or more parts, 201

Part: Non-living solid species are what we shall call parts., 198

Solid Endurant: By a solid cum discrete endurant we shall understand an endurant

which is separate, individual or distinct in form or concept, or, rephrasing, have

body (or magnitude) of three-dimensions: length (or height), breadth and depth,

197

State: By a state we shall mean any subset of the parts of a domain., 203

is Cartesian: An analysis prompt, 200

is atomic: An analysis prompt, 199

is compound: An analysis prompt, 199

is fluid: An analysis prompt, 198

is part: An analysis prompt, 198

is part set: An analysis prompt, 201

is solid: An analysis prompt, 197

record Cartesian part type names: An analysis function, 201

record part set part type names: An analysis function, 201

Internal Qualities
Internal Quality: Internal qualities are those properties [of endurants] that do not

occupy space but can be measured or spoken about. , 196

Internal Qualities: Unique Identification

Domain Description Schema. Describe Unique Identity: ..., 205

Unique Identity: A unique identity is an immaterial property that distinguishes any

two spatially distinct solids. , 205

uid : unique identifier observer., 205

Internal Qualities: Mereology
Domain Description Schema: Describe Mereology: ..., 207

Mereology: Mereology is a theory of [endurant] part-hood relations: of the relations

of an [endurant] parts to a whole and the relations of [endurant] parts to [endurant]

parts within that whole. , 206

mereo : mereology observer., 207

D.3. BANKING DOMAIN CONCEPTS 261

Internal Qualities: Attributes
Attribute: Attributes are properties of endurants that can be measured either phys-

ically (by means of length (ruler) and spatial quantity measuring equipment, elec-

tronically, chemically, or otherwise) or can be objectively spoken about. , 207

Domain Description Schema. Describe Attributes: ..., 208

is active: An attribute category observer, 209

is autonomous: An attribute category observer, 209

is biddable: An attribute category observer, 209

is dynamic: An attribute category observer, 209

is inert: An attribute category observer, 209

is monitorable attribute: An attribute category observer, 210

is programmable: An attribute category observer, 209

is programmable attribute: An attribute category observer, 210

is static: An attribute category observer, 209

is static attribute: An attribute category observer, 210

record attribute type names: An analysis function, 208

attr : attribute observer, 208

Perdurants
Action: An action is a function that can purposefully change a state, 213

Behaviour: Behaviours are sets of sequences of actions, events and behaviours, 213

Channel: A channel is anything that allows synchronization and communication of

values between behaviours, 213

Description Schema: Behaviour Invocation: ..., 219

Description Schema: Behaviour Signatures: ..., 214

Description Schema: Channels: channel ... , 214

Events: An event is a function that surreptitiously changes a state, 213

D.3 Banking Domain Concepts

This index is far rom satifactory. I will, at some time, make sure that it eventually becomes

one !

bank

branch office, 14

central, 14

credit/debit companies, 14

head-quarter, 14

HQ, 14

“mortar & brick’, 31

mortgage, savings & loan, 14

national, 14

regional, 14

banking, 13

structure, 14

branch office, 14

central bank, 14

command, 37

credit/debit companies, 14

Currency, 14

currency, 14

customer, 14, 31

data vetting, 23

domain

facet, 37

entity

syntactic, 37

262 APPENDIX D. INDEXES

facet

of domain, 37

script, 37

head-quarter, 14

IMF, 14

infrastructure

component, 5

International Monetary Fund, 14

“mortar & brick” bank, 31

mortgage, savings & loan banks, 14

national bank, 14

regional bank, 14

script facet, 37

state

change, 37

stock

brokers, 14

exchanges, 14

stocks, 14

syntactic entity, 37

tellers, 14

D.4 Formal Entities

The formal entries first lists formula entries by ontological category, then all:

Endurants

External Qualities

* Parts: Sorts ad Observers

* A Part State Concept

Internal Qualities

Unique Identification

* Unique Identifiers: Sorts and Observers

* A Unique Identifier State Concept

* A Wellformedness Axiom

Mereology

* Mereology: Sorts and Observers

* A Wellformedness Axiom

Attributes

* Attributes: Sorts and Observers

* Wellformedness Axioms

* Intentional Pull

* Commands

Perdurants

* Communication

* Messages

* Behaviour Signatures

* Behaviour Definitions

* Initialization

* Values

D.4. FORMAL ENTITIES 263

* Auxiliary Types

* Auxiliary Functions

* Theorems

Only the *’ed entries are listed.

Endurant

sorts
ι39, 30

B ι37 π30, 30

B ι5 π16, 16

BA ι4 π16, 16

BOA ι7 π16, 16

BOS ι8 π16, 16

BS ι5 π16, 16

C ι11 π16, 16

C ι41 π30, 30

CA ι9 π16, 16

CS ι10 π16, 16

HQ ι6 π16, 16

WBS ι3 π16, 16

WS ι34 π29, 30

observers

obs BA ι4 π16, 16

obs BOA ι7 π16, 16

obs BOS ι8 π16, 16

obs BS ι5 π16, 16

obs CA ι38, 30

obs CA ι9 π16, 16

obs CS ι10 π16, 16

obs CS ι39, 30

obs HQ ι6 π16, 16

Unique Identification
sorts

BAI ι20b π19, 19

BI ι20d π19, 19

BOA ι20f π19, 19

BOI ι20h π19, 19

BOSI ι20g π19, 19

BSI ι20c π19, 19

CAI ι20i π19, 19

CI ι20k π19, 19

CI ι43 π30, 30

CSI ι20j π19, 19

HQI ι20e π19, 19

WBSI ι20a π19, 19

observers
uid BA ι20b π19, 19

uid BOA ι20f π19, 19

uid BOS ι20g π19, 19

uid BO ι20h π19, 19

uid BS ι20c π19, 19

uid B ι20d π19, 19

uid CA ι20i π19, 19

uid CS ι20j π19, 19

uid C ι20k π19, 19

uid C ι43 π30, 30

uid HQ ι20e π19, 19

uid WBS ι20a π19, 19

Axioms
Consistent Bank Identification ι25 π23,

23

Mereology
types

BM ι28 π24, 24

C ι44 π32, 32

DOM ι30 π24, 24

HQM ι29 π24, 24

observers
mereo BO ι30 π24, 24

mereo B ι28 π24, 24

mereo C ι44 π32, 32

mereo HQ ι29 π24, 24

Attributes
Accts ι152 π101, 101

BHist ι118 π72, 72

BOHist ι153 π101, 101

CashCat ι117a π72, 72

Cashs ι117 π72, 72

CustAcct ι113a π72, 72

CustAccts ι113 π72, 72

CustCtlg ι150 π101, 101

RegNu ι149 π101, 101

264 APPENDIX D. INDEXES

Attribute

types:
AccId ι150 π101, 101

AccId ι152a π101, 101

Accounts ι55 π33, 34

AcctInfo ι152b π101, 101

AdminInfo ι45 π33, 34

Assets ι47 π33, 34

Balance ι152c π101, 101

Cards ι56 π34, 34

Displays ι57 π34, 34

PosR ι152d π101, 101

Trans ι152f π101, 101

Transl ι152e π101, 101

observers:
attr Accounts ι114 π72, 72

attr Accounts ι55 π33, 34

attr AcctHist ι115 π72, 72

attr Accts ι152 π101, 101

attr AdmInfo ι112 π72, 72

attr AdminInfo ι45 π33, 34

attr Assets ι47 π33, 34

attr BOHist ι153 π101, 101

attr BankHist ι118 π72, 73

attr Banks ι54 π33, 34

attr Cards ι56 π34, 34

attr Cashs ι117 π72, 72

attr CustAccts ι113 π72, 72

attr CustCtlg ι150 π101, 101

attr Displays ι57 π34, 34

attr Income ι46 π33, 34

attr Liabilities ι52 π33, 34

attr RegNu ι149 π101, 101

attr Taxes ι53 π33, 34

auxiliary types:
Accounts ι114 π72, 72

AcctHist ι115 π72, 72

AcctInfo ι58 π34, 34

AcctNu ι113b π72, 72

AcctNu ι55 π33, 34

Addresses ι45 π33, 34

Balance ι114a π72, 72

BankID ι55 π33, 34

Banks ι54 π33, 34

Birthdate ι45 π33, 34

Bonds ι47 π33, 34

Cash ι47 π33, 34

CDId ι56 π34, 34

Commodities ι47 π33, 34

Creditors ι50 π33, 34

Debitors ι51 π33, 34

Dep ι116 π72, 72

DI ι51 π33, 34

Income ι46 π33, 34

KI ι50 π33, 34

Liabilities ι52 π33, 34

MaritaStatus ι45 π33, 34

Name ι45 π33, 34

Nationality ι45 π33, 34

RealEstate ι47 π33, 34

Stocks ι47 π33, 34

Taxes ι53 π33, 34

With ι116 π72, 72

Work ι45 π33, 34

Commands

syntax

AbortDisp ι122f π75, 76

AccChgAcctSta ι155g π103, 103

BCmd ι122, 76

BOCmd ι155 π103, 103

CloCDCard ι155c π103, 103

ClosAcct ι155i π103, 103

Cmd ι60, 37

DlvWith ι122c π75, 76

EffAmort ι122h π75, 76

EffClose ι122i π75, 76

EffDebCred ι122g π75, 76

EffectXfer ι122d π75, 76

InfoFromBank ι155h π103, 103

LoanAccDen ι155d π103, 103

LoanClos ι155f π103, 103

LoanIncrOK ι155e π103, 103

NewAcct ι155a π103, 103

NewAcctNu ι122a π75, 76

OpnCDCard ι155b π103, 103

PresDisp ι122e π75, 76

RcvDe ι122b π75, 76

Behaviour

Signatures

bank ι61 π37, 76

D.4. FORMAL ENTITIES 265

customer ι62 π38, 37

Definitions

apply loan bo ι175 π115, 115

bank amort ι147, 95

bank close disp ι142, 93

bank del with ι130, 83

bank eff xfer ι132, 85

bank open disp ι140, 92

bank rcv dep ι129, 81

bank ι61 π37, 76

buy stock bo ι177 π116, 118

change account bo ι187 π121, 121

close account bo ι173 π114, 114

close account bo ι189 π122, 122

close CD bo ι163 π109, 109

close deposit bo ι171 π113, 113

close display ι78, 47

close loan bo ι179 π117, 117

close paym bo ι167 π111, 111

credit debit ι82, 49

customer ι62 π38, 37

deposit ι67, 41

diff custs diff banks xfer

ι138 π90, 90

diff custs same bank xfer

ι136 π88, 88

exchange ι74, 45

handle cust reacts ι111, 64

incl excl deb cre bo ι185 π120,

120

increase loan bo ι177 π116, 116

info from bank ι192 π124, 124

nil xfer ι134 π86, 86

open account bo ι159 π106, 106

open account ι65, 40

open CD bo ι161 π108, 108

open deposit bo ι169 π112, 112

open display ι76, 46

open paym bo ι165 π110, 110

pro active bank ι148, 96

pro active customer ι62 π38, 38

re active bank ι125 π77, 77

re active branch office ι157 π105,

105

re active customer ι63 π38, 38

same cust diff banks xfer

ι137 π89, 89

same cust same bank xfer

ι135 π87, 87

sell stock bo ι177 π116, 119

transfer ι72, 44

withdraw ι69, 42

Behaviours
new acct ι127 π79, 79

Auxiliary
Types

AcctInfo ι113c π72, 72

Functions
xtr BI ι23b π22, 22

xtr BI ι24a π22, 22

xtr BOI HQI ι150 π101, 101

xtr BOIS ι22c π22, 22

xtr BOIS ι23c π22, 22

xtr HQI ι22b π22, 22

xtr HQI ι24b π22, 22

xtr NBI ι22a π22, 22

xtr NBI ι23a π22, 22

xtr UIs ι55 π33, 34

All
attr Accounts ι114 π72, 72

attr Accounts ι55 π33, 34

attr AcctHist ι115 π72, 72

attr Accts ι152 π101, 101

attr AdmInfo ι112 π72, 72

attr AdminInfo ι45 π33, 34

attr Assets ι47 π33, 34

attr BOHist ι153 π101, 101

attr BankHist ι118 π72, 73

attr Banks ι54 π33, 34

attr Cards ι56 π34, 34

attr Cashs ι117 π72, 72

attr CustAccts ι113 π72, 72

attr CustCtlg ι150 π101, 101

attr Displays ι57 π34, 34

attr Income ι46 π33, 34

attr Liabilities ι52 π33, 34

attr RegNu ι149 π101, 101

attr Taxes ι53 π33, 34

AccId ι150 π101, 101

266 APPENDIX D. INDEXES

AccId ι152a π101, 101

Accounts ι114 π72, 72

Accounts ι55 π33, 34

AcctHist ι115 π72, 72

AcctInfo ι113c π72, 72

AcctInfo ι152b π101, 101

AcctInfo ι58 π34, 34

AcctNu ι113b π72, 72

AcctNu ι55 π33, 34

Accts ι152 π101, 101

Addresses ι45 π33, 34

AdminInfo ι45 π33, 34

Assets ι47 π33, 34

BAI ι20b π19, 19

BA ι4 π16, 16

BHist ι118 π72, 72

BI ι20d π19, 19

BM ι28 π24, 24

BOA ι20f π19, 19

BOA ι7 π16, 16

BOHist ι153 π101, 101

BOI ι20h π19, 19

BOSI ι20g π19, 19

BOS ι8 π16, 16

BO ι30 π24, 24

BSI ι20c π19, 19

BS ι5 π16, 16

B ι28 π24, 24

B ι37 π30, 30

B ι5 π16, 16

Balance ι114a π72, 72

Balance ι152c π101, 101

BankID ι55 π33, 34

Banks ι54 π33, 34

Birthdate ι45 π33, 34

Bonds ι47 π33, 34

CAI ι20i π19, 19

CA ι9 π16, 16

CDId ι56 π34, 34

CI ι20k π19, 19

CI ι43 π30, 30

CSI ι20j π19, 19

CS ι10 π16, 16

C ι11 π16, 16

C ι41 π30, 30

C ι44 π32, 32

Cards ι56 π34, 34

CashCat ι117a π72, 72

Cash ι47 π33, 34

Cashs ι117 π72, 72

Commodities ι47 π33, 34

Consistent Bank Identification ι25 π23,

23

Creditors ι50 π33, 34

CustAcct ι113a π72, 72

CustAccts ι113 π72, 72

CustCtlg ι150 π101, 101

DI ι51 π33, 34

DOM ι30 π24, 24

Debitors ι51 π33, 34

Dep ι116 π72, 72

Displays ι57 π34, 34

HQI ι20e π19, 19

HQM ι29 π24, 24

HQ ι29 π24, 24

HQ ι6 π16, 16

Income ι46 π33, 34

KI ι50 π33, 34

Liabilities ι52 π33, 34

MaritaStatus ι45 π33, 34

Name ι45 π33, 34

Nationality ι45 π33, 34

PosR ι152d π101, 101

RealEstate ι47 π33, 34

RegNu ι149 π101, 101

Stocks ι47 π33, 34

Taxes ι53 π33, 34

Trans ι152f π101, 101

Transl ι152e π101, 101

WBSI ι20a π19, 19

WBS ι3 π16, 16

WS ι34 π29, 30

With ι116 π72, 72

Work ι45 π33, 34

ι39, 30

apply loan bo ι175 π115, 115

bank amort ι147, 95

bank close disp ι142, 93

bank del with ι130, 83

bank eff xfer ι132, 85

bank open disp ι140, 92

bank rcv dep ι129, 81

D.4. FORMAL ENTITIES 267

bank ι61 π37, 76

buy stock bo ι177 π116, 118

change account bo ι187 π121, 121

close CD bo ι163 π109, 109

close account bo ι173 π114, 114

close account bo ι189 π122, 122

close deposit bo ι171 π113, 113

close display ι78, 47

close loan bo ι179 π117, 117

close paym bo ι167 π111, 111

credit debit ι82, 49

customer ι62 π38, 37

deposit ι67, 41

diff custs diff banks xfer ι138 π90,

90

diff custs same bank xfer ι136 π88,

88

exchange ι74, 45

handle cust reacts ι111, 64

incl excl deb cre bo ι185 π120, 120

increase loan bo ι177 π116, 116

info from bank ι192 π124, 124

new acct ι127 π79, 79

nil xfer ι134 π86, 86

open CD bo ι161 π108, 108

open account bo ι159 π106, 106

open account ι65, 40

open deposit bo ι169 π112, 112

open display ι76, 46

open paym bo ι165 π110, 110

pro active bank ι148, 96

pro active customer ι62 π38, 38

re active bank ι125 π77, 77

re active branch office ι157 π105,

105

re active customer ι63 π38, 38

same cust diff banks xfer ι137 π89,

89

same cust same bank xfer ι135 π87,

87

sell stock bo ι177 π116, 119

transfer ι72, 44

withdraw ι69, 42

xtr BI ι23b π22, 22

xtr BI ι24a π22, 22

xtr BOIS ι22c π22, 22

xtr BOIS ι23c π22, 22

xtr BOI HQI ι150 π101, 101

xtr HQI ι22b π22, 22

xtr HQI ι24b π22, 22

xtr NBI ι22a π22, 22

xtr NBI ι23a π22, 22

xtr UIs ι55 π33, 34

obs BA ι4 π16, 16

obs BOA ι7 π16, 16

obs BOS ι8 π16, 16

obs BS ι5 π16, 16

obs CA ι38, 30

obs CA ι9 π16, 16

obs CS ι10 π16, 16

obs CS ι39, 30

obs HQ ι6 π16, 16

uid BA ι20b π19, 19

uid BOA ι20f π19, 19

uid BOS ι20g π19, 19

uid BO ι20h π19, 19

uid BS ι20c π19, 19

uid B ι20d π19, 19

uid CA ι20i π19, 19

uid CS ι20j π19, 19

uid C ι20k π19, 19

uid C ι43 π30, 30

uid HQ ι20e π19, 19

uid WBS ι20a π19, 19

AbortDisp ι122f π75, 76

AccChgAcctSta ι155g π103, 103

BCmd ι122, 76

BOCmd ι155 π103, 103

CloCDCard ι155c π103, 103

ClosAcct ι155i π103, 103

Cmd ι60, 37

DlvWith ι122c π75, 76

EffAmort ι122h π75, 76

EffClose ι122i π75, 76

EffDebCred ι122g π75, 76

EffectXfer ι122d π75, 76

InfoFromBank ι155h π103, 103

LoanAccDen ι155d π103, 103

LoanClos ι155f π103, 103

LoanIncrOK ι155e π103, 103

NewAcct ι155a π103, 103

NewAcctNu ι122a π75, 76

268 APPENDIX D. INDEXES

OpnCDCard ι155b π103, 103

PresDisp ι122e π75, 76

RcvDe ι122b π75, 76

There are 208 formal RSL entities, and there are 208 RSL definitions – the former counted

among the latter.

