
i

Theory & Practice
of

Domain Science & Engineering

Dines Bjørner

Technical University of Denmark

Fredsvej 11, DK-2840 Holte

bjorner@gmail.com – www.dtu.dk/˜db

June 23, 2025: 09:02 am

A First “Final” Draft

ii June 23, 2025 Dines Bjørner

DRAFT iii

Theory & Practice
of

Domain Science & Engineering

Dines Bjørner

June 23, 2025: 09:02 am

iv June 23, 2025 Dines Bjørner

• Warning: Many formulas need being type checked, etc., etc. !

• I began writing this document in February, 2025.

• In my 87th year !

• I think about it and write “on” it, every day 7/7.

• Often twice a a day, 1-2 hours.

• More than that – and I get tired.

• A first draft June 10, 2025.

– Now, as from June 10, 2025, I will

∗ Go through the entire document.

∗ Check that all index references to formulas are “correct”.

∗ Etcetera, et cetera !

– I will release this and forthcoming versions to the Internet:

https://www.imm.dtu.dk/~dibj/2025/transport/main.pdf

• Section A.3 (pages 176–184) presents an index to all formulas !

• You may find, in the version of this report, that You are now perusing, that there are some “mysterious”
vertical [i.e., line] spacing.

They are there in order for the index entries to refer to pages (π) where both the (item ι) enumerated
narrative and formal entries are on the same page !

• Pls. see Sect. 27.4 on page 164.

• Pls. refer to Appendix Chapter B on page 185 for a summary of main formal entities.

DRAFT v

Prelude

This is [a draft of a] science and engineering [tutorial] book.

• Science:

We summarize, in Chapter 1, the method – its principles, procedures, techniques and tools – for rigorously
analyzing and describing [modeling] domains.

• Engineering:

In Chapters 2–24 we analyze and describe a conceptual domain of ‘transport’ in all its forms: passenger
and goods, road, rail, water (navigable rivers and lakes as well as the open sea), and air. From the basis
of an abstract notion of graphs with labeled nodes and edges, we define a notion of routes of graphs:
sequences of node and edge labels. Nodes are then interpreted a street intersections, bus stops, railway
stations, harbours and airports and edges as links between neighbouring nodes: street segments, bus
routes, rail lines, sea lanes, and air routes. And from there it goes ! We expand the treatment to cover
customers, [sending and receiving] merchandises, conveyor companies and logistics companies.

© Dines Bjørner

June 23, 2025: 09:02 am

vi June 23, 2025 Dines Bjørner

Contents

I THE THEORY 1

1 The Theory 3
1.1 Domains . 5

1.2 Six Languages . 6

1.3 Endurants and Perdurants, I . 8

1.4 A Domain Analysis & Description Ontology . 8

1.5 The Name, Type and Value Concepts . 10

1.6 Phenomena and Entities . 10

1.7 Endurants and Perdurants, II . 11

1.8 External and Internal Endurant Qualities . 12

1.9 Perdurant Concepts . 22

1.10 Facets . 31

1.11 Conclusion . 33

II A PRACTICE 37

2 Introduction 39
2.1 On A Notion of ‘Infrastructure’ . 39

2.2 Domain Models . 39

2.3 A Dichotomy . 40

2.4 A [Planned] Series of Infrastructure Domain Models . 40

III A SIMPLE BEGINNING 43

3 Kinds of Transports 45
3.1 Informal Outline . 45

3.2 Narrative & Formalization . 45

4 Overall “Single-Mode” Transport Endurants 47
4.1 Endurant Sorts & Observers . 47

4.2 Unique Identification . 48

5 Graphs: Transport Nets 49
5.1 The Endurant Sorts and Observers . 49

5.2 Unique Identifiers . 51

5.3 Mereology . 52

5.4 Paths of a Graph . 53

5.5 Attributes . 56

6 Conveyors, I 59
6.1 Conveyor Endurant Sorts & Observers . 59

6.2 Unique Identifiers . 60

6.3 Mereology . 60

6.4 Attributes . 61

7 Intentional Pull, I 63
7.1 History Attributes . 63

7.2 An Intentional Pull . 64

vii

viii CONTENTS

8 Single-mode Transport Behaviours 65

8.1 Communication . 65

8.2 Behaviours . 66

8.3 Behaviour Signatures . 66

8.4 Behaviour Definitions . 66

8.5 Domain Instantiation . 70

IV A MULTI-MODE TRANSPORT: ENDURANTS 71

9 Multi-mode Transport 73

10 “Top” Transport Endurants 75

10.1 The Endurants – External Qualities . 75

10.2 On Internal Qualities. 80

10.3 Conveyor Companies versus Logistics Companies. 80

10.4 Financial Matters . 80

11 Merchandise 81

11.1 Merchandise Endurants . 81

11.2 Representation of Merchandises . 83

11.3 Humans . 83

12 Customer 85

12.1 Customer Endurants . 85

12.2 Customer Qualities . 86

12.3 Customer Retrieval . 87

12.4 Customer Commands . 87

13 Conveyor Companies 89

13.1 Conveyor Authorities. 89

13.2 Conveyor Company Endurants. 89

13.3 Conveyor Company Internal Qualities . 91

13.4 Conveyor Company Commands. 95

14 Conveyors, II 97

14.1 Conveyor Mereology . 97

14.2 Conveyor Attributes . 98

14.3 Conveyor Commands. 99

15 Logistics Companies 101

V A MULTI-MODE TRANSPORT: INTENTIONAL PULL 103

16 Intentional Pull, II 105

VI A MULTI-MODE TRANSPORT: COMMANDS 107

17 Multi-mode Transport Commands 109

17.1 Events and Commands . 109

17.2 Command Traces . 109

17.3 An Analysis . 110

17.4 Material and “Immaterial” Commands . 111

17.5 Abstracting an Essence of Transport . 111

17.6 Commands – A First View . 111

17.7 TR: Transport Routes . 112

17.8 A Closer Analysis of Commands . 115

CONTENTS ix

VII IDENTITIES 121

18 Identities 123

VIII A MULTI-MODE TRANSPORT: BEHAVIOURS 125

19 Multi-mode Behaviours 127
19.1 Communication . 127

19.2 Behaviour Signatures . 128

19.3 Which Behaviours to Describe ? . 129

19.4 Multi-mode “Systems” . 129

20 Customer Behaviours 131
20.1 Main Behaviour . 131

20.2 Subsidiary Behaviours . 132

21 Conveyor Company Behaviours 135
21.1 Main Behaviour . 135

21.2 Main Reactive Behaviour . 136

21.3 Subsidiary Behaviours . 137

22 Conveyor Behaviour 141
22.1 Earlier Treatment . 141

22.2 Main Behaviour . 143

22.3 Subsidiary Behaviours . 144

23 Logistics Company Behaviour 149

24 Edge Behaviour 151
24.1 Earlier Treatment . 151

24.2 Main Behaviour . 151

25 Node Behaviour 153
25.1 Earlier Treatment . 153

25.2 Revised Node Attributes . 153

25.3 [k10,k11,k14] Main Behaviour . 154

IX CLOSING 155

26 Discussion 157
26.1 Wither Logistics Companies . 157

26.2 Some Parts Modelled, Others Not ! ? . 158

26.3 Formal Structuring . 159

26.4 Mnemonics . 159

26.5 Narratives . 159

27 Conclusion 161
27.1 Logistics & Operations Research . 161

27.2 Interpretations . 161

27.3 Formality and Verification . 163

27.4 On the Development of This Model . 164

27.5 Acknowledgements . 164

28 Bibliography 165

X APPENDIX 171

A Indexes 173
A.1 Domain Modeling Ontology . 173

A.2 Transport Domain Concepts . 174

x CONTENTS

A.3 Formal Entities . 175

B Summaries 185
B.1 Commands . 185

B.2 Mereologies and Attributes . 185

Part I

THE THEORY

1

Chapter 1

The Theory

Contents

1.1 Domains . 5

1.1.1 What are They ? . 5

1.1.2 Some Introductory Remarks . 6

1.1.2.1 A Discussion of Our Characterization of a Concept of Domain 6

1.1.2.2 Formal Methods and Description Language 6

1.1.2.3 Programming Languages versus Domain Semantics 6

1.1.2.4 A New Universe . 6

1.2 Six Languages . 6

1.2.1 The 6 Languages . 7

1.2.2 Semiotics . 7

1.2.3 Speech Acts . 8

1.3 Endurants and Perdurants, I . 8

1.4 A Domain Analysis & Description Ontology . 8

1.4.1 The Chosen Ontology . 8

1.4.2 Discussion of The Chosen Ontology . 9

1.5 The Name, Type and Value Concepts . 10

1.5.1 Names . 10

1.5.2 Types . 10

1.5.3 Values . 10

1.6 Phenomena and Entities . 10

1.7 Endurants and Perdurants, II . 11

1.7.1 Endurants . 11

1.7.2 Perdurants . 11

1.7.3 Ontological Choice . 11

1.8 External and Internal Endurant Qualities . 12

1.8.1 External Qualities – Tangibles . 12

1.8.1.1 The Universe of Discourse . 12

1.8.1.2 Solid and Fluid Endurants . 12

1.8.1.2.1 Solid cum Discrete Endurants. 13

1.8.1.2.2 Fluids. 13

1.8.1.3 Parts and Living Species Endurants . 13

1.8.1.3.1 Parts . 13

1.8.1.4 States . 16

1.8.1.5 Validity of Endurant Observations . 16

1.8.1.6 Summary of Endurant Analysis Predicates . 16

1.8.1.7 “Trees are Not Recursive” . 17

1.8.2 Internal Qualities – Intangibles . 17

1.8.2.1 Unique Identity . 17

1.8.2.1.1 Uniqueness of Parts . 18

1.8.2.2 Mereology . 18

1.8.2.3 Attributes . 19

3

4 CHAPTER 1. THE THEORY

1.8.2.3.1 General . 19

1.8.2.3.2 Michael A. Jackson’s Attribute Categories 20

1.8.2.3.3 Analytic Attribute Extraction Functions: 21

1.8.3 Intentional Pull . 21

1.8.4 Summary of Endurants . 22

1.9 Perdurant Concepts . 22

1.9.1 “Morphing” Parts into Behaviours . 22

1.9.2 Transcendental Deduction . 22

1.9.3 Actors – A Synopsis . 23

1.9.3.1 Action . 23

1.9.3.2 Event . 23

1.9.3.3 Behaviour . 24

1.9.4 Channel . 24

1.9.5 Behaviours . 24

1.9.5.1 Behaviour Signature . 24

1.9.5.2 Inert Arguments: Some Examples . 25

1.9.5.3 Behaviour Definitions . 25

1.9.5.4 Action Definitions . 27

1.9.5.5 Behaviour Invocation . 28

1.9.5.6 Argument References . 29

1.9.5.6.1 Evaluation of Monitorable Attributes. 29

1.9.5.6.2 Update of Biddable Attributes . 29

1.9.5.7 Behaviour Description – Examples . 30

1.9.6 Behaviour Initialization. 31

1.10 Facets . 31

1.10.1 Intrinsics . 32

1.10.2 Support Technology . 32

1.10.3 Rules & Regulations . 32

1.10.4 Scripts . 32

1.10.5 License Languages . 32

1.10.6 Management & Organization . 32

1.10.7 Human Behaviour . 32

1.11 Conclusion . 33

1.11.1 Previous Literature . 33

1.11.2 The Method . 33

1.11.3 Specification Units . 33

1.11.4 Object Orientation . 33

1.11.5 Other Domain Modeling Approaches . 34

1.11.6 How Much ? How Little ? . 34

1.11.7 Correctness . 34

1.11.8 Domain Facets . 34

1.11.9 Perspectives . 34

1.11.10The Semantics of Domain Models . 34

1.11.11Further on Domain Modeling . 35

1.11.12Software Development . 35

1.11.13Modeling . 35

1.11.14Philosophy of Computing . 35

1.11.15A Manifesto . 35

The Triptych Dogma

In order to specify Software, we must understand its Requirements.

In order to prescribe Requirements we must understand the Domain.

So we must study, analyze and describe Domains.

D,S |= R:
In proofs of Software correctness,

with respect to Requirements,
assumptions are made with respect to the Domain.

1.1. DOMAINS 5

We present a systematic method , its principles, procedures, techniques and tools, for efficiently analyzing &

describing domains. This paper is based on [16, 19, 21]. It simplifies the methodology of these considerably – as

well as introduces some novel presentation and description language concepts.

• • •

Alert: Before You start reading this paper, You are kindly informed of the following:

High Light 0.1 What The Paper is All About: The Triptych Dogma, above, says it all: this paper is about a new

area of computing science – that of domains. It is about what domains are. How to model them. And their role

in software development. There are many “domain things” it is not about: it is not about ‘derived’ properties of

domains – beyond, for example, intentional pull [Sect. 1.8.3 on page 21]. Such are left for studies of domains
based on the kind of formal domain descriptions such as those advocated by this paper •

High Light 0.2 A Radically New Approach to Software Development: The Triptych Approach to Software
Development, calls for software to be developed on the basis of requirements prescriptions, themselves developed

on the basis of domain descriptions. We furthermore advocate these specifications and their development be

formal. That is: there are formal methods for the development of either of these three kinds of specifications:

• Development of domain descriptions is outlined in this paper.

• Development of requirements, from domain descriptions, is outlined in [21, Chapter 9].

• Development of software, from requirements prescriptions, is treated, extensively, in [11].

The reader should understand that the current paper, with its insistence of strictly following a method, formally, is

at odds with current ‘software engineering’ practices. •

High Light 0.3 Characterizations rather than Definitions: The object of domain study, analysis and description,

i.e., the domains, are, necessarily, informal. A resulting domain description is formal. So the domain items

being studied and analyzed cannot be given a formal definition. Conventionally [so-called theoretical] computer

scientists expect and can seemingly only operate in a world of clearly defined concepts. Not so here. It is not

possible. Hence we use the term ‘characterization’ in lieu of ‘definition’ •

High Light 0.4 Seemingly Fragmented Texts: The text of this paper is a sequence of enumerated sections, sub-

sections, sub-subsections and paragraphs, with short HIGHLIGHTS, CHARACTERIZATIONS, EXAMPLES, ONTO-

LOGICAL CHOICES, PROMPTS, SCHEMAS and ordinary short texts. The brevity is intentional. Each and all of

these units outline important concepts. Each contain a meaning and can be read “in isolation” •

1.1 Domains

We start by delineating the informal concept of domain,1

1.1.1 What are They ?

What do we mean by ‘domain’ ?

Definition 0.1 Domain: By a domain we shall understand a rationally describable segment of a discrete dynamics
fragment of a human assisted reality: the world that we daily observe – in which we work and act, a reality made

significant by human-created entities. The domain embody endurants and perdurants •

Example 0.1 Some Domain Examples: A few, more-or-less self-explanatory examples:

• Rivers – with their natural sources, deltas, tributaries, waterfalls, etc., and their man-made dams, harbours,

locks, etc. – and their conveyage of materials (ships etc.) [27, Chapter B].

• Road nets – with street segments and intersections, traffic lights and automobiles – and the flow of these

[27, Chapter E].

• Pipelines – with their liquids (oil, or gas, or water), wells, pipes, valves, pumps, forks, joins and wells and

the flow of fluids [27, Chapter I].

1Our use of the term ‘domain’ should not be confused with that of Dana Scott’s Domain Theory: https://en.wikipedia.org/wi-

ki/Scott domain.

6 CHAPTER 1. THE THEORY

• Container terminals – with their container vessels, containers, cranes, trucks, etc. – and the movement of

all of these[27, Chapter K] •

Characterization 0.1 on the previous page relies on the understanding of the terms ‘rationally describable’, ‘dis-
crete dynamics’, ‘human assisted’, ‘solid’ and ‘fluid’. The last two will be explained later. By rationally de-
scribable we mean that what is described can be understood, including reasoned about, in a rational, that is,

logical manner – in other words logically tractable.2 By discrete dynamics we imply that we shall basically

rule out such domain phenomena which have properties which are continuous with respect to their time-wise, i.e.,

dynamic, behaviour. By human-assisted we mean that the domains – that we are interested in modeling – have,

as an important property, that they possess man-made entities.

1.1.2 Some Introductory Remarks

1.1.2.1 A Discussion of Our Characterization of a Concept of Domain

Characterization 0.1 on the preceding page is our attempt to delineate the subject area. That is, “our” concept of

‘domain’ is ‘novel’: new and not resembling something formerly known or used . As such it may be unfamiliar to

most readers. So it takes time to digest that characterization. So the reader may have to return to the page, Page 5,

to be reminded of the definition.

1.1.2.2 Formal Methods and Description Language

The reader is assumed to have a reasonable grasp of formal methods – such as espoused in [37, 38, 11, 70].

The descriptions evolving from the modeling approach of this paper are in the abstract, model-oriented speci-

fication language RSL [46] of the Raise3 Specification Language. But other abstract specification languages could

be used: VDM [37, 38], Z [70], Alloy [53], CafeOBJ [45], etc. We have chosen RSL since it embodies a variant of

CSP [51] – being used to express domain behaviours.

1.1.2.3 Programming Languages versus Domain Semantics

From around the late 1960s, spurred on by the works of John McCarthy, Peter Landin, Christopher Strachey,
Dana Scott and others, it was not unusual to see publications of entire formal definitions of programming language

semantics. Widespread technical reports were [5, 4, 1969, 1974] Notably so was [59, 1976]. There was the 1978

publication [37, Chapter 5, Algol 60 , 1978]. Others were [38, Chapters 6–7, Algol 60 and Pascal , 1982] As late

as into the 1980s there were such publications [6, 1980].

Formal descriptions of domains, such as we shall unravel a method for their study, analysis and description,

likewise amount to semantics for the terms of the professional languages spoken by stakeholders of domains. So

perhaps it is time to take the topic serious.

1.1.2.4 A New Universe

The concept of domain – such as we shall delineate and treat it – is novel. That is: new and not treated in this way

before. Its presentation, therefore, necessarily involves the introduction of a new universe of concepts. Not the

neat, well-defined concepts of neither “classical” computer science nor software engineering. It may take some

concentration on the part of the reader to get used to this !

You will therefore be introduced to quite a universe of new concepts. You will find these concepts named in

most display lines4 and in Figs. 1.1 on page 9 and 1.2 on page 21.

1.2 Six Languages

This section is an artifice, an expedient.

It summarizes, from an unusual angle, an aspect of the presentation style of this paper. The road ahead
of us introduces rather many new and novel concepts. It is easy to get lost. The presentation alternates, almost

sentence-by-sentence, between 5 languages. The below explication might help You to keep track of where the

paper eventually shall lead us ! This section, in a sense, tells the story backwards !5

2Another, “upside–down” – after the fact – [perhaps ‘cheating’] way of defining ‘describable’ is: is it describable in terms of the method of

this paper !
3RAISE stands for Rigorous Approach to Industrial Software Engineering [47].
4– that is, section, subsection, sub-subsection, paragraph and sub-paragraph lines
5Søren Kierkegaard: Life is lived forwards but is understood backwards [1843].

1.2. SIX LANGUAGES 7

1.2.1 The 6 Languages

There are 6 languages at play in this paper:

• (i) technical English, as in most papers;

• (ii) RSL, the RAISE Specification Language [46];

• (iii) an augmented RSL language;

• (iv) the domain modeling language – which we can view as the composition of clauses from two [sub-

ordinate] languages:

– (v) a domain analysis language; and

– (vi) a domain specification

language.

(i) Technical English is the main medium, as in most papers, of what is conveyed. (ii) Domain descriptions are

(to be) expressed in RSL. (iii) The [few places where we resort to the] augmented RSL language is needed for

expressing names of RSL types as values. (iv) The domain modeling language consists of finite sequences domain

analysis and domain description clauses. (v) The domain analysis language just consists of prompts, i.e., predicate

functions used informally by the domain analyzer in inquiring the domain. They yield either truth values or

possibly augmented RSL texts. (vi) The domain description language consists of a few RSL text yielding prompts.

We presume that the reader is familiar with such languages as RSL. That is: VDM [37, 38], Z [70], Alloy [53],

etc. They could all be use instead of, as here, RSL.

We summarize some of the language issues.

The Domain Analysis Language: We list a few, cf. Fig. 1.1 on page 9, of the predicate prompts, i.e.,
language prompts: is entity [pg 10], is endurant [pg 11], is perdurant [pg 11], is solid [pg 13], is fluid [pg 13],
is part [pg 13], aatomic [pg 14], is compound [pg 14], is Cartesian [pg 14], or is part-set [pg 15]; and the ex-
tended RSL text yielding analysis prompts: record Cartesian type names [pg 15], record part set type names [pg 15]
and record attribute type names [pg 19].

The Domain Description Language: RSL. We shall us a subset of RSL. That subset is a simple, discrete
mathematics, primarily functional specification language in the style of VDM [37, 38]. Emphasis is on sets,
Cartesians, lists, and maps (i.e., finite definition set, enumerable functions).

Domain Description: A domain description consists of one or more domain specification units. A speci-
fication unit is of either of 10 kinds, all expressed in RSL. (1) a universe-of-discourse type clause [pg 12]; (2)
a part type and obs erver value clause [pg 15]; (3) a value clause; (4) a unique identifier type and (uid)
observer value (function) clause [pg 18]; (5) a mereology type and (mereo) observer value (function) clause
[pg 19]; (6) an attribute type and (attr) observer value (function) definition clause [pg 20]; (7) an axiom
clause; (8) a channel declaration clause [pg 24]; (9) a behaviour value (signature and definition) clause [pg 24
& pg 28]; and (10) a domain initialization clause [Sect. 1.9.6 on page 31]. These clauses are often combined
in 2-3 such clauses, and may, and usually do, include further RSL clauses.

The use of RSL “outside” the domain specification units should not be confused with the RSL of the
specification unit schemas and examples.

1.2.2 Semiotics

In Foundations of the theory of signs [60] defines semiotics as “consisting” of syntax, semantics and pragmatics.

• Syntax: The syntax of domain analysis and domain description clauses are simple atomic clauses
consisting of a prompt (predicate or function) identifier, see above, and an identifier denoting a domain
entity. The syntax of the domain modeling language prescribes a sequence of one or more domain
analysis and domain description clauses.

• Semantics: The meaning of a domain analysis clause is that of a function from a domain entity to
either a truth value or some augmented RSL text. The meaning of a domain description clause is that
of a function from a domain entity to a domain specification unit.

• Pragmatics: The pragmatics of a domain analysis predicate clause, as applied to a domain entity e,
is that of prompting the domain analyzer to a next domain analysis step: either that of applying a
[subsequent, cf. Fig. 1.1] domain analysis predicate prompt to e; or applying a [subsequent, cf. Fig. 1.1]
domain analysis function to e, and noting – as writing down on a “to remember board” – the result of the
[latter] query; or applying a [subsequent, cf. Fig. 1.1] domain description function to e. The pragmatics
of a domain description function is that of including the resulting RSL domain description text in the
emerging domain description. There is no hint as to what to do next !

8 CHAPTER 1. THE THEORY

1.2.3 Speech Acts

The above explication of a pragmatics for the domain modeling language relates to the concepts of speech
acts. We refer to [3, How to do things with words], [63, Speech Acts: An Essay in the Philosophy of Language]
and [62, Brain mechanisms linking language and action]. A further study of the illocutionary and locutionary
aspects of the domain analysis language seems in place.

1.3 Endurants and Perdurants, I

The above characterization hinges on the characterizations of endurants and perdurants.

Definition 0.2 Endurants: Endurants are those quantities of domains that we can observe (see and touch), in

space, as “complete” entities at no matter which point in time – “material” entities that persists, endures – capable

of enduring adversity, severity, or hardship [Merriam Webster] •

Endurants are either natural [“God-given”] or artefactual [“man-made”]. Endurants may be either solid

(discrete) or fluid, and solid endurants, called parts, may be considered atomic or compound parts; or, as in this

book solid endurants may be further unanalysed living species: plants and animals – including humans.

Definition 0.3 Perdurants: Perdurants are those quantities of domains for which only a fragment exists, in space,

if we look at or touch them at any given snapshot in time •

Perdurants are here considered to be actions, events and behaviours.

• • •

We exclude, from our treatment of domains, issues of living species, ethics, biology and psychology.

1.4 A Domain Analysis & Description Ontology

1.4.1 The Chosen Ontology

Figure 1.1 expresses an ontology6 for our analysis of domains. Not a taxonomy7 for any one specific domain.
The idea of Fig. 1.1 on the next page is the following:

• It presents a recipe for how to analyze a domain.

• You, the domain analyzer cum describer , are ‘confronted’8 with, or by a domain.

• You have Fig. 1.1 on the facing page in front of you, on a piece of paper, or in Your mind, or both.

• You are then asked, by the domain analysis & description method of this paper, to “start” at the
uppermost •, just below and between the ‘r’ and the first ‘s’ in the main title, Phenomena of Natural
and Artefactual Universes of Discourse.

• The analysis & description ontology of Fig. 1.1 then directs You to inquire as to whether the phenomenon
– whichever You are ”looking at/reading about/...” – is either rationally describable, i.e., is an entity
(is entity) or is indescribable.

• That is, You are, in general, “positioned” at a bullet, •, labeled α, “below” which there may be two
alternative bullets, one, β , to the right and one to the left, γ.

• It is Your decision whether the answer to the “query” that each such situation warrants, is yes, is β ,
or no, is γ.

• The characterizations of the concepts whose names, α,β ,γ etc., are attached to the •s of Fig. 1.1 are
given in the following sections.

• Whether they are precise enough to guide You in Your obtaining reasonable answers, “yes” or “no”, to
the •ed queries is, of course, a problem. I hope they are.

6An ontology is the philosophical study of being. It investigates what types of entities exist, how they are grouped into categories, and how

they are related to one another on the most fundamental level (and whether there even is a fundamental level) [Wikipedia].
7A taxonomy (or taxonomic classification) is a scheme of classification, especially a hierarchical classification, in which things are organized

into groups or types [Wikipedia].
8By ‘confronted’ we mean: You are reading about it, in papers, in books, in postings on the Internet, visiting it, talking with domain

stakeholders: professional people working “in” the domain; You may, yourself, “be an entity” of that domain !

1.4. A DOMAIN ANALYSIS & DESCRIPTION ONTOLOGY 9

External Qualities

Describer "states"

PerdurantsEndurants

Phenomena of Natural and Artefactual Universes of Discourse

E

Perdurant

Action
Event Actor

Channel Behaviour

FluidSolid

Part
Living Specie

Animal Plant

O
th

er

Unique Identifiers
Mereologies
Attributes

transcendental injection of endurants into perdurants

Internal Qualities

Cartesian Part

E1,...,Ec

is
_m

an
if

es
t

is
_m

an
if

es
t

is
_m

an
if

es
t

E

P

F

Part Set

Ps=P−set

H
u

m
an

s

CompoundAtomic

Transcendental Deduction

Endurant

Entity

TIME,SPACE
Tanscendentally Deduced Phenomena

Indescribable

Figure 1.1: A Domain Analysis & Description Ontology

• If Your answer is “yes”, then Your analysis is to proceed “down the tree”, usually indicated by “yes” or
“no” answers.

• If one, or the other is a “leaf” of the ontology tree, then You have finished examining the phenomena
You set out to analyze.

• If it is not a leaf, then further analysis is required.

• (We shall, in this book, leave out the analysis and hence description of living species.)

• If an analysis of a phenomenon has reached one of the (only) two •’s, then the analysis at that •
results in the domain describer describing some of the properties of that phenomenon.

• That analysis involves “setting aside”, for subsequent analysis & description, one or more [thus anal-
ysis etc.-pending] phenomena (which are subsequently to be tackled from the “root” of the ontology).

We do not [need to] prescribe in which order You analyze & describe the phenomena that has been “set aside”.

• • •

In Fig. 1.1 You will have noticed the positioning of the concepts of TIME and SPACE “right under” the
Phenomena bullet •. These two concepts are neither endurants not perdurants. And they are not attributes
of either. They can, however, as shown by Sørlander [67], be transcendentally deduced by rational reasoning.

1.4.2 Discussion of The Chosen Ontology

We shall in the following motivate the choice of the ontological classification reflected in Fig 1.1. We shall
argue that this classification is not “an accidental choice”. In fact, we shall try justify the classification with
reference to the philosophy of Kai Sørlander [64, 65, 66, 67]9. Kai Sørlander’s aim in these books is to examine
that which is absolutely necessary, inevitable, in any description of the world. In [21, Chapter 2] we present a
summary of Sørlander’s philosophy. In paragraphs, in the rest of this paper, marked ONTOLOGICAL CHOICE,
we shall relate Sørlander’s philosophy’s “inevitability” to the ontology for studying domains.

9The 2022 book, [66], is presently a latest in Kai Sørlander’s work. It refines and further develops the theme of the earlier, 1994–2016

books. [67] is an English translation of [66]

10 CHAPTER 1. THE THEORY

1.5 The Name, Type and Value Concepts

Domain modeling , as well as programming , depends, in their specification, on separation of concerns: which
kind of values are subjectable to which kinds of operations, etc., in order to achieve ease of understanding a
model or a program, ease of proving properties of a model, or correctness of a program.

1.5.1 Names

We name things in order to refer to them in our speech, models and programs. Names of types and values in
models and programs are usually not so-called “first-citizens”, i.e., values that can be arguments in functions,
etc. The “science of names” is interesting.10 In botanicalsociety.org.za/the-science-of-names--

an-introduction-to-plant-taxonomy the authors actually speak of a “science of names” in connection
with plant taxonomy: the “art” of choosing such names that reflect some possible classification of what they
name.

1.5.2 Types

The type concept is crucial to programming and modeling.

Definition 0.4 Type: A type is a class, i.e., a further undefined set, of values (“of the same kind”) •

We name types.

Example 0.2 Type Names: Some examples of type names are:

• RT – the class of all road transport instances: the Metropolitan London Road Transport, the US Federal
Freeway System, etc.

• RN – the class of all road net instances (within a road transport).

• SA – the class of all automobiles (within a road transport) •

You, the domain describer, choose type names. Choosing type names is a “serious affair”. It must be done carefully.

You can choose short (as above) or long names: Road Transport, Road Net, etc. We prefer short, but not cryptic

names, like X, Y, Z, Names that are easy to memorize, i.e., mnemonics.

1.5.3 Values

Values are what programming and modeling, in a sense, is all about”. In programming, values are the data “upon”

which the program code specifies computations. In modeling values are, for example, what we observe: the entities

in front of our eyes.

1.6 Phenomena and Entities

Definition 0.5 Phenomena: By a phenomenon we shall understand a fact that is observed to exist or happen •

Some phenomena are rationally describable – to some degree11 – others are not.

Definition 0.6 Entities: By an entity By an entity we shall understand a more-or-less rationally describable

phenomenon•

Prompt 0.5 is entity : We introduce the informal presentation language predicate is entity. It holds for

phenomena φ if φ is describable •

A prompt12 is an informal “advice” to the domain analyzer to “perform” a mental inquiry wrt. the real-life

domain being studied.

10The study of names is called onomastics or onomatology . Onomastics covers the naming of all things, including place names (to-

ponyms) and personal names (anthroponyms).
11That is: It is up to the domain analyzer cum describer to decide as to how many rationally describable phenomena to select for analysis &

description. Also in this sense one practices abstraction by “abstracting away” [the analysis & description of] phenomena that are irrelevant for

the “current” (!) domain description.
12French: mot-clé, German: stichwort, Spanish: palabra clave

1.7. ENDURANTS AND PERDURANTS, II 11

Example 0.3 Phenomena and Entities: Some, but not necessarily all aspects of a river can be rationally described,

hence can be still be considered entities. Similarly, many aspects of a road net can be rationally described, hence

will be considered entities •

If You are not happy with this ‘characterization’, then substitute “rationally describable” with: describable in

terms of the endurants and perdurants brought forward in this paper: their external and internal qualities, unique

identifiers, mereologies amd attributes, channels and behaviours !

Ontological Choice 0.6 Phenomena: We choose to “initialize” our ontological “search” to a question of whether

a phenomenon is rationally describable – based on the tenet of Kai Sørlander’s philosophy, namely that “whatever”

we postulate is either true or false and that a principle of contradiction holds: whatever we so express can not
both hold and not hold •

Kai Sørlander then develops his inquiry – as to what is absolutely necessary in any description of the world
– into the rationality of such descriptions necessarily be based on time and space and, from there, by a series of

transcendental deductions, into a base in Newton’s physics. We shall, in a sense, stop there. That is, in the domain

concept, such as we have delineated it, we shall not need to go into Einsteinian physics.

1.7 Endurants and Perdurants, II

We repeat our characterizations of endurants and perdurants.

1.7.1 Endurants

We repeat characterization 0.2 on page 8.

Definition 0.7 Endurant: Endurants are those quantities of domains that we can observe (see and touch), in

space, as “complete” entities at no matter which point in time – “material” entities that persists, endures – capable

of enduring adversity, severity, or hardship •

Example 0.4 Endurants: Examples of endurants are: a street segment [link], a street intersection [hub], an

automobile •

Prompt 0.7 is endurant : We introduce the informal presentation language predicate is endurant to hold for

entity e if is endurant(e) holds •

1.7.2 Perdurants

We repeat characterization 0.3 on page 8.

Definition 0.8 Perdurant: Perdurants are those quantities of domains for which only a fragment exists, in space,

if we look at or touch them at any given snapshot in time •

Example 0.5 Perdurant: A moving automobile is an example of a perdurant •

Prompt 0.8 is perdurant : We introduce the informal presentation language predicate is perdurant to hold

for entity e if is perdurant(e) holds •

1.7.3 Ontological Choice

The ontological choice of entities being “viewed” as either endurants or perdurants is motivated as follows: The

concept of endurants can be justified in terms of Newton’s physics without going into kinematics, i.e., without

including time considerations. The concept of perdurants can then, on one hand, be justified in terms of Newton’s

physics now taking time into consideration, hence kinematics, and from there causality, etc.; and, on the other

hand, and as we shall see, by transcendentally deducing perdurants from solid endurants •

12 CHAPTER 1. THE THEORY

1.8 External and Internal Endurant Qualities

The main contribution of this section is that of a calculus of domain analysis and description prompts. Two facets

are being presented. Aspects of a domain science: of how we suggest domains can, and should, be viewed –

ontologically. And aspects of a domain engineering: of how we suggest domains can, and should, be analyzed and

described.

We begin by characterizing the two concepts: external and internal qualities.

Definition 0.9 External Qualities: External qualities of endurants of a manifest domain are, in a simplifying

sense, those we can see, touch and have spatial extent. They, so to speak, take form.

Definition 0.10 Internal Qualities: Internal qualities are those properties [of endurants] that do not occupy space
but can be measured or spoken about •

Perhaps we should instead label these two qualities tangible and intangible qualities.

Ontological Choice 0.9 Rationality : The rational, analytic philosophy issues of the inevitability of these qualities

is this: (i) can they be justified as inevitable, and (ii) can they be suitably “separated”, i.e., both disjoint and

exhaustive ? Or are they merely of empirical nature ? The choice here is also that we separate our inquiry into

examining both external and internal qualities of endurants [not ‘either or’] •

1.8.1 External Qualities – Tangibles

Example 0.6 External Qualities: An example of external qualities of a domains is: the Cartesian13 of sets of

solid atomic street intersections, and of sets of solid atomic street segments, and of sets of solid automobiles of a

road transport system where Cartesian, sets, atomicity, and solidity reflect external qualities •

1.8.1.1 The Universe of Discourse

The most immediate external quality of a domain is the “entire” domain – “itself” ! So any domain analysis starts

by identifying that “entire” domain ! By giving it a name, say UoD, for universe of discourse, Then describing it,

in narrative form, that is, in natural language containing terms of professional/technical nature, the domain. And,

finally, formalizing just the name: giving the name “status” of being a type name, that is, of the type of a class of

domains whose further properties will be described subsequently.

Schema 0.10 The Universe of Discourse:

Narration:
The name, and hence the type, of the domain is UoD
The UoD domain can be briefly characterized by ...

Formalization:
type UoD •

1.8.1.2 Solid and Fluid Endurants

Given then that there are endurants we now postulate that they are either [mutually exclusive] solid (i.e., discrete)

or fluid.

Ontological Choice 0.11 Solids vs. Fluids: Here we [seem to] make a practical choice, not one based on a

philosophical argument, one of logical necessity, but one based on empirical evidence. It is possible for endurants

to either be solid or fluid; and here we shall not consider the case where solid [fluid] endurants, due to being heated

[cooled], enters a fluid state [or vice versa] •

13Cartesian after the French philosopher, mathematician, scientist René Descartes (1596–1650)

1.8. EXTERNAL AND INTERNAL ENDURANT QUALITIES 13

1.8.1.2.1 Solid cum Discrete Endurants.

Definition 0.11 Discrete cum Solid Endurants: By a solid cum discrete endurant we shall understand an endurant

which is separate, individual or distinct in form or concept, or, rephrasing, have body (or magnitude) of three-

dimensions: length (or height), breadth and depth [58, OED, Vol. II, pg. 2046] •

Example 0.7 Solid Endurants: Pipeline system examples of solid endurants are wells, pipes, valves, pumps,
forks, joins and sinks of pipelines. (These units may, however, and usually will, contain fluids, e.g., oil, gas or

water.) •

Prompt 0.12 is solid : We introduce the informal presentation language predicate is solid to hold for en-

durant e if is solid(e) holds •

1.8.1.2.2 Fluids.

Definition 0.12 Fluid Endurants: By a fluid endurant we shall understand an endurant which is prolonged,

without interruption, in an unbroken series or pattern; or, rephrasing: a substance (liquid, gas or plasma) having

the property of flowing, consisting of particles that move among themselves [58, OED, Vol. I, pg. 774] •

Example 0.8 Fluid Endurants: Examples of fluid endurants are: water, oil, gas, compressed air, smoke •

Fluids are otherwise liquid, or gaseous, or plasmatic, or granular14, or plant products, i.e., chopped sugar cane,

threshed, or otherwise15, et cetera. Fluid endurants will be analyzed and described in relation to solid endurants,

viz. their “containers”.

Prompt 0.13 is fluid : We introduce the informal presentation language predicate is fluid to hold for en-

durant e if is fluid(e) holds •

1.8.1.3 Parts and Living Species Endurants

Given then that there are solid endurants we now postulate that they are either [mutually exclusive] parts or living
species.

Ontological Choice 0.14 Parts and Living Species: With Sørlander, [67, Sect. 5.7.1, pages 71–72] we reason

that one can distinguish between parts and living species •

1.8.1.3.1 Parts

Definition 0.13 Parts: The non-living solid species are what we shall call parts •

Parts are the “work-horses” of man-made domains. That is, we shall mostly be concerned with the analysis and

description of endurants into parts.

Example 0.9 Parts: Example 0.7, of solids, is an example of parts •

Prompt 0.15 is part : We introduce the informal presentation language predicate is part to hold for solid

endurants e if is part(e) holds •

We distinguish between atomic and compound parts.

Ontological Choice 0.16 Atomic and Compound Parts: It is an empirical fact that parts can be composed from

parts. That possibility exists. Hence we can [philosophy-wise] reason likewise •

— Atomic Parts.

Definition 0.14 Atomic Part: By an atomic part we shall understand a part which the domain analyzer considers

to be indivisible in the sense of not meaningfully consist of sub-parts •

14 This is a purely pragmatic decision. “Of course” sand, gravel, soil, etc., are not fluids, but for our modeling purposes it is convenient to

“compartmentalise” them as fluids !
15See footnote 14.

14 CHAPTER 1. THE THEORY

Example 0.10 Atomic Parts: Examples of atomic parts are: hubs, H, i.e., street intersections; links, L, i.e., the

stretches of roads between two neighbouring hubs; and automobiles, A:

type H, L, A •

Prompt 0.17 is atomic : We introduce the informal presentation language predicate is atomic to hold for parts

p if is atomic(p) holds •

— Compound Parts.

Definition 0.15 Compound Part: Compound parts are those which are observed to [potentially] consist of several

parts •

Example 0.11 Compound Parts: An example of a compound parts is: a road net consisting of a set of hubs,

i.e., street intersections or “end-of-streets”, and a set of links, i.e., street segments (with no contained hubs), is a

Cartesian compound; and the sets of hubs and the sets of links are part set compounds •

Prompt 0.18 is compound : We introduce the informal presentation language predicate is compound to hold for

parts p if is compound(p) holds •

We, pragmatically, distinguish between Cartesian product- and set-oriented parts.

Ontological Choice 0.19 Cartesians: The Cartesian versus set parts is an empirical choice. It is not justified in

terms of philosophy, but in terms of mathematics – of mathematical expediency ! •

— Cartesians. Cartesians are product-like types – and are named after the French philosopher, scientist and

mathematician René Descartes (1596–1640) [Wikipedia].

Definition 0.16 Cartesians: Cartesian parts are those compound parts which are observed to consist of two or

more distinctly sort-named endurants (solids or fluids) •

Example 0.12 Cartesians: Road Transport: A road transport, rt:RT, is observed to consist of an aggregate of a

road net, rn:RN, and a set of automobiles, SA, where the road net is observed, i.e., abstracted, as a Cartesian of a

set of hubs, ah:AH, i.e., street intersections (or specifically designated points segmenting an otherwise “straight”

street into two such), and a set of links, al:AL, i.e., street segments between two “neighbouring” hubs.

type

RT, RN, SA, AH = H-set, AL = L-set

value

obs RN: RT → RN, obs SA: RT → SA,, obs AH: RN → AH, obs AL: RN → AL •

Prompt 0.20 is Cartesian : We introduce the informal presentation language predicate is Cartesian to hold

for compound parts p if is Cartesian(p) holds •

Once a part, say p:P, has been analyzed into a Cartesian, we inquire as to the type names of the endurants16 of

which it consists. The inquiry: record Cartesian part type names(p:P), we decide, then yields the type of

the constituent endurants.

Prompt 0.21 record-Cartesian-part-type-names:

value

record Cartesian part type names: P → T-set

record Cartesian part type names(p) as {ηE1,ηE2,...,ηEn} •

16We emphasize that the observed elements of a Cartesian part may be both solids, at least one, and fluids.

1.8. EXTERNAL AND INTERNAL ENDURANT QUALITIES 15

Here T is the name of the type of all type names, and ηEi is the name of type Ei.
Please note the novel introduction of type names as values. Where a type identifier, say T, stands for, denotes,

a class of values of that type, ηT denotes the name of type T.

Please also note that record Cartesian part type names is not a description language construct. It is an

analysis language, i.e., an informal natural language, here English, construct. As such it is being used by the

domain analyzer cum describer who “applies” it to an observed endurant and notes down, in her mind or jots it on

a scratch of paper, her decision as to appropriate [new] type names.

Example 0.13 Cartesian Parts: The Cartesian parts of a road transport, rt:RT, is thus observed to consists of

• an aggregate of a road net, rn:RN, and

• an aggregate set of automobiles, sa:SA:

that is:

• record Cartesian part type names(rt:RT) = {ηRN,ηSA}

where the type name ηRT was – and the type names ηRN and ηSA are – coined, i.e., more-or-less freely chosen,

by the domain analyzer cum describer •

— Part Sets.

Definition 0.17 Part Sets: Part sets are those compound parts which are observed to consist of an indefinite

number of zero, one or more parts •

Prompt 0.22 is part set : We introduce the informal presentation language predicate is part set to hold for

compound parts e if is part set(e) holds •

Once a part, say e:E, has been analyzed into a part set we inquire as to the set of parts and their type of which

it consists. The inquiry: record part set part type names, we decide, then yields the (single) type of the

constituent parts.

Prompt 0.23 record-part-set-part-type-names:

value

record part set part type names: E → TPs×TP

record part set part type names(e:E) as (η Ps,η P) •

Here the name of the value, e, and the type names η Ps and η P are coined, i.e., more-or-less freely chosen, by the

domain analyzer cum describer •

Please also note that record part set part type names is not a description language construct. It is an analysis

language, i.e., an informal natural language, here English, construct. As such it is being used by the domain

analyzer cum describer who “applies” in to an observed endurant and notes down, in her mind or jots it on a

scratch of paper, her decision as to appropriate [new] type names.

Example 0.14 Part Sets: Road Transport: The road transport contains a set of automobiles. The part set type

name has been chosen to be SA. It is then determined (i.e., analyzed) that SA is a set of Automobile of type A

• record part set part type names(sa:SA) = (η As,η A) •

— Compound Observers.
Once the domain analyzer cum describer has decided upon the names of atomic and compound parts, obs erver

functions can be applied to Cartesian and part set, e:E, parts:

Schema 0.24 Describe Cartesians and Part Set Parts

value

let {η P1,η P2,...,η Pn} = record Cartesian part type names(e:E) in

‘‘type

P1, P2, ..., Pn;

value

obs P1: E→P1, obs P2: E→P2,...n obs Pn: E→Pn ’’

16 CHAPTER 1. THE THEORY

[respectively:]

let (η Ps,η P) = record part set part type names(e:E) in

‘‘type

P, Ps = P-set,

value

obs Ps: E→Ps ’’

end end •

The “...” texts are the RSL texts “generated”, i.e., written down, by the domain describer. They are domain model
specification units. The “surrounding” RSL-like texts are not written down as phrases, elements, of the domain

description. They are elements of the domain describers’ “notice board”, and, as such, elements of the development

of domain models. We have introduced a core domain modeling tool the obs ... observer function, one to

be “applied” mentally by the domain describer, and one that appears in (RSL) domain descriptions The obs ...

observer function is “applied” by the domain describer, it is not a computable function.

Please also note that Describe Cartesians and Part Set Parts schema, 0.24, is not a description lan-

guage construct. It is an analysis language, i.e., an informal natural language, here English, construct. As such it

is being used by the domain analyzer cum describer who “applies” in to an observed endurant and notes down, but

now in a final form, elements, that is domain description units.

• • •

A major step of the development of domain models has now been presented: that of the analysis & description of

the external qualities of domains.

Schema 0.24 on the previous page is the first manifestation of the domain analysis & description method

leading to actual domain description elements.

From unveiling a science of domains we have “arrived” at an engineering of domain descriptions.

1.8.1.4 States

Definition 0.18 States: By a state we shall mean any subset of the parts of a domain •

Example 0.15 Road Transport State:

variable

hs:AH := obs AH(obs RN(rt)),

ls:AL := obs AL(obs RN(rt)),

as:SA := obs SA(rt),

σ:(H|L|A)-set := hs∪ls∪as •

We have chosen to model domain states as variables rather than as values. The reason for this is that the values

of monitorable, including biddable part attributes17 can change, and that domains are often extended and “shrunk”

by the addition, respectively removal of parts:

Example 0.16 Road Transport Development: adding or removing hubs, links and automobiles •

We omit coverage of the aspect of bidding changes to monitorable part attributes.

1.8.1.5 Validity of Endurant Observations

We remind the reader that the obs erver functions, as all later such functions: uid -, mereo - and attr -functions,

are applied by humans and that the outcome of these “applications” is the result of human choices, and possibly

biased by inexperience, taste, preference, bias, etc. How do we know whether a domain analyzer & describer’s de-

scription of domain parts is valid ? Whether relevantly identified parts are modeled reasonably wrt. being atomic,

Cartesians or part sets Whether all relevant endurants have been identified ? Etc. The short answer is: we never

know. Our models are conjectures and may be refuted [61]. A social process of peer reviews, by domain stakehold-

ers and other domain modelers is needed – as may a process of verifying18 properties of the domain description

held up against claimed properties of the (real) domain.

1.8.1.6 Summary of Endurant Analysis Predicates

Characterizations 0.6–0.17 imply the following analysis predicates (Char.: δ , Page π):

17The concepts of monitorable, including biddable part attributes is treated in Sect. 1.8.2.3.2.
18testing, model checking and theorem proving

1.8. EXTERNAL AND INTERNAL ENDURANT QUALITIES 17

• is entity, δ0.6 π 10

• is endurant, δ0.7 π 11

• is perdurant, δ0.8 π 11

• is solid, δ0.11 π 13

• is fluid, δ0.12 π 13

• is part, δ0.13 π 13

• is atomic, δ0.14 π 13

• is compound, δ0.15 π 14

• is Cartesian, δ0.16 π 14

• is part set, δ0.17 π 15

We remind the reader that the above predicates represent “formulas” in the presentation, not the description,

language. They are not RSL clauses. They are in the mind of the domain analyzers cum describers. They are

“executed” by such persons. Their result, whether true, false or chaos19, are noted by these persons and determine

their next step of domain analysis.

1.8.1.7 “Trees are Not Recursive”

A ‘fact’, that seems to surprise many, is that parts are not “recursive”. Yes, in all our domain modeling experiments,

[27], we have not come across the need for recursively observing compound parts. Trees, for example, are not

recursive in this sense. Trees have roots. Sub-trees not. Banyan trees20 have several “intertwined trees”. But it

would be ‘twisting’ the modeling to try fit a description of such trees to a ‘recursion wim’ ! Instead, trees are

defined as nets, such as are road nets, where these nets then satisfy certain constraints [27, Chapter B] – usually

modeled by a mereology, see Sect. 1.8.2.2 on the following page.

1.8.2 Internal Qualities – Intangibles

The previous section has unveiled an ontology of the external qualities of endurants. The unveiling consisted
of two elements: a set of analysis predicates, predicates 0.6–0.17, and analysis functions, schemas 0.21–0.23,
and a pair of description functions, schema 0.24 on page 15.

The application of description functions result in RSL text.
That text conveys certain properties of domains: that they consists of such-and-such endurants, notably

parts, and that these endurants “derive” from other endurants. But the RSL description texts do not “give
flesh & blood” to these endurants. Questions like: ‘what are their spatial extents ?’, ‘how much do the
weigh ?’, ‘what colour do they have ?’, et cetera, are left unanswered. In the present section we shall address
such issues. We call them internal qualities.

Definition 0.19 Internal Qualities: Internal qualities are those properties [of endurants] that do not occupy space
but can be measured or spoken about •

Example 0.17 Internal qualities: Examples of internal qualities are the unique identity of a part, the mereological
relation of parts to other parts, and the endurant attributes such as temperature, length, colour, etc. •

This section therefore introduces a number of domain description tools:

• uid : the unique identifier observer of parts;

• mereo : the mereology observer of parts;

• attr : (zero,) one or more attribute observers of endurants; and

• attributes : the attribute query of endurants.

1.8.2.1 Unique Identity

Ontological Choice 0.25 Unique Identity : We postulate that separately discernible parts have unique identify.

The issue, really, is a philosophical one. We refer to [21, Sects. 2.2.2.3–2.2.2.4, pages 14–15] for a discussion of

the existence and uniqueness of entities •

Definition 0.20 Unique Identity : A unique identity is an immaterial property that distinguishes any two spatially
distinct solids21 •

The unique identity of a part p of type P is obtained by the postulated observer uid P:

19The outcome of applying an analysis predicate of the prescribed kind may be chaos if the prerequisites for its application does not hold.
20https://www.britannica.com/plant/banyan
21For pragmatic reasons we do not have to speculate as to whether “bodies” of fluids can be ascribed unique identity. The pragmatics is that

we, in our extensive modeling experiments have not found a need for such ascription !

18 CHAPTER 1. THE THEORY

Schema 0.26 Describe-Unique-Identity-Part-Observer

‘‘type

P,PI

value

uid P: P → PI’’ •

Here PI is the type of the unique identifiers of parts of type P.

Example 0.18 Unique Road Transport Identifiers: The unique identifierss of a road transport, rt:RT, consists of

the unique identifiers of the

• road transport – rti:RTI,

• (Cartesian) road net – rni:RNI,

• (set of) automobiles – sa:SAI,

• automobile, ai:AI,

• (set of) hubs, hai:AHI,

• (set of) links, lai:LAI,

• hub, hi:HI, and

• link, li:LI,

where the type names are all coined, i.e., more-or-less freely chosen, by the domain analyzer cum describer –

though, as You can see, these names were here formed by “suffixing” Is to relevant part names •

We have thus introduced a core domain modeling tool the uid ... observer function, one to be “applied”

mentally by the domain describer, and one that appears in (RSL) domain descriptions The uid ... observer function

is “applied” by the domain describer, it is not a computable function.

1.8.2.1.1 Uniqueness of Parts No two parts have the same unique identifier.

Example 0.19 Road Transport Uniqueness:

variable

hsuids:HI-set := { uid H(h) | h:H•u∈σ }
lsuids:LI-set := { uid L(l) | l:L•u∈σ }
asuids:AI-set := { uid A(a) | a:A•u∈σ }
σuids:(HI|LI|AI)-set := { uid (H|L|A)(u) | u:(H|L|A)•u∈σ }

axiom

� card σ = card σuids • For σ see Sect. 1.8.1.4 on page 16.

We have chosen, for the same reason as given in Sect. 1.8.1.4, to model a unique identifier state. The � [always]
prefix in the axiom then expresses that changes of parts or addition of parts to and deletions of parts from
the domain shall maintain their uniqueness over time (i.e., always).

1.8.2.2 Mereology

The concept of mereology is due to the Polish mathematician, logician and philosopher Stanis law Leśniewski
(1886–1939) [69, 14].

Definition 0.21 Mereology : Mereology is a theory of [endurant] part-hood relations: of the relations of an

[endurant] parts to a whole and the relations of [endurant] parts to [endurant] parts within that whole •

Ontological Choice 0.27 Mereology : Stanisław Leśniewski was not satisfied with Bertrand Russell’s “repair”

of Gottlob Frege’s axiom systems for set theory. Instead he put forward his axiom system for, as he called it,

mereology. Both as a mathematical theory and as a philosophical reasoning •

Example 0.20 Mereology : Examples of mereologies are that a link is topologically connected to exactly one or,

usually, two specific hubs, that hubs are connected to zero, one or more specific links, and that links and hubs are

open to the traffic of specific subsets of automobiles •

Mereologies can be expressed in terms of unique identifiers.

Example 0.21 Mereology Representation: For our ‘running road transport example’ the mereologies of links,

hubs and automobiles can thus be expressed as follows:

1.8. EXTERNAL AND INTERNAL ENDURANT QUALITIES 19

• mereo L(l) = {hi′,hi′′} where hi,hi′,hi′′ are the unique identifiers of the hubs that the link connects, i.e., are

in hsuids;

• mereo H(h) = {li1,li2,...,lin} where li1,li2,...,lin are the unique identifiers of the links that are imminent

upon (i.e., emanates from) the hub, i.e., are in lsuids; and

• mereo A(a) = {ri1,ri2,...,rim} where ri1,ri2,...,rim are unique identifiers of the road (hub and link) elements

that make up the road net, i.e., are in hsuids∪lsuids •

Once the unique identifiers of all parts of a domain has been described we can analyses and describe their mere-

ologies. The inquiry: mereo P(p) yields a mereology type (name), say PMer, and its description22:

Schema 0.28 Describe-Mereology

‘‘type

PMer = M (PI1,PI2,...,PIm)

value

mereo P: P → PMer

axiom

A (pm:PMer)’’ •

where M (PI1,PI2,...,PIm) is a type expression over unique identifier types of the domain; mereo P is the mere-

ology observer function for parts p:P; and A (pm:PMer) is an axiom that secures that the unique identifiers of any

part are indeed of parts of the domain.

1.8.2.3 Attributes

Attributes are what finally gives “life” to endurants: The external qualities “only” named and gave structure to

their atomic or compound types. The internal qualities of uniqueness and mereology are intangible quantities. The

internal quality of attributes gives “flesh & blood” to endurants: they let us express endurant properties that we can

more easily, i.e., concretely, relate to.

1.8.2.3.1 General

Definition 0.22 Attributes: Attributes are properties of endurants that can be measured either physically (by

means of length (ruler) and spatial quantity measuring equipment, electronically, chemically, or otherwise) or can

be objectively spoken about •

Ontological Choice 0.29 Attributes: First some empirical observation: in reasoning about “the world around us”

we express its properties in terms of predicates. These predicates, for example: “that building’s wall is red”,

building refers to an endurant part whereas wall and red refers to attributes. Now the “rub”: endurant attributes is

what give “flesh & blood” to domains •

Attributes are of types and, accordingly have values.

We postulate an informal domain analysis function, record attribute type names: The domain analyzer,

in observing a part, p:P, analyzes it into the set of attribute names of parts p:P

Schema 0.30 record-attribute-type-names

value

record attribute type names: P → ηT-set
record attribute type names(p:P) as ηT-set •

Example 0.22 Road Net Attributes, I : Examples of attributes are: hubs have states, hσ :HΣ: the set of pairs of

link identifiers, (f li,tli), of the links f rom and to which automobiles may enter, respectively leave the hub; and

hubs have state spaces, hω :HΩ: the set of hub states “signaling” which states are open/closed, i.e., green/red;

links that have lengths, LEN; and automobiles have road net positions, APos, either at a hub, atH, or on a link ,

onL, some fraction, f:Real, down a link, identified by li, from a hub, identified by fhi, towards a hub, identified by

thi. Hubs and links have histories: time-stamped, chronologically ordered sequences of automobiles entering and

leaving links and hubs, with automobile histories similarly recording hubs and links entered and left.

22Cf. Sect. 1.8.1.3.1

20 CHAPTER 1. THE THEORY

type

HΣ = (LI×LI)-set

HΩ = HΣ-set

LEN = Nat m
APos = atH | onL

atH :: HI

onL :: LI × (fhi:HI × f:Real × thi:HI)

HHis,LHis = (TIME×AI)∗

AHis = (TIME×(HI|LI))∗

value

attr HΣ: H → HΣ

attr HΩ: H → HΩ

attr LEN: L → LEN

attr APos: A → APos

attr HHis: H → HHis

attr LHis: L → LHis

attr AHis: A → AHis

axiom

∀ (li,(fhi,f,thi)):onL • 0<f<1

∧li∈lsuids∧{fhi,thi}⊆hsuids∧... •

Schema 0.31 Describe-endurant-attributes(e:E)

let {η A1,ηA2,...,ηAn} = record attribute type names(e:E) in

‘‘ type

A1, A2, ..., An

value

attr A1: E → A1, attr A2: E → A2, ..., attr An: E → An

axiom

∀ a1:A1, a2:A2, ..., an:An: A (a1,a2,...,an) ’’

end •

1.8.2.3.2 Michael A. Jackson’s Attribute Categories Michael A. Jackson [54] has suggested a hierarchy of

attribute categories:from static (is static23) to dynamic (is dynamic24) values – and within the dynamic value

category: inert values (is inert25), reactive values (is reactive26), active values (is active27) – and within

the dynamic active value category: autonomous values (is autonomous28), biddable values (is biddable29),

and programmable values (is programmable30). We postulate informal domain analysis predicates, “performed”

by the domain analyzer:

value

is static,is autonomous,is biddable,is programmable [etc.]: η T→Bool

We refer to [54] and [21] [Chapter 5, Sect. 5.4.2.3] for details. We suggest a minor revision of Michael A.

Jackson’s attribute categorization, see left side of Fig. 1.2 on the next page. We single out the inert from the
ontology of Fig. 1.2 on the facing page, left side. Inert attributes seem to be “set externally” to the endurant.
So we now distinguish between is external and is internal dynamic attributes. We summarize Jackson’s
attribute and our revised categorization in Fig. 1.2.

This distinction has [pragmatic] consequences for how we treat arguments of the behaviours of parts, cf.
Sect. 1.9.5.1 (page 25).

Example 0.23 Road Net Attributes, II : The link length and hub state space attributes are static, hub states and

automobile positions programmable. Automobile speed and acceleration attributes, which we do not model, are

monitorable •

The attributes categorization determines, in the next major section on perdurants, the treatment of hub, link and

automobile behaviours.

23static: values are constants, cannot change
24dynamic: values are variable, can change
25inert: values can only change as the result of external stimuli where these stimuli prescribe new values
26reactive: values, if they vary, change in response to external stimuli, where these stimuli either come from outside the domain of interest

or from other endurants.
27active: values can change (also) on their own volition
28autonomous: values change only “on their own volition”; the values of an autonomous attributes are a “law onto themselves and their

surroundings”.
29biddable: values are prescribed but may fail to be observed as such
30programmable: values can be prescribed

1.8. EXTERNAL AND INTERNAL ENDURANT QUALITIES 21

dynamic

active

endurant

autonomous programmable

static

attributes

attributes

inert reactive

monitorable attributes

biddableattributes

monitorable
only

dynamicstatic

endurant

internal

reactive

biddable

external = inert

programmable autonomous

active

monitorable attributes

Figure 1.2: Michael Jackson’s [Revised] Attribute Categories

1.8.2.3.3 Analytic Attribute Extraction Functions: For later purpose we need characterize three specific at-

tribute category extraction functions: static attributes,monitorable attributes, and programmable attributes:

value

p:P

tns = record attribute type names(p)

static attributes: ηT -set → ηT -set

static attributes(tns) ≡ { ηtn | ηtn:ηT • ηtn ∈ tns ∧ is static(tn) }

inert attributes: ηT -set → ηT -set

inert attributes(tns) ≡ { ηtn | ηtn:ηT • ηtn ∈ tns ∧ is inert(tn) }

monitorable attributes ηT -set → ηT -set

monitorable attributes(tns) ≡ { ηtn | ηtn:ηT • ηtn ∈ tns ∧ is monitorable(tn) }

programmable attributes ηT -set → ηT -set

programmable attributes(tns) ≡ { ηtn | ηtn:ηT • ηtn ∈ tns ∧ is programmable(tn) }

is monitorable: T → Bool

is monitorable(t) ≡ ∼is static(t) ∧ ∼is inert(t) ∧ ∼is programmable(t)

Please be reminded that these functions are informal. They are part of the presentation language.
Do not be confused by their RSL-like appearance.

1.8.3 Intentional Pull

Ontological Choice 0.32 Intentional Pull : In [65, pages 167–168] Sørlander argues wrt. “how
can entities be the source of forces ?” and thus reasons for gravitational pull . That same kind
of reasoning, with proper substitution of terms, leads us to the concept of intentional pull •

Two or more parts of different sorts, but with overlapping sets of intents31 may excert an inten-
tional “pull” on one another. This intentional “pull” may take many forms. Let px : X and py : Y

be two parts of different sorts (X ,Y), and with common intent, ι . Manifestations of these, their
common intent must somehow be subject to constraints , and these must be expressed predica-
tively .

When a compound artifact models “itself” as put together with a number of other endurants
then it does have an intentionality and the components’ individual intentionalities does, i.e.,
shall relate to that.

31Intent: purpose; God-given or human-imposed !

22 CHAPTER 1. THE THEORY

Example 0.24 Road Transport Intentionality : Automobiles include the intent: transport,
and so do hubs and links . Manifestations of transport are reflected in hubs, links and auto-
mobiles having the history attribute. The intentional “pull” of these manifestations is this: For
every automobile, if it records being in some hub or on some link at time τ , then the designated
hub, respectively link, records exactly that automobile; and vice versa: for every hub [link], if it
records the visit of some automobile at time τ , then the designated automobile records exactly
that hub [link]. We leave the formalization of the above to the reader •

Example 0.25 Double-entry Bookkeeping : Another example of intentional “pull” is that of
double-entry bookkeeping. Here the income/expense ledger must balance the actives/passives
ledger •

Example 0.26 The Henry George Theorem.: The Henry George theorem states that under cer-
tain conditions, aggregate spending by government on public goods will increase aggregate rent
based on land value (land rent) more than that amount, with the benefit of the last marginal
investment equaling its cost •

32,33

1.8.4 Summary of Endurants

We have completed our treatment of endurants. That treatment was based on an ontology for the
observable phenomena of domains – such as we have delineated the concept of domains. The
treatment was crucially based on an ontology for the structure of domain phenomena, and, in a
sense, “alternated” between analysis predicates, analysis functions, and description functions.
We have carefully justified this ontology in ‘Ontological Choice’ paragraphs

1.9 Perdurant Concepts

The main contribution of this section is that of transcendentally deducing perdurants from en-
durant parts, in particular behaviours “of” parts.

Major perdurants are those of actions, events and behaviours with behaviours generally being
sets of sequences of actions, events and behaviours.

1.9.1 “Morphing” Parts into Behaviours

As already indicated we shall transcendentally deduce (perdurant) behaviours from those (en-
durant) parts which we, as domain analyzers cum describers, have endowed with all three kinds
of internal qualities: unique identifiers, mereologies and attributes. We shall use the CSP [51]
constructs of RSL (derived from RSL [46]) to model concurrent behaviours.

1.9.2 Transcendental Deduction

Transcendse is the basic ground concept from the word’s literal meaning of climbing or going
beyond, albeit with varying connotations in its different historical and cultural stages.

Definition 0.23 Transcendence: By transcendence we shall understand the notion: the a
priori or intuitive basis of knowledge, independent of experience •

32Stiglitz, Joseph (1977). “The Theory of Local Public Goods”. In Feldstein, M.S.; Inman, R.P. (eds.). The Economics of Public Services.

Palgrave Macmillan, London. pp. 274333. doi:10.1007/978-1-349-02917-4 12. ISBN 978-1-349-02919-8.
33Henry George (September 2, 1839 – October 29, 1897) was an American political economist and journalist. His writing was immensely

popular in 19th-century America and sparked several reform movements of the Progressive Era. He inspired the economic philosophy known

as Georgism, the belief that people should own the value they produce themselves, but that the economic value of land (including natural
resources) should belong equally to all members of society. George famously argued that a single tax on land values would create a more

productive and just society.

1.9. PERDURANT CONCEPTS 23

A priori knowledge or intuition is central: By a priori we mean that it not only precedes, but
also determines rational thought.

Definition 0.24 Transcendental Deduction: By a transcendental deduction we shall under-
stand the philosophical notion: a transcendental “conversion” of one kind of knowledge
into a seemingly different kind of knowledge •

Example 0.27 Transcendental Deductions – Informal Examples: We give some intuitive ex-
amples of transcendental deductions. They are from the “domain” of programming languages.
There is the syntax of a programming language, and there are the programs that supposedly
adhere to this syntax. Given that, the following are now transcendental deductions.

The software tool, a syntax checker, that takes a program and checks whether it satisfies
the syntax, including the statically decidable context conditions, i.e., the statics semantics –
such a tool is one of several forms of transcendental deductions.

The software tools, an automatic theorem prover and a model checker, for example
SPIN [52], that takes a program and some theorem, respectively a Promela statement, and
proves, respectively checks, the program correct with respect the theorem, or the statement.

A compiler and an interpreter for any programming language.

Yes, indeed, any abstract interpretation [43] reflects a transcendental deduction: firstly,
these examples show that there are many transcendental deductions; secondly, they show that
there is no single-most preferred transcendental deduction •

Ontological Choice 0.33 Transcendental Deduction of Behaviours from Parts: So this, then,
is, in a sense, our “final” ontological choice: that of transcendentally deducing behaviours from
parts •

1.9.3 Actors – A Synopsis

This section provides a summary overview.

Definition 0.25 Actors: An actor is anything that can initiate an action, event or behaviour
•

1.9.3.1 Action

Definition 0.26 Actions: An action is a function that can purposefully change a state •

Example 0.28 Road Net Actions: These are some road transport actions: an automobile
leaving a hub, entering a link; leaving a link, entering a hubs; entering the road net; and leaving
the road net •

1.9.3.2 Event

Definition 0.27 Events: An event is a function that surreptitiously changes a state •

Example 0.29 Road Net Events: These are some road net events: The blocking of a link due
to a mud slide; the failing of a hub traffic signal due to power outage; an automobile failing to
drive; and the blocking of a link due to an automobile accident •

We shall not formalize events.

24 CHAPTER 1. THE THEORY

1.9.3.3 Behaviour

Definition 0.28 Behaviours: Behaviours are sets of sequences of actions, events and be-
haviours •

Concurrency is modeled by the sets of sequences. Synchronization and communication of
behaviours are effected by CSP output/inputs: ch[{i,j}] !value/ch[{i,j}] ?.

Example 0.30 Road Net Traffic: Road net traffic can be seen as a behaviour of all the be-
haviours of automobiles, where each automobile behaviour is seen as sequence of start, stop,
turn right, turn left, etc., actions; of all the behaviours of links where each link behaviour is
seen as a set of sequences (i.e., behaviours) of “following” the link entering, link leaving, and
movement of automobiles on the link; of all the behaviours of hubs (etc.); of the behaviour of
the aggregate of roads, viz. The Department of Roads , and of the behaviour of the aggregate
of automobiles, viz, The Department of Vehicles .

1.9.4 Channel

Definition 0.29 Channel : A channel is anything that allows synchronization and communica-
tion of values between behaviours •

Schema 0.34 Channel

We suggest the following schema for describing channels:

channel { ch[{ui,uj}] | ui,ij:UI • ... } : M

where ch is the describer-chosen name for an array of channels, ui,uj are channel array indices
of the unique identifiers, UI, of the chosen domain •

Example 0.31 Road Transport Interaction Channel :

channel { ch[{ui,uj}] | {ui,ij}:(HI|LI|AI)-set • ui6=uj∧{ui,uj}⊆σ uids } : M

Channel array ch is indexed by a “pair” of distinct unique part identifiers of the domain. We
shall later outline M, the type of the “messages” communicated between behaviours •

1.9.5 Behaviours

We single out the perdurants of behaviours – as they relate directly to the parts of Sect. 1.8. The
treatment is “divided” into three sections.

1.9.5.1 Behaviour Signature

Schema 0.35 Behaviour Signature

By the behaviour signature, for a part p, we shall understand a pair: the name of the behaviour,
Bp, and a function type expression as indicated:

value

Bp: Uidp→
34 Mereop→Sta Valsp→Inert Valsp→Mon Refsp→Prgr Valsp → { ch[{i,j}] | ... } Unit

We explain:

• Uidp is the type of unique identifiers of part p, uid P(p) = Uidp;

• Mereop is the type of the mereology of part p, mereo P(p) = Mereop;

34We have Schönfinckel’ed https://en.wikipedia.org/wiki/Moses Schönfinkel#Further reading (Curried https://en.wi-

kipedia.org/wiki/Currying) the function type

1.9. PERDURANT CONCEPTS 25

• Sta Valsp is a Cartesian of the type of inert attributes of part p. Given record attribute type names(p)

static attributes(record attribute type names(p)) yields Sta Valsp;

• Inert Valsp is a Cartesian of the type of static attributes of part p. Given record attribute type -

names(p) inert attributes(record attribute type names(p)) yields Inert Valsp;

• Mon Refsp is a Cartesian of the attr ibute observer functions of the types of monitorable attributes of

part p. Given record attribute type names(p) analysis function monitorable attributes(re-

cord attribute type names(p)) yields Mon Valsp;

• Prgr Valsp is a Cartesian of the type of programmable attributes of part p. Given record attribu-

te type names(p) analysis function programmable attributes(record attribute type names(p)).

yields Prgr Valsp;

• { ch[{i,j}] | ... } specifies the channels over which part p behaviours, Bp, may communicate; and

• Unit is the type name for the () value35 •

The Cartesian arguments may “degenerate” to the non-Cartesian of no, or just one type identi-
fier, In none, i.e., (), then () may be skipped. If one, e.g., (a), then (a) is listed.

Example 0.32 Road Transport Behaviour Signatures:

value

hub: HI→MereoH→(HΩ×...)→(...)→(HHist×...)

→{ch[{uid H(p),ai}]|ai:AI•ai∈asuid} Unit

link: LI→MereoL→(LEN×...)→(...)→(LHist×...)

→{ch[{uid L(p),ai}]|ai:AI•ai∈asuid} Unit

automobile: AI→MereoA→(...)→(attr AVel×attr HAcc×...)→(APos×AHist×...)

→{ch[{uid H(p),ri}]|ri:(HI|LI)•ri∈hsuid∪lsuid} Unit

Here we have suggested additional part attributes: monitorable automobile velocity and accel-
eration, AVel, AAcc, and omitted other attributes •

1.9.5.2 Inert Arguments: Some Examples

Let us give some examples of inert attributes of automobiles. (i) Driving uphill, one a level
road, or downhill, excert some inert “drag” or “pull”. (ii) Velocity can be treated as a reactive
attribute – but it can be [approximately] calculated on the basis of, for example, these inert

attributes: drag/pull and accelerator pedal pressure, and the static engine power attribute.

1.9.5.3 Behaviour Definitions

A typical, informal rendition of abstracted behaviours, BA, BC, BD, ... is shown in Fig. 1.9.5.3
on the next page.

Figure 1.9.5.3 on the following page should be understood as follows:36 The bold faced
labels BA, BB, BC, ... are meant to designate behaviours. The black arrows, from
behaviour Bx to behaviour By are meant to designate CSP-like communications from Bx
to By. The open arrows (“white”), from behaviour Bx to behaviour By are meant to
designate possible CSP-like communications from Bx to By. These latter communications, the
“possible” ones, are then thought of as in response to the “earlier”, in the figure: “immediately
prior, next to” communication from Bx to By.

Figure 1.9.5.3 on the next page is now given a more precise “meaning” – with this “mean-
ing” suggesting a general “pattern” for behaviour definitions:

35– You may “read’ () as the value yielded by a statement, including a never-terminating function
36The explanation of Fig. 1.9.5.3 is in now way an attempt to explain the semantics of behaviours. That is left to the RSL+

formalization’s.

26 CHAPTER 1. THE THEORY

C
A

B
1

−
> <
−

C
B

A
1

<
−

C
B

A
1

Legend:

Etcetera

Etcetera

BA

BB BC

<
−

C
A

B
i

C
B

A
i−

>

C
A

B
1

−
>

BA, BB, BC, .. behaviours

CXY−> communication from behaviour X to Y

<−CYX communication from behaviour Y ro X

initial comm.

possible reply comm.

Figure 1.3: Communicating Behaviours

1. There are behaviours B, ... with identities bi,

(a) These behaviours,typically, have the form of internal, ⌈⌉, non-deterministically “choos-
ing” between

(b) pro-actively initiating communications with other behaviors

(c) and re-actively responding to such initiatives.

value

1a. B(bi)(mereo)(stat)(mon)(prg) ≡
1b. pro active B(bai)(mereo)(stat)(mon)(prg)

1c. ⌈⌉ re active B(bai)(mereo)(stat)(mon)(prg)

2. ι1b π26 The pro-active behaviour (B) internal deterministically (⌈⌉) choosing between a
number of initiating actions:

(a) action 1,

(b) action 2,

(c) ...,

(d) action n.

value

1.9. PERDURANT CONCEPTS 27

2.,ι1b π26. pro active B(bi)(mereo)(stat)(mon)(prg) ≡
2a. B action 1(bi)(mereo)(stat)(mon)(prg)

2b. ⌈⌉ B action 2(bi)(mereo)(stat)(mon)(prg)

2c. ⌈⌉ ...

2d. ⌈⌉ B action m(bi)(mereo)(stat)(mon)(prg)

3. ι1b π26. The responding behaviour (B) reacts to a number of such initiating actions by

(a) external non-deterministically (⌈⌉⌊⌋) offering to accept messages from responding be-
haviours,

(b) and then performing corresponding actions.

value

3a.,ι1b π26. respond B(bi)(mereo)(stat)(mon)(prg) ≡
3a. let msg = ⌈⌉⌊⌋ { comm[{bj,bi}] ? | bj:BI • bj∈ bis } in

3b. react behaviour B(bi)(mereo)(stat)(mon)(prg)(msg) end

4. The react behaviour B inquires as to the type of the message, say, a command, received
(?): if it is:

(a) of type Cmd i then it performs action act cmd i,

(b) of type Cmd j then it performs action act cmd j,

(c) ..., or

(d) of type Cmd k then it performs action act cmd k.

(e) If it is of neither of these types then it “skips” treatment of that response by resuming
to be the behaviour B.

value

4. react behaviour B(bi)(mereo)(stat)(mon)(prg)(msg) ≡
4a. is action i(msg) → B action i(bi)(mereo)(stat)(mon)(prg)(msg),
4b. is action j(msg) → B action j(bi)(mereo)(stat)(mon)(prg)(msg),
4c. ...,

4d. is action k(msg) → B action k(bi)(mereo)(stat)(mon)(prg)(msg),
4e. → B(bi)(mereo)(stat)(mon)(prg)

1.9.5.4 Action Definitions

“Actions are what makes behaviours meaningful” We remind the reader that our function
(incl. behaviour) definitions are expressed in a functional, “applicative”, style. [that is, there
are no assignable variables] The actions elaborate to values. These values may be Booleans,
numbers, sets, Cartesians, lists, maps and functions (over these), or the values by be (), of type
Unit, as are the values (also of never-ending) behaviours.

Action signatures usually “follow that”, i.e., are the same as “their” initiating behaviour
signatures.

5. Actions, as semantic quantities,

(a) evaluate some values,

(b) typically change some programmable attributes,

28 CHAPTER 1. THE THEORY

(c) and may communicate, “issue” or inform, to some other behaviours, some requests,
respectively information –

(d) whereupon the “revert”, “tail-recursively” to the activating Behaviour.

5. action i(bi)(mereo)(stat)(mon)(prg) ≡
5a. let v = evaluate i(bi)(mereo)(stat)(mon)(prg) in

5b. let (bj,prg′) = elaborate i(v)(bi)(mereo)(stat)(mon)(prg) in

5c. comm[{bi,bj}] ! E (prg′) ;

5d. behaviour(bi)(mereo)(stat)(mon)(prg′)

5. end end

Variants of Item ι5c π28 are also used:

{ comm[{bi,bj}] !E (prg′) | bj ∈ bis } ;

where bj ranges over bis, a set of behaviour identities.

1.9.5.5 Behaviour Invocation

Schema 0.36 Behaviour Invocation

Behaviours are invoked as follows:

‘‘Bp(uid p(p))
37

(mereo P(p))

(attr staA1(p),...,attr staAs(p))

(attr inertA1(p),...,attr inertAi(p))

(attr monA1,...,attr monAm)

(attr prgA1(p),...,attr prgAp(p))’’

• All arguments are passed by value.

• The uid value is never changed.

• The mereology value is usually not changed.

• The static attribute values are fixed, never changed.

• The inert attribute values are fixed, but can be updated by receiving explicit input com-
munications.

• The monitorable attribute values are functions, i.e., it is as if the “actual” monitorable
values are passed by name !

• The programmable attribute values are usually changed, “updated”, by actions described
in the behaviour definition •

37We show the arguments of the invocation on separate lines only for readability. That is: normally we show the invocation arguments as

B(...)(...)(...)(...)(...).

1.9. PERDURANT CONCEPTS 29

1.9.5.6 Argument References

Within behaviour descriptions, see next section, references are made to the behaviour argu-
ments. References, a, to unique identifier, mereology, static and progammable attribute ar-
guments yield their value. References, a, to monitorable attribute arguments also yield their
value. This value is an attr A observer function. To yield, i.e., read, the monitorable attribute
value this function is applied to that behaviour’s uniquely identified part, puid , in the global part
state, σ . To update,, i.e., write, say, to a value v, for the case of a biddable, monitorable attribute,
that behaviour’s uniquely identified part, puid , in the global part state, σ , shall have part puid’s
A attribute changed to v – with all other attribute values of puid unchanged. Common to both
the read and write functions is the retrieve part function:

* Given a unique part identifier, pi, assumed to be that of an existing domain part,

* retr part reads the global [all parts] variable σ to retrieve that part p whose unique part
identifier is pi.

value

[∗] retr part: PI → P read

[∗] retr part(pi) ≡ let p:P • p ∈ cσ ∧ uid P(p)=pi in p end

[∗] pre: ∃ p:P • p ∈ cσ ∧ uid P(p)=pi

You may think of the functions being illustrated in this section, Sect. 1.9.5.6, retr part, read A from P
and update P with A, as “belonging” to the description language, but here suitably expressed
for any domain, that is, with suitable substitutions for A and P.

1.9.5.6.1 Evaluation of Monitorable Attributes.

6. Let pi:PI be the unique identifier of any part, p, with monitorable attributes, let A be a
monitorable attribute of p, and let ηA be the name of attribute A.

7. Evaluation of the [current] attribute A value of p is defined by function read A from P.

value

6. pi:PI, a:A, ηA:ηT
7. read A from P: PI × T → read σ A

7. read A(pi,ηA) ≡ attr A(retr part(pi))

1.9.5.6.2 Update of Biddable Attributes

8. The update of a monitorable attribute A, with attribute name ηA of part p, identified by pi,
to a new value writes to the global part state σ .

9. Part p is retrieved from the global state.

10. A new part, p′ is formed such that p′ is like part p:

(a) same unique identifier,

(b) same mereology,

(c) same attributes values,

(d) except for A.

11. That new p′ replaces p in σ .

30 CHAPTER 1. THE THEORY

value

8. σ, a:A, pi:PI, ηA:ηT

8. update P with A: PI × A × ηT → write σ
8. update P with A(pi,a,ηA) ≡
9. let p = retr part(pi) in

10. let p′:P •

10a. uid P(p′)=pi

10b. ∧ mereo P(p)=mereo P(p′)

10c. ∧ ∀ ηA′ ∈ record attribute type names(p)\{ηA}
10c. ⇒ attr A′(p)=attr A′(p′)

10d. ∧ attr A(p′)=a in

11. σ := cσ \ {p} ∪ {p′}
8. end end

9. pre: ∃ p:P • p ∈ cσ ∧ uid P(p)=pi

1.9.5.7 Behaviour Description – Examples

Behaviour descriptions rely strongly on CSPs’ [51] expressivity. Leaving out some details (,
‘...’), and without “further ado”, we exemplify.

Example 0.33 Automobile Behaviour at Hub:

12. We abstract automobile behaviour at a Hub (hi).

(a) Either the automobile remains in the hub,

(b) or, internally non-deterministically,

(c) leaves the hub entering a link,

(d) or, internally non-deterministically,

(e) stops.

12 automobile(ai)(ris)(...)(atH(hi),ahis,) ≡
12a automobile remains in hub(ai)(ris)(...)(atH(hi),ahis,)

12b ⌈⌉
12c automobile leaving hub(ai)(ris)(...)(atH(hi),ahis,)

12d ⌈⌉
12e automobile stop(ai)(ris)(...)(atH(hi),ahis,)

13. [12a] The automobile remains in the hub:

(a) time is recorded,

(b) the automobile remains at that hub, “idling”,

(c) informing (“first”) the hub behaviour.

13 automobile remains in hub(ai)(ris)(...)(atH(hi),ahis,) ≡
13a let τ = record TIME() in

13c ch[{ai,hi}] ! τ ;

13b automobile(ai)(ris)(...)(atH(hi),〈(τ,hi)〉̂ahis,) end

1.10. FACETS 31

14. [12c] The automobile leaves the hub entering link li:

(a) time is recorded;

(b) hub is informed of automobile leaving and link that it is entering;

(c) “whereupon” the vehicle resumes (i.e., “while at the same time” resuming) the vehicle
behaviour positioned at the very beginning (0) of that link.

14 automobile leaving hub(ai)({li}∪ris)(...)(atH(hi),ahis,) ≡
14a let τ = record TIME() in

14b (ch[{ai,hi}] ! τ ‖ ch[{ai,li}] ! τ) ;

14c automobile(ai)(ris)(...)(onL(li,(hi,0,)),〈(τ,li)〉̂ahis,) end

14 pre: [hub is not isolated]

The choice of link entered is here expressed (14) as a non-deterministic choice38. One can
model the leave hub/enter link otherwise.

15. [12e] Or the automobile “disappears — off the radar” !

15 automobile stop(ai)(ris),(...)(atH(hi),ahis,) ≡ stop •

rm

1.9.6 Behaviour Initialization.

For every manifest part it must be described how its behaviour is initialized.

Example 0.34 Road Transport Initialization: We “wrap up” the main example of this paper: We omit treatment

of monitorable attributes.

16. Let us refer to the system initialization as an action.

17. All hubs are initialized,

18. all links are initialized, and

19. all automobiles are initialized.

value

16. rts initialisation: Unit → Unit

16. rts initialisation() ≡
17. ‖ { hub(uid H(l))(mereo H(l))(attr HΩ(l),...)(attr HΣ(l),...)| h:H • h ∈ hs }
18. ‖ ‖ { link(uid L(l))(mereo L(l))(attr LEN(l),...)(attr LΣ(l),...)| l:L • l ∈ ls }
19. ‖ ‖ { automobile(uid A(a))(mereo A(a))(attr APos(a)attr AHis(a),...) | a:A • a ∈ as }

We have here omitted possible monitorable attributes. For hs, ls,as we refer to Sect. 1.8.1.4 •

1.10 Facets

In this section we shall briefly overview the concept of facets. By a domain facet we shall understand one amongst

a finite set of generic ways of analyzing a domain: a view of the domain, such that the different facets cover

conceptually different views, and such that these views together cover the domain.

We leave it to [21, Chapter 8, pages 205–240] to detail the principles, procedures, techniques and tool for

describing facets.

These are the facets that we have so far identified:

38– as indicated by the pre- condition: the hub mereology must specify that it is not isolated. Automobiles can never leave isolated hubs.

32 CHAPTER 1. THE THEORY

• intrinsics

• support technology

• rules & regulations

• scripts

• license languages

• management & organization

• human behaviour

1.10.1 Intrinsics

By domain intrinsics we shall understand those phenomena and concepts of a domain which are basic to any of the

other facets, with such domain intrinsics initially covering at least one specific, hence named, stakeholder view.

1.10.2 Support Technology

By a domain support technology we shall understand ways and means of implementing certain observed phenom-

ena or certain conceived concepts.

1.10.3 Rules & Regulations

• By a domain rule we shall understand some text (in the domain) which prescribes how people or equipment

are expected to behave when dispatching their duties, respectively when performing their functions.

• By a domain regulation we shall understand some text (in the domain) which prescribes what remedial

actions are to be taken when it is decided that a rule has not been followed according to its intention.

1.10.4 Scripts

By a domain script we shall understand the structured, almost, if not outright, formally expressed, wording of a

procedure on how to proceed, one that has legally binding power, that is, which may be contested in a court of law.

A special “subclass” of scripts are those of commands.

Commands are syntactic entities. Semantically they denote state changes. The state referred to is the state of

the domain. Domain facets, as a wider concept than just commands, were first treated in [22, Chapter 8] which

places facets in the wider context of domain modeling. Commands are but just one of the many kinds of script

facets.

Commands are defined syntactically, and given semantics in the definition of perdurant behaviours, one set of

simple actions per command.

1.10.5 License Languages

A license is a right or permission granted in accordance with law by a competent authority to engage in some

business or occupation, to do some act, or to engage in some transaction which but for such license would be

unlawful.

A license language is a [“small”] language (with syntax, semantics and pragmatics) in which to describe

licenses.

1.10.6 Management & Organization

• By domain management we shall understand such people (such decisions) (i) who (which) determine, formu-

late and thus set standards (cf. rules and regulations, Sect. 8.4) concerning strategic, tactical and operational

decisions; (ii) who ensure that these decisions are passed on to (lower) levels of management and to floor

staff; (iii) who make sure that such orders, as they were, are indeed carried out; (iv) who handle undesirable

deviations in the carrying out of these orders cum decisions; and (v) who “backstops” complaints from lower

management levels and from “floor” staff.

• By domain organization we shall understand (vi) the structuring of management and non-management staff

“oversee-able” into clusters with “tight” and “meaningful” relations; (vii) the allocation of strategic, tactical

and operational concerns to within management and non-management staff clusters; and hence (viii) the

“lines of command”: who does what, and who reports to whom, administratively and functionally.

1.10.7 Human Behaviour

By domain human behaviour we shall understand any of a quality spectrum of carrying out assigned work: from (i)

careful, diligent and accurate, via (ii) sloppy dispatch, and (iii) delinquent work, to (iv) outright criminal pursuit.

1.11. CONCLUSION 33

1.11 Conclusion

We have summarized a method to be used by [human] domain analyzers cum describers in studying and modeling

domains. Our previous publications [16, 19, 21] have, with this paper, found its most recent, we risk to say, for us,

final form.

Of course, domain models can be developed without the calculi presented in this paper. And was for many

years. From the early 1990s a number of formal models of railways were worked out [48, 8, 10, 35, 9]. The

problem, though, was still, between 1992 and 2016, “where to begin, how to proceed and when to end”.

The domain analysis & description ontology and, hence calculus, of this paper shows how. The systematic ap-

proach to domain modeling of this ontology and calculus has stood its test of time. The Internet ‘publication’

https://www.imm.dtu.dk/~dibj/2021/dd/dd.pdf include the following domain models39 from the 2007–

2024 period. Their development has helped hone the method of the present paper.

1.11.1 Previous Literature

To the best of my knowledge there is no prior, comparable publications in the field of domain science and en-

gineering. Closest would be Michael A. Jackson’s [56]. Well, most computer scientists working in the field of

correctness of programs, from somewhat “early on”, stressed the importance of making proper assumptions about

the domain, They would then express these “in-line”, as appropriate predicates, with their proofs. Michael A.

Jackson, lifted this, to a systematic treatment of the domain in his triplet ‘Problem Frame Approach’: program,
machine, domain [55]. But Jackson did not lift his problem frame concern into a proper study of domains.

1.11.2 The Method

So the method procedure is this: (1) First analyze and describe the external qualities of the chosen domain. (2) For

each of the so-described endurants You then analyze and describe their internal qualities. (2.1) First their unique
identification. (2.2) Then their mereology. (2.3) Then their attributes. (2.4) And finally possible intentional pulls.
(3) First then are You ready to tackle the issue of perdurants. (3.1) Decide upon the state. (That may already

have been done in connection with (1).) (3.2) Then describe the channels. (3.3) Then analyze and describe [part]

behaviour signatures. (3.4) Then describe behaviour invocation. (3.5) Then behaviour (body) definitions. (4)

Finally describe domain initialization.

1.11.3 Specification Units

The method thus focuses, step-by-step, on the development of the following specification units: type specification

units, value specification units, axiom specification units, variable declaration units, and channel declaration

units.

There are two forms of type specifications: (α) introduction of sorts, i.e., type names, and (β) specification of

types: pairs of new type names and type expressions – as atomic, alternate or composite types: set, Cartesian, list,

map or function types.

There are basically three forms of value specification units: (i) (“simple”) naming of values, (ii) signature of

functions: function name and function type, and (iii) signature of (endurantobs , unique identifier uid , mereology,

mereo , and attribute attr) observer functions.

1.11.4 Object Orientation

So far we have not used the term ‘object’ !

We shall now venture the following:

The combined description of endurant parts and their perdurant behaviour form an object definition.
You can then, for yourself, develop a way of graphically presenting these object definitions such that each part

type is represented by a box that contains the specification units for [all] external and internal endurant qualities as

well as for the perdurant [part] behaviour signatures and definitions; and such that the mereologies of these parts

is represented by [possibly directed] lines connecting relevant boxes.

39

• Graphs,

• Rivers,

• Canals,

• Railways,

• Road Transport,

• The “7 Seas”,

• The “Blue Skies”,

• Credit Cards,

• Weather Information,

• Documents,

• Urban Planning ,

• Swarms of Drones,

• Container Terminals,

• A Retailer Market,

• Assembly Lines,

• Bookkeeping ,

• Shipping ,

• Stock Exchanges,

• Web Transactions, etc.

34 CHAPTER 1. THE THEORY

That is, an object concept solely based on essentially inescapable world description facts – as justified by

Sørlander’s Philosophy [64, 65, 66, 67] ! No “finicky” programming language “tricks” !

We leave it to the reader to compare this definition to those of so-called object-oriented programming lan-

guages.

1.11.5 Other Domain Modeling Approaches

[68] shows fragments of a number of expertly expressed domain models. They are all expressed in RAISE.40 But

they are not following the method of this paper. In other words, it is possible to develop domain models not using

the method ! This author has found, however, that following the method – developed after the projects reported

in [68] – leads to far less problematic situations – in contrast to my not adhering strictly to the method. In other

words, based on this subjective observation, we advice using the method.

There is thus no proof that following the method does result in simpler, straightforward developments.

But we do take the fact that we can justify the method, cf. Fig. 1.1 on page 9, on the basis on the inevitability
of describing the world as per philosophy of Kai Sørlander [64, 65, 66, 67], and that that may have a bearing
on the experienced shorter domain description development efforts.

1.11.6 How Much ? How Little ?

How wide must we cast the net when studying a domain ? The answer to that question depends, we suggest,
on whether our quest is for studying a domain in general, to see what might come out, or whether it is a
study aiming at a specific model for a specific software development. In the former case we cast the net as
we please – we suggest: as wide as possible, wider that for specific quests. In the latter case we should cast
the net as “narrowly” as is reasonable: to fit those parts of a domain that we expect the requirements and
software to deal with ! In this latter case we should assume that someone, perhaps the same developers, has
first “tried their hand” on a wider domain.

1.11.7 Correctness

Today, 2024, software correctness appears focused on the correctness of algorithms, possibly involving con-
currency. Correctness, of software, in the context of a specific domain, means that the software requirements
are “correctly” derived from a domain description, and that the software design is correctly derived from the
domain requirements, that is: D,S |= R. Advances in program proofs helps little if not including proper
domain and requirements specifications.

1.11.8 Domain Facets

There is more to domain modeling than covered in this paper. In [13] and in [21, Chapter 8] we cover the
concept of domain facets. General examples of domain facets are support technologies, rules & regulations,
scripts, license languages, management & organization, and human behaviour .

1.11.9 Perspectives

Domain models can be developed for either of a number of reasons:

• (i) in order to understand a human-artifact domain;

• (ii) in order to re-engineer the business processes of a human-artifact domain; or

• (iii) in order to develop requirements prescriptions and, subsequently software application “within” that
domain.

[(ii)] We refer to [49, 50] and [11, Vol. 3, Chapter 19, pages 404–412] for the concept of business process
engineering . [(iii)] We refer to [21, Chapter 9] for the concept of requirements engineering .

1.11.10 The Semantics of Domain Models

The meaning of domain models, such as we describe them in this paper, is, “of course”, the actual, real
domain “out there” ! One could, and, perhaps one should, formulate a mathematical semantics of the models,
that is, of the is ..., obs ..., uid ..., mereo ... and attr ... analysis and description functions and what they
entail (e.g., the type name labels: ηT’s; etc.). An early such semantics description is given in [15].

40Other approaches could also be used: VDM [37, 38], Z [70], Alloy [53], CafeOBJ [45], etc.

1.11. CONCLUSION 35

1.11.11 Further on Domain Modeling

Additional facets of domain modeling are covered in [12] and [21, Chapter 8: Domain Facets.]

1.11.12 Software Development

[12] and [21, Chapter 9 Requirements] show how to develop Requirements prescriptions from Domain de-
scriptions. [11] shows how to develop S oftware designs from Requirements prescriptions.

1.11.13 Modeling

Domain descriptions, such as outlined in this paper, are models of domains, that is, of some reality. They
need not necessarily lead to or be motivated by possible development of software for such domains. They can
be experimentally researched and developed just for the sake of understanding domains in which man has had
an significantly influence. They are models. We refer to [44] for complementary modeling based on Petri nets.
The current author is fascinated by the interplay between graphical and textual descriptions of HERAKLIT,
well, in general Petri Nets.

1.11.14 Philosophy of Computing

The Danish philosopher Kai Sørlander [64, 65, 66, 67] has shown that there is a foundation in philosophy for
domain analysis and description. We refer to [23, Chapter 2] for a summary of his findings.

1.11.15 A Manifesto

So there is no excuse, anymore ! Of course we have developed interpreters and compilers for programming
languages by first developing formal semantics for those languages [40, 42]. Likewise we must now do for the
languages of domain stakeholders, at least for the domains covered by this paper. There really is no excuse !

36 CHAPTER 1. THE THEORY

Part II

A PRACTICE

37

Chapter 2

Introduction

The Triptych Dogma

In order to specify software,
we must understand its requirements.

In order to prescribe requirements,
we must understand the domain.

So we must study, analyze and describe domains.

This is one of a series, [28, 34, 33, 32, 25], of domain studies of such infrastructure components as government,

public utilities, banking, transport, insurance, health care, etc. The current, this ‘Introduction’ chapter is common

to these study reports.

2.1 On A Notion of ‘Infrastructure’

Central to our effort of studying “man-made” domains is the notion of infrastructure41. The infrastructure can be

characterized as follows: the basic physical and organizational structures and facilities (e.g. buildings, roads, power
supplies) needed for the operation of a society or enterprise, “the social and economic infrastructure

of a country”. We interpret the “for example, e.g.,” to include, some already mentioned above: government

structure: legislative, executive & judicial units, transport: roads, navigable rivers and lakes, the open sea, bank-

ing, educational system, health care, utilities: water, electricity, telecommunications (e.g. the Internet) gas, ,

etc.,42 Also: Winston Churchill is quoted to have said in the House of Commons: “The young Labour speaker we

have just listened to wants clearly impressing his constituency with the fact that he went to Eton and Oxford since
he now uses such modern terms as ‘infrastructure’ ”.

2.2 Domain Models

We rely on [30, 26, 22, 20, 17]. They provide a scientific foundation for modelling domains in the style of this

report.

2.2.1 Some Characterizations

• Domain: By a domain we shall understand a rationally describable segment of a manifest43, discrete dy-
namics fragment of a human assisted reality: the world that we daily observe – in which we work and act, a

reality made significant by human-created entities. The domain embody endurants and perdurants.

• Endurants: By endurants we mean those quantities of domains that we can observe (see and touch), in

space, as “complete” entities at no matter which point in time – “material” entities that persists, endures –

capable of enduring adversity, severity, or hardship [Merriam Webster].

41https://en.wikipedia.org/wiki/Infrastructure
42According to the World Bank, ‘infrastructure’ is an umbrella term for many activities referred to as ‘social overhead capital’ by some

development economists, and encompasses activities that share technical and economic features (such as economies of scale and spill-overs

from users to non-users). We take a more technical view, and see infrastructures as concerned with supporting other systems or activities.

Software for infrastructures is likely to be distributed and concerned in particular with supporting communication of data, people and/or

materials. Hence issues of openness, timeliness, security, lack of corruption and resilience are often important.
43The term ‘manifest’ is used in order to distinguish between these kinds of domains and those of computing and data communication:

compilers, operating systems, database systems, the Internet, etc.

39

40 CHAPTER 2. INTRODUCTION

• Perdurants: By perdurants we mean those quantities of domains for which only a fragment exists, in space,

if we look at or touch them at any given snapshot in time [Merriam Webster].

• Domain Description: By a domain description we shall here mean a syntactic entity, both narrative and

formal, describing the domain. That is, a domain description is a structured text, such as shown in Sects. 3–
19 (pages 45–154).

• Domain Model: By a domain model we shall here mean the mathematical meaning, the semantics as
denoted the domain description.

2.2.2 Purpose of Domain Models

The Triptych dogma (above) expresses a relation of domain models to software. But domain models serve a wider

role. Mathematical models of, say, physics, are primarily constructed to record our understanding of some aspects

of the world – only secondarily to serve as a basis for engineering work. So it is with manifest models of infra

structure components such banking, insurance, health care, transport, etc. In this, and a series of papers, [33, 32],

we shall therefore present the result of infra structure studies. We have, over the years, developed many domain

models: [7].

2.2.3 Domain Science & Engineering

A series of publications [17, 20, 22, 26, 31] reflects scientific insight into and an engineering methodology for

analyzing and describing manifest domains.

2.3 A Dichotomy

2.3.1 An Outline

As citizens we navigate, daily, in a God-given and a Man-made world. The God-given world can be characterized,

i.e., “domain described”, as having natural science properties. The laws that these natural science properties obey

are the same – all over the universe ! The Man-made world can be characterized, i.e., “domain described”, as

having infrastructure components44. The “laws” that these properties obey are not necessarily quite the same

around our planet !

2.3.2 The Dichotomy

For our society to work, we are being educated (in primary, secondary, tertiary schools, colleges and at universities).

We are taught to to read, write and [verbally] express ourselves, recon and do mathematics, languages, history and

the sciences: physics (mechanics, electricity, chemistry, biology, botany’s, zoology, geology, geography, ...), but

we are not taught about most of the infrastructure structures45. That is the dichotomy.

2.3.3 The Dichotomy Resolved

So there it is:

• first study a or several domains;

• then analyze, describe and publish infrastructure domains;

• subsequently prepare educational texts “over” these;

• finally introduce ‘an infrastructures’ school course.

2.4 A [Planned] Series of Infrastructure Domain Models

So this domain science & engineering paper – on banking – is one such infrastructure domain description. In all

we are and would like to work on these infrastructure domains:

44state, regional and local government: executive, legislative and judicial, banking, insurance, health care (hospitals, clinics, rehabilitation,

family physicians, pharmacies, ...), passenger and goods transport (road, rail, sea and air), manufacturing and sales, publishing (newspapers,

radio, TV, books, journals, ...), shops (stores, ...),
45See footnote 44.

2.4. A [PLANNED] SERIES OF INFRASTRUCTURE DOMAIN MODELS 41

• Transport46 [34]

• Banking47 [28]

• Insurance48 [33]

• Health Care49 [32]

• etc.

A report on double-entry bookkeeping [25] relates strongly to most of these infra-structure component domains50.

46https://www.imm.dtu.dk/ dibj/2025/infra/main.pdf
47https://www.imm.dtu.dk/ dibj/2025/infra/banking.pdf
48https://www.imm.dtu.dk/ dibj/2025/infra/insurance.pdf
49https://www.imm.dtu.dk/ dibj/2025/infra/healthcare.pdf
50http://www.imm.dtu.dk/ dibj/2023/doubleentry/dblentrybook.pdf

42 CHAPTER 2. INTRODUCTION

Part III

A SIMPLE BEGINNING

43

Chapter 3

Kinds of Transports

Contents

3.1 Informal Outline . 45

3.2 Narrative & Formalization . 45

3.1 Informal Outline

The transport we have in mind consists of a common transport net, in the following modelled as a graph of uniquely

labeled, bi-directed edges and likewise labeled nodes. The transport net is [“intentional pull”] complemented,

cf. Sect. 7 on page 63, by a set of conveyors.
Edges, nodes and conveyors are “of kind”: ”road”, ”rail”, ”sea”, and ”air”; these are literal values51.

A conveyor is of one kind. Conveyors of kind ”road” include taxis, buses, trucks and the like. Conveyors of
kind ”rail” include passenger trains, freight trains, etc. Conveyors of kind ”sea” include sail boats, river and
canal barges, fishing vessels, line and ramp freighters, passenger liners, etc. Conveyors of kind ”air” include
helicopters, freight and passenger planes. An edge is of one kind. Edges of kind ”road” are called automobile
roads. Edges of kind ”rail”, ”sea” and ”air” are called rail tracks, sea lanes and air lanes. A node may be
of one or more kinds. Nodes of kind ”road” are called street point (street crossings, street ends, bus stops).
Nodes of kind ”rail”” are called train stations. Nodes of kind ”sea” are called harbours. Nodes of kind ”air”
are called airports.

3.2 Narrative & Formalization

20. There are four kinds of transportation: ”road, rail, sea” and ”air”.

type

20. Kind = ”road”|”rail”|”sea”|”air”

People are not conveyors, so they are no “of a kind” ! People may be merchandises.

• • •

That is: transport, in this report, is all about moving goods – here referred to as merchandises – around. By

what/whichever means: on roads, rails, sea and/or by air – possibly combining two or more of these: moving from

(road) trucks to (air) freight and/or by (sea) freighter– whether line or tramps52, or in some other order ! We omit

considering people as conveyors.

We divide the first formal presentation into five [further] segments: Overall Transport Endurants, Graph En-

durants, Conveyor Endurants, Intentional Pull and Perdurants.

By an overall traffic domain we mean that of a graph53 and a conveyor54 sub-domain.

51– as are true and false
52a boat or ship engaged in the tramp trade is one which does not have a fixed schedule, itinerary nor published ports of call, and trades on

the so-called spot market [https://en.wikipedia.org/wiki/Tramp trade.
53https://en.wikipedia.org/wiki/Graph (discrete mathematics)
54Conveyor: anything that conveys, transports or delivers. [Words are a conveyor of meaning] [https://en.wiktionary.org/wiki/conveyor]

45

46 CHAPTER 3. KINDS OF TRANSPORTS

A relation between graphs and conveyors is expressed in the intentional pull section.

The “co-operation” of graphs and conveyors is expressed in the perdurant section.

By a graph we mean a set of nodes and edges: nodes are then interpreted as road intersections (hubs); train

stations; river, canal and sea harbours; and airports. A node may be one or more of these. Edges are accordingly

interpreted as either street (or road) links, irail tracks, sailing or air routes. An edges can be only one of these.

Hence there may be many edges between any two [neighbouring] nodes.

By conveyors we mean buses, trains, boats, ships, and aircraft.

The presentation follows the domain analysis & description ontology of Fig. 3.1.

External Qualities

Describer "states"

PerdurantsEndurants

Phenomena of Natural and Artefactual Universes of Discourse

E

Perdurant

Action
Event Actor

Channel Behaviour

FluidSolid

Part
Living Specie

Animal Plant

O
th

er

Unique Identifiers
Mereologies
Attributes

transcendental injection of endurants into perdurants

Internal Qualities

Cartesian Part

E1,...,Ec

is
_m

an
if

es
t

is
_m

an
if

es
t

is
_m

an
if

es
t

E

P

F

Part Set

Ps=P−set

H
u

m
an

s

CompoundAtomic

Transcendental Deduction

Endurant

Entity

TIME,SPACE
Tanscendentally Deduced Phenomena

Indescribable

Figure 3.1: Domain Analysis Ontology

Chapter 4

Overall “Single-Mode” Transport
Endurants

This early section introduces the, perhaps two most central classes of endurants: transport nets, in the
abstracted form of graphs, and conveyor aggregates. Conveyor aggregates embody conveyors. Conveyors
“move along” nets, and nets serve to [intentional pull55] “carry” conveyor traffic.

4.1 Endurant Sorts & Observers

21. There is the domain of transport.

22. From transport endurants we can observe transport nets, i.e., graphs.

23. And from transport endurants we can observe a conveyor aggregate – embodying conveyors.

type

21. T

22. G

23. CA

value

22. obs G: T→G

23. obs CA: T→CA

4.1.1 An Endurant State Notion

We can speak of a transport state.

24. There is given a “global”56 transport value, t. It contributes to a transport state.

25. From this transport value one can derive another transport state element: a global graph value, g.

26. And from this transport value one can derive another transport state element: a global conveyor aggregate

value, ga.

27. We can postulate a transport state to consist of the three endurants: t,g,ca.

value

24. t:T

25. g:G = obs G(t)

26. ca:CA = obs CA(t)

24. σ t = {t}∪{g}∪{ca}

55cf. Sect. 7 on page 63
56We shall be using this term: ‘global’ extensively. By double quoting it we intend to express that “global” values are values that can be

referred to anywhere in the domain description. We emphasize their “globality” by use this kind of [mathematical] font !

47

48 CHAPTER 4. OVERALL “SINGLE-MODE” TRANSPORT ENDURANTS

4.2 Unique Identification

4.2.1 Unique Identifier Sorts & Observers

28. The transport endurant has a unique identifier.

29. So has the graph, and

30. the conveyor components.

type

28. TI

29. GI

30. CAI

value

28. uid T: T → TI

29. uid G: T → GI

30. uid CA: T → CAI

4.2.2 A Unique Identifier State Notion

We an postulate a “global” transport state value, t.

31. From t we observe its unique identity.

32. Given t we can derive a “global” graph value g, hence its unique identity.

33. And a “global” conveyor aggregate value ca, hence its unique identity..

34. We can therefore postulate an “uppermost” endurant transport state to consist of the three endurants: ti,gi,cai.

value

31. ti:TI = uid T(t)

32. gi:GI = uid G(g)

33. cai:CAI = uid CA(ca)

34. σ tuis
= {ti}∪{gi}∪{cai}

4.2.3 Uniqueness

35. The three [“uppermost”] transport endurants are distinct: have distinct unique identifiers.

axiom [Uniqueness of Transport Identifiers]

35. card σ t = card σ tuis
= 3

• • •

It seems that at least the overall transport endurant need not be a manifest one. Hence we leave out treatment of

mereology and attributes of the transport endurant.

Chapter 5

Graphs: Transport Nets

In addition to describing the external and internal qualities of transport nets we introduce the concepts or paths,

i.e., routes, through/across a transport net.

5.1 The Endurant Sorts and Observers

External qualities are the endurant sorts of graphs, node and edges aggregates and nodes and edges, their observers

and endurant states.

36. From graphs one can observe an aggregate, i.e., a set, ea:EA, of edges –

37. From graphs one can observe an aggregate, i.e., a set, na:NA, of nodes –

38. From an aggregate of edges one can observe a set of edges.

39. From an aggregate of nodes one can observe a set of nodes.

40. Edges are considered atomic.

41. Nodes are considered atomic.

42. We can “lump” all endurants into a sort parts.

type

36. EA

37. NA

38. ES = E-set

39. NS = N-set

40. E

41. N

42. P = G|EA|NA|ES|NA|N|E
value

36. obs EA: G → ES

37. obs NA: G → NS

38. obs ES: EA → ES

39. obs NS: NA → NS

A transport domain taxonomy is hinted at in Fig. 5.1 on the next page.

49

50 CHAPTER 5. GRAPHS: TRANSPORT NETS

...

G

... ...

T

EA,ES NA,NS

CA,CS

E E E N N N

C C C

Figure 5.1: A Simplified Transport Domain Taxonomy: Transport Nets, G, and Conveyors, C

5.1.1 An Endurant State

43. Given the global graph value, there is therefore a “global” value of an edge aggregate.

44. Given the global graph value, there is therefore a “global” value of a node aggregate.

45. Given the global edge aggregate value, there is therefore a “global” node value of of the set of all edges.

46. Given the global graph value, there is therefore a “global” value of the set of all nodes.

47. The state of all graph endurants is therefore the set of all graph parts.

value

43. ea = obs EA(g)

44. na = obs NA(g)

45. es = obs ES(g)

46. ns = obs NS(g)

47. σ ps:P-set = {g}∪{ea}∪{na}∪es∪ns

• • •

Internal qualities are fourfold: unique identification, mereology, attributes and intentional pull.

5.2. UNIQUE IDENTIFIERS 51

5.2 Unique Identifiers

Unique Identification has three facets: sort, observers and an axiom.

5.2.1 Unique Identifier Sorts and Observers

48. All parts have identification:

49. the graph,

50. the edge and node aggregates,

51. the sets of edges and nodes, and

52. each edge and node.

53. No two of these are the same, i.e., part identifiers are unique.

type

48. PI = GI|EAI|NAI|ESI|NSI|EI|NI
48. GI,EAI,NAI,ESI,NSI,EI,NI

value

49. uid G: G→GI

50. uid EA: EA→EAI, uid NA: NA→NAI

51. uid ES: ES→ESI, uid NS: NS→NSI

52. uid E: E→EI, uid N: N→NI

5.2.2 A Unique Identifier State

54. There is a “global” unique graph identifier.

55. There are, correspondingly, “global” edge and node aggregate identifiers.

56. There are, correspondingly, “global” edge set and node set identifiers; and

57. set of edge identifiers and

58. set of node identifiers.

59. The unique identifier state is the union of all the unique identifiers.

value

54. gi = uid G(g)

55. eauis = uid EA(ea) , nauis = uid NA(na)

56. esuis = uid ES(ea) , nsuis = uid NS(na)

57. euis = {uid E(e)|e:E•e∈es}
58. nuis = {uid N(n)|n:N•n∈ns}
59. σuis:PI-set = {uid P(p)|p:P•p∈σ}
59. σuis = {gi}∪{eauis}∪{nauis}∪{esuis}∪{nsuis}∪euis∪nuis

5.2.3 Uniqueness

60. No two of these are the same, i.e., part identifiers are unique.

axiom [Uniqueness of Part Identification]

60. cardσ=cardσuis

52 CHAPTER 5. GRAPHS: TRANSPORT NETS

5.3 Mereology

Mereology has three facets: types, observers and wellformedness.

5.3.1 Mereology Types and Wellformedness, I

61. The mereology of a node is a non-empty set of edge identifiers.

62. The mereology of an edge is a set of two node identifiers.

type

61. NM = EI-set axiom ∀ nm:NM • card nm>0

62. EM = NI-set axiom ∀ em:EM • card em=2

5.3.2 Mereology Observers

value

61. mereo N: N → NM

62. mereo E: E → EM

5.3.3 Mereology Wellformedness, II

63. The unique identifiers of a node must be those of the edges of the graph.

64. The unique identifiers of an edge must be those of the nodes of the graph.

axiom [Graph Mereology Wellformedness]

63. ∀ n:N•mereo N(n)⊆esuis

64. ∀ e:E•mereo E(e)⊆nsuis

5.4. PATHS OF A GRAPH 53

5.4 Paths of a Graph

65. A path (of a graph) is a finite57 sequence of one or more alternating node and edge identifiers such that

(a) neighbouring edge identifiers are those of the mereology of the “in-between” node, and such that

neighbouring node identifiers are/is those of the mereology of the “in-between” edge;

(b) and node identifiers of a path are node identifiers of the graph,

(c) and its neighbouring edge identifier(s) are in the mereology of the identified node;

(d) and edge identifiers of a path are edge identifiers of the graph,

(e) and its neighbouring node identifier(s) are/is in the mereology of the identified edge;

(f) the kinds of the adjacent nodes and edges “fit”.

66. Given a node [an edge] identifier we can retrieve the identified node [edge].

type

65. Path = (EI|NI)∗

axiom [Wellformed Paths]

65. ∀ path:Path •

65a. ∀ {i,i+1}⊆inds path ⇒
65a. ((is NI(path[i])∧is EI(path[i+1])
65a. ∨ is EI(path[i])∧is NI(path[i+1]))
65b. ∧ (path[i]∈nsuis⇒path[i+1]∈esuis

65c. ∧ uid N(retr node(path[i]))∈mereo E(retr node(path[i])))
65d. ∧ (path[i]∈esuis⇒path[i+1]∈nsuis

65e. ∧ uid E(retr edge(path[i])∈mereo N(retr edge(path[i]))))
65f. ∧ kind(retr unit(path[i]))∩kind(retr unit(path[i+1])) 6={})
value

66. retr node: NI → N, retr edge: EI → E, retr unit: UI → U

66. retr node(ni) as n • n ∈ ns ∧ uid (n)=ni

66. retr edge(ei) as e • e ∈ es ∧ uid (e)=ei

66. retr unit(i) as u • ∈ ns∪es ∧ uid U(u)=i

66. uid U(u) ≡ is E(u)→uid U(u),is N(u)→uid N(u)

The above pre/post condition allows for circular paths, i.e., possibly infinite paths that may contain the same

node or edge identifier more than once.

We can define a function that given a graph calculates all its non-circular paths.

57We shall only consider finite paths. The paths function, Item 67 below, can easily be modified to yield also infinite length paths !

54 CHAPTER 5. GRAPHS: TRANSPORT NETS

67. The paths58 function takes a graph and yields a possibly infinite set of paths – satisfying the above well-

formedness criterion.

We define the paths function in two ways.

68. Either axiomatically

69. in terms of an as predicate, with the result being the “largest” such set all of whose paths satisfy the well-

formedness criterion;

70. or inductively59:

(a) basis clause: every singleton path of either node or edge identifiers of the graph form a path.

(b) inductive clause: If pi and pj are finite, respectively possibly infinite paths of the “result”, ps, such

that

(c) paths pi 〈̂ui〉 and 〈uj〉̂ pj are in ps, and

(d) the resulting concatenated path is not circular, and

(e) the mereology of the last element of pi identifies the first element of pj,

(f) then their concatenation is a path in ps.

(g) extremal clause: No path is an element of the desired set of paths unless it is obtained from the basis

and the inductive clause by a finite number of uses.

value

67. paths: G → Path-infset

68. paths(g) as ps

69. such that: ∀ p:ps satisfy the above wellformedness

70. paths(g) ≡
70a. let ps = {〈ni〉 | ni:NI ∈ nsuis}∪{〈ei〉 | ei:EI ∈ esuis}
70f. ∪ { pi 〈̂ui〉̂ 〈uj〉̂ pj | pi 〈̂ui〉:Path-set, 〈uj〉̂ pj:Path-infset •

70b. ∧ ({pi 〈̂ui〉,〈uj〉̂ pj}⊆ps

70c. ∧ (ui∼ ∈ elems pj ∧ uj∼ ∈ elems pi)

70e. ∧ (ui ∈ mereo U(retr unit(uj))

70e. ∧ uj ∈ mereo U(retr unit(ui))))} in

70g. ps end

type

67. U = E|N

Solution to the equation, lines 70a–70c, is “’obtained’ by a smallest set fix-point reasoning.

71. Given a “global” graph, g, we can calculate a “similarly global” paths value:

value

71. paths:Path-set = paths(g)

With the notion of paths of a graph one can now examine whether

• a graph is strongly connected, that is, whether any node or edge can be “reached” from any other node or

edge; or

• a graph consists of two or more sub-graphs, i.e., there are no edges between nodes in two such sub-graphs;

• etc.

In the next section, i.e., Sect. 5.5.1, we shall now endow nodes and edges to reflect whether they are road
intersections, railway stations, harbours, and road links, railway lines, or canal/river/sea- or air-routes, etc.

58 Alarm ! Check that this function indeed generates only finite length paths !
59https://www.cs.odu.edu/ toida/nerzic/content/recursive def/more ex rec def.html

5.4. PATHS OF A GRAPH 55

72. We can formulate a theorem: for every graph we have that every path, p, in g, also contains its reverse
path, rev(p) in g.

theorem: [All finite paths have finite reverse paths]

72. ∀ g:G,p:Path•p ∈ paths(g) ⇒ rev path(p) ∈ paths(g)

value

72. rev path: P → P

72. rev path(p) ≡
72. case p of

72. 〈〉 → 〈〉,
72. 〈ui〉 → 〈ui〉,
72. 〈ui〉̂ p′̂〈uj〉 → 〈uj〉̂ rev path(p′) 〈̂ui〉
72. end

We can define auxiliary functions, for example:

73. Given a kind we can select all the graph paths of that kind.

value

73. path kind: Path → Kind → Path-set

73. path kind(p)(k) as pks

73. • pks ⊆ paths ∧
73. ∀ pk:Path•pk ∈ pks∧∀ elems pk•kind(retr unit(pk))∩{k}6={}

56 CHAPTER 5. GRAPHS: TRANSPORT NETS

5.5 Attributes

With endurants now being endowed with, i.e., having attributes, graphs come to “look”, more-and-more, as trans-

port nets !

Attributes has three facets: types, observers and wellformedness.

5.5.1 Attribute Types & Observers

We introduce but just a few Graph Attributes.

74. From a node we can thus observe the “kind” of node: whether ”road crossing”, train ”station”, canal/river/sea

boat/ship ”harbour”, and/or ”airport” – one or more ! [A static attribute]

Edge:

75. From an edge we can thus observe the “kind” of edge: whether it represents a street (segment between two

neighbouring road crossings), or a rail track (between two neighbouring stations), or a sea route between

two neighbouring (canal/river/sea) harbours or an aircraft route between two neighbouring airports.

76. From an edge we can we can observe its length60. [Static Attribute]

77. and the cost61 of using the edge62. [Static Attribute]

type

74. NodeKind = Kind-set axiom ∀ nk:NodeKind • nk 6={}
75. EdgeKind = Kind-set axiom ∀ ek:EdgeKind • card ek=1

76. LEN = Nat

77. COST = Nat

value

74. attr NodeKind: N → NodeKind

75. attr Edgekind: E → EdgeKind

76. attr LEN: E → LEN

77. attr COST: E → COST

60LEN is here “formalized” in terms of Natural numbers. Whether such lengths stand for mm, cm, m, km, inches, feet, yard, mile or other

we presently leave unspecified.
61COST is here “formalized” in terms of Natural numbers. Whether such costs stand for $, ¤, £, or other we presently leave unspecified.
62See [18]. The usual arithmetic operators apply: scaling between ... Check also [57].

5.5. ATTRIBUTES 57

78. Given a node or an edge we can observe its kinds.

79. Given a graph, and a “kind”, we can calculate all its paths of the same kind.

80. Given a finite route we can we can calculate its lengths

81. and costs.

82. We can also calculate the shortest route, possibly a set, of a graph,

83. and the least costly,63

84. etc.

value

78. kind: (E|N) → EdgeKind|NodeKind
78. kind{en} ≡ is E(en)→attr Edgekind(en),is N→attr Edgekind(en)

79. route kind: G → Kind → Path-set

79. route kind(g)(k) ≡
79. { 〈p[i]|i:Nat,p:P•p∈paths(p)∧1≤i≤len(p)∧k∈kind(p[i])〉 }

80. path length: P → LEN

80. path length(p) ≡
80. case p of

80. 〈〉 → 0

80. 〈ui〉 → retr path length(ui),

80. 〈ui〉̂ p′ → retr length(ui)+path path length(p′)

80. end

80. retr path length: UI → LEN

80. retr path length(ui) ≡ (is EI(ui)→attr LEN(retr edge(ui)),is NI(ui)→0)

81. path cost: P → LEN

81. path cost(p) ≡
81. case p of

81. 〈〉 → 0

81. 〈ui〉 → retr cost(ui),

81. 〈ui〉̂ p′ → retr path cost(ui)+path cost(p′)

81. end

81. retr path cost: UI → COST

81. retr path cost(ui) ≡ (is EI(ui)→attr COST(retr edge(ui)),is NI(ui)→0)

82. shortest route: G → P-set

82. shortest route(g) ≡
82. let ps = paths(g) in

82. { p | p:P • retr len(p) ∧ ∀ p′:P•p′∈ps ∧ retr path len(p)≤retr path len(p′) }
82. end

84. etc.

The “etc.” covers such auxiliary functions as shortest route of a given kind , least costly route of a given kind ,

etc. !

More Graph Attributes will be added [“later”].

63See William Cook’s Web page: https://www.math.uwaterloo.ca/tsp/index.html?mc cid=a51d99f2aa&mc eid=783b63461a

and Quanta Magazine’s Fundamentals Computer Science Web page https://mail.google.com/mail/u/0/?ui=2#inbox/FMfcgz-

QZTzdWzqtRWmVWkQrcNzzDrSnJ

58 CHAPTER 5. GRAPHS: TRANSPORT NETS

5.5.2 Attribute Wellformedness

85. If a node is of some kind, then there must be at least one edge leading to/from it of the same kind.

86. If an edge is of some kind, then the nodes connected to it must also be of that [same] kind.

87. If a node is of kind other than "car", then there there must be an edge “of” that node of kind "car". [One

must be able to drive to stations, harbours and airports by car, taxi, lorry (truck) or bus !]

axiom

85.

85.

86.

86.

87.

87.

Chapter 6

Conveyors, I

We remind the reader that conveyors are either for the road: cars, taxis, trucks, buses, etc.; or for the rail: trains,

or for the sea: sailboats, barges, freighters, passenger liners, etc.; or for the air: helicopters and airplanes.

6.1 Conveyor Endurant Sorts & Observers

88. From a conveyor aggregate one can observe a finite set of conveyors.

89. A conveyor is either a

• a road conveyor

– car,

– taxi,

– bus,

– truck, etc.,

• or a rail conveyor

– passenger train,

– freight train, etc.,

• or a water conveyor

– sailboat,

– barge,

– fishing vessel,

– freighter,

– passenger liner, etc.,

• or an airborne conveyor

– civil aircraft,

– freight plane, or

– passenger aircraft, etc.

90. Conveyors are atomic parts.

91. Conveyors or “of kind”.

92. Conveyor aggregates are uniquely identified.

93. Conveyors are uniquely identified.

type

88. CS = C-set

89. C = Road|Rail|Water|Air
89. Road = ...

89. Rail = ...

89. Sea = ...

89. Air = ...

92. CAI

93. CI

value

92. uid CA: CA → CAI

93. uid C: C → CI

59

60 CHAPTER 6. CONVEYORS, I

6.2 Unique Identifiers

6.2.1 Unique Identifier State

94. The unique identifier of a conveyor aggregate contributes to the unique identifier state for the [entire] trans-

port domain.

95. The unique identifiers of all conveyors contribute to the unique identifier state for the [entire] transport

domain.

96. The overall unique identifier state, σuis, is therefore the union of all the unique identifiers of all parts of a

transport domain.

value

94. cai:CAI = uid CA(ca)

95. cis:CI-set = { uid C(c) | c:C • c ∈ obs CS(ca) }
96. σuis = σ p∪{cai}∪cis

6.2.2 Uniqueness

97. All parts are uniquely identified.

axiom [All parts are uniquely identified]

97. card σ = card σuis

6.2.3 Conveyor Retrieval

98. From a conveyor identifier one can obtain, via cs, the conveyor of that identification.

value

98. retr conveyor: CI → C

98. retr conveyor(ci) ≡ ι c:C • c ∈ cs ∧ uid C(c)=vi

6.3 Mereology

6.3.1 Mereology Types & Observers

99. The mereology of a conveyor is a finite set of edge and node identifiers that it may “visit”.64

type

99. CM = UI-set

value

99. mereo C: C → CM

64We shall extend this mereology in Sect. 14.1 on page 97.

6.4. ATTRIBUTES 61

6.3.2 Mereology Wellformedness

100. The identifiers of a conveyor mereology must be those of the edges and nodes of the transport graph, g.

101. The kind of conveyor must “fit” the kind of edges and nodes65.

axiom [Conveyor Mereology of Right Kind]

100. ∀ c:C•c∈cs⇒∀ ui:UI•ui∈mereo C(c)

100. ⇒ ui∈euis∪nuis

101. ∧ c kind(c)∩kind(retr unit(ui)) 6={} ι101

6.4 Attributes

6.4.1 Conveyor Attribute Types & Observers

In this section we deal wit some attributes. Further conveyor attributes are brought forward in Sect. 13.3.3 page 94.

102. Conveyors are of kind. [Static Attribute]

103. These routes must be of the kind of the conveyors traveling them !

104. Conveyors either stand still or move. That is, they have position in the graph, an index on the service
route. Either the position is at a node, or somewhere, a fraction, f , of a distance along an edge, from
one node to an adjacent. [Programmable Attribute]

105. The service route index must be commensurate with the conveyor position.

106. We omit further possible attributes: Speed, Acceleration, Weight,

type

102. Kind

104. CPos = AtNode | OnEdge

104. AtNode :: NI

104. OnEdge :: NI × (F × EI) × NI

104. F = Real axiom ∀ f:F•0<f<1

value

102. attr Kind: C → Kind

104. attr CPos: C → CPos

106. ...

axiom [Routes of commensurate kind]

103. ∀c:C•let ps=attr Routes(c)in∀p:Path•p∈ps∧ps⊆path kind(p)(kind(c)) end

65Cars, Taxis, Buses, Trucks move along edges and nodes of kind road [a literal value, like true and false are literal values], Passenger

and Freight Trains move along edges and nodes of kind rail [a literal value], Sail Boats, Barges, Fishing Vessels, Ferries, Freighters, Ferries
and Passenger Liners move along edges and nodes of kind sea [a literal value] and Private Aircraft, Helicopters, Freight Planes and Passenger

Aircraft move along edges and nodes of kind air” [a literal value].

62 CHAPTER 6. CONVEYORS, I

6.4.2 Routes

107. The following properties hold of any route:

(a) the current route of a conveyor must always be in the routes of that conveyor.

(b) The static attribute Routes must all start and end with a node identifier.

(c) When initialized, a conveyor “starts” with a CurrentRoute chosen from the Routes.

(d) At any moment a conveyor moves along a [programmable attribute] current route.

(e) When moving from an edge to a node the current route is shortened by one.

(f) When a route is thereby exhausted, i.e., 〈〉, the conveyor may decide to select a new route.

(g) It does so from the static attribute Routes.

i. The previous, exhausted route ended with a node identifier.

ii. The next, to be current, route must start with that node identifier.

axiom [Commensurable Routes]

107. ∀ c:C,r:Routes,cr:CurrRoute • r=attr Routes(c)∧cr=attr CurrRoute(c)
107a. cr ∈ r

107b. ∧ is NI(hd r)∧is NI(r[len r])

For cars the Routes attribute may exclude certain paths, for example such toll-roads for which they have no

license. When, for example, buses, trains, ferries and passenger aircraft, the routes are such that for every pat there

is at least one path that “connects” to the former: ends, respectively starts with identical node identifiers. Usually

the set of routes contains just two paths: ode from node ni to node n j and the other from node n j to node ni. And

so forth !

6.4.3 Conveyor Attribute Wellformedness

TO BE WRITTEN

Chapter 7

Intentional Pull, I

7.1 History Attributes

History attributes record when conveyors (cars, trains, boats and aircraft) were where and at which times. They are

chronologically ordered, time-stamped sequences of event notices. History attributes are programmable.

History attributes “record” events. Conveyors, as controlled by, say humans, may not note down these events,

and edges and nodes, which we in some sense consider innate66, “most likely” do not notice them.

But we, “us”, humans, can speak about and recall [these, and “other”67] events – and they are therefore an

essential aspect of modelling any manifest domain.

108. We “lump” nodes and edges into single element ways [i.e., endurants].

109. The ordered, TIME68 -stamped, history attribute event notices record the vehicles, by their unique identi-

fiers.

110. The ordered, TIME-stamped, conveyor history attribute event notices record the ways, by their unique

identifiers.

type

108. W = N|E
108. WI = NI|EI
109. WHist = (s t:TIME×VI)∗

110. ConvHist = (s t:TIME×CI)∗

value

108. retr W: WI → N|E
108. retr W(wi) ≡ ! w:W • w ∈ns∪es ∧ uid W(w)=wi

109. attr WHist: W → WHist

109. attr ConvHist: C → ConvHist ι109
axiom [Ordered Way and Conveyor Histories]

109. ∀ wh:WHist • {i,i+1}⊆inds wh ⇒ s t(rh[i])<s t(wh[i+1])
110. ∀ ch:ConvHist • {i,i+1}⊆inds ch ⇒ s t(ch[i])<s t(ch[i+1])

66An innate quality or ability is one that you were born with, not one you have learned. That is: we consider edges and nodes to be innate
wrt. observing and recording the where-about events of conveyors – other than indirectly through the space they “occupy”, the possible wear

& tear of the road surface or rail track, or possible pollution of the sea and air, etc.
67By the seemingly cryptic “other” events, we may, in the context of transport, think of such events as conveyor breakdown, edge collapse,

etc.
68TIME is a “global” phenomenon.

We say 15:23 June 23, 2025 CET, and mean that it is now 23 minutes past 3pm, 25th of February 2025, Central European Time.
TI stands for time-interval.

We say 3 hours and 23 minutes.

63

64 CHAPTER 7. INTENTIONAL PULL, I

7.2 An Intentional Pull

Nodes and edges are intended to “carry” traffic [only] in the form of vehicles, and vehicles are intended to move

along [only] ways, i.e., nodes and edges.

111. for all conveyors (of a transport) if

(a) a conveyor is said to be on a way, i.e, at a node [resp. on an edge], at time τ ,

(b) then that way must “carry” that conveyor

(c) at exactly that same time;

112. and vice-versa, if-and-only-if, for all ways

(a) a way is said to “carry” a conveyor at time τ ,

(b) then that conveyor must be on that way

(c) at exactly that same time.

Intentional Pull:
111. ∀ c:C • c ∈ cs •

111a. let ch:CH = attr CH(c) in

111a. ∃ ! i:Nat • i ∈ inds ch •

111a. let (τ,wi) = ch[i] in

111b. let wh:WH = attr WH(retr way(wi)) in

111c. ∃ ! j:Nat • j∈ inds WH • s t(wh[j]) = τ
111. end end end

112. ≡
112. ∀ w:W • w ∈ es∪ns •

112a. let wh = attr WH(w) in

112a. ∃ ! k:Nat • k ∈ inds wh •

112a. let (τ,ci) = wh[k] in

112b. let ch:CH = attr WH(retr conveyor(ci)) in

112c. ∃ ℓ:Nat • ℓ∈ inds ch • s t(ch[ℓ]) = τ
112. end end end

Chapter 8

Single-mode Transport Behaviours

The previous sections, Sects. 4–7, studied, analyzed & described a transport domain syntactically, that is: its
manifest forms and properties, but not its meaning, i.e., semantics. This sections is about that: the “meaning”,
so-to-speak, of endurants. This will be done by transcendentally deducing behaviours and actions from the
description of endurants. Endurants are transcendentally deduced into behaviours, and described as s with
arguments. Their internal properties are transcendentally deduced into arguments of these behaviours. We
choose to only endow edges, nodes and conveyors with behaviours. Behaviours synchronize and communicate
via “the ether” – here RSL/CSP-modeled as a channel array that allows conveyor, node and edge behaviours
(ui,u j,uk) to cooperate !

8.1 Communication

8.1.1 Communication Medium

113. There is a “global” communication, i.e., behaviour interaction medium, comm. It allows transport
Behaviours to synchronize and exchange information of type M.

channel

113. comm[{i,j} | i,j:UI•{i,j}∈uis] MSG

8.1.2 Communication Causes

114. A conveyor, ci:CI, at a node decides to remain at that node.

115. A conveyor, ci:CI, at a node decides to change route.

116. A conveyor, ci:CI, at a node decides to leave the node, and

117. to enter an edge.

118. A conveyor, ci:CI, on an edge decides to move on.

119. A conveyor, ci:CI, on an edge decides to leave that edge, and

120. to enter the node.

121. And a conveyor, ci:CI, at a node or on an edge may decide, “surreptitiously” or otherwise, to just stop.

8.1.3 Communication Messages

122. The message is simple: a time stamp and the identity of a node, an edge or a conveyor.

type

122. MSG = TIME × (NI|EI|CI)

65

66 CHAPTER 8. SINGLE-MODE TRANSPORT BEHAVIOURS

8.2 Behaviours

So we model conveyor, node and edge behaviours. Each of these behaviour functions has arguments of the follow-

ing kind:

• a unique identifier, never changes, distinguishes between multiple instances of edges, or nodes, or convey-

ors;

• a mereology; and

• attributes:

– static attributes, i.e., attributes whose value never changes;

– monitorable attributes, i.e., attributes whose value changes “at their own volition”: itself nor coop-

erating behaviours cannot influence their value – we shall not consider monitorable attributes in this

study; and

– programmable values, i.e., attributes whose value may be changed by the behaviour – i.e., acts like

variables that can be read and updated !

Each of these behaviours are modelled as processes that may “go-on-and-on-forever” – modelled in terms of tail-

recursion – modelled also in the specifying Unit as part, “the last”, of the behaviour signature.

8.3 Behaviour Signatures

123. We present the conveyor, edge and node behaviour signatures.

value

123. conveyor: CI→CM→(Kind×Routes)→(CurrRoute×CPos×CH)→Unit

123. edge: EI→EM→(Kind×LEN×...)→NH→Unit

123. node: NI→NM→(Kind-set×...)→NH→Unit

8.4 Behaviour Definitions

8.4.1 Conveyor Behaviours

• A conveyor alternates between being at a node or on edge, so its behaviour is defined in terms of “either”

and their “progress” onto “the other” !

• CONVEYOR Behaviour AT A NODE:

124. A conveyor at a node either

(a) changes its current route, and choose another, the next current route, or

(b) remains at that node, idling, or circling around, or

(c) is entering an edge, or

(d) stops at that node, i.e., leaves the transport altogether.

value

124. conveyor(ci)(cm)(k,routes)(cr,AtNode(ni),ch) ≡
124a. conveyor change route(ci)(cm)(k,routes)(cr,AtNode(ni),ch)

124b. ⌈⌉ conveyor remains at node(ci)(cm)(k,routes)(cr,AtNode(ni),ch)

124c. ⌈⌉ conveyor enters edge(ci)(cm)(k,routes)(cr,AtNode(ni),ch)

124d. ⌈⌉ conveyor stops at node(ci)(cm)(k,routes)(cr,AtNode(ni),ch)

8.4. BEHAVIOUR DEFINITIONS 67

• CONVEYOR Actions AT A NODE:

125. A conveyor may non-deterministically decide to change its current route at a node

(a) at time τ ,

(b) selects of next, to be, current route from routes such that that the chosen route begins with the node

being otherwise left,

(c) so informing the node, and

(d) updates its history,

(e) whereupon it resumes being a conveyor with both updated current route and history.

125. conveyor change route(ci)(cm)(k,routes)(cr,AtNode(ni),ch) ≡
125a. let τ = record TIME(),

125b. ncr = select next route(ni,routes),

125d. ch′ = 〈(τ,ni)〉̂ ch in

125c. comm[{ci,ni}] ! (τ,ci) ;

125e. conveyor at node(ci)(cm)(k,routes)(ncr,AtNode(ni),ch′) end

125b. selects next route:NI × Routes → CurrRoute

125b. selects next route(ni,routes) as ncr • ncr ∈ routes ∧ hd ncr = ni

126. A conveyor remains at a node

(a) at some time, τ ,

(b) which is to be noted by the node behaviour ni

(c) whereupon the conveyor resumes being a conveyor except now with an updated conveyor history,

ch.

value

126. conveyor remains at node(ci)(cm)(k,routes)(cr,AtNode(ni),ch) ≡
126a. let τ = record TIME() in

126b. comm[{ci,ni}] ! (τ,ci);
126c. conveyor(ci)(cm)(k,routes)(cr,AtNode(ni),〈(τ,ni)〉̂ ch) end

127. A conveyor at a node may non-deterministically choose to leave a node and enter an edge

(a) at some time, τ , and as determined by the current route’s next element, enters that route, i.e., edge,

(b) which is to be noted by the node and designated edge behaviours ni,

(c) updates its position

(d) and its history accordingly,, and

(e) resumes being a conveyor on an edge .

value

127. conveyor enters edge(ci)(cm)(k,routes)(cr,AtNode(ni),ch) ≡
127a. let τ = record TIME() in

127b. (comm[{ci,ni}] ! (τ,ni) ‖ comm[{ci,ni}] ! (τ,hd cr)) ;

127c. let ei = hd cr in let {ni,ni′} = mereo E(retr edge(ei)(es)) in

127c. let cpos = onEdge(hd cr,(ei,(ni,f,ni),ni′)) in

127e. conveyor(ci)(cm)(k,routes)(cr,cpos,〈(τ,ni)〉̂ ch) end end end end

68 CHAPTER 8. SINGLE-MODE TRANSPORT BEHAVIOURS

128. And a conveyor may non-deterministically choose to abandon being a conveyor, i.e., leaving transport alto-

gether – stopping !

129. But first it notifies the node at which it stops.

value

128. conveyor stops at node(ci)(cm)(k,routes)(cr,AtNode(ni),ch) ≡
129. let τ = record TIME() in

129. comm[{ci,ni}] ! (τ,ci) ;

128. stop end

• A conveyor behaviour on an edge alternates.

• CONVEYOR Behaviour ON EDGE

130. An edge [behaviour] at an edge external non-deterministically either:

(a) moves along the edge, a fraction “at a time”,

(b) stops on the edge and thereby “leaves” transport; or

(c) enters a node.

130. conveyor(ci)(cm)(k,routes)(cr,OnEdge(nui f
,(f,e),nuit),ch) ≡

130a. conveyor moves on edge(ci)(cm)(k,routes)(cr,OnEdge(nui f
,(f,e),nuit),ch)

130c. ⌈⌉ conveyor stops on edge(ci)(cm)(k,routes)(cr,OnEdge(nui f
,(f,e),nuit),ch)

130b. ⌈⌉ conveyor enters node(ci)(cm)(k,routes)(cr,OnEdge(nui f
,(f,e),nuit),ch)

• CONVEYOR Actions ON AN EDGE:

131. A conveyor moving along an edge

(a) at time τ is modelled by

(b) incrementing the fraction of its position

(c) (while updating its history)

(d) notifying the edge [behaviour]

(e) [technically speaking] adjusting its position, and, finally,

(f) resuming being a thus updated conveyor [OnEdge]

value

131. conveyor moves on edge(ci)(cm)(k,routes)(cr,OnEdge(nui f
,(f,e),nuit),ch) ≡

131a. let τ = record TIME(),

131b. ε:Real • 0 < ε ≪ 1 in

131b. let f′ = f+ε,
131d. cpos = OnEdge(nuii f

,(f′,e),nuit) in

131c. let ch′ = 〈(τ,ci)〉̂ ch in

131e. comm[{ci,e j}] ! (τ,ci) ;

131f. conveyor(ci)(cm)(k,routes)(cr,cpos,ch′) end end end

131. pre hd cr = nui f

8.4. BEHAVIOUR DEFINITIONS 69

132. A conveyor enters a node

(a) at time τ is modelled by altering its position

(b) notifying both the edge and designated node behaviours

(c) resumes being an updated conveyor behaviour.

value

132. conveyor enters node(ci)(cm)(k,routes)(cr,OnEdge(nui f
,(f,ei),nuit),ch) ≡

132a. let τ = record TIME(), cpos = AtNode(hd cr) in

132b. (comm[{ci,ei}] ! (τ,ci) ‖ comm[{ci,nuit}] ! (τ,ci)) ;

132c. conveyor(ci)(cm)(k,routes)(tl cr,cpos,〈(τ,ci)〉̂ ch) end

132. pre hd cr = nui f

133. A conveyor may non-deterministically choose to abandon being a conveyor, i.e., leaving transport altogether

– stopping !

134. But first it notifies the edge at which it stops.

value

133. conveyor stops on edge(ci)(cm)(k,routes)(cr,OnEdge(nui f,(f,e),nuit),ch) ≡
134. let τ = record TIME() in

134. comm[{ci,e j}] ! (τ,ci) ;

133. stop end

133. pre hd cr = nui f

8.4.2 Node Behaviour

135. Node [behaviours]

(a) external non-deterministically accept conveyor, ci, actions

(b) at times τ

(c) augment their histories accordingly and

(d) resumes being node behaviours.

value

135. node: NI → NM → (NodeKind×...) → NH Unit

135a. node(ni)(nm)(nk,...)(nh) ≡
135c. let msg= ⌈⌉⌊⌋ { comm[{ni,ci}] ? | ci:CI • ci ∈ nm } in

135d. node(ni)(nm)(...)(〈msg〉̂ nh) end

8.4.3 Edge Behaviour

136. Edge [behaviours] – similarly,

(a) external non-deterministically, accept conveyor, ci, actions

(b) augment their histories accordingly and

(c) resumes being edge behaviours.

value

136. edge: EI → EM → (EdgeKind×LEN×COST×...) → EH Unit

136a. edge(ei)(em)(len,cost,...)(eh) ≡
136b. let msg= ⌈⌉⌊⌋ { comm[{ei,ci}] ? | ci:CI • ci ∈ em } in

136c. edge(ni)(em)(len,cost,...)(〈msg〉̂ eh) end

70 CHAPTER 8. SINGLE-MODE TRANSPORT BEHAVIOURS

8.5 Domain Instantiation

By domain initialization we mean the invocation69 of all behaviours.

137. The overall initialization expresses the parallel composition of the initialization of

138. all conveyors,

139. all nodes and

140. all edges.

137. initialization: Unit → Unit

137. initialization() ≡ t

138. ‖ { conveyor

138. (uid C(c))

138. (mereo C(c))

138. (attr KindC(c),attr RoutesC(c)) [Static Attrs.]

138. [Programmable Attrs.] (attr CurrRouteC(c),attr CPoC(c)s,attr CHC(c))
138. | c:C•c ∈ cs}
139. ‖ ‖ { edge

139. (uid E(e))

139. (mereo E(e))

139. (attr EdgeKind(e),...) [Static Attrs.]

139. [Programmable Attrs.] (attr (e),attr EH(e))
139. | e:E•e ∈ es }
140. ‖ ‖ { node

140. (]uidN(n))

140. (mereo N(n))

140. (attr NodeKinds(n)) [Static Attrs.]

140. [Programmable Attrs.] (attr NH(n))
140. | n:N•n ∈ ns}

But: the initializaton of conveyors is too simplified: To capture an essence of transport it seems reasonable to

distinguish between the various kinds of conveyors.

Thus the initialization of conveyors “really” amounts to the initialization of all

• cars, trucks, taxis,

• buses,

• passenger & freight trains,

• sailboats, barges, vessels,

• passenger liners, ferries,

• civil aircraft,

• freight planes and

• passenger aircraft.

69Invocation – in the colloquial – “call”

Part IV

A MULTI-MODE TRANSPORT:
ENDURANTS

71

Chapter 9

Multi-mode Transport

The domain description of Chapters 5–8 was for single-mode transport: It focused on transport nets and con-
veyors. For a model of multi-mode transport we suggest to introduce:

• Merchandise: By merchandise we shall here understand a wider concept than usually thought of. To
us merchandise is what customers wishes to and actually send and receive: goods, if You will, that have
weight, volume and value. Could be a car, a book, 10.000 barrels of oil, etc. Merchandise is treated in
Sect. 11.

• Customers: A [multi-mode transport] customer is either, if persons, wishes to travel from one place to
another, or if otherwise wishes to send merchandise from one place, e.g., the customer’s place, e.g. a
node or an edge, to be received by a recipient at that another place. In the latter case customers are
persons, businesses, organizations, or other, i.e., are senders or receiver , i.e., recipients. Customers are
treated in Sect. 12.

• Conveyor Companies: A conveyor company is a business which manages a fleet of conveyors: trucks,
freight trains freighters (i.e., vessels) and freight aircraft. Conveyor Companies are treated in Sect. 13.

• Logistics Companies: A transport logistics company handles requests from senders of passengers or
goods (containers, oil, coal, gas, grain, salt, cars, machinery, etc.) to have these conveyed from one
node to another, world-wide, by whatever means of combinations of conveyors and routes. A logistics
company thus is a company which arranges for transport of merchandise. To do so logistics firms have
access to the transport offerings of a number of, not necessarily all, conveyor companies: their routes,
timetable and costs. Logistics Companies are treated in Sect. 15.

• “Overall Top” Transport Endurants: The graph, conveyors, merchandise, customers, conveyor com-
panies and logistics companies form the transport domain. As a whole they are defined in Sect. 10.

After these sections we

• outline an intentional pull for multi-mode domains, Sect. 16,

• summarize the syntax of multi-mode transport commands, Sect. 17,

• and cover multi-mode transport behaviours, Sect. 19.

• • •

To obtain the services of merchandise transport comes at a price, the cost.
The notion of cost is related to the notion of cash. It costs to have merchandise transported. Customers

shall pay costs. Say, in the form of cash70. Costs shall be modelled as integers. They are attributes of
merchandise, customers, conveyor companies and logistics companies.

You may very well think of cash as manifest, i.e., as endurant parts. But in the context of transport we can
abstract from that. If we were to model cash as endurants, then were we to model it as atomic or composite ?
Now we avoid such questions !

70– or through withdrawal from bank accounts, or other. See [28].

73

74 CHAPTER 9. MULTI-MODE TRANSPORT

Chapter 10

“Top” Transport Endurants

10.1 The Endurants – External Qualities

10.1.1 A Transport Taxonomy

We refer to Fig. 10.1 for a taxonomy of the transport domain.

T

G

NA EA K...

... ...N E

LA,LS

M M K L L

EN

MA,MS KA,KS

Graph Merchandise

... CKCK

... ...C

CS CO CS CO

CCC

Nodes Edges Company
Conveyor

Conveyors

Conveyor

Office

Transport

Companies
Conveyor

Non−manifest Endurant Possibly Manifest Endurant is_part_of... ... refers_to

LEGEND:

CKA,CKS

Kustomers = Klients
Logistics

Companies

Figure 10.1: A Transport Domain Taxonomy

The “downwards” slanted lines express that the “lower” part is part of the “upper” part.
The “horizontal arrow” expresses that the source part embed to “arrow” part. [Only one is illustrated;

more could !

75

76 CHAPTER 10. “TOP” TRANSPORT ENDURANTS

10.1.2 An Overview of The Endurants

The Transport Domain

141. There is given the domain of interest, i.e., the universe of discourse, T.

type

141. T

value

141. t:T

Graphs

Graphs were treated in Sect. 5.

142. In a transport domain can observe the transport net, i.e., a graph, g:G.

143. From a graph we can observe a node aggregate,

144. and an edge aggregate.

145. From a node aggregate we can observe a set of nodes.

146. From an edge aggregate we can observe a set of edges.

type

142. G

143. NA

144. EA

145. NS = N-set

146. ES = E-set

145. N

146. E

value

142. obs G: T → G

143. obs NA: G → NA

144. obs EA: G → EA

145. obs NS: NA → NA

146. obs ES: EA → ES

And likewise for the unique identification of the manifest of these endurants.

type

142. GI

143. NAI

144. EAI

145. NO

146. EI

value

142. uid G: G → GI

143. uid NA: G → NAI

144. uid EA: G → EAI

145. uid N: N → NI

146. uid E: E → EI

10.1. THE ENDURANTS – EXTERNAL QUALITIES 77

Merchandise

Merchandise is treated in Sect. 11.

147. From a transport domain we can observe a merchandise aggregate, ma:MA;

148. and from a merchandise aggregate we can observe the set, ms:MS of merchandise.

And likewise for the unique identification of the manifest of these endurants.

type

147. MA

148. MS = M-set

value

147. obs MA: G → MA

148. obs MS: MA → MS

type

147. MAI

148. MI

value

147. uid MA: MA → MAI

148. uid M: M → MI

Customers

Customers are treated in Sect. 12.

149. From a transport domain we can observe a “k”ustomers aggregate, ka:KA;

150. and from a customer aggregate we can observe the set, ks:KS of customers.

151. We can speak of the set, ks, of all customers of a transport domain.

And likewise for the unique identification of the manifest of these endurants.

type

149. KA

150. KS = K-set

value

149. obs KA: T → KA

150. obs KS: KA → KS

type

149. KAI

150. KI

value

149. uid KA: KA → KAI

150. uid K: K → KI

151. ks:K-set = obs KS(obs KA(t))

78 CHAPTER 10. “TOP” TRANSPORT ENDURANTS

Conveyor Companies & Conveyors

Conveyors were treated in Sect. 6 and Conveyor Companies are treated in Sect. 13.

152. In a transport domain, t:T, we can observe the composite endurant of conveyor companies aggregate,
cca:CCA.

153. From a conveyor companies aggregate, cca:CCA, we can observe a set,cks:CKS, of conveyor companies.

154. Conveyor companies are considered atomic.

From a conveyor company, ck:CK, we can observe

155. a conveyor aggregate, ca:CA,

156. and, from that, a conveyor set, cs:CS, which is a set of conveyors.

From a conveyor company, ck:CK, we can also observe

157. we can observe an atomic conveyor company office, co:CO,

158. and an atomic, optional logistics subsidiary, ol:oL, i.e., the conveyor company may operate its own
logistics company.

type

152. CKA

153. CKS = CK-set

154. CK

155. CA

156. CS = C-set

157. CO

158. oL = LI | nil

value

152. obs CKA: T → CKA

153. obs CKS: CKA → CKS

155. obs CA: CK → CA

156. obs CS: CA → CS

157. obs CO: CK → CO

158. obs oL: CK → oL

And likewise for the unique identification of the manifest of these endurants.

type

152. CKAI

154. CKI

155. CAI

157. COI

158. oLI = LI | nil

value

152. uid CKA: CKA → CKAI

154. uid CK: CK → CKI

155. uid CA: CK → CAI

157. uid CO: CK → COI

158. uid oL: CK → oLI

• • •

We shall, in the following, not treat the concepts of conveyor [company] offices and the logistics company
parts of conveyor companies. We shall also not treat the concepts of conveyor aggregates and conveyor sets,
but will treat the concept of conveyors.

10.1. THE ENDURANTS – EXTERNAL QUALITIES 79

Logistics Companies

Logistics Companies are treated in Sect. 15.

159. From a transport domain we can observe a logistics companies aggregate;

160. and from a logistics companies aggregate we can observe the set, ls:LS of logistics companies.

And likewise for the unique identification of the manifest of these endurants.

type

159. LA

160. LS = L-set

value

159. obs LA: T → LA

160. obs LS: LA → LS

type

159. LAI

160. LI

value

159. uid LA: LA → LAI

160. uid L: LA → LS

Node and Edges were first treated in Sect. 5. To this we now add a widened understanding of their mereologies
and attributes.

161. The mereology of nodes is a pair of the set identifiers of edges imminent upon the nodes and the set of
identifiers of the customers and conveyors that can deposit merchandises “on hold” at the nodes.

162. The mereology of nodes is a pair of the set identifiers of [the pair of] nodes “at ether end of the edge”
and the set of identifiers of conveyors that may travel along the edge.

Nodes and edges have the following attributes:

(a) Nodes have merchandises “on hold” – by contract number,

(b) and nodes have node histories: time-stamped events of which conveyors notified their presence at
the node.

(c) Edges have length,

(d) cost of travel,

(e) and event histories:: time-stamped events of which conveyors notified their presence at the edge.

type

161. NM = EI-set × (KI|VI)-set

162. EM = HI-set × VI-set

162a. OnHold = ContractNu →m M-set

162b. NHist = (TIME × CI)∗

162c. LEN

162d. COST

162e. EHist = (TIME × CI)∗

value

161. mereo N: N → NM

162. mereo E: E → EM

162a. attr OnHold: N → OnHold

162b. attr NHist: N → NHist

162c. attr LEN: E → LEN

162d. attr COST: E → COST

162e. attr EHist: E → EHist

• • •

Atomic Parts:

163. Nodes, edges, merchandise, “k”ustomers, conveyors, conveyor company offices, and logistics firms are

considered atomic.

type

163. N, E, M, K, C, CO, L

We shall not [really] consider conveyor offices and logistics firms in this report.

80 CHAPTER 10. “TOP” TRANSPORT ENDURANTS

10.2 On Internal Qualities.

We discuss which endurants may be considered manifest. That is, to which of the parts – as, for example, shown

by the boxes of Fig. 10.1 on page 75 – one might associate internal qualities, say in preparation for their part
behaviours.

• With the transport part, t:T, we might – here rather loosely – associate a ministry of transport, or ...;
We shall omit such associations.

• With the graph part, g:G, we might associate various other public (or private) institutions: ministry of
roads,ministry of railways, ministry of shipping, and “ministry of air” ! We shall omit such associations.

• With the merchandise part one might associate some institution of consumer protection or other. We
shall omit such associations.

• With the customer (client, consumer) part one might associate some kind of institutions. We shall omit
such associations.

• With the conveyor company part one might associate some conveyor association. We shall omit such
associations.

• With the logistics companies part one might similarly associate some associations. We shall omit such
associations.

• With nodes, edges, merchandise, customers [clients], conveyor sets and conveyor offices we have and
shall associate internal qualities – in respective sections 5, 6 and 11, 12, 13 and 15.

So we shall not elaborate on any internal qualities of the “top-level” endurants, that is those of T, G, NA,

EA, MA, KA, CCA, and LA. But we shall, later, in indicated sections, elaborate on internal qualities of the
“next-level” endurants, i.e., those of M, K, CK, CS, CO and L [Sects. 11, 12, 13 and 15] – as we already
have for N, E and C [Sects. 5 and 6].

Figure 10.1 on page 75 hints at manifest, possibly manifest and non-manifest parts.

10.3 Conveyor Companies versus Logistics Companies.

Is it really necessary to distinguish between the two: conveyor and logistics companies ? Examples of the two
are:

• conveyor companies: Maersk71, DSV72 SAS, American Airlines, British Air, Deutsche Bahn, SNCF,
Amtrack, Arriva, Greyhound, P&O, Dachser73, etc.

• logistics companies: TUI, Expedia, etc.74

As You may have deduced from the examples: some of the conveyor companies also operate “own” logistics
departments, i.e., companies. But their functions must be separated: Conveyor companies fundamentally
operate conveyors, and, only as a necessity, embody logistics departments – which basically only handle only
their “mother”, i.e., the conveyor company’s own conveyors. Logistic companies, in general, make use of
several conveyor companies.

10.4 Financial Matters

Transport implies expenses. Cost and payment of conveyance, is implied, but we have chosen to omit modelling
these facets. Both conveyor and logistics companies rely on creating, writing/editing, reading, copying and
destroying documents. The implied double bookkeeping will also not be modelled. These financial facets are
not an essence, so we have decided, of the core aspects of transport. We refer to [28, 29] and [25], respectively,
for treatments of these three domains.

71Maersk, Danish, is one of the world’s largest container shipping lines.
72DSV, Danish, is one of the world’s largest trucking companies.
73https://www.dachser.dk/da/
74Yes, it has not gone unnoticed, that these “travel agencies” are, indeed, logistics companies – when seen from inside the daily operations

of these. Also: I find it difficult to find conveyor companies that do not have a logistics [sub-]office !

Chapter 11

Merchandise

We shall use the term merchandise as a common denominator for “all that can be transported” ! living species:
people75, animals, plants, wheat, etc.; solid materials: iron ore, automobiles, timber, etc.; fluid materials: oil,
gas, water, etc. Perhaps a better term would/should have been goods

11.1 Merchandise Endurants

11.1.1 External Qualities

164. There is the atomic endurant: merchandise.

type

164. M

value

164. m:M

75Please do not be confused: No, we do not refer to people as slaves !

81

82 CHAPTER 11. MERCHANDISE

11.1.2 Internal Qualities

We lump the presentation of identification, mereology and attributes of merchandises into one, the present, section.

Unique Identifiers:

165. Merchandises have unique identification. [That is: no two items of merchandise have the same identification,

and these are distinct from the identification of all other parts of the transport domain.]

Mereology:

166. The mereology of any [item or piece of] merchandise is the set of customers and conveyors that may possess

or transport that merchandise.

Attributes:

167. Merchandises have practical identification: names, manufacture, place of origin, etc. Two or more merchan-

dise may have the same such identification.

168. Merchandises have current position – a programmable attributes

169. Merchandises have size, approximate height, width and depth.

170. Merchandises have weight.

171. Merchandises have cost.

172. Merchandises have flammability.

173. Merchandises may be insured.

174. Merchandises have a history: an chronologically descending, ordered sequence of event notes:

175. Events are either ...

176. Et cetera ...

type

Unique Identifiers:
165. MI

Mereology:
166. MM = KI-set × CI-set

Attributes:
167. MId = Name×Mfg×Origin×...

168. Position = (NI × (F × EI) × NI) | NI | CI

169. Size = Nat×Nat×Nat

170. Weight = Real

171. Cost = Nat

172. Flammability = ′′flammable′′|′′inflammable′′|′′combustible′′|...
173. Insurance

174. MHist = (TIME×Event)∗

175. Event = ... | ... | ... | ...

176. ...

value

165. uid M: M → MI

166. mereo M: M → MM

167. attr MId: M → MId

168. attr Position: M → Position

169. attr Size: M → Size

170. attr Weight: M → Weight

171. attr Cost: M → Cost

172. attr Flammability: M → Flammability

173. attr Insurance: M → Insurance

174. attr MHist: M → MHist

Merchandises must satisfy some axiom[s]:

11.2. REPRESENTATION OF MERCHANDISES 83

177. No one merchandise must be at exactly one position at any one time.

axiom

177. ...

11.2 Representation of Merchandises

Merchandises are inert: does not move by their own volition ! But merchandises are being moved – by conveyors.

So how do we present merchandise ? In Sect. 6.4 on page 61, when we first described conveyor attributes, we
did not endow them with merchandise. That will be remedied in Sect. 13.3.5 Page 91.

We shall then, in Sect. 13.3.5 Page 91, see that we choose to model merchandises on a conveyor as a set
of merchandise unique identifiers !

178. Here we shall model the existence of a set of merchandises as a state value.

value

178. ms:M-set = obs MS(obs MA(t))

Given the unique identifier, mi, of a merchandise and given the “global” merchandises state we can “retrieve” the

identified merchandise:

179. The retrieve merchandise function, retr merchandise, takes a merchandise identifier and in the con-

text of the “global” merchandises state ms,

180. yields the unique (ι) m with that identifier in ms that has that identifier.

value

179. retr merchandise: MI×MS → M

180. retr merchandise(mi)(ms) ≡ ι m:M • m ∈ ms ∧ uid M(m)=mi

11.3 Humans

181. Humans can be merchandise.76

type

181. Human

value

181. is Human: M → Bool

76Not in the sense of illegal immigrants, sadly, but in the sense of legally “ticketed” passengers of bus, train, ship and aircraft conveyors.

84 CHAPTER 11. MERCHANDISE

Chapter 12

Customer

We shall use the term ‘customer’ for any person or institution that requests transportation of or receives transported

merchandise. Other terms could be ‘client’ or ‘consumer’. All have the advantage of beginning with a ‘c’. Which

we [quickly] convert into a ‘k’ – for same pronunciation !

12.1 Customer Endurants

12.1.1 Endurant Sort

182. There is the atomic endurant: customer.

type

182. K

12.1.2 A State Notion

183. There is the “global” transport value, t:T.

184. From it we observe a likewise “global”, the set of all customers, ks:KS.

value

183. t:T

184. ks:KS = obs KS(obs KA(t))

85

86 CHAPTER 12. CUSTOMER

12.2 Customer Qualities

We lump the presentation of identification, mereology and attributes of customers into one, the present, section.

Unique Identifiers:

185. Customers have unique identification.

186. We can speak of the identities of all customers, as a “globally” known value.

Mereology:

187. The mereology of any customer is the triple of the set of merchandises and the logistics firms that such firms

may be requested to arrange transport.

Attributes:

188. Customers have practical identification: name and address.

189. Customers posses merchandise.

190. Customers have outstanding requests: a time-stamped set of shipping notices: to be or being sent, or to

request to or expecting to receive.

191. Customers accumulate, for every event, a Customer History: A time-stamped, chronologically ordered se-

quence of event records: most recent event first.

192. Events are either ...

193.

type

Unique Identifiers:
185. KI

Mereology:
187. KM = MI-set × (CKI|LI)-set × CI-set

Attributes:
188. CustId = CustNam × CustAdd × ...

189. Possess = MI-set

190. OutReqs = ...

191. CustHist = (TIME × Event)∗

192. Event = ...

193. ...

value

Unique Identifiers:
185. uid K: K → KI

value

186. kis:KI-set = { uid K(k) | k:K•k ∈ ks 77}
Mereology:

187. mereo K: K → KM

Attributes:
188. attr CustId: K → CustId

189. attr Possess: K → Possess

190. attr OutReqs: K → OutReqs

191. attr CustHist: K → CustHist

77ks was defined in Item 184 on the previous page.

12.3. CUSTOMER RETRIEVAL 87

12.3 Customer Retrieval

194. The retrieve customer function, retr customer, takes a customer identifier and in the context of the

“global” customers state, ks,

195. yields the unique, ι , k with that identifier in ks that has that identifier.

value

178. retr customer: KI×KS → K

180. retr customer(ki)(ks) ≡ ι k:K • k ∈ ks ∧ uid K(k)=ki

12.4 Customer Commands

We refer to Sect. 17.6.1 on page 111.

88 CHAPTER 12. CUSTOMER

Chapter 13

Conveyor Companies

We remind the reader of Sect. 10.3 on page 80.
The purpose of a conveyor company is to provide conveyors for the transport of merchandise. It does so

in an interaction between customers and logistics companies.
Conveyor companies has basically two main functions wrt. transport provision: a conveyor office and an

entity which manages the day-to-day movement of conveyors. A derivative, “in-house” function may be that
of logistics: the more-or-less optimal allocation of conveyor resources, routes, etc.

13.1 Conveyor Authorities.

We shall not consider the various public government conveyor authorities that “oversee” specific kinds of
conveyor traffic. In many countries there are, for example, several railway operators, but the underlying rail
net is usually operated by a [semi-]public government authority.

13.2 Conveyor Company Endurants.

13.2.1 Conveyor Company External Qualities

13.2.1.1 Sorts and Observers

From page 78 we repeat:

type

152. CKA

153. CKS = CK-set

154. CK

155. CA

156. CS = C-set

157. CO

158. oL = LI | nil
value

152. obs CKA: T → CKA

153. obs CKS: CKA → CKS

155. obs CA: CK → CA

156. obs CS: CA → CS

157. obs CO: CK → CO

158. obs oL: CK → oL

89

90 CHAPTER 13. CONVEYOR COMPANIES

13.2.1.2 A Conveyor Company Taxonomy

In preparation for our presentation of describing “the state” of the conveyor company segment we show a taxonomy

for the full structure of conveyor company parts in Fig. 13.1. The rendition is just an edited segment of Fig. 10.1
on page 75.

Transport

T

L

Company

Logistics

The Conveyor Company Segment

Conveyor Companies:

Conveyor

...

... ...

Conveyor
Company

Conveyor
Office

cks

cos

css

cs

CK

C C

CA,CS

Aggregates, CKA
Sets, CKS

CA,CS

cka

CK

C

COCO

C

CKA,CKS

Figure 13.1: Conveyor Companies Taxonomy
We consider all parts to be manifest

Horizontal dotted lines indicate ”state” components

13.2.2 A Conveyor Aggregate State Notion

There is the “global” transport domain value, t:T.

196. From t we can observe a likewise “global” conveyor company aggregate value, cca:CCA.

value

196. cka:CKA = obs CKA(t)

197. From cca we can observe a likewise “global” set of conveyor companies value, cks:CKS.

value

197. cks:CKS = obs CKS(cka)

198. From cks we can observe a likewise “global” set of conveyors value, css:CS-set.

value

198. css:CS-set = ∪{obs CS(ck)|ck:CK•ck∈css}

13.3. CONVEYOR COMPANY INTERNAL QUALITIES 91

199. From ccs we can observe a likewise “global” of all set of conveyors value, cs:C-set.

value

199. cs:C-set = ∪{obs CS(cs)|cs:CS•cs∈cks}

200. From cks we can observe a likewise “global” set of conveyor company offices value, cos:CO-set.

value

200. cos:C-set = ∪{obs CO(cs)|cs:CS•cs∈cks}

201. From cks we can observe a likewise “global” set of optional logistics companies value, ols:oL-set. They

do not contribute to the conveyor company segment state.

value

201. ols:C-set = ∪{obs oL(ck)|ck:CK•ck∈cks} \ {nil}

202. We can postulate an overall conveyor company state, σCK .

value

202. σCK = {cca}∪{cks}∪css∪cs∪cos

13.3 Conveyor Company Internal Qualities

13.3.1 Conveyor Company Identification

There are three issues here.

13.3.1.1 Conveyor Company Uniqueness of Identification.

The following conveyor companies parts have unique identifications:

203. the conveyor companies aggregate,

204. the conveyor companies set of conveyor companies

205. conveyor companies,

206. conveyors,

207. conveyor offices, and

208. optional logistics firms.

type

203. CCAI

204. CKSI

205. CAI

206. CI

207. COI

208. oLI

value

203. uid CCA: CCA → CCAI

204. uid CKS: CKS → CKSI

205. uid CA: CK → CKI

206. uid C: C → CI

207. uid CO: CO → COI

208. uid oL: oL → oLI

92 CHAPTER 13. CONVEYOR COMPANIES

13.3.1.2 Conveyor Company Unique Identifier State.

209. We can postulate, cf. Item 202 on the preceding page, an overall conveyor company unique identifiers state,

σCKuid
.

value

209. σCKuid
=

209. {uid CCA(cca)} [= ccaui]
209. ∪ {uid CKS(cks)} [= ccksuid]
209. ∪ {uid CK(ck)|ck:CK•ck∈css} [= cksuid]
209. ∪ {uid C(cs)|c:C•cs∈cs} [= csuid]
209. ∪ {uid CO(co)|co:CO•co∈cos} [= cosuid]

Where we use some non-RSL definitions of separate unique identifier sets – to be used in formulas 214–219 below.

13.3.1.3 Conveyor Company Uniqueness of Identification.

210. All conveyor company parts are uniquely identified.

axiom [Unique Conveyor Companies Parts]

210. cardσCK = cardσCKuid

13.3.2 Conveyor Company Mereology

In the previous chapter Sect. 13.3.1, on unique identification, (pages 91-92), we treated all parts of the conveyor
companies segment, as manifest. In the present chapter we shall only consider

• conveyor company set of conveyors, cks,

• conveyor company conveyors, cs, and

• conveyor company offices, cos,

as manifest.

211. The mereology of conveyor company sets of conveyors, are a pair of (i) the identities of the conveyors
they “manage” and (ii) conveyor company, i.e., the conveyor company office they are“paired with”.

212. The mereology of a conveyor is the identity conveyor company set of conveyors they “belong to”.

213. The mereology of conveyor company office is a triplet: (i) the conveyor company sets of conveyors
identity, (ii) a set of logistics company identities and (iii) a set of customers [who may handle their
transport matters without the help of logistics firms].

type

211. CAM = CI-set × COI

212. CM = CAI

213. COM = CAI × LI-set × KI-set

value

211. mereo CA: CA → CAM

212. mereo C: C → CAI

213. mereo CO: CO → COM

13.3. CONVEYOR COMPANY INTERNAL QUALITIES 93

214. The Well-formed Conveyor Company Mereologies axiom has several clauses:

215. No two conveyor companies share [conveyor company sets of] conveyors.

216. The conveyor aggregate is correctly identified.

217. Conveyor, c:C, identities are those of actual conveyors,

218. and the identified logistics companies are actual

219. and the “k”ustomers are actual.

axiom [Well-formed Conveyor Company Mereologies]

215. share conveyors(cks)

214. ∧ ∀ ck:CK • ck ∈ cks ⇒
let (cai,lis,kis) = mereo CO(ck),

cs = obs CS(obs CA(ck)) in

216. cai=uid CA(obs CA(ck))

217. ∧ {uid C(c)|c:C•c ∈ cs} ∈ csuid

218. ∧ lis ⊆ lis

219. ∧ kis ⊆ kis

end

215. share conveyors: CKS → Bool

215. share conveyors(cks) ≡
215. ∀ ck,ck′:CK • ck 6=ck′ ∧ {ck,ck′}⊆cks

215. ⇒ obs CS(obs CA(ck))ck ∩ obs CS(obs CA(ck′)) 6= {}

94 CHAPTER 13. CONVEYOR COMPANIES

13.3.3 Conveyor Company Attributes

Conveyor Companies have a number of attributes. We mention a few:

220. General conveyor company information, which conveyors it manages, their timed routes, capacity, maximum

load, etc.78

221. Resources: own and other conveyor companies’ conveyors, their status, etc.

222. Contract history:

(a) for every contract, once “on the move”, which ways: from sending customer to node, from node to

conveyor, from conveyor to node and from node to receiving customer79.

223. Orders

(a) by contract number

(b) and an indexed set of offers,

(c) each index being a choice number.

224. Current business: set of command messages.80

225. Past business: set of command messages.81

226. History: TIME-stamped, chronologically ordered, descending sequence of Events: the messages received

from customers and conveyors.

227. From choice and contract numbers one can observe the identity of the issuing conveyor company.

type

220. ConvCompInfo = ...

221. Resources = ...

222. Contracts = ContractNu →m Move∗

222a. Move = (KI×NI)|(NI×CI)|(CI×NI)|(NI×KI)
223. Orders = ContractNu →m Offers

223a. ContractNu

223b. Offers = ChoiceNu →m TR

223c. ChoiceNu

224. CurrBuss = MSG-set

225. PastBuss = MSG-set

226. CKHist = MSG∗

value

220. attr ConvCompInfo: C → ConvCompInfo

222. attr Contracts: CK → Contracts

223. attr Orders: CK → Orders

224. attr CurrBuss: CK → CurrBuss

225. attr PastBuss: CK → PastBuss

226. attr CKHist: CK → CKHist

value

227. xtr CKI: (ChoiceNu|ContractNu) → CKI

78Note: The conveyor company information attribute contains “all” the information that is needed for the calculation of offers etc.
79Note: This conveyor company attribute is updated every time a conveyor [k12] and a customer [k15] acknowledges the transfer of

merchandises
80Note: Received messages are “stashed” here for future handling – and removed once handled.
81Note: Handled [current business] messages here “stashed” here, transferred from the current business attributes.

13.4. CONVEYOR COMPANY COMMANDS. 95

13.3.3.1 Progress Updates

Conveyor companies are involved in many actions. Most of the actions [referred to by these commands] entail an

update of conveyor companies’ Progress attribute. Some directly by the conveyor companies. Others specifically

initiated by [the] so-called Acknowledgment actions originating with customers and conveyors.

These explicit acknowledgments are of the form:

• mk Acknowledgment(TIME,contract number,(ui,uj))

where:

• (ui,uj): (KI×CKI)|(CKI×KI)|(KI×NI)|(NI×CI)|(CI×NI)|(NI×KI)

The explicit acknowledgments entail updates to conveyor companies’ Progress attribute:

228. The upd contracts function takes a contracts attribute and an acknowledgment and yields an updated

contracts attribute.

value

228. upd contracts: Contracts → Acknowledgment → Contracts

228. upd contracts(con)(mk Acknowledgment(τ,cnu,(ui,uj))) ≡
228. con † [cnu 7→ con(cnu) 〈̂mk Acknowledgment(τ,cnu,(ui,uj))〉]

13.4 Conveyor Company Commands.

We refer to Sect. 17.8.2 on page 117.

96 CHAPTER 13. CONVEYOR COMPANIES

Chapter 14

Conveyors, II

We have already dealt with conveyors: their external qualities, Sect. 6.1 on page 59, and two of their internal
qualities, unique identification, Sect. 6.2 on page 60, and mereology, Sect. 6.3 on page 60. We shall, however,
extend the mereology first sketched in Sect. 6.3 on page 60.

14.1 Conveyor Mereology

229. The mereology of a conveyor is a quadruple:

• the set of all identifiers of nodes and edges that the conveyor may travel;

• the set of all identifiers of conveyor companies that it may receive directives from and to which it
shall have to acknowledge transfers of merchandises;

• the set of all identifiers of customers that it shall inform of pending collections and deliveries, and
to which it shall deliver merchandises;

type

229. CM = (NI|EI)set × CKI-set × KI-set

value

229. mereo C: C → CM

97

98 CHAPTER 14. CONVEYORS, II

14.2 Conveyor Attributes

In Sect. 6.4 on page 61 we already touched upon some conveyor attributes.
We now extend these82.

230. Conveyors are of kind [unchanged] [Static Attribute].

231. Conveyors convey, i.e., stores (holds), merchandises by contract number.

232. They follow a service route83, sr:SR [programmable attribute] which is a path, of three or more node
and edge identifiers – beginning with a node and ending with a node.

233. Conveyors “carry” and index attribute – SRIndex – – indicating as to where in the service route they,
at present, are.

234. Conveyors also operate according to two “tables”: for each node that it visits there are contracts to be
unloaded, respectively loaded. This information is given to conveyors, at any time, by conveyor company
directives.

235. Conveyors, having unloaded a contract at a final node informs the receiving customer of arrival. Note
the difference between that attribute type name Finals (with a plural ’s’) and the function argument
identifier type Final (with no such plural).

236. Conveyors have, dynamically, a position – CPos – either they are at a node or are en route, i.e., on an
edge between two adjacent nodes.

237. The SR, SRIndex and CPos must be commensurate: if index i:SRIndex designates a node ni, then
cpos:CPos must be a AtNode(ni), else, it designates and edge, ej, and cpos:CPos must be some
OnEdge(,(,ej),).84

238. And conveyors have a history.

239. We omit further possible attributes: Speed, Acceleration, Weight,

240. These routes must be of the kind of the conveyors traveling them !

type

230. Kind

231. Stowage = ContractNu →m M-set

234. TBU,TBL = NI →m ContractNu-set

232. SR = Path

233. SRIndex = Nat

235. Finals = NI →m (KI →m ContractNu)

235. Final = NI × ContractNu × KI

236. CPos = [Item 104 on page 61]

238. CHist = MSG∗ 85

239. ...

value

230. attr Kind: Conveyor → Kind

230. attr Stowage: Conveyor → Stowage

234. attr TBU: Conveyor → TBU

234. attr TBL: Conveyor → TBL

232. attr SR: Conveyor → SR

233. attr SRIndex: Conveyor → SRIndex

235. attr Finals: Conveyor → Finals

236. attr CPos Conveyor → Position

238. attr CHist: Conveyor → CHist

axiom [Routes of commensurate kind]

240. [left to the reader !]

237. � ... [left to the reader] ...

82Here we see a benefit from observing attributes, rather than explicitly defining the attributes of a part as a Cartesian of attributes.
83This service route concept reflects that the conveyor, at any time, may carry merchandise from many distinct contracts.
84The joint i:SRIndex and cpos:CPos may be a bit too much, but they come in conveniently for our subsequent formalizations.

14.3. CONVEYOR COMMANDS. 99

14.3 Conveyor Commands.

We refer to Sect. 17.8.2 on page 117.

85The messages are those directed at or emanating from conveyors

100 CHAPTER 14. CONVEYORS, II

Chapter 15

Logistics Companies

We remind the reader of Sect. 10.3 on page 80.
The purpose of a logistics company is to arrange of transportation. It does so in interaction between

customers and conveyor companies.
The functions of logistics companies very much overlaps with some of the functions of conveyor companies.
An “extreme” example of a logistics company is that of a travel agency !
We shall, however, not pursue the logistics concept further – since its role is also played by conveyor

companies.

101

102 CHAPTER 15. LOGISTICS COMPANIES

Part V

A MULTI-MODE TRANSPORT:
INTENTIONAL PULL

103

Chapter 16

Intentional Pull, II

TO BE WRITTEN

105

106 CHAPTER 16. INTENTIONAL PULL, II

Part VI

A MULTI-MODE TRANSPORT:
COMMANDS

107

Chapter 17

Multi-mode Transport Commands

17.1 Events and Commands

We distinguish events from commands:
Events are perdurants. The “occur instantaneously”. At “their own” volition. In a state86 and possibly

cause a state change. Some events, the internal events, have their “root” in the [part] behaviour, hence
“affect” the attributes of the underlying part. Other events, the external events, have their “root” “outside”
the [part] behaviour, but may “affect” the attributes of the underlying part.

Commands are syntactic entities. Commands are “issued”87 by part behaviours They “occur” as the result
of actions taken by [receiving] part behaviours. They have a syntax. They constitute a script facet88 related to
the part [behaviour]. They have a semantics. The semantics of commands is expressed by behaviour actions.
We distinguish between directive commands and response commands. Directive commands are issued by
a part behaviour and is directed at another part behaviour. Response commands are acted upon by a part
behaviour in response to a command issued by another part behaviour. For both kinds of commands there are
thus at least two behaviours involved in expressing their semantics.

17.2 Command Traces

In order to describe the very many commands it has proven useful to sketch a possible diagram of command
traces. Figure 17.1 on the following page89 shows schematically a possible trace of commands. The ordering,
“i” in ki, shall indicate some temporal ordering of the issue of these commands.

We shall elaborate on the transport behaviours – with reference to Fig. 17.1 on the following page.90

k1 After some preparatory work a sending customer inquires as to possible transport at a chosen conveyor
or logistics company.

k2 After some preparatory work the conveyor or logistics company replies to the inquiry.

k3 After some preparatory work the customer places and order for transport.

k4 After some preparatory work the chosen conveyor or logistics company confirms the order,

k5 which the customer now [likewise firmly] accepts – with payments.

k6 At some point logistics companies hand over customer orders to [respective] conveyor companies.

k7 After some preparatory work these conveyor companies, one or more, select a the set of conveyors and
inform them of the order, i.e., give them directives.

k8 The conveyor company, at some time after [k7] informs the customer that a designated node is ready
to accept its merchandises for transport – “on hold”, at a node.

86By ‘state’ we shall, in the context of perdurants, mean the value of all dynamic attributes of all behaviours.
87By “issued” we shall here mean that they are communicated, in the style of CSP communications by behaviours directed at other behaviours.
88For facets and scripts see [22, Chap. 8].
89In Fig. 17.1 on the next page we have “merged” the logistics company handling of commands with that of the conveyor

company handling – as there is some “overlap” in their functionalities.
90That is: figures like Fig. 17.1 on the next page are not given a semantics. The “semantics” of Fig. 17.1 on the following page

“transpires from the entire formal model of this report.

109

110 CHAPTER 17. MULTI-MODE TRANSPORT COMMANDS

k5k3

k2

k1
k9Cust.Query Cust.

Order
Offer

Conveyor
Companies

Notify

Acknowledgement

k13

Acknowledgement

Customers: Sending & Receiving

k7
per conveyor

Confirm

Order

material communication

command

LEGEND:

k8
Coll.

Pend.

OrderOK

k6

Pending

Collection

Notify
k10k10

O
n

/O
ff

E
d

g
e

O
n

/O
ff

N
o

d
e

k12a,b

k15a,b k14a

k14b

Pend.

Deliv.

* from customers
Edges

* from conv.comps.

* from conveyors

* from nodes

Issued once

k4

preparing for command

Conveyors

Load/Unload

k6: Issued to one or more
[other] Conveyor Companies
by logistics firms
[not described]

NKTransfer

KNTransfer

Load/Unload

NCTransfer/CNTransfer

Logistics and Conveyor Companies

Nodes

k1
1a

−
b

Figure 17.1: Command & Material Traces [→]

k9 Having been so notified by a conveyor the customer delivers the merchandises, to be transported, at a
node, to be “on hold” for the conveyor.

k10 Conveyors, “on the move”, notify edges and nodes of their presence.

k11 In synchronous communications conveyors exchange merchandises with nodes: either loading ([k11a])
or unloading ([k11b]).

k12 Those conveyors inform their companies of transfers.

k13 The “last” conveyor notifies the “end” customer receiver of pending arrival.

k14 Having been notified, by the conveyor, the “end” customer receives the transported merchandises.

k15 That customer informs the [final] conveyor company of the [final] transfer.

17.3 An Analysis

We now analyze Sect. 17.2 on the previous page.
It seems tat there are four kinds of “commands”: ab initio, deferred, triggered and cascaded.

• Ab Initio: There is only one command of this category: the customer query command, [k1].

Customers, at their own instigation, that is, internal non-deterministically, decides to have some mer-
chandises transported.

• Deferred: Most commands are of this category: they are implied by issue of other, that is, “previous”
[k2] thus follows from [k1], [k3] from [k2], etc.

There is no guarantee that [k2] will occur. The conveyor (or logistics) company may simply ignore that
it has received [k1], respectively [k3] may not occur in response to [k2]. Etcetera.

17.4. MATERIAL AND “IMMATERIAL” COMMANDS 111

• Triggered: “Commands” [k11a] and [k11b] are not “directly issued”, external non-deterministically,“at
some time” in response to [k7].

[k7], such as we small model it, shall result in conveyors having an appropriate attribute, the to be
loaded and to be unloaded, containing such information as when conveyors at nodes shall load and
unload merchandises – and when conveyors are At such Nodes, this attribute information is said to
trigger these merchandise transfers.

• Cascaded: [k8] is issued either at the same time as [k7], or shortly thereafter. [k9] is issued when [k8]
has been received – after which a first [k15] is issued.

17.4 Material and “Immaterial” Commands

Kommands k1-k8, k10, k13, k15 and k18 are “immaterial” in that they “just” communicate information.
Commands k9, k11 and k14 are “material” in that they, besides information (data) also communicate, i.e.,
physically transfer material, i.e., merchandises.

17.5 Abstracting an Essence of Transport

By “abstracting an essence of transport” we mean that a number of transport “details” are omitted for “the
benefit” of emphasizing “other details” ! For examples: (i) we omit details of the structure and contents of what
is to be transported, (ii) keeping, somehow, details of who is sending, the address, by whom the merchandise is
to be received, etc., (iii) omitting details of merchandise, identification, quantity, weight, value, etc., (iv) cost,
payments, etc. In the description of commands, below, we therefore abstract “to the core” these commands
– assuming that the various “actors”: the customers, the logistics and conveyor companies and the conveyors
can otherwise, i.e., somehow “find out” !

17.6 Commands – A First View

As You see, there are many commands. In this section we shall “take an abstract view of these” before, in
Sect. 17.8 we go into the detailing of these commands This “abstract view” should then enable us to “design”,
as it were, a systematic form and set of less abstract commands.

17.6.1 Customer Commands, I

241. k1 Customers inquire either logistics companies or conveyor companies about many things, for example
time-tables, cost, etc., for the transport of merchandises from one customer to another, etc.

242. k3 Customers place orders, with either logistics companies or conveyor companies for the transport –
according to some offers, k2, made by these.

243. k5 Customers “signs” the k4 offer.

244. k9 Customers deliver merchandise to nodes.

245. k15 Customers acknowledge receipt of merchandises.

type

241. [k1] CustQuery

242. [k3] CustOrder

243. [k5] OrderOK

244. [k9] CustDel

245. [k15] Acknowledgment

112 CHAPTER 17. MULTI-MODE TRANSPORT COMMANDS

17.6.2 Conveyor Company Commands, I

246. k2 Conveyor companies place an offer for transport in response to an inquiry, k1.

247. k4 Conveyor companies OKs an order in response to an customer order, k3.

248. k7 Conveyor companies inform conveyors of orders, k4, to be carried out.

249. k8 Conveyor companies inform customers of pending collection of merchandises.

type

246. [k2] ConvCompOffer

247. [k4] ConvCompOrdOK

248. [k7] ConvCompConvDir

249. [k8] PendColl

17.6.3 Conveyor Commands, I

250. k8 Conveyor notify customers of pending collection.

251. k10 Conveyor notify edges and nodes of its presence.

252. k11a-k11b Conveyor transfers merchandises to and from node.

253. k12 Conveyor acknowledges conveyor company of merchandise transfer.

254. k13 Conveyor informs customer of pending delivery.

251. [k10] Notify

252. [k11a] CNTransfer

253. [k12] Acknowledgement

254. [k13] PendDel

• • •

Conveyors collect and deliver merchandise not only from and to nodes, but also from and to other conveyors.

Therefore the k10–k15a-b. sequence of commands also takes place between distinct conveyors.

17.6.4 Logistics Company Commands

We shall skip this section,

17.7 TR: Transport Routes

We may have “abstracted too much” in Sect. 17.6. For example, where in the conveyor company and logistics
company to customer order OK commands is the information “hidden” that outlines the course of actions:
which route to take, with which conveyors, at which approximate times ? That information may be formalized:

17.7. TR: TRANSPORT ROUTES 113

na nb nc

ne

ei ej ek
el

em

en

c3

segment 1

(k1,a1),c1 c2

nd

nf

(k2,a2)
ng

ng
ep

eq

eo

segment 2

Segments
3 to s−1

segment s

Figure 17.2: A Transport Route: k:kustomer, c:conveyor, a:address, n:node, e:edge

114 CHAPTER 17. MULTI-MODE TRANSPORT COMMANDS

255. A transport [route] is a composite of

256. first a sending customer’s identifier and place of pick-up ((k1,a1));

257. then the storage: a non-empty set of unique identifiers of the merchandises transported – indexed by
contract number;

258. followed by a sequence of one or more segments (segment 1, segment 2, ..., segment n)–

259. each segment beginning with a conveyor (c1, c2, ..., c3) identifier, then a node identifier (na, nc, ...,
ne), and finally a non-empty edge-node-path –

260. an edge-node-path is sequence of alternating edge and node identifiers (〈ei, nb, ej, ..., ek, nc〉);

261. finally ending with a receiving customer’s identifier and place of delivery (k2,a2)).

262. The two addresses must be different a1 6=a2.

263. The paths formed by edge-node-paths headed by a, i.e., the, node identifier must be paths of the
transport net91,

264. and these paths must be of the same kind as the conveyor for those paths.

265. The time ordering is strictly ascending –

266. and the “end” node of one segment must match, i.e., be equal to the “beginning” node of the next
segment.

267. The storage must be well-formed: no two contracts identify the same merchandises.

268. From a contract number one can observer, i.e., extract, the issuing conveyor company identifier.

type

255. TR = s sndr:(KI × Addr)

257. × s cos:(ContractNu →m MI-set) axiom ∀ mis:MI-set • mis 6={}
258. × s sgl:Segment∗ [axiom ∀ sl:Segment∗•sl 6=〈〉]
261. × s rcvr:(KI × Addr)

259. Segment = TIME × CI × NI × Edge Node Path

260. Edge Node Path = (s ei:EI×s ni:NI)∗ axiom ∀ enp:Edge Node Path•enp 6=〈〉
257. ContractNu

value

268. xtr CKI: ContractNu → CKI

axiom

257. ∀ tr:TR • let cos=s cos(tr) in ∀ cnu:domcos•xtr MIs(cnu)=cos(cnu) end

Wellformed Transports92

axiom [Wellformed Transports]

262. ∀ ((,a1), ,sl,(,a2)):TR • a1 6=a2 ∧
261. ∀ seg:Segment•seg∈ elems sl ⇒
261. ∀ (,ci,ni,enp):Segment•(ci,enil,ei)∈elems enp

263. ∧ 〈ni〉̂ enp ∈ paths ∧ enil∈paths

264. ∧ same kind(enp,ci)

265. ∧ ∀ i,i+1•{i,i+1}⊆inds sl ⇒
265. let (τi,ci,ni,enp) = sl[i], (τj,cj,nj,enpj) = sl[i+1] in τi<τj
266. ∧ s ni(enpi[len enp]) = nj end

266. ∀ storage:(ContractNu→m MI-set) •

266. ∀ cni,cnj:ContractNu • {cni,cnj}⊆dom storage ∧ cni∼−cnj

266. ⇒ storage(cni)∩storage(cnj)={}

91Cf. Item 71 on page 54
92Axiom 262–266 must be carefully checked

17.8. A CLOSER ANALYSIS OF COMMANDS 115

Auxiliary Functions

value

264. same kind: Edge Node Path × CI → Bool

264. same kind(enpath,ci) ≡ ... [Left to the reader]

An aspect of the transport routes, tr:TR, when a transport route has more than one segment, is that the node

between two adjacent segments, serve as a repository for merchandises. A conveyor unloading merchandises

destined for other, one or more, conveyors may not arrive when either or all of these conveyors have arrived93,

so they deposit, put “on hold”, those merchandises. For respective kinds of nodes these “deposit holds” are, for

example, called bus stops for kind road, train station waiting rooms for kind rail, airport passenger lounges for

kind air, and container terminals for kind sea.

Segments (Item 259 on the preceding page) are static descriptions of where conveyors are to move. Service

Routes, SRs (Item 232 on page 98), are static descriptions of when conveyors are to move.

17.8 A Closer Analysis of Commands

We refer back to the overview of all commands given in Sect. 17.6.

17.8.1 Customer Commands, II

241. For a customer to formulate a proper query about possible transports such a query must contain the
following information:

(a) a unique, customer-chosen inquiry identification and

(b) a query compound.

269. The query compound, it seems, should contain such information as:

(a) name, address, and other such data that “pin-points”, “validates” the inquirer;

(b) characterization of the merchandise to be transported: product information, quantity, total weight,
total volume, total value [for insurance purposes], etc.;

(c) time interval of transport;

(d) from where to where;

(e) expected cost frame; and, possibly, more !

(f) Addresses are further unspecified.

type

241. [k1] CustQuery ::

268a. QueryId

268b. × QueryComp

269. QueryComp =
269a. Addr

269b. × MInfo [...]
269c. × TI [= (TIME×TIME), axiom ∀ (ft,tt):TI•ft<tt]
269d. × FT [= NI×(NI×KI×AddrInfo), axiom ∀ (nf,(nt, ,)):FT•nf 6=nt]
269e. × ExpCost

269f. Addr

93The conveyor or logistics company, when preparing the offers, are assumed to make sure that there is appropriate time intervals between

unloading and loading conveyors for relevant merchandises.

116 CHAPTER 17. MULTI-MODE TRANSPORT COMMANDS

242. For a customer to formulate a proper order for a specific transport such a query must be based on the

conveyor or logistics company offer to a query like that outlined in Item 269, above, the order must contain

the following information:

(a) the customer inquiry identification, and

(b) a reference to the logistics or conveyor company contract number given in query reply.

(c) Then more-or-less the same information, formulated as a compound, as given in the original query –

which is also expected to be contained in the reply offer;

(d) name, address, etc.,

(e) merchandise information,

(f) precise times.

(g) from-to transport details,

(h) the offered cost,

(i) etc.

270. From a query identifier one can extract the customer identity.

type

242. [k3] CustOrd ::

269a. QueryId

269b. × ContractNu

269c. × OrdrComp

269c. OrdrComp =
269d. Addr

269e. × MerchInfo

269f. × TI

269g. × FT

269h. × Cost

269i. × ...

value

270. xtr KI: QueryId → KI

243. For a customer to OK a proposed transport the the customer must provide

(a) the contract number,

(b) the choice number,

(c) payment.

243. [k5] OrderOK ::

270a. ContractNu

270b. × ChoiceNo

270c. × Payment

243. For a customer to deliver the merchandises according to the contracted order the customer must provide

(a) a reference to to the contract number and

(b) the therein indicated number of actual merchandises !

type

243. [k9] KNTransfer ::

270a. ContractNu

270b. × M-set

17.8. A CLOSER ANALYSIS OF COMMANDS 117

271. [k15] A customer having received merchandises (from another customer via conveyors) at a node acknowl-

edges this receipt by so informing the conveyor company.

type

271. [k15] Acknowledgment :: TIME×ContractNu×(NI×KI)

Observe that the first two commands and the last command were strictly “informational”, i.e., syntactic, whereas

the Customer tDelivery command is “rather” physical:, i.e., semantic: the command, so-to-speak, “embodies” an

action, the manifest movement of volumes of possibly heavy material !

There may be other customer commands – such as inquiring as to the progress of an actual transport, etc. We

leave that to the reader.

17.8.2 Conveyor Commands, II

The conveyor commands, first outlined in Sect. 17.6.3 on page 112, are now summarized and detailed. First we
list their treatment in Sect. 17.6.3 on page 112.

250. k8 Conveyor informs customer of pending collection.

251. k10 Conveyor notifies edges and nodes of conveyor presence.

252. k11 Conveyor transfers (loads [k11a], unloads [k11b]) merchandises.

253. k12 Conveyor acknowledges conveyor company of merchandise transfer.

254. k13 Conveyor informs customer of pending delivery.

250. [k8] PendColl

251. [k10] Notify

252. [k11a,b] Transfer = CNTransfer | NCTransfer

253. [k12] Acknowledgment

254. [k13] PendDel

272. [k8] Conveyors inform either a customer of pending collection of merchandises.

They do so by simply mentioning the contract number and the set of unique identifiers of the merchandise

to be collected.

273. [k10] Conveyors notify edges and nodes of their presence.

Conveyors transfer:

274. [k11a] load from a node.

275. [k11b] or unload merchandises to a node.

They do so by stating the contract number and presenting the set of merchandise to be transferred.

276. [k12] Conveyors, time-stamped, acknowledges its company of, and at the completion of a transfer, collection

or delivery of merchandise. They do so by mentioning the contract number and the two “parties” to the

transfer:

277. either a customer and a node, or a of conveyor and a node.

278. [k13] Conveyors inform customers of pending delivery (at a node).

type

272. [k8] PendColl :: (NI×(ContractNu> MI-set))

273. [k10] Notify :: AtNode | OnEdge

274. [k11a] NCTransfer :: (ContractNu×M-set)

275. [k11b] CNTransfer :: (ContractNu×M-set)

276. [k12] Acknowledgment :: TIME×ContractNu×FromTo

277. FromTo = (NI×CI)|(CI×NI)

278. [k13] PendDel :: (NI×(ContractNu×MI-set))

118 CHAPTER 17. MULTI-MODE TRANSPORT COMMANDS

17.8.3 Conveyor Company Commands, II

Review:

type

ι246π112. [k2] ConvCompOffer

ι247π112. [k4] ConvCompOrdOK

ι248π112. [k7] ConvCompConvDir

We now detail these.

279. An offer for transport must state

(a) the conveyor company identity;

(b) a contract94 number;

(c) refer to an inquiry, for example by stating its number or by repeated it; and

(d) a set of zero, one or more choice number indexed offer-choices.

An offer-choice

(e) a timed route of transport, and

(f) a cost.

280. An OK, binding acknowledgment of an order must state

(a) the conveyor company identity,

(b) a contract number,

(c) refer to an offer and choice number,

(d) “repeats” the contracted timed route of transport,

(e) and the cost.

281. The conveyor company information to be given to conveyors of orders, k4, state

(a) the conveyor company identity;

(b) a contract number and

(c) the contracted time route of transport.

282. From Offer numbers, contract numbers and choice numbers one can extract the offering and contracting

company’s identity

283. as well as the identity of the customer being offered and contracted.

type

279. [k2] ConvCompOffer :: CKI×ContractNu×QueryNu×(ChoiceNu→m OfferChoice)

279b. ContractNu

279d. ChoiceNu

279e. OfferChoice = TR× ost

280. [k4] ConvCompOrdOK :: CKI×ContractNu×ChoiceNu×TR×Cost

281a. [k7] ConvCompConvDir :: CKI×ContractNu×Segment

value

282. xtr CKI: (OfferNu|ChoiceNu|ContractNu) → CKI

283. xtr KI: (OfferNu|ChoiceNu|ContractNu) → KI

94– even though this may not result in a contract

17.8. A CLOSER ANALYSIS OF COMMANDS 119

17.8.4 Node Commands

Nodes, as behaviours, have now become reactive. They store contracted merchandises – “on hold between” con-

veyors. So they must react to conveyor commands requesting merchandises, unloaded, to be put “on hold” or

fetched, to be loaded. They react by accepting and delivering merchandises from, respectively to conveyors and

customers. To these requests node behaviours must react [immediately (?)]. These are the only transport commands

that must be so synchronized95. All other transport commands are “buffered”96

284. [k14] Nodes transfer merchandises (from another customer via conveyors) from the ‘on-hold’ of a node to a

customer.

type

284. [k14] NKTransfer :: NI×ContractNu

17.8.5 Edge Commands

Thee are no edge commands. Edge behaviours receive notifications from conveyors as to their presence on edges.

95Alert: Check that I actually describe so !
96 Alert: Perhaps one should reconsider the customer to conveyor and conveyor to customer transfers of merchandises to also be synchro-

nized.

120 CHAPTER 17. MULTI-MODE TRANSPORT COMMANDS

Part VII

IDENTITIES

121

Chapter 18

Identities

So far we have introduced a variety of identities:

• unique identities of endurants,

• query ‘numbers’,

• offer ‘numbers’,

• contract numbers,

• etc.

These are, of course, not identifiers nor numbers or numerals. They are abstract entities.

We can say a lot about these:

123

124 CHAPTER 18. IDENTITIES

285. From the identity of a customer we can “extract” (i.e., “observe”) such things as the name of the customer, the

address (road name & number, district name, city name, county name, country name, telephone ‘numbers’,

e-mail addresses, etc., etc.).

286. From the identity of a conveyor we can ‘extract’ the identity of its owner: a conveyor company.

287. From a query ‘number’ we can extract the identity of the querying customer.

288. From offer, order and contract ‘numbers’ we can extract the identities of conveyor (logistics) company and

customer identities.

289. From a contract number we can extract the set of merchandise identifiers “involved” in the identified contract.

290. From a contract number we can extract a waybill97,

291. From a contract number we can extract a a bill-of-lading98.

292. From a contract number we can observe whether it (i.e.,the waybill/bill-of-lading) represents a ticket for

human “merchandise” (cf. Sect. 11.3 on page 83).

293. Et cetera.

value

285. xtr Name: KI→Name

285. xtr Addr: KI→((RoadNam×Nat)×DisNam×CounNam×LandNAm×PhonNu×Email×...)

286. xtr CKI: CI→CKI

287. xtr CI: QueryNu→CI

288. xtr CKI: (OfferNu|OrderNu|ContractNu)→CKI

288. xtr CI: (OfferNu|OrderNu|ContractNu)→CI

289. xtr MIs: ContractNu→MI-set

type

285. RoadNam, DisNam, CounNam, LandNam, PhonNu, Email

290. WayBill

291. BoL

value

290. xtr WayBill: CKI→WayBill

291. xtr BoL: CKI→BoL

292. is Ticket: (WayBill|BoL)→Bool

MORE TO COME

97A waybill is a document issued by a carrier acknowledging the receipt of goods by the carrier and the contract for shipment of a consignment

of that cargo. Typically it will show the names of the consignor and consignee, the point of origin of the consignment, its destination, and route

[Wikipedia].
98A bill of lading (sometimes abbreviated as B/L or BoL) is a document issued by a carrier (or their agent) to acknowledge receipt of cargo

for shipment. Although the term is historically related only to carriage by sea, a bill of lading may today be used for any type of carriage of

goods. Bills of lading are one of three crucial documents used in international trade to ensure that exporters receive payment and importers
receive the merchandise. The other two documents are a policy of insurance and an invoice.[a] Whereas a bill of lading is negotiable, both a

policy and an invoice are assignable [Wikipedia].

Part VIII

A MULTI-MODE TRANSPORT:
BEHAVIOURS

125

Chapter 19

Multi-mode Behaviours

Contents

19.1 Communication . 127

19.2 Behaviour Signatures . 128

19.3 Which Behaviours to Describe ? . 129

19.4 Multi-mode “Systems” . 129

19.4.1 Multi-mode Domain Initialization . 129

19.4.2 Multi-mode Domain Instantiation . 130

19.1 Communication

294. There is a medium for synchronization of and communication between behaviours.

295. comm[{ui,uj}]! value expresses an event [an action]: the “output” of value, from the behaviour identi-

fied by ui towards the behaviour identified by uj.

296. comm[{ui,uj}]? expresses a value, i.e., the “input” of a value, from the behaviour identified by ui by the

behaviour identified by uj.

channel

297. { comm[{ui,uj}] | ui,uj:UI • {ui,uj}⊆σuis } : MSG

297. The comm channel declaration above expresses that this medium is “two-dimensional” and communicates

(“mediates”) messages of type M.

298. Messages are timed commands

299. and the commands are those of customers, conveyor companies, logistics companies and conveyors.

type

298. MSG = (UI×TIME×UI)99 × Command

298. UI =KI|CKI|CI
298. [k1] Command = CustQuery [Customer→Company]
298. [k3] | CustOrd ...

298. [k5] | OrderOK ...

298. [k15] | Acknowledgment ...

298. [k9] | KNTransfer [Customer→Node]
298. [k14a] | PendColl ...

298. [k2] | ConvCompOffer [Company→Customer]
298. [k4] | ConvCompOrdOK ...

298. [k8] | PendColl ...

298. [k7] | ConvCompConvDir [Company→Conveyor]
298. [k12] | Acknowledgment [Conveyor→Company]

127

128 CHAPTER 19. MULTI-MODE BEHAVIOURS

298. [k13] | PendDeliv [Conveyor→Customer]
298. [k11a] | CNTransfer [Conveyor→Node]
298. [k10] | Notify ...

298. [k11b] | NCTransfer [Conveyor→Edge]
298. [k10] | Notify ...

298. [k11b] | NCTransfer [Node→Conveyor]
298. [k14] | NKTransfer [Node→Customer]

• • •

A core property of CSP is that behaviours both synchronize their behaciours and exchange messages, from one,

!, to another, ?.

19.2 Behaviour Signatures

We omit consideration of aggregate and merchandise behaviours. There are:

300. the customer behaviours,

301. the logistics company behaviours,

302. the conveyor company behaviours,

303. the conveyor behaviours,

304. the edge behaviours, and

305. the node behaviours.

In some other order their signatures are:

value

300. customer: KI [identifier]

300. → KM101 [mereology]

300. → (CustId × AddrInfo × ...) [static attrs.]

300. → (Possess × OutReqs × CustHist) Unit [progr. attrs.]

302. conv comp: CKI → [identifier]

302. → CKM [mereology]

302. → (ConvCompInfo × ...) [static attrs.]

302. → (Resources×Contracts×Orders×CurrBuss×PastBuss×CKHist) Unit [progr. attrs.]

303. conveyor: CI [identifier]

303. → CM [mereology]

303. → (Kind × ...) [static attrs.]

303. → (Stowage×TBU×TBL×SR×SRIndex×Final×CPos×CHist) Unit [progr. attrs.]

301. logistics: LI → [identifier]

301. → LM [mereology]

301. → (LogisticsCompInfo × ...) [static attrs.]

301. → (PastBusiness × CurrBusiness × LHist) Unit [progr. attrs.]

304. edge: EI [identifier]

304. → EM [mereology]

304. → (EdgeKind × LEN × COST × ...) [static attrs.]

304. → EHist Unit [progr. attrs.]

305. node: NI [identifier]

305. → NM [mereology]

305. → (NodeKind × ...) [static attrs.]

305. → (OnHold × NHist) Unit [progr. attrs.]

99The triplet: (fui,t,tui) is subject to the following constraint, which we leave to the reader to formalize: if tui:KI then tui:CKI or

tui:CI; if tui:CKI then tui:KI or tui:CI; if tui:CI then tui:KI or tui:CKI.

19.3. WHICH BEHAVIOURS TO DESCRIBE ? 129

19.3 Which Behaviours to Describe ?

We treat the transcendentally deduced behaviours of some, but not all, the manifest parts: customers, conveyor

companies, but not their conveyor company officesnor their conveyor aggregates, but their conveyors.

We omit, also treatment of Logistics companies as their “function” is “very much like, i.e., “overlapping” with,

that of conveyor companies.

• • •

The arrangement of the [narrative & formal] descriptions is by endurant, i.e., part, type; but the “reading” of these

should be by pairs: each pair represents an arrow in Fig. 10.1 on page 75, one of the pair represents the source of
the arrow, the “sending” behaviour, the second of the pair represents the target of the arrow, the “receiving”
behaviour,

19.4 Multi-mode “Systems”

We can initialize a domain, and we can instatiate a domain.

19.4.1 Multi-mode Domain Initialization

306. An initialization of a transport domain means the parallel composition of the

307. parallel composition of the initialization of all customer behaviours with the

308. parallel composition of the initialization of all conveyor company behaviours with the

309. parallel composition of the initialization of all conveyor behaviours with the

310. parallel composition of the initialization of all logistics behaviours with the

311. parallel composition of the initialization of all edge behaviours with the

312. parallel composition of the initialization of all node behaviours.

306. instantiation: Unit → Unit

306. instantiation() ≡
307. ‖ { customer(uid K(k))

307. (mereo K(k))

307. (attr CustId(k),...)
307. ([],{},〈〉)
307. | k:K • k∈ks } [ks, see Item 151 on page 77]

307. ‖
308. ‖ { conv comp(uid CK(ck))

308. (mereo CK(ck))

308. (attr ConvCompInfo(ck),...)
308. (attr Resources(c),[],[],{},{},〈〉)
308. | ck:CK • ck∈cks } [cks, see Item 197 on page 90]

308. ‖
309. ‖ { conveyor(uid C(c))

309. (mereo C(c))

309. (attr Kind(c),...)
309. ([],[],[],attr SR(c),1,[],attr Position(c),〈〉)
309. | c:C • c∈cs } [cs, see Item 199 on page 91]

309. ‖
310. ‖ { logistics(...) | ... } [see remark on page 149]

310. ‖
311. ‖ { edge(uid E(e))

311. (mereo E(e))

311. (attr EdgeKind(e),attr LEN(e),attr COST(e),...)

311. (〈〉)
311. | e:E • e∈es } [es, see Item 45 on page 50]

311. ‖
312. ‖ { node(uid N(n))

312. (mereo N(n))

312. (attr NodeKind(n),...)
312. ([],〈〉)
312. | n:N • n∈ns } [ns, see Item 46 on page 50]

130 CHAPTER 19. MULTI-MODE BEHAVIOURS

19.4.2 Multi-mode Domain Instantiation

306. instantiation: Unit → Unit

306. instantiation() ≡
307. ‖ { customer(uid K(k))

307. (mereo K(k))

307. (attr CustId(k),...)
307. (attr Possess(k),attr OutReqs(k),attr CustHist(k))

307. | k:K • k∈ks } [ks, see Item 151 on page 77]

307. ‖
308. ‖ { conv comp(uid CK(ck))

308. (mereo CK(ck))

308. (attr ConvCompInfo(ck),...)
308. (attr Resources(c),attr Contracts(ck),attr Orders(ck),

308. attr CurrBuss(ck),attr PastBuss(ck),attr CKHist(ck))

308. | ck:CK • ck∈cks } [cks, see Item 197 on page 90]

308. ‖
309. ‖ { conveyor(uid C(c))

309. (mereo C(c))

309. (attr Kind(c),...)
309. (attr Stowage(c),attr TBU(c),attr TBL(c),attr SR(c),

309. attr SRIndex(c),attr Final(c),attr Position(c),attr CHist(c))

309. | c:C • c∈cs } [cs, see Item 199 on page 91]

309. ‖
310. ‖ { logistics(...) | ... } [see remark on page 149]

310. ‖
311. ‖ { edge(uid E(e))

311. (mereo E(e))

311. (attr EdgeKind(e),attr LEN(e),attr COST(e),...)

311. (attr EHist(e))
311. | e:E • e∈es } [es, see Item 45 on page 50]

311. ‖
312. ‖ { node(uid N(n))

312. (mereo N(n))

312. (attr NodeKind(n),...)
312. (attr OnHold(n),attr NHist(n))

312. | n:N • n∈ns } [ns, see Item 46 on page 50]

We refer to Sect. 8.5 on page 70 for a first example of domain initialization.

Chapter 20

Customer Behaviours

Contents

20.1 Main Behaviour . 131

20.1.1 Overall Behaviour . 131

20.1.2 Overall Reactive Behaviour . 132

20.2 Subsidiary Behaviours . 132

20.2.1 Proactive Behaviours . 132

20.2.1.1 [k1] Customer Issues Query . 132

20.2.2 Reactive Behaviours . 133

20.2.2.1 [k3] Customer Issues Order . 133

20.2.2.2 [k5] Customer Accepts Offer . 133

20.2.2.3 [k9] Customer Delivers Mercandises . 134

20.2.2.4 [k14a-b,k15b] Customer Requests & Receives Merchandises 134

20.1 Main Behaviour

20.1.1 Overall Behaviour

313. The customer internal non-deterministically alternates between being

(a) a private entity, doing whatever,

or possibly

(b) [k1]102 querying conveyor or logistics companies about a possible transport;

(c) [k3] examining a conveyor or logistics company offer;

(d) [k5] accepting an offer from a conveyor or logistics company;

(e) [k9] delivering merchandises to nodes;

(f) [k14] requesting contracted onhold merchandises from nodes,and

(g) external non-deterministically possibly receiving messages from conveyor companies or logistics
companies, conveyors, or nodes ([k2,k4,k8,k13,k14]).

u The [k1] query is pivotal. It “sets everything else in motion”. Responses from the conveyor company are
“temporarily stored”, cf. customer receives messages, i.e., cust receiv messages, Item 313g. “Storage” is
in the form of an additional behaviour argument.

value

313. customer(ki)(cm)(kid,kaddr)(po,or,ch) ≡
313a. ...

313b. [k1] ⌈⌉ cust issues query(ki)(cid,...)(...)(po,or,r,ch)

313c. [k3] ⌈⌉ cust issues order(ki)(cid,...)(...)(po,or,r,ch)

313d. [k5] ⌈⌉ cust order OK(ki)(cid,...)(...)(po,or,r,ch)

313e. [k9] ⌈⌉ cust delivers merchandises(ki)(cid,...)(...)(po,or,r,ch)

313e. [k14] ⌈⌉ cust requests merchandises(ki)(cid,...)(...)(po,or,r,ch)

313g. ⌈⌉ cust receives messages(ki)(cid,...)(...)(po,or,r,ch)

102The bracketed numbers refer to those of Fig. 17.1 on page 110.

131

132 CHAPTER 20. CUSTOMER BEHAVIOURS

20.1.2 Overall Reactive Behaviour

314. The external non-deterministic reception of messages, msg:103 MSG, proceed as follows:

(a) Customer awaits messages104 from either conveyor companies or conveyors.

(b) Customers “remember” these messages as outstanding requests. They will be handled by [recursively]

iterated invocations of the conveyor behaviour !

So we “handle” that “lastly” listed behaviour “first” !

value

314. cust receives messages(ki)(cid,...)(...)(po,or,r,ch) ≡
314a. let msg= ⌈⌉⌊⌋ { comm [ki,ui]? | ui ∈ ckis∪cis } in

314b. customer(ki)(cid,...)(...)(po,or∪{((ki,\tida,ui),msg)},r,〈msg〉̂ ch) end

The “handling” of the orders, or “buffered” are defined in the ‘Reactive Behaviours’ subsections:

• Customer Issues Order [k3], Sect. 20.2.2.1, item 316 on the facing page;

• Customer Accepts Offer [k5] (order OK), Sect. 20.2.2.2, item 316 on the next page;

• Customer Delivers Mercandises [k9], Sect. 20.2.2.3, item 317 on page 134; and

• Customer Requests & Receives Merchandises [k14a-b,k15b], Sect. 20.2.2.4, item 318 on page 134.

20.2 Subsidiary Behaviours

20.2.1 Proactive Behaviours

20.2.1.1 [k1] Customer Issues Query

315. [k1] The customer decides

(a) to inquire, with some conveyor or logistics company, with a selected query command105,

(b) which it then communicates to the conveyor company or logistics company, updates its outstanding

requests and augments its history,

(c) whereupon it resumes being a customer.

This query action [k1] is “matched” by the suggest offer action [k2] Sect. 21.3.1 on page 137; cf. formula
lines 315b and 321d on page 137.

315. cust issues query(ki)(cid,...)(...)(po,or,ch) ≡
315a. let (coli,mk CustQuery(qi,qc)) = sel q(ki,(cid,...),(...),(po,or,ch)) in

315a. let msg = ((ki,recordTIME(),coli),mk CustQuery(qi,qc)) in

315b. comm[{ki,coli}] !msg; [k1]
315c. customer(ki)(cid,...)(...)(po,or∪{msg},〈msg〉̂ ch) end end

315a. sel q: KI×(CustId×AddrInfo×...)× ..

315a. ×(Posses×OutReqs×CustHist) → CustInq

315a. sel q(ki,(cid,ai,...),(...),(po,or,ch)) ≡ ... see footnote 105 pg 132

103We have emphasized the message arguments as these play a pivotal role in the behavior interaction.
104These messages are either [k4] ConvCompOffers, [k8] ConvCompOrderOK, [k9] PendColl, [k13] ConvCustPendDel,

[k14] NKTransfer messages.
105– we leave unspecified how that query is formed from the basis of the customer attributes

20.2. SUBSIDIARY BEHAVIOURS 133

20.2.2 Reactive Behaviours

20.2.2.1 [k3] Customer Issues Order

316. [k3] If there is an ongoing (or outstanding) conveyor company offer

(a) then the customer selects a suitable one. If there is not such the choice number is forced to 0.

(b) Time is recorded.

(c) If the customer does not finds a suitable offer

(d) it so informs the conveyor company.

(e) Else it likewise informs the conveyor company of order and choice number.

(f) Whereupon it resumes being a customer.106

This issues order action [k3] is “matched” by the confirm order action [k4] Sect. 21.3.2 on page 137.

value

316. cust issues order(ki)(cid,ai,...)(...)

316. (po,{((cki,t,ki),mk ConvCompOffer(on,t,choices))107}∪or,ch) ≡
315a. let (cn,offer) = select offer(choices) in

315c. let msg = ((ki,recordTIME(),cki),if cn=0

315c. then mk OrderOK(on,no)
315c. else mk OrderOK(on,cn,offer) end) in

315d. comm[{cid,cki}]! msg; [k3]
315f. customer(ki)(cid,ai,...)(...)(po,or,〈msg〉̂ ch) end end

20.2.2.2 [k5] Customer Accepts Offer

316. Customers

(a) examine transport company offers: the examine analysis function is left to Your imagination; the

status value is either a no, or is OrderOK.

(b) A time-stamped message to that effect is communicated to the conveyor company.

(c) And the customer resumes being so.

This customer order OK action [k5] is “matched” by the conveyor directives action [k7] Sect. 21.3.3 on
page 138. And also the pending collection action [k8] Sect. 21.3.4 on page 139.

316. cust order OK(ki)(cid,...)(...)

316. (po,{(ki,τ,cki),m:mk ConvCompOffer(cki109,cnu,qno,offers)}∪or,ch) ≡
316a. let okonok = examine(ki)(cid,...)(...)(po,{(ki,τ,cki),m}∪or,ch) in

316b. let msg= ((ki,TIME,cki),mk OrderOK(oknok)) in

316b. comm[{cid,cki}]! msg;
316c. customer(ki)(cid,...)(...)(po,or,〈msg〉̂ ch) end end

106We have used some informal notation, i.e., [orderOK=]
107Note the formal argument “trick”: If the ongoing requests argument contains an element, ConvCompOffer(on,t,choices), then

the cust accept offer behaviour applies. If it does not, then skip !
109The two argument ckis are/must be [!] identical.

134 CHAPTER 20. CUSTOMER BEHAVIOURS

20.2.2.3 [k9] Customer Delivers Mercandises

317. [k9] Customer delivers merchandises:

(a) collecting the identified merchandises;

(b) composing messages to node and contracting conveyor company;

(c) then transferring the merchandises to the identified node;

(d) informing the contracting conveyor company; and

(e) finally resuming being a customer.

This delivery action [k9] is “in consequence” of the pending collection action [k8] Sect. 21.3.4 on page 139.

value

317. cust delivers merchandises(ki)(cid,ai,...)(...)

317. (po,{mk PendColl(cki,on,mis,ni)}∪or,ch) ≡
317a. let ms = {m|m:M•m∈po∧uid M(m)∈mis}, τ = recordTIME()in

317b. let msg1 = ((ki,τ,ni),mk KNTransfer(on,ms)),

317b. msg2 = ((ki,,τ,cki),mk Acknowledgment(τ,cnu,(ki,ni))) in

317c. [k9] (comm[{ki,ni}]! msg1

317d. [k15a] ‖ comm[{ki,cki}]! msg1);

317e. customer(ki)(cid,ai,...)(...)(po\ms,or,〈{msg1,msg2}〉̂ ch) end end

20.2.2.4 [k14a-b,k15b] Customer Requests & Receives Merchandises

318. [k14a] Customers are ready to receive merchandises once a message of pending delivery has been received

from a conveyor.

(a) [k14a] They can therefore accept such a delivery notice;

(b) concocts an acknowledgment to the conveyor company,

(c) [k15b] communicates this to the conveyor company,

(d) whereupon it resumes being a customer.

This cust requests merchandises action [k14] is “matched” by the node action Sect. 25.3 on page 154; cf.
formula lines 318a and 342 on page 154.

value

318. cust requests merchandises(ki)(cid,ai,...)(...)

318. (po,{(ci,t,ki),mk PendDeliv(ci,cnu,mis)}∪or,ch) ≡
318b. [k14a] comm[{ki,ni}]!mk ((ki,recordTIME(),ni),PendColl(ni,(cnu,mis)))110;

318a. [k14b] let mk NKTransfer(cms) = comm[{ki,ni}]? 111 in

318c. [k15b] comm[{ki,cki}]!mk Acknowledgment(recordTIME(),cnu,(ci,ki)) ;

318d. customer(ki)(cid,ai,...)(...)(po∪∪ rng cms,or,〈ms,msg〉̂ ch) end

110Observe that the received message ki [in (cki,t,ki)] must match the formal argument ki. This informative communication is symbol-

ized by the “open, white arrowhead” of the [k14] “double arrow” in Fig. 17.1 on page 110.
111This material communication is symbolized by the “black arrowhead” of the [k14] “double arrow” in Fig. 17.1 on page 110.

Chapter 21

Conveyor Company Behaviours

Contents

21.1 Main Behaviour . 135

21.2 Main Reactive Behaviour . 136

21.3 Subsidiary Behaviours . 137

21.3.1 [k2] Suggest Offer . 137

21.3.2 [k4] Confirm Order . 137

21.3.3 [k7] Conveyor Directives . 138

21.3.4 [k8] Pending Collection . 139

21.1 Main Behaviour

135

136 CHAPTER 21. CONVEYOR COMPANY BEHAVIOURS

319. Conveyor companies non-deterministically alternates between

(a) being “themselves”, sorting out daily, “internal” operations,

internal non-deterministically issuing

(b) [k2] (i.e., suggesting) offers,

(c) [k4] order confirmations,

(d) [k7] messages to conveyors about transports and

(e) [k8] pending collection;

external non-deterministically awaiting

(f) [k1] queries from customers, [k3] orders, [k5] sign-off on orders, or [k12,k15] acknowledgments of

merchandise transfers.

319. conveyor company(cki)(me)(info)(res,co,ors,cb,pb,ckh) ≡
319a. ...

319b. [k2] ⌈⌉⌊⌋ suggests offer(cki)(me)(info)(res,co,ors,cb,pb,ckh)

319c. [k4] ⌈⌉⌊⌋ confirms offer(cki)(me)(info)(res,co,ors,cb,pb,ckh)

319d. [k7] ⌈⌉⌊⌋ informs conveyors(cki)(me)(info)(res,co,ors,cb,pb,ckh)

319e. [k8] ⌈⌉⌊⌋ pending collection(cki)(me)(info)(res,co,ors,cb,pb,ckh)

319f. [k12,k15] ⌈⌉⌊⌋ awaits msg(cki)(me)(info)(res,co,ors,cb,pb,ckh)

21.2 Main Reactive Behaviour

320. The conveyor company external non-deterministic reception of messages, i.e., responses, proceed as follows:

(a) The conveyor company awaits responses from either customers or conveyors. 112

(b) If the message

(c) is an acknowledgment, [k12,k15], of merchandise transfers,

(d) then the contracts attribute is updated accordingly and

(e) the conveyor company resumes being so,

(f) else the conveyor company resumes being so, with updated current business,

320. awaits msg(cki)(me)(info)(res,co,ors,cb,pb,ckh) ≡
320a. let msg :((koci,τ,cki),cmd)

320a. = ⌈⌉ { comm [cci,koci]|koci:(KI|CI)•koci∈kis∪cis113} in

320b. case msg of

320c. (ui,τ,cki),mk Acknowledgment(τ,cnu,(ui,uj))
320d. → let co′ = upd contracts(co,mk Acknowledgment(τ,cnu,(ui,uj))) in

320e. conveyor company(cki)(me)(info)(res,co′,ors,cb,pb,〈msg〉̂ ckh) end

320f. → conveyor company(cki)(me)(info)(res,co,ors,cb∪msg,pb,〈msg〉̂ ckh)
320. end end

320d. upd contracts: Contracts×Acknowledgment → Contracts

320d. upd contracts(co,(τ,cnu,ft)) ≡ 〈(τ,cnu,ft)〉̂ con

112These responses are either [k1] customer queries, [k3] customer orders, [k5] customer order confirmation (and payment), or [k12,k15]

conveyor and customer acknowledgment of merchandise transfers. Any other messages will be ignored
113kis and cis were defined in Items 186 on page 86 and 95 on page 60, respectively.

21.3. SUBSIDIARY BEHAVIOURS 137

21.3 Subsidiary Behaviours

21.3.1 [k2] Suggest Offer

321. The conveyor company, with a customer query in its “in-basket”: current business, decides

(a) to calculate an offer, commensurate with the query –

(b) while updating the Offers and Orders attributes –

(c) to form this offer into a commands, and to

(d) communicate this offer to the inquiring customer,

(e) updates its “past business” and history, and

(f) resumes being a conveyor company.

This suggest offer action [k2] is “matched” by the query action [k1] Sect. 20.2.1.1 on page 132; cf. formula
lines 315b on page 132 and 321d.

321. suggests offer(cki)(me)(info)

321. (res,co,ors,msg:{((cki,τ,ki),mk CustQuery(qi,qc))}∪cb114,pb,ckh) ≡
321a. let offer:ConvCompOffer

321a. = calc offer(cki,res,co,ors,cb,pb,ckh)(mk CustQuery(qi,ic)) in

321b. let (res′,ors′) = update res and ors(res,ors)(offer),

321c. msg = ((cki,recordTIME(),ki),offer) in

321d. [k2] comm[{cki,ki}]!msg;
321e. let pb′ = pb∪{msg}, ckh′=〈msg〉̂ ckh in

321f. conveyor company(cki)(me)(info)(res′,co,ors′,cb,pb′,ckh′) end end end

320. post: commensurate query offers(mk CustQuery(ki,iq,ic),offer)

321. commensurate query offers: ...

321a. calc offer(...) ≡ ...

321b. update res[ources] and or[der]s ...

21.3.2 [k4] Confirm Order

(319c) The conveyor company with an OrderOK, decides to handle that:

(a) If the order was not OK’ed then it does nothing,

(b) else it cashes the payment116 –

(c) updates its current business and history,

(d) and resumes being a conveyor company.

This confirm order action k4 is “matched” by the customer accepts offer action k5 Sect. 20.2.2.2 on
page 133.

319c. confirms offer(cki)(me)(info)

319c. (res,co,ors,{msg:((ki,t,cki),nok)}∪cb,pb,ckh) ≡
321a. conveyor company(cki)(me)(info)(res,co,ors,cb,{msg}∪pb,ckh)

319c. confirms offer(cki)(me)(info)

319c. (res,co,ors,{msg:((ki,t,cki),mk OrderOK(con,cn,pay))}∪cb,pb,ckh) ≡
321b. [payment is registered ;]
321c. let ors′ = update orders(co,ors)(msg), ckh′ =〈pay〉̂ ckh in

321d. conveyor company(cki)(me)(info)(res,co,ors′,cb,pb∪{msg},ckh′) end

114See footnote 107 on page 133.
116The receipt and registration of payments, etc., etc., is a role for the conveyor company office.

138 CHAPTER 21. CONVEYOR COMPANY BEHAVIOURS

322. The update orders [auxiliary] function

(a) examines the choice identified offer, and

the identified choice, tr, and

updates the contract to now only reflect that choice.

The “stashing” of msg in the “past business book” serves to remind the conveyor company to – sooner or later –

issue [k7]. See next !

322. updates orders: Orders → MSG → Orders

322. updates orders(ors)((ki,t,cki),mk OrderOK(cnu,cn,pay)) ≡
322a. ors\{cn}∪[cn 7→(ors(cn))(cnu)]

21.3.3 [k7] Conveyor Directives

(319d) “Sooner or later” the conveyor company reacts on the orderOK and

323. informs the one or more conveyors to be involved in the contracted transport.

(a) If the orderOK was a no it does nothing, i.e., resumes being a conveyor company.

(b) Else it decomposes the possibly multiple element segment list into separate conveyor company to

conveyor directives,

(c) communicates these to each involved conveyor, and

(d) updates its history, and resumes being a conveyor company.

This conveyor directives action [k7] is “matched” by the [k5] action customer accepts offer Sect. 20.2.2.2
on page 133; cf. formula lines 316b on page 133 and 323c.

319d. informs conveyors(cki)(me)(info)

323. (res,co,ors,cb,pb∪{((ki,t,cki),mk OrderOK(cnu,chn,status))},ckh) ≡
323a. if status = no axiom status 6= orderOK

323a. then conveyor company(cki)(me)(info)(res,co,ors,cb,pb,ckh117)

323b. else let (status,tr) = (co(con))(chn) in

323b. let dirl = elems construct dirs(ki,recordTIME(),cki,cnu,tr) in

323c. {comm[{cki,ci}] ! dir|dir:ConvDir•dir∈ elems dirl∧dir=((cki,t,ci),)} end end

323d. conveyor company(cki)(me)(info)(res,co,ors,cb,pb,〈dir|dir∈dirs〉̂ckh) end

324. The construct dirs function

(a) from each segment from the contracted, con and chosen, [choice no.] chn, transport offer, it constructs

a convoy directive,

(b) and assembles into a Conveyor Company to Conveyor Directive command.

(c) A convoy directive is a pair of unload and load directives.

(d) An unload [load] directive is a quadruple of TIME, a node identifier, a contract number and a set of

merchandise identifiers.

type

324c. ConvDir = Unload×Load×[Final]118

235. Finals = NI→m (ContractNu→m KI)

235. Final = (NI × (ContractNu × KI))|not final
324d. Load,Unload = TIME × NI × ContractNu × MI-set

value

324. construct dirs: KI×TIME ×CKI×ContrNo×TR → ConvDir∗

324. construct dirs(ki,t,cki,cnu,((fki,faddr),mis,sgl,(tki,taddr))) ≡
324a. let dirl = 〈 extract dir(sgl[i],con,mis,i,lensgl,tki)|i:Nat•1≤i≤lensgl 〉 in

324b. 〈 ((cki,t,ci),ConvDir(dirl[i],not final))|i:Nat•1≤i<lens gl 〉
324b. ̂ 〈 ((cki,t,ci),ConvDir(dir[lensgl],(ni,(cnu,ki)))) 〉 end

117 Alert: I am not sure with what, if anything, to prefix the history with is OK. I was not ready to think about it when I wrote it, March 31,

2025, 16:01

21.3. SUBSIDIARY BEHAVIOURS 139

325. The extract directive function applies to a segment, contract number, a set of merchandise identifiers, the

index of the segment list being examines, the length of that list, and the “end” customer identifier.

(a) If the current index is less than the segment list, the no “final” is issued, just a pair of unload/loads.

(b) Otherwise a final: nj,cnu,ki, the identifier of the last node where the contracted merchandises will

be held for the customer ki.

type

325. Segment = TIME × CI × NI × (EI|NI)∗

value

325. extract dir: Segment × ContractNu × MI-set × Nat × Nat × KI

325. → ((UnLoad×Load)×Final)

325. extract dir(sg:(t,ci,ni,enl 〈̂nj〉),cnu,mis,i,li,ki) ≡
325a. if i<li then (((t,ni,con,mis),(t,nj,cnu,mis)),nil)

325b. else (((t,ni,con,mis),(t,nj,cnu,mis)),(nj,cnu,ki)) end

325. pre: the edge-node identifier list is not empty, i.e., 6= 〈〉

We apologize for the somewhat “tricky” functions: construct dirs and extract dir119.

21.3.4 [k8] Pending Collection

326. At some time conveyor companies react to customers’ [k5] order OK (accepts offer) messages

(a) by replying with a pending collection message –

(b) whereupon the resume being conveyor companies,

This pending collection action [k8] is “in consequence” of the [k5] action order OK (accepts offer) Sect. 20.2.2.2
on page 133.

value

326. pending collection(cki)(me)(info)

326. (res,co,ors,{((ki,τ,cki),mk OrderOK(ni,cnu,chn,orderOK))}∪cb,pb,ckh) ≡
326a. let msg= mk ((cki,recordTIME(),ki),(PendColl(ni,(cnu,mis)))) in

326a. comm[{cki,ki}]!msg;
326b. conveyor company(cki)(me)(info)(res,co,ors,cb,pb,〈msg〉̂ ckh) end

118The type expression [T] stands for T|nil
119Most other function definitions are, in our opinion, straightforward

140 CHAPTER 21. CONVEYOR COMPANY BEHAVIOURS

Chapter 22

Conveyor Behaviour

Contents

22.1 Earlier Treatment . 141

22.2 Main Behaviour . 143

22.3 Subsidiary Behaviours . 144

22.3.1 Proactive Behaviours . 144

22.3.1.1 [k7] Directives . 144

22.3.1.2 [k10] Conveyor to Node and Edge Notifications 144

22.3.1.3 Conveyor on Edge . 145

22.3.1.4 Conveyor at Node . 146

22.1 Earlier Treatment

In Sect. 8.4.1 on page 66 we first treated conveyor behaviours:

Signatures then:

value

ι123π66. conveyor: CI→CM→(Kind×Routes)→(CurrRoute×CPos×CH) Unit

Behaviour, then at node:

value

ι124π66. conveyor(ci)(cm)(k,routes)(cr,AtNode(ni),ch) ≡
ι124aπ66. conveyor change route(ci)(cm)(k,routes)(cr,AtNode(ni),ch)

ι124bπ66. ⌈⌉ conveyor remains at−node(ci)(cm)(k,routes)(cr,AtNode(ni),ch)

ι124cπ66. ⌈⌉ conveyor enters edge(ci)(cm)(k,routes)(cr,AtNode(ni),ch)

ι124dπ66. ⌈⌉ conveyor stops at node(ci)(cm)(k,routes)(cr,AtNode(ni),ch)

ι125π67. conveyor change route(ci)(cm)(k,routes)(cr,AtNode(ni),ch) ≡
ι125aπ67. let τ = record TIME(),

ι125bπ67. ncr = select next route(ni,routes),

ι125dπ67. ch′ = 〈(τ,ni)〉̂ ch in

ι125cπ67. comm[{ci,ni}] ! (τ,ci) ;

ι125eπ67. conveyor at node(ci)(cm)(k,routes)(ncr,AtNode(ni),ch′) end

ι125bπ67. selects next route:NI × Routes → CurrRoute

ι125bπ67. selects next route(ni,routes) as ncr • ncr ∈ routes ∧ hd ncr = ni

Behaviour, then on edge:

141

142 CHAPTER 22. CONVEYOR BEHAVIOUR

ι130π68. conveyor(ci)(cm)(k,routes)

ι130π68. (cr,mk OnEdge(nui f
,(f,e),nuit),ch) ≡

ι130aπ68. conveyor moves on edge(ci)(cm)(k,routes)

ι130aπ68. (cr,mk OnEdge(nui f
,(f,e),nuit),ch)

ι130cπ68. ⌈⌉ conveyor stops on edge(ci)(cm)(k,routes)

ι130cπ68. (cr,mk OnEdge(nui f
,(f,e),nuit),ch)

ι130bπ68. ⌈⌉ conveyor enters node(ci)(cm)(k,routes)

ι130bπ68. (cr,mk OnEdge(nui f
,(f,e),nuit),ch)

ι126π67. conveyor remains at node(ci)(cm)(k,routes)(cr,AtNode(ni),ch) ≡
ι126aπ67. let τ = record TIME() in

ι126bπ67. comm[{ci,ni}] ! (τ,ci);
ι126cπ67. conveyor(ci)(cm)(k,routes)(cr,AtNode(ni),〈(τ,ni)〉̂ ch) end

ι127π67. conveyor enters edge(ci)(cm)(k,routes)(cr,AtNode(ni),ch) ≡
ι127aπ67. let τ = record TIME() in

ι127bπ67. (comm[{ci,ni}] ! (τ,ni) ‖ comm[{ci,ni}] ! (τ,hd cr)) ;

ι127cπ67. let ei = hd cr in let {ni,ni′} = mereo E(retr edge(ei)(es)) in

ι127cπ67. let cpos = onEdge(hd cr,(ei,(ni,f,ni),ni′)) in

ι127eπ67. conveyor(ci)(cm)(k,routes)(cr,cpos,〈(τ,ni)〉̂ ch) end end end end

ι128π68. conveyor stops at node(ci)(cm)(k,routes)(cr,AtNode(ni),ch) ≡
ι129π68. let τ = record TIME() in

ι129π68. comm[{ci,ni}] ! (τ,ci) ;

ι128π68. stop end

22.2. MAIN BEHAVIOUR 143

22.2 Main Behaviour

In the context of customers and logistics and conveyor companies, as illustrated by Fig. 17.1 on page 110, con-
veyors, i.e., their behaviour, are a bit more intricate !

327. Conveyors non-deterministically alternates between

(a) being themselves,

or external non-deterministically receiving

(b) [k7] directives from conveyor companies – their own or other,

(c) and then handling these messages,120

and internal non-deterministically sending messages

(d) [k10] notifying edges and nodes of their presence,

(e) [k12] and acknowledgments of transfer of merchandises from and to customers and nodes.

When not responding to and handling messages from other behaviours ([k7] conveyor companies, or [k9]
customers),

(f) a conveyor is either at a node, possibly unloading or loading merchandises, or

(g) along, i.e., on, an edge.

327. conveyor(ci)(cm:(uis,ckis,kis,cis))(k,...)

327. (stow,tbu,tbl,sr,idx,finals,pos,ch) ≡
327a. ... conveyor(ci)(cm:(uis,ckis,kis,cis))(k,...)

327a. (stow,tbu,tbl,sr,idx,finals,pos,ch)

327b. [k7] ⌈⌉ let msg ⌈⌉⌊⌋ { comm[{ci,cki}]? | cki∈ckis } in

327c. conv dir handling(ci)(uis,ckis,kis,cis)(k,...)

327c. (stow,tbu,tbl,sr,idx,finals,pos,〈msg〉̂ ch)(msg) end

327d. [k10] ⌈⌉ conv node notification(ci)(uis,ckis,kis,cis)(k,...)

327d. (stow,tbu,tbl,sr,idx,finals,pos,ch)

327d. [k10] ⌈⌉ conv edge notification(ci)(uis,ckis,kis,cis)(k,...)

327d. (stow,tbu,tbl,sr,idx,finals,pos,ch)

327e. [k12] ⌈⌉ conv comp ack(ci)(uis,ckis,kis,cis)(k,...)

327e. (stow,tbu,tbl,sr,idx,finals,pos,ch)

327f. ⌈⌉ conv at node(ci)(uis,ckis,kis,cis)(k,...)

327f. (stow,tbu,tbl,sr,idx,finals,pos,ch)

327g. ⌈⌉ conv on edge(ci)(uis,ckis,kis,cis)(k,...)

327g. (stow,tbu,tbl,sr,idx,finals,pos,ch)

120Note: This is the only message received by conveyors from contracting conveyor companies in this, the present transport domain model.
For more realistic transport domain models there will, of course, be other such messages – but they deal, not with the intrinsic facets of transport

(logistics) but with technology support, management & organization, human, and other facets – cf. Chapter 8 of my book [22].

144 CHAPTER 22. CONVEYOR BEHAVIOUR

22.3 Subsidiary Behaviours

22.3.1 Proactive Behaviours

22.3.1.1 [k7] Directives

328. The conv directive handling behaviour for handling conveyor company to conveyor directives

(a) updates the to-be-unloaded, the to-be-loaded and the finals attributes, and

(b) resumes being a conveyor.

This conveyor directives handling action k7 is “matched” by the informs conveyors action k7 Sect. 21.3.3
on page 138; cf. formula lines 328 and 323c on page 138.

328. [k7] conv dir handling(ci)(me)(k,r)

328. (stow,tbu,tbl,sr,idx,finals,pos,ch)

328. ((cki,t,ci),ConvDir((t′,ni,cnu,mis),(t′′,nj,cnu,mis)),final) ≡
328a. let tbu′ = tbu ∪ [nj 7→tbu∪{cnu}], [we disregard t,t′,t′′]

328a. tbl′ = tbl ∪ [ni 7→tbl∪{cnu}], [we disregard t,t′,t′′]

328a. finals′ = upd finals(finals,final) in

328b. conveyor(ci)(me)(k,r)(stow,tbu′,tbl′,sr,idx,finals′,pos,〈dirs〉̂ ch) end

328a. upd finals(finals,(ni,cnu,ki)) ≡ finals∪[ni 7→[ki 7→cnu]]

22.3.1.2 [k10] Conveyor to Node and Edge Notifications

329. Conveyor notify the edges and nodes along which it is moving:

(a) either at a node,

(b) or on an edge.

This conv node notification action k10 is “matched” by the node action k10 Sect. 25.3 on page 154; cf.
formula lines 329a and 341b on page 154.

value

329. conv node notification(ci)(uis,ckis,kis,cis)(k,...)

329. (stow,tbu,tbl,sr,idx,finals,mk AtNode(ni),ch) ≡
329a. let msg = ((ci,recordTIME(),ni),mk AtNode(ni)) in

329a. [k10] comm[{ci,ni}]!msg ;

329. conveyor(ci)(uis,ckis,kis,cis)(k,...)

329. (stow,tbu,tbl,sr,idx,finals,mk AtNode(ni),〈msg〉̂ ch) end

This conv edge notification action k10 is “matched” by the edge action k10 Sect. 25.3 on page 154; cf.
formula lines 329b and 341d on page 154.

329. conv edge notification(ci)(uis,ckis,kis,cis)(k,...)

329. (stow,tbu,tbl,sr,idx,finals,pos:mk OnEdge(,(,ei),),ch) ≡
329b. let msg = ((ci,recordTIME(),ei),mk OnEdge(ei)) in

329b. [k10] comm[{ci,ei}]!msg ;

329. conveyor(ci)(uis,ckis,kis,cis)(k,...)

329. (stow,tbu,tbl,sr,idx,finals,pos,〈msg〉̂ ch) end

120The ci is that of the conveyor
119The two formal argument occurrences of ci, respectively cki, must be pairwise identical ! See also the next conv msg handling

definitions.

22.3. SUBSIDIARY BEHAVIOURS 145

22.3.1.3 Conveyor on Edge

Conveyor on Edge – Then:

ι130π68. conveyor(ci)(cm)(k,routes)(cr,mk OnEdge(nui f
,(f,e),nuit),ch) ≡

ι130aπ68. conveyor moves on edge(ci)(cm)(k,routes)(cr,mk OnEdge(nui f
,(f,e),nuit),ch)

ι130cπ68. ⌈⌉ conveyor stops on edge(ci)(cm)(k,routes)(cr,mk OnEdge(nui f
,(f,e),nuit),ch)

ι130bπ68. ⌈⌉ conveyor enters node(ci)(cm)(k,routes)(cr,mk OnEdge(nui f
,(f,e),nuit),ch)

We leave it to the reader, this time, to review the functions: conveyor moves on edge Sect. 8.4.1 items 131 on
page 68 etc., conveyor stops on edge Sect. 8.4.1 items 133 on page 69 etc. and conveyor enters node

Sect. 8.4.1 items 132 on page 69 etc.

• • •

Conveyor on Edge – Now:

330. An edge [behaviour] at an edge external non-deterministically either:

(a) moves along the edge, a fraction “at a time”, or

(b) stops on the edge and thereby “leaves” transport; or

(c) enters a node.

330. conveyor on edge(ci)(me:(uis,ckis,kis,cis))(k,len,cost)

330. (stow,tbu,tbl,sr,idx,finals,mk OnEdge((fni,(ej,f),tni)),ch) ≡
330a. ⌈⌉ conveyor moves on edge(ci)(me:(uis,ckis,kis,cis))(k,len,cost)

330a. (stow,tbu,tbl,sr,idx,finals,mk OnEdge((fni,(ej,f),tni)),ch)

330b. ⌈⌉ conveyor stops on edge(ci)(me:(uis,ckis,kis,cis))(k,len,cost)

330b. (stow,tbu,tbl,sr,idx,finals,mk OnEdge((fni,(ej,f),tni)),ch)

330c. ⌈⌉ conveyor enters node(ci)(me:(uis,ckis,kis,cis))(k,len,cost)

330c. (stow,tbu,tbl,sr,idx,finals,mk OnEdge((fni,(ej,f),tni)),ch)

The next behaviour is “patterned” over Items 131a– 131e on page 68.

331. A conveyor which is moving along an edge, some fraction down the edge/road/track/route, but not “yet”

near “the end”:

(a) at time τ ,

(b) increments the fraction of its position

(c) (while updating its history)

(d) notifying the edge [behaviour]

(e) [technically speaking] adjusting its position], and, finally,

(f) resuming being a thus updated conveyor [OnEdge.

331. conveyor moves along edge(ci)(me)(, ,)

331. (stow,tbu,tbl,sr,idx,finals,mk OnEdge((fni,(ej,f),tni)),ch) ≡
331a. let τ = record TIME(), ε:Real • 0 < ε ≪ 1 in

331b. let f′ = f+ε, cpos = mk OnEdge(nuii f
,(f′,e),nuit) in

331c. let ch′ = 〈(τ,ci)〉̂ ch in

331d. comm[{ci,ej}]! (τ,ci) ;

331e. conveyor(ci)(me)(, ,)

331f. (stow,tbu,tbl,sr,idx,finals,mk AtNode(tni),ch) end end end

331. pre: f ≃ 1 ∧ sr(idx)=tni

146 CHAPTER 22. CONVEYOR BEHAVIOUR

332. A conveyor may, “surreptitiously” as it were, “decide” to stop being a conveyor altogether !

332. conveyor stops on edge(ci)(me:(uis,ckis,kis,cis))(k,len,cost)

332. (stow,tbu,tbl,sr,idx,finals,mk OnEdge((fni,(ej,f),tni)),ch) ≡ stop

333. A conveyor enters a node

(a) at time τ , by altering its position,

(b) notifying both edge and node behaviours,

(c) and resumes being a conveyor.

333. conveyor enters node(ci)(me)(, ,)

333. (stow,tbu,tbl,sr,idx,finals,mk OnEdge(fni,(ej,1),tni),ch) ≡
333. let τ = recordTIME() in

333a. (comm[{ci,ej}]! (τ,ci)‖comm[{‘tau,tni}]! (τ,ci)) ;

333b. conveyor(ci)(me)(, ,)

333b. (stow,tbu,tbl,sr,idx,finals,mk atNode(tni),〈(τ,mk atNode(tni))〉ch) end

22.3.1.4 Conveyor at Node

Conveyor at Node – Then:

value

ι124π66. conveyor(ci)(cm)(k,routes)(cr,mk AtNode(ni),ch) ≡
ι124aπ66. conveyor change route(ci)(cm)(k,routes)(cr,mk AtNode(ni),ch)

ι124bπ66. ⌈⌉ conveyor remains at node(ci)(cm)(k,routes)(cr,mk AtNode(ni),ch)

ι124cπ66. ⌈⌉ conveyor enters edge(ci)(cm)(k,routes)(cr,mk AtNode(ni),ch)

ι124dπ66. ⌈⌉ conveyor stops at node(ci)(cm)(k,routes)(cr,mk AtNode(ni),ch)

• • •

Conveyor at Node – Now:

A primary “business” of a conveyor at a node is to unload and load merchandises.

334. In general, a conveyor at a node internal non-deterministically “alternates” between

(a) unloading merchandises,

(b) loading merchandises,

(c) stopping altogether, and

(d) entering a next edge – if not the end of the conveyor route –

– an in these cases resuming being a conveyor.

334. conveyor at node(ci)(uis,ckis,kis,cis)(k,...)

334. (stow,tbu,tbl,sr,idx,finals,mk AtNode(ni),ch) ≡
334a. conveyor unloads merch(ci)(uis,ckis,kis,cis)(k,...)

334a. (stow,tbu,tbl,sr,idx,finals,mk AtNode(ni),ch)

334b. ⌈⌉ conveyor loads merch(ci)(uis,ckis,kis,cis)(k,...)

334b. (stow,tbu,tbl,sr,idx,finals,mk AtNode(ni),ch)

334c. ⌈⌉ conveyor stops at node(ci)(uis,ckis,kis,cis)(k,...)

334c. (stow,tbu,tbl,sr,idx,finals,mk AtNode(ni),ch)

334d. ⌈⌉ conveyor enters edge(ci)(uis,ckis,kis,cis)(k,...)

334d. (stow,tbu,tbl,sr,idx,finals,mk AtNode(ni),ch)

22.3. SUBSIDIARY BEHAVIOURS 147

335. Conveyors unload (deliver), onto the node they are at,

(a) from their stowage, the one-or-more contracted merchandises, for that node,

(b) [k11a] and communicates these to that node,

(c) [k12a] and acknowledges that to the contracting conveyor companies.

(d) For final ‘unloads’, if any, receiving customers

(e) are informed of pending delivery.

(f) Whereupon the conveyor resumes being a conveyor at that node.

value

335. conveyor unloads merch(ci)(uis,ckis,kis,cis)(k,...)

335. (stow,tbu,tbl,sr,idx,finals,mk AtNode(ni),ch) ≡
335a. let unls = tbu(ni), stow′ = stow\{ni} in

335b. [k11a] comm[{ci,ni}]!mk CNTransfer(stow/unls)120

335c. [k12a] ‖ {comm[{ci,xtr CKI(ci)}]!mk Acknowledgment(recordTIME(),cnu,(ci,ni))

335c. | cnu:ContractNu•cnu∈ unls } ;

335d. if ni 6∈dom finals

335d. then skip

335e. else { let cnu=(finals(ni))(ki), mis=(tbu(nu))(cnu) in

335e. [k13] comm[{ci,ki}]!mk PendDeliv(ni,(cnu,mis)) ;

335e. | ki:KI•ki∈dom finals(ni) end }
335d. end

335f. conveyor unloads merch(ci)(uis,ckis,kis,cis)(k,...)

335f. (stow′,tbu\{ni},tbl,sr,idx,finals\{ni},mk AtNode(ni),〈v〉̂ ch) end

Alert: Fix v: CNTransfer(unls) ?

336. Conveyors load (fetch)

[from the node they are at, onto their stowage]

contracted merchandises:

(a) if there are merchandises to

(b) load these

(c) communicate them to the node

(d) and the contracting conveyor company notified.

(e) otherwise nothing is done;

(f) and the conveyor resumes being a conveyor at that node.

value

336. conveyor loads merch(ci)(uis,ckis,kis,cis)(k,...)

336. (stow,tbu,tbl,sr,idx,finals,mk AtNode(ni),ch) ≡
336a. if ni∈dom tbl

336b. then let lds = tbl(ni), cki = xtr CKI(cnu) in

336c. comm[{ci,ni}]!mk NCTransfer(lds) ;

336d. comm[{ci,cki}]!mk Acknowledgment(cnu,(ci,ni)) end

336a. else skip end

336f. conveyor loads merch(ci)(uis,ckis,kis,cis)(k,...)

336f. (stow,tbu,tbl\{ni},sr,idx,finals,mk AtNode(ni),〈load〉̂ ch)

Alert: Check for proper load onto ch

120The value of stow/unls is that of stow [domain-]restricted to unls.

148 CHAPTER 22. CONVEYOR BEHAVIOUR

The next behaviour:

value

conveyor stops at node(ci)(uis,ckis,kis,cis)(k,...)

(stow,tbu,tbl,sr,idx,finals,mk AtNode(ni),ch) ≡ stop

is a “mere” transcription” of the similarly named behaviour of Sect. 8.4.1 on page 66, items 133 on page 69-...
.

337. Finally, the conveyor may [be ready to] leave the node for possibly continuing its journey.

(a) If the conveyor is at the end of its current service route, sr,

(b) then

(c) it reverts sr, into rs,

(d) which defines the next mk onEdge(fni,(0,ei),tni) elements,

(e) and the conveyor continues being a conveyor, on that edge.

(f) Otherwise

(g) the next mk onEdge(fni,(0,ei),tni) elements, are defined by the current service route, sr,

(h) and the conveyor continues being a conveyor, on that edge.

337. conveyor enters edge(ci)(me)(k,...)

337. (stow,tbu,tbl,sr,idx,finals,mk AtNode(ni),ch) ≡
337a. if idx = len sr

337b. then

337c. let rs = revert(sr) in

337d. let fni = rs[1], ei = rs[2], tni = rs[3] in

337d. let e = mk onEdge(fni,(0,ei),tni) in

337e. conveyor(ci)(me)(k,...)

337e. (stow,tbu,tbl,rs,1,finals,e,〈e〉̂ ch) end end end

337f. else

337g. let fni = sr[idx], ei = sr[idx+1], tni = sr[idx+3] in

337h. let e = mk onEdge(fni,(0,ei),tni) in

337h. conveyor(ci)(me)(k,...)

337h. (stow,tbu,tbl,sr,idx+1,finals,e,〈e〉̂ ch) end end

337f. end

337c. revert: Path → Path

337c. revert(p) ≡
337c. case p of

337c. 〈〉 → 〈〉,
337c. r̂〈u〉 → 〈u〉̂ revert(q)

337c. end

The above reflects but one choice for continuing a conveyor once it has “exhausted” its current service route.

Others can be thought of.

Chapter 23

Logistics Company Behaviour

We skip this chapter: the conveyor company behaviour “says it all !”.

149

150 CHAPTER 23. LOGISTICS COMPANY BEHAVIOUR

Chapter 24

Edge Behaviour

Contents

24.1 Earlier Treatment . 151

24.2 Main Behaviour . 151

24.1 Earlier Treatment

value

123. edge: EI→EM→(Kind×LEN×Cost)→NH→Unit

value

136. edge: EI → EM → (EdgeKind×LEN×Cost) ... → EH

136a. edge(ei)(em)(ekind,len,cost)(eh) ≡
136b. let msg= ⌈⌉⌊⌋ { comm[{ei,ci}] ? | ci:CI • ci ∈ em } in

136c. edge(ni)(em)(eki...)(〈msg〉̂ eh) end

24.2 Main Behaviour

338. An edge behaviour revolves around:

(a) conveyors moving along, being so notified by messages which it remembers by “adding” them to their

histories,

(b) before resuming being adge behaviours.

338. edge(ei)(em)(ekind,len,cost)(eh) ≡
338a. let msg= ⌈⌉⌊⌋ { comm[{ei,ci}]? | ci:CI•ci ∈ em } in

338b. edge(ei)(em)(ekind,len,cost)(〈msg〉̂ eh) end

That is, no change !

151

152 CHAPTER 24. EDGE BEHAVIOUR

Chapter 25

Node Behaviour

Contents

25.1 Earlier Treatment . 153

25.2 Revised Node Attributes . 153

25.3 [k10,k11,k14] Main Behaviour . 154

25.1 Earlier Treatment

value

ι135π69. node: NI → NM → NodeKind → NH

ι135aπ69. node(ni)(nm)(nkind)(nh) ≡
ι135cπ69. let msg= ⌈⌉⌊⌋ { comm[{ni,ci}] ? | ci:CI • ci ∈ nm } in

ι135dπ69. node(ni)(nm)(nkind)(〈msg〉̂ nh) end

25.2 Revised Node Attributes

339. Each node may potentially provide [also] as a temporary “on-hold” storage for customer merchandises.

type

339. OnHold = ContractNu →m M-set

value

339. attr OnHold: N → OnHold

153

154 CHAPTER 25. NODE BEHAVIOUR

25.3 [k10,k11,k14] Main Behaviour

340. Node behaviours revolves around:

341. nodes external non-deterministically accepting messages from conveyors where these messages are

(a) [k10] either notifications of the presence of (moving) conveyors – duly recorded in the node history

attribute;

(b) [k11a] or from conveyors unloading at nodes duly updated in the node onhold and history attributes;

(c) [k11b] or from conveyors loading at nodes

(d) [k12] and informing the “originating” conveyor company,

– in which latter case

(e) the merchandises identified in the load are communicated (“back”) to the conveyor.

or non-deterministically externally receiving requests from customers to

342. to deliver contracted onhold merchandises,

340. node(ni)(nm:(eis,kis,cis))(nkind)(onhold,nh) ≡
341. let msg = ⌈⌉⌊⌋ {comm[{ni,ci}]? |ci:CI•ci∈cis} in

341. case msg of

341a. [k10] (,mk AtNode(ni))

341a. → node(ni)(nm)(nkind)(onhold,〈msg〉̂ nh),

341b. [k11a] ((ci,τ,ni),mk CNTransfer(cnu,lds)) [cf. 335b on page 147]

341b. → node(ni)(nm)(nkind)(onhold∪lds121,〈msg〉̂ nh),

341c. ((ci,τ,ni),mk NCTransfer(cnu,mis)) [cf. 336a on page 147]

341d. [k12] → let ms = {m:M|m∈ onhold(cnu)∧uid (m)∈mis} in

341e. [k11b] comm[{ni,ci}]!mk NCTransfer([cnu 7→ms]) ;

341d. node(ni)(nm)(nkind)(onhold\cnu,〈msg〉̂ nh) end

341. end end

342. ⌈⌉⌊⌋ let msg:mk PendColl(ni,(cnu,mis)) = ⌈⌉⌊⌋ {comm[{ni,ki}]? |ki:KI•ki∈kis} in

342. let ms = {m|m:M•m∈onhold(cnu)∧uid M(m)∈mis} in

342. let τ = recordTIME()in

342. msg = ((ni,τ,ki),mk NKTransfer(ms)) in

342. [k14] comm[{ni,ki}]! msg ;

342. node(ni)(nm)(nkind)(onhold\cnu,〈((ni,τ,ki),ms to mis(ms))〉̂ nh) end end

135. end

120domlds∩domonhold={}
121Alert: Fic unls; one or more !?

Part IX

CLOSING

155

Chapter 26

Discussion

Contents

26.1 Wither Logistics Companies . 157

26.2 Some Parts Modelled, Others Not ! ? . 158

26.3 Formal Structuring . 159

26.4 Mnemonics . 159

26.5 Narratives . 159

26.1 Wither Logistics Companies

It was a mistake, it seems, to distinguish between conveyor and logistics companies. A conveyor company with no

conveyors is a logistics company. Examples are travel agencies. A revised taxonomy for conveyor companies is

as shown in Figs. 26.1 and 26.2 on the next page. They are revisions of Figs. 13.1 on page 90 and 10.1 on
page 75.

Transport

T

L

Company

Logistics

The Conveyor Company Segment

Conveyor Companies:

Conveyor

...

... ...

Conveyor
Company

Conveyor
Office

cks

cos

css

cs

CK

C C

CA,CS

Aggregates, CKA
Sets, CKS

CA,CS

cka

CK

C

COCO

C

CKA,CKS

Transport

T

The Conveyor Company Segment

Conveyor Companies:

Conveyor

...

... ...

Conveyor
Company

cks

css

cs

CK

C C

CA,CS

Aggregates, CKA
Sets, CKS

CA,CS

cka

CK

CC

CKA,CKS

Figure 26.1: Old and Revised Conveyor Company Taxonomies

The corresponding Command & Material Traces figures is Fig. 26.3 on the following page:

MORE TO COME

157

158 CHAPTER 26. DISCUSSION

T

G

NA EA K...

... ...N E

LA,LS

M M K L L

EN

MA,MS KA,KS

Graph Merchandise

... CKCK

... ...C

CS CO CS CO

CCC

Nodes Edges Company
Conveyor

Conveyors

Conveyor

Office

Transport

Companies
Conveyor

Non−manifest Endurant Possibly Manifest Endurant is_part_of... ... refers_to

LEGEND:

CKA,CKS

Kustomers = Klients
Logistics

Companies

T

G

NA EA K... ...

... ...N E

M M K

EN

MA,MS KA,KS

Graph Merchandise

... CKCK

... ...C

CS CS

CCC

Nodes Edges Company
Conveyor

Conveyors

Conveyor

Transport

Companies
Conveyor

Non−manifest Endurant Possibly Manifest Endurant is_part_of... ...

LEGEND:

CKA,CKS

Kustomers = Klients

Figure 26.2: Old and Revised Transport Taxonomies

k5k3

k2

k1
k9Cust.Query Cust.

Order
Offer

Conveyor
Companies

Notify

Acknowledgement

k13

Acknowledgement

Customers: Sending & Receiving

k7
per conveyor

Confirm

Order

material communication

command

LEGEND:

k8
Coll.

Pend.

OrderOK

k6

Pending

Collection

Notify
k10k10

O
n

/O
ff

E
d

g
e

O
n

/O
ff

N
o

d
e

k12a,b

k15a,b k14a

k14b

Pend.

Deliv.

* from customers
Edges

* from conv.comps.

* from conveyors

* from nodes

Issued once

k4

preparing for command

Conveyors

Load/Unload

k6: Issued to one or more
[other] Conveyor Companies
by logistics firms
[not described]

NKTransfer

KNTransfer

Load/Unload

NCTransfer/CNTransfer

Logistics and Conveyor Companies

Nodes

k1
1a

−
b

k5k3

k2

k1
k9Cust.Query Cust.

Order
Offer

Conveyor
Companies

Notify

Acknowledgement

k13

Acknowledgement

Customers: Sending & Receiving

k7
per conveyor

Confirm

Order

material communication

command

LEGEND:

k8
Coll.

Pend.

OrderOK Pending

Collection

Notify
k10k10

O
n

/O
ff

E
d

g
e

O
n

/O
ff

N
o

d
e

k12a,b

k15a,b k14a

k14b

Pend.

Deliv.

* from customers
Edges

* from conv.comps.

* from conveyors

* from nodes

Issued once

k4

preparing for command

Conveyors

Load/Unload

NKTransfer

KNTransfer

Load/Unload

NCTransfer/CNTransfer

Nodes

k1
1a

−
b

Figure 26.3: Old and Revised Command & Material Traces [→]

26.2 Some Parts Modelled, Others Not ! ?

The reader will have observed that we model only some of the internal qualities of composite parts ! Why ? Well
the answer is this: We have chosen to emphasize the modelling of essential aspects of transport. The “omitted”
full modelling of some, well most, composite parts [endurants], and hence their behaviours [perdurants], is
therefor motivated as follows:

• Graphs: With G, EA and NA we do not associate any manifest “authority”. But we could ! ? With G

we could associate such more-or-less public authorities as the road authorities of Your city or country,
rail net authorities, coastal and sea authorities, air traffic command & control, incl. ICAO 122,etc.

• Merchandise Aggregate: With MA we also do not associate any manifest “authority”. But we could ! ?
There are an abundance of private/public association which monitor and control publically available
merchandise categories: food, toy, automobile, etc., agencies.

• Customer Aggregate: With KA we do not associate any manifest “authority”. But we could ! ? We
leave it to the reader to identify possibly relevant such candidates !

• Conveyor Companies Aggregate: With CKA we do not associate any manifest “authorities”. But we
could ! ? There are public/private associations which handle concerns of the conveyor industry, one or
more for each kind. We omit their modelling.

• Logistics Companies Aggregate: With LA we do not associate any manifest “authorities”. We could ! ?
But we do not.

122https://www.icao.int/about-icao/Pages/default.aspx

26.3. FORMAL STRUCTURING 159

26.3 Formal Structuring

By formal structuring we mean the way we have chosen some endurant parts to be composite, i.e., Cartesians
an sets of parts. This structuring is most clearly reflected in Fig. 10.1. We now regret the “messy” handling of
logistics, both as separate parts, and as an element of conveyor companies. A better “decomposition” must
be found in a continuation project. There are other, in our mind, minor, such restructurings to be made.

26.4 Mnemonics

Mnemonics is the study and development of systems for improving and assisting the memory123. One such
system is naming. We have strived some “logic” in choosing names. Endurant parts have been given very short
one, two or three letter identifiers. Commands, functions and behaviours have been assigned longer identifiers,
trying to compress their full names in the informal texts. A careful review, for any possible continuation project
should carefully review these latter names.

26.5 Narratives

All (or almost all) formulas have been preceded by narratives. Pairwise their numbering “match” ! But
these narratives are, in our mind, far from satisfactory. Much more care should be taken in formulating and
“repetitively” express these narratives. Perhaps one should serve two narratives for each one presented here ?
One, short, coupled with and receding the formulas; another, longer, perhaps appearing as footnotes, or as
notes in a separate appendix ?

123https://languages.oup.com/google-dictionary-en/ and https://dictionary.cambridge.org/dictionary/english/mnemonic

160 CHAPTER 26. DISCUSSION

Chapter 27

Conclusion

Contents

27.1 Logistics & Operations Research . 161

27.1.1 Logistics . 161

27.1.2 Operations Research . 161

27.2 Interpretations . 161

27.2.1 Socio-Economic Study . 162

27.2.2 Business Process Re-Engineering . 162

27.2.3 Primary and Secondary School Topic . 162

27.2.4 Algorithms & Data Structures . 162

27.2.5 Software System Development . 162

27.3 Formality and Verification . 163

27.4 On the Development of This Model . 164

27.5 Acknowledgements . 164

Chapters 3–25 (pages 45–154) sketched a “strict” narrative coupled to a formal description of an essence of
transport domains. These were engineering descriptions. Your understanding of these rely on Your having
understood [30, 26, 22, 20, 17].

27.1 Logistics & Operations Research

As for ‘logistics companies’: Yes, I have left them out.

27.1.1 Logistics

343. By logistics we shall mean the detailed planning of the organization and implementation of a complex
operation..

In this report logistics, in this sense of planning has been concentrated in the function cal offer, cf. Item 321a
on page 137.

27.1.2 Operations Research

That is: the often exciting and beautiful properties of optimization algorithms are to be “buried” here. They
do not belong to the ‘transport’ aspects – but to the strategic, tactical an operational facets of the transport
domain124.

27.2 Interpretations

The domain description of Sects. 3–19 (pages 45–154) can be viewed in three ways:

(i) as a step in the general, say socio-economic study of a specific infra-structure [sub-]domain;

(ii) as a prerequisite for business process re-engineering ;

124Cf. Sect.8̇.7, Example 107, pages 232–233 of my book [22].

161

162 CHAPTER 27. CONCLUSION

(iii) as an, albeit, in this case, and this stage of unfolding study, basis document for preparing teachers
material for subsequent development, i.e., writing, of secondary school course element for teaching such
specific infra-structure [sub-]domains; and

(iv) as an initial feasibility study for possible subsequent development of software for multi-mode transport
systems.

We shall now comment on each of these.

27.2.1 Socio-Economic Study

TO BE WRITTEN

27.2.2 Business Process Re-Engineering

TO BE WRITTEN

27.2.3 Primary and Secondary School Topic

We should like to see reports on the study, analysis and description of several societal infrastructure compo-
nents:

• the banking system, from Your local, “brick and mortar” branch office via its head quarter, the national
bank of Your country125, the regional bank of your continent to The World Bank126 and the IMF127;

• the insurance industry;

• the health care industry, from Your family doctor, via local clinics, to hospitals – with pharmacies,
home care and health insurance providers included;

• the education system, from primary and secondary schools, to high schools, colleges and universities;

• et cetera !

27.2.4 Algorithms & Data Structures

Many functions, like get offers, imply, for their software realization, rather complex data structures and
intricate algorithms. Since we are describing domains, and not designing software. we need, in a sense, not be
concerned. But we have achieved, one might say, a clear identification, of where such clever software designs
may be warranted.

27.2.5 Software System Development

This study and experimental report began with espousing The Triptych Dogma. But we have advocated
that domain modelling be used for other purposes than “just” software development. Now we ”return to the
fore” ! We now assume that there is, indeed, to be professionally & commercially, at least in a seriously funded
effort, to be developed actual software for essential aspects of transport as they have been laid out in this
study and experimental report. How would we go about doing that ?

Based on more than 40 years of experience128 we would do as follows:

• First we would, as we have already started doing, perform the three phases of so-called ‘‘SEA’’ prepara-
tory work.

– Study, – Analyze, and – Experiment.

We have just, more-or-less, completed these three phases.

• Now we are ready for a project committed to produce a “full-blown” domain model.

125https://www.nationalbanken.dk/en
126https://www.worldbank.org/ext/en/home
127https://www.imf.org/en/Home
128We refer to the Dansk Datamatik Center’s [36] CHILL and Ada projects [39]

27.3. FORMALITY AND VERIFICATION 163

• After that, the similar development of a requirements prescription.

• And after that, the development of a software design, is coding, validation, etc.

How would we organize the “full-blown” domain modelling

• First we would assemble, in this case, six people, well-familiar with the domain modelling approach
pursued in this report.

• They would be organized with the following responsibilities – being responsible for the development of:

– the transport net, i.e., graph, model – 1 person;

– the conveyor model – 2 persons;

– the merchandises model – 1 person; and

– the logistics and conveyor companies model – 2 persons.

All under the leadership of an overall domain modelling “architect” !

They would each have “an own”, private and “inviolable” office. After a very few days of domain modelling
they would

• each morning review the previous day’s work of a colleague, on a rotating shift basis, a “new colleague”
on consecutive days;

• meet around a coffee/tea machine and a white board mid-morning for the possible discussion of common
issues – across their modelling – while also handing back the possibly annotated work of their reviewed
colleague;

• go back to correcting possible collegial remarks;

• and otherwise continue their main assigned work !

27.3 Formality and Verification

Jean-Raymond Abrial129 passed away 26 May 2025. He was one of the greats of our science. His contribu-
tions, especially through Z, B and The B Methods [2, 1] to construction by proof are seminal.

So where, in our description, do we find “traces” of that ?
The answer is: nowhere !
Why ?
Well, usually proof of program correctness is usually [carried out] with respect to some property, some

“prior” specification. For domains there is no prior “specification” ! There is the manifest reality of the
subject domain.

Thus we must first specify, i.e., describe that domain.
A domain description, a domain model, cannot be said to be correct.
It is either a bad, or a not so bad, or not quite so “approximate” a description as to be accepted by domain

stakeholders; or it is a reasonably good model.
Verification of a domain model is by its acceptance by domain stakeholders.
When, below, we refer to verification we mean that properties of the description can be expressed, in

mathematical logic and then formally proved: verified, tested, checked !

• • •

But: But the above is not good enough ! Certainly J.R. Abrial’s work must or ought apply here ! ? A
study should be made, by professionals well-familiar with, for example, Event B130. Based on the descrip-
tion/modelling taxonomy, cf. Fig. 3.1, it might very well be possible to formulate the formal model along the
principles set out by J.R. Abrial

• • •

The next remarks were written before the J.R. Abrial discourse above.

• • •

129https://en.wikipedia.org/wiki/Jean-Raymond Abrial
130https://www.event-b.org/, https://www.southampton.ac.uk/˜tsh2n14/publications/chapters/eventb-dbook13.pdf

164 CHAPTER 27. CONCLUSION

The reader may well have observed two aspects of our “formal” model:

• (i) “Formality” of the Specification: I have been rather “lax”, some would say, in my use for RSL.
An example is “trick”, referred to in footnote 107 on page 133, and used in several formal parameter
of behaviours. Other examples is the use of discriminated union of ::-defined command types. These
“lax” uses have been done, deliberately, in the interest of shortening the formulas. They can all be
edited into “correct” RSL.

• (ii) Lack of Verification: Yes, indeed. I have not been as careful as I would wish, to highlight all the
places where appropriate theorems should be enunciated, let alone proved. Similarly for axioms. I trust
the reader can spot these places. And I trust that appropriate proofs be provided. Not necessarily formal
proofs in the sense of there being a proof system for the RSL for all of these cases: there is not. But
then I am “almost” sure that classical proofs, such as mathematicians “always” do, can suffice. And,
for cases that that is not immediately possible ? Well, great, then this domain description provides rich
possibilities for the able computer scientist to excel !

27.4 On the Development of This Model

I started on this document on Saturday February 22, 2025. I finished, “more-or-less” all the formalization and
this concluding section on Monday March 3, 2025. Nine days, Nine days of great fun.

I am not really ashamed to confess that other than the RSL formula text editing system I have not had access
to proper RSL tools, such as they indeed do exist. Thus I have not been able to more-or-less automatically
check my RSL formulas. Et cetera - et cetera !

During the development many model-formulations changed. Figure 17.1 on page 110, for example, un-
derwent numerous versions.

27.5 Acknowledgements

Chapter 28

Bibliography

[1] Jean-Raymond Abrial. The B Book: Assigning Programs to Meanings and Modeling in Event-B: System
and Software Engineering. Cambridge University Press, Cambridge, England, 1996 and 2009.

[2] Jean-Raymond Abrial. From Z to B and then Event B: Assigning Proofs to Meaningful Programs. In
IFM 2013, LNCS 7940, Åbo, Finland, June 2013. Springer.

[3] J. L. Austin. How to Do Things with Words. Harvard University Press, Cambridge, Mass., 2 edition,
1975. (William James Lectures).

[4] H. Bekič, D. Bjørner, W. Henhapl, C.B. Jones, and P. Lucas. A Formal Definition of a PL/I Subset.
Technical Report 25.139, Vienna, Austria, December 1974.

[5] Hans Bekič, Peter Lucas, Kurt Walk, and Many Others. Formal Definition of PL/I, ULD Version III. IBM
Laboratory, Vienna, 1969.

[6] D. Bjørner and O. Oest. Towards a Formal Description of Ada, volume 98 of LNCS. Springer–Verlag,
1980.

[7] Dines Bjørner. Domain Case Studies:

• 2025: Documents – a Domain Description, Winter/Spring 2025,
www.imm.dtu.dk/ dibj/2025/documents/main.pdf

• 2023: Nuclear Power Plants, A Domain Sketch, 21 July, 2023
www.imm.dtu.dk/ dibj/2023/nupopl/nupopl.pdf

• 2021: Shipping , April 2021. www.imm.dtu.dk/ dibj/2021/ral/ral.pdf

• 2021: Rivers and Canals – Endurants, March 2021. www.imm.dtu.dk/ dibj/2021/Graphs/Rivers-
and-Canals.pdf

• 2021: A Retailer Market, January 2021. www.imm.dtu.dk/ dibj/2021/Retailer/BjornerHeraklit27January2021.pdf

• 2019: Container Terminals, ECNU, Shanghai, China www.imm.dtu.dk/ dibj/2018/yangshan/maersk-
pa.pdf

• 2018: Documents, TongJi Univ., Shanghai, China www.imm.dtu.dk/ dibj/2017/docs/docs.pdf

• 2017: Urban Planning , TongJi Univ., Shanghai, China www.imm.dtu.dk/ dibj/2017/urban-
planning.pdf

• 2017: Swarms of Drones, IS/CAS131, Peking, China www.imm.dtu.dk/ dibj/2017/swarms/swarm-
paper.pdf

• 2013: Road Transport, Techn. Univ. of Denmark www.imm.dtu.dk/ dibj/road-p.pdf

• 2012: Credit Cards, Uppsala, Sweden www.imm.dtu.dk/ dibj/2016/credit/accs.pdf

• 2012: Weather Information, Bergen, Norway www.imm.dtu.dk/ dibj/2016/wis/wis-p.pdf

• 2010: Web-based Transaction Processing , Techn. Univ. of Vienna, Austria, 186 pages
www.imm.dtu.dk/ dibj/wfdftp.pdf

• 2010: The Tokyo Stock Exchange, Tokyo Univ., Japan www.imm.dtu.dk/ db/todai/tse-2.pdf

• 2009: Pipelines, Techn. Univ. of Graz, Austria www.imm.dtu.dk/ dibj/pipe-p.pdf

131Inst. of Softw., Chinese Acad. of Sci.

165

166 BIBLIOGRAPHY

• 2007: A Container Line Industry Domain, Techn. Univ. of Denmark
www.imm.dtu.dk/ dibj/container-paper.pdf

• 2002: The Market, Techn. Univ. of Denmark www.imm.dtu.dk/ dibj/themarket.pdf

• 1995–2004: Railways, Techn. Univ. of Denmark - a compendium www.imm.dtu.dk/ dibj/train-
book.pdf

Experimental research carried out to “discover”, try-out and refine method principles, techniques and
tools, 1995–2025.

[8] Dines Bjørner. Formal Software Techniques in Railway Systems. In Eckehard Schnieder, editor, 9th
IFAC Symposium on Control in Transportation Systems, pages 1–12, Technical University, Braunschweig,
Germany, 13–15 June 2000. VDI/VDE-Gesellschaft Mess– und Automatisieringstechnik, VDI-Gesellschaft
für Fahrzeug– und Verkehrstechnik. Invited talk.

[9] Dines Bjørner. Dynamics of Railway Nets: On an Interface between Automatic Control and Software
Engineering. In CTS2003: 10th IFAC Symposium on Control in Transportation Systems, Oxford, UK,
August 4-6 2003. Elsevier Science Ltd. Symposium held at Tokyo, Japan. Editors: S. Tsugawa and M.
Aoki. www2.imm.dtu.dk/ dibj/ifac-dynamics.pdf.

[10] Dines Bjørner. New Results and Trends in Formal Techniques for the Development of Software for
Transportation Systems. In FORMS2003: Symposium on Formal Methods for Railway Operation and
Control Systems. Institut für Verkehrssicherheit und Automatisierungstechnik, Techn.Univ. of Braun-
schweig, Germany, 15–16 May 2003. Conf. held at Techn.Univ. of Budapest, Hungary. Editors: G. Tarnai
and E. Schnieder, Germany. www2.imm.dtu.dk/ dibj/dines-amore.pdf.

[11] Dines Bjørner. Software Engineering, Vol. 1: Abstraction and Modelling; Vol. 2: Specification of Systems
and Languages; Vol. 3: Domains, Requirements and Software Design. Texts in Theoretical Computer
Science, the EATCS Series. Springer, Heidelberg, Germany, 2006.

[12] Dines Bjørner. From Domains to Requirements www.imm.dtu.dk/ dibj/2008/ugo/ugo65.pdf. In Monta-
nari Festschrift, volume 5065 of Lecture Notes in Computer Science (eds. Pierpaolo Degano, Rocco De
Nicola and José Meseguer), pages 1–30, Heidelberg, May 2008. Springer.

[13] Dines Bjørner. Domain Engineering. In Paul Boca and Jonathan Bowen, editors, Formal Methods: State
of the Art and New Directions, Eds. Paul Boca and Jonathan Bowen, pages 1–42, London, UK, 2010.
Springer.

[14] Dines Bjørner. A Rôle for Mereology in Domain Science and Engineering. In Mereology and the Sci-
ences, Synthese Library (eds. Claudio Calosi and Pierluigi Graziani), pages 323–357, Amsterdam, The
Netherlands, October 2014. Springer. https://www.imm.dtu.dk/ dibj/2011/urbino/urbino-colour.pdf.

[15] Dines Bjørner. Domain Analysis: Endurants – An Analysis & Description Process Model
www.imm.dtu.dk/ dibj/2014/kanazawa/kanazawa-p.pdf. In Shusaku Iida and José Meseguer and
Kazuhiro Ogata, editor, Specification, Algebra, and Software: A Festschrift Symposium in Honor of
Kokichi Futatsugi. Springer, Heidelberg, Garmany, May 2014.

[16] Dines Bjørner. Manifest Domains: Analysis & Description www.imm.dtu.dk/ dibj/2015/faoc/faoc-
bjorner.pdf. Formal Aspects of Computing, 29(2):175–225, March 2017. Online: 26 July 2016.

[17] Dines Bjørner. Manifest Domains: Analysis & Description www.imm.dtu.dk/ dibj/2015/faoc/faoc-
bjorner.pdf. Formal Aspects of Computing, 29(2):175–225, March 2017. Online: 26 July 2016.

[18] Dines Bjørner. Domain analysis & description - the implicit and explicit semantics problem
www.imm.dtu.dk/ dibj/2017/bjorner-impex.pdf. In Régine Laleau, Dominique Méry, Shin Nakajima,
and Elena Troubitsyna, editors, Proceedings Joint Workshop on Handling IMPlicit and EXplicit knowledge
in formal system development (IMPEX) and Formal and Model-Driven Techniques for Developing Trust-
worthy Systems (FM&MDD), Xi’An, China, 16th November 2017, volume 271 of Electronic Proceedings
in Theoretical Computer Science, pages 1–23. Open Publishing Association, 2018.

[19] Dines Bjørner. Domain Analysis & Description – Principles, Techniques and Modeling Languages.
www.imm.dtu.dk/ dibj/2018/tosem/Bjorner-TOSEM.pdf. ACM Trans. on Software Engineering and
Methodology, 28(2):66 pages, March 2019.

[20] Dines Bjørner. Domain Analysis & Description. www.imm.dtu.dk/ dibj/2018/tosem/Bjorner-
TOSEM.pdf. ACM Trans. on Software Engineering and Methodology, 28(2):66 pages, March 2019.

BIBLIOGRAPHY 167

[21] Dines Bjørner. Domain Science & Engineering – A Foundation for Software Development. EATCS
Monographs in Theoretical Computer Science. Springer, Heidelberg, Germany, 2021. A revised version
of this book is [24].

[22] Dines Bjørner. Domain Science & Engineering – A Foundation for Software Development. EATCS
Monographs in Theoretical Computer Science. Springer, Heidelberg, Germany, 2021. A revised version
of this book is [26].

[23] Dines Bjørner. Domain Modelling – A Primer. A short and significantly revised version of [21]. xii+202
pages132, May 2023.

[24] Dines Bjørner. Domain Science & Engineering – A Foundation for Software Development. Revised edition
of [21]. xii+346 pages133, January 2023.

[25] Dines Bjørner. Double-entry Bookkeeping. Research, Institute of Mathematics and Computer Science.
Technical University of Denmark, DK-2800 Kgs.Lyngby, Denmark, August 2023. http://www.imm.-

dtu.dk/~dibj/2023/doubleentry/dblentrybook.pdf. One in a series of planned studies: [28, 34,
33, 32].

[26] Dines Bjørner. Domain Modelling – A Primer. A significantly revised version of [22]. xii+202 pages134,
Summer 2024.

[27] Dines Bjørner. Domain Models – A Compendium. Internet: http://www.imm.dtu.dk/~dibj/2024/-

models/domain-models.pdf, March 2024. This is a very early draft. 19 domain models are presented.

[28] Dines Bjørner. Banking – A Domain Description. Sci. & techn. study, Technical University of Denmark,
Fredsvej 11, DK 2840 Holte, Denmark, March 2025. One in a series of planned studies: [34, 33, 32, 25].

[29] Dines Bjørner. Documents – A Domain Description. Sci. & techn. study, Technical University of Denmark,
Fredsvej 11, DK 2840 Holte, Denmark, March 2025. One in a series of planned studies: [28, 34, 33, 32, 25].

[30] Dines Bjørner. Domain Analysis & Description. To be submitted, page 33, March 2025. Institute of
Mathematics and Computer Science. Technical University of Denmark.

[31] Dines Bjørner. Domain Modelling. Submitted to ACM FAC, page 18, February 2025. Institute of
Mathematics and Computer Science. Technical University of Denmark.

[32] Dines Bjørner. Health Care – A Domain Description. Sci. & techn. study, Technical University of Denmark,
Fredsvej 11, DK 2840 Holte, Denmark, March 2025. One in a series of planned studies: [28, 34, 33, 25].

[33] Dines Bjørner. Insurance – A Domain Description. Sci. & techn. study, Technical University of Denmark,
Fredsvej 11, DK 2840 Holte, Denmark, March 2025. One in a series of planned studies: [28, 34, 32, 25].

[34] Dines Bjørner. Transport – A Domain Description. Sci. & techn. study, Technical University of Denmark,
Fredsvej 11, DK 2840 Holte, Denmark, March 2025. One in a series of planned studies: [28, 33, 32, 25].

[35] Dines Bjørner, Chris W. George, and Søren Prehn. Computing Systems for Railways — A Rôle for
Domain Engineering. Relations to Requirements Engineering and Software for Control Applications. In
Integrated Design and Process Technology. Editors: Bernd Kraemer and John C. Petterson, P.O.Box
1299, Grand View, Texas 76050-1299, USA, 24–28 June 2002. Society for Design and Process Science.
www2.imm.dtu.dk/ dibj/pasadena-25.pdf.

[36] Dines Bjørner, Chr. Gram, Ole N. Oest, and Leif Rystrøm. Dansk Datamatik Center. In Benkt Wangler
and Per Lundin, editors, History of Nordic Computing, Stockholm, Sweden, 18-20 October 2010. Springer.

[37] Dines Bjørner and Cliff B. Jones, editors. The Vienna Development Method: The Meta-Language,
volume 61 of LNCS. Springer, Heidelberg, Germany, 1978.

[38] Dines Bjørner and Cliff B. Jones, editors. Formal Specification and Software Development. Prentice-Hall,
London, England, 1982.

132This book is currently being translated into Chinese by Dr. Yang ShaoFa, IoS/CAS (Institute of Software, Chinese Academy of Sciences),

Beijing and into Russian by Dr. Mikhail Chupilko and his colleagues, ISP/RAS (Institute of Systems Programming, Russian Academy of

Sciences), Moscow
133Due to copyright reasons no URL is given to this document’s possible Internet location. A primer version, omitting certain chapters, is [23]
134This book is currently being translated into Chinese by Dr. Yang ShaoFa, IoS/CAS (Institute of Software, Chinese Academy of Sciences),

Beijing and into Russian by Dr. Mikhail Chupilko and colleagues, ISP/RAS (Institute of Systems Programming, Russian Academy of Sciences),

Moscow

168 BIBLIOGRAPHY

[39] Dines Bjørner and Ole N. Oest. The DDC Ada Compiler Development Project. In Dines Bjørner and
Ole N. Oest, editors, Towards a Formal Description of Ada, [41], volume 98 of Lecture Notes in Computer
Science, pages 1–19. Springer, 1980.

[40] Dines Bjørner and Ole N. Oest, editors. Towards a Formal Description of Ada, volume 98 of LNCS.
Springer, Heidelberg, Germany, 1980.

[41] Dines Bjørner and Ole N. Oest, editors. Towards a Formal Description of Ada, volume 98 of Lecture
Notes in Computer Science. Springer, Heidelberg, Germany, 1980.

[42] Geert Bagge Clemmensen and Ole N. Oest. Formal specification and development of an Ada compiler
– a VDM case study. In Proc. 7th International Conf. on Software Engineering, 26.-29. March 1984,
Orlando, Florida, pages 430–440, New York, USA, 1984. IEEE.

[43] Patrick Cousot. Principles of Abstract Interpretation. The MIT Press, 2021.

[44] Peter Fettke and Wolfgang Reisig. Understanding the Digital World – Modeling with HERAKLIT.
Springer, 2024. To be published.

[45] K. Futatsugi, A.T. Nakagawa, and T. Tamai, editors. CAFE: An Industrial–Strength Algebraic Formal
Method, Sara Burgerhartstraat 25, P.O. Box 211, NL–1000 AE Amsterdam, The Netherlands, 2000.
Elsevier. Proceedings from an April 1998 Symposium, Numazu, Japan.

[46] Chris W. George, Peter Haff, Klaus Havelund, Anne Elisabeth Haxthausen, Robert Milne, Claus Bendix
Nielsen, Søren Prehn, and Kim Ritter Wagner. The RAISE Specification Language. The BCS Practitioner
Series. Prentice-Hall, Hemel Hampstead, England, 1992.

[47] Chris W. George, Anne Elisabeth Haxthausen, Steven Hughes, Robert Milne, Søren Prehn, and Jan Stor-
bank Pedersen. The RAISE Development Method. The BCS Practitioner Series. Prentice-Hall, Hemel
Hampstead, England, 1995.

[48] Chris W. George, Hung Dang Van, Tomasz Janowski, and Richard Moore. Case Studies using The RAISE
Method. FACTS (Formal Aspects of Computing: Theory and Software) and FME (Formal Methods
Europe). Springer–Verlag, London, 2002. This book reports on a number of case studies using RAISE
(Rigorous Approach to Software Engineering). The case studies were done in the period 1994–2001 at
UNU/IIST, the UN University’s International Institute for Software Technology, Macau (till 20 Dec.,
1997, Chinese Teritory under Portuguese administration, now a Special Administrative Region (SAR) of
(the so–called People’s Republic of) China).

[49] Michael Hammer and James A. Champy. Reengineering the Corporation: A Manifesto for Business
Revolution. HarperCollinsPublishers, 77–85 Fulham Palace Road, Hammersmith, London W6 8JB, UK,
May 1993. 5 June 2001, Paperback.

[50] Michael Hammer and Stephen A. Stanton. The Reengineering Revolutiuon: The Handbook. Harper-
CollinsPublishers, 77–85 Fulham Palace Road, Hammersmith, London W6 8JB, UK, 1996. Paperback.

[51] Charles Anthony Richard Hoare. Communicating Sequential Processes. C.A.R. Hoare Series in Computer
Science. Prentice-Hall International, London, England, 1985. Published electronically: usingcsp.com/-
cspbook.pdf (2004).

[52] Gerard J. Holzmann. The SPIN Model Checker, Primer and Reference Manual. Addison-Wesley, Reading,
Massachusetts, 2003.

[53] Daniel Jackson. Software Abstractions: Logic, Language, and Analysis. The MIT Press, Cambridge,
Mass., USA, April 2006. ISBN 0-262-10114-9.

[54] Michael A. Jackson. Software Requirements & Specifications: a lexicon of practice, principles and
prejudices. ACM Press. Addison-Wesley, Reading, England, 1995.

[55] Michael A. Jackson. Problem Frames — Analyzing and Structuring Software Development Problems.
ACM Press, Pearson Education. Addison-Wesley, England, 2001.

[56] Michael A. Jackson. Program Verification and System Dependability. In Paul Boca, Jonathan Bowen,
and Jawed Siddiqi, editors, Formal Methods: State of the Art and New Directions, pages 43–78, London,
UK, December 2009. Springer.

BIBLIOGRAPHY 169

[57] Andrew Kennedy. Programming languages and dimensions. PhD thesis, University of Cambridge, Com-
puter Laboratory, April 1996. 149 pages: cl.cam.ac.uk/techreports/UCAM-CL-TR-391.pdf. Technical
report UCAM-CL-TR-391, ISSN 1476-298.

[58] W. Little, H.W. Fowler, J. Coulson, and C.T. Onions. The Shorter Oxford English Dictionary on Historical
Principles. Clarendon Press, Oxford, England, 1973, 1987. Two vols.

[59] R. Milne and C. Strachey. A Theory of Programming Language Semantics. Chapman and Hall, London,
Halsted Press/John Wiley, New York, 1976.

[60] Charles W. Morris. Foundations of the theory of signs, volume I of International encyclopedia of unified
science. The University of Chicago Press, 1938.

[61] Karl R. Popper. Conjectures and Refutations. The Growth of Scientific Knowledge. Routledge and Kegan
Paul Ltd. (Basic Books, Inc.), 39 Store Street, WC1E 7DD, London, England (New York, NY, USA),
1963,. . . ,1981.

[62] F. Pulvermüller. Brain mechanisms linking language and action. Nature Reviews: Neuroscience, 6:576582,
2005. https://doi.org/10.1038/nrn1706.

[63] John R. Searle. Speech Acts: An Essay in the Philosophy of Language. Cambridge University Press,
1969.

[64] Kai Sørlander. Det Uomgængelige – Filosofiske Deduktioner [The Inevitable – Philosophical Deductions,
with a foreword by Georg Henrik von Wright]. Munksgaard · Rosinante, Copenhagen, Denmark, 1994.
168 pages.

[65] Kai Sørlander. Indføring i Filosofien [Introduction to The Philosophy]. Informations Forlag, Copenhagen,
Denmark, 2016. 233 pages.

[66] Kai Sørlander. Den rene fornufts struktur [The Structure of Pure Reason]. Ellekær, Slagelse, Denmark,
2022. See [67].

[67] Kai Sørlander. The Structure of Pure Reason. Springer, February 2025. This is an English translation of
[66] – done by Dines Bjørner in collaboration with the author.

[68] Hung Dang Van, Chris George, Tomasz Janowski, and Richard Moore, editors. Specification Case Studies
in RAISE. Springer, 2002.

[69] Achille C. Varzi. On the Boundary between Mereology and Topology, pages 419–438. Hölder-Pichler-
Tempsky, Vienna, 1994.

[70] James Charles Paul Woodcock and James Davies. Using Z: Specification, Proof and Refinement. Prentice
Hall International Series in Computer Science, London, England, 1996.

170 BIBLIOGRAPHY

Part X

APPENDIX

171

Appendix A

Indexes

A.1 Domain Modeling Ontology

General
Domain Modeling Method: By a systematic domain analysis & description method we mean a set of

principles, procedures, techniques and tools, for efficiently analyzing & describing domains., 5

Domain: By a domain we shall understand a rationally describable segment of a discrete dynamics fragment

of a human assisted reality: the world that we daily observe – in which we work and act, a reality made

significant by human-created entities. The domain embody endurants and perdurants., 5

Endurants are those quantities of domains that we can observe (see and touch), in space, as “complete”

entities at no matter which point in time – “material” entities that persists, endures – capable of enduring

adversity, severity, or hardship [Merriam Webster], 8

Entity: By an entity By an entity we shall understand a more-or-less rationally describable phenomenon., 10

Perdurants are those quantities of domains for which only a fragment exists, in space, if we look at or touch

them at any given snapshot in time, 8

Phenomena: By a phenomenon we shall understand a fact that is observed to exist or happen., 10

Prompt: By a prompt we shall understand an informal “advice” to the domain analyzer to “perform” a mental

inquiry wrt. the real-life domain being studied., 10

Rationality: The rational, analytic philosophy issues of the inevitability of these external and internal qual-

ities is this: (i) can they be justified as inevitable, and (ii) can they be suitably “separated”, i.e., both

disjoint and exhaustive ? Or are they merely of empirical nature ? The choice here is also that we sep-

arate our inquiry into examining both external and internal qualities of endurants [not ‘either or’],

12

Transcendence: By transcendence we shall understand the philosophical notion: the a priori or intuitive

basis of knowledge, independent of experience, 23

Transcendental Deduction: By a transcendental deduction we shall understand the notion: a “conversion”

of one kind of knowledge into a seemingly different kind of knowledge, 23

T: the name of the type of all type names., 15

Endurants
External Qualities
Atomic Part: y an atomic part we shall understand a part which the domain analyzer considers to be

indivisible in the sense of not meaningfully consist of sub-parts., 13

Cartesian and Part Sets: A description prompt, 15

Cartesians: Cartesian parts are those compound parts which are observed to consist of two or more dis-

tinctly sort-named endurants (solids or fluids). , 14

Compound Part: Compound parts are those which are observed to [potentially] consist of several parts,

14

Domain Description Schema. Cartesian and Part Sets: ..., 15

Domain Description Schema. Describe Attributes: ..., 20

Domain Description Schema. Describe Unique Identity: ..., 17

Domain Description Schema: Describe Mereology: ..., 19

External Quality: External qualities of endurants of a manifest domain are, in a simplifying sense, those

we can see, touch and have spatial extent. They, so to speak, take form. , 12

Fluid Endurant: By a fluid endurant we shall understand an endurant which is prolonged, without inter-

ruption, in an unbroken series or pattern; or, rephrasing: a substance (liquid, gas or plasma) having the

property of flowing, consisting of particles that move among themselves; , 13

173

174 APPENDIX A. INDEXES

Part Sets: Part sets are those compound parts which are observed to consist of an indefinite number of

zero, one or more parts, 15

Part: Non-living solid species are what we shall call parts., 13

Solid Endurant: By a solid cum discrete endurant we shall understand an endurant which is separate,

individual or distinct in form or concept, or, rephrasing, have body (or magnitude) of three-dimensions:

length (or height), breadth and depth, 13

State: By a state we shall mean any subset of the parts of a domain., 16

is Cartesian: An analysis prompt, 14

is atomic: An analysis prompt, 14

is compound: An analysis prompt, 14

is fluid: An analysis prompt, 13

is part: An analysis prompt, 13

is part set: An analysis prompt, 15

is solid: An analysis prompt, 13

record Cartesian part type names: An analysis function, 15

record part set part type names: An analysis function, 15

Internal Qualities
Internal Quality: Internal qualities are those properties [of endurants] that do not occupy space but can

be measured or spoken about. , 12

Internal Qualities: Unique Identification
Domain Description Schema. Describe Unique Identity: ..., 17

Unique Identity: A unique identity is an immaterial property that distinguishes any two spatially distinct

solids. , 17

uid : unique identifier observer., 17

Internal Qualities: Mereology
Domain Description Schema: Describe Mereology: ..., 19

Mereology: Mereology is a theory of [endurant] part-hood relations: of the relations of an [endurant] parts

to a whole and the relations of [endurant] parts to [endurant] parts within that whole. , 18

mereo : mereology observer., 19

Internal Qualities: Attributes
Attribute: Attributes are properties of endurants that can be measured either physically (by means of

length (ruler) and spatial quantity measuring equipment, electronically, chemically, or otherwise) or can

be objectively spoken about. , 19

Domain Description Schema. Describe Attributes: ..., 20

is active: An attribute category observer, 20

is autonomous: An attribute category observer, 20

is biddable: An attribute category observer, 20

is dynamic: An attribute category observer, 20

is inert: An attribute category observer, 20

is monitorable attribute: An attribute category observer, 21

is programmable: An attribute category observer, 20

is programmable attribute: An attribute category observer, 21

is static: An attribute category observer, 20

is static attribute: An attribute category observer, 21

record attribute type names: An analysis function, 19

attr : attribute observer, 20

Perdurants
Action: An action is a function that can purposefully change a state, 23

Behaviour: Behaviours are sets of sequences of actions, events and behaviours, 24

Channel: A channel is anything that allows synchronization and communication of values between be-

haviours, 24

Description Schema: Behaviour Invocation: ..., 25

Description Schema: Behaviour Signatures: ..., 24

Description Schema: Channels: channel ... , 24

Events: An event is a function that surreptitiously changes a state, 23

A.2 Transport Domain Concepts

A.3. FORMAL ENTITIES 175

action, 61

of behaviour, 105

argument

of behaviour, 61

behaviour, 61

action, 105

argument, 61

of part, 105

bookkeeping, double, 76

business process re-engineering, 157

cash, 69

client, 81

command, 105

directive, 105

response, 105

consumer, 81

conveyor, 41

kind, 41

conveyor company, 69

cost, 69

of conveyance, 76

current, 58

customer, 69, 81

aggregate, 73

directive

command, 105

double bookkeeping, 76

edge

kind, 41

label

unique, bi-directed, 41

entity

syntactic, 105

event, 59, 105

external, 105

internal, 105

event notice, 59

external

event, 105

facet

script, 105

function, 61

goods = merchandises, 77

graph [= net], 41

history attribute, 59

infrastructure

component, 36

intentional pull, 41

internal

event, 105

invocation, 66

kind, 41

conveyor, 41

edge, 41

node, 41

kustomer

aggregate, 73

logistics, 157

merchandise, 69, 77

= goods, 77

aggregate, 73

merchandises, 77

multi-mode transport, 69

node

kind, 41

label, 41

overall, top transport endurants, 69

part

behaviour, 105

path, 45

payment

of conveyance, 76

people, 41

receiver, 69

recipient, 69

response

command, 105

route, 45

routes, 58

script

facet, 105

semantics, 105

sender, 69

single-mode transport, 69

state

change, 105

syntactic entity, 105

tail-recursion, 62

theorem, 51

time-stamp, 59

transport, 41

multi-mode, 69

net, 41

route, 110

single-mode, 69

A.3 Formal Entities

The formal entries first lists formula entries by ontological category, then all:

Endurants

176 APPENDIX A. INDEXES

External Qualities

* Parts: Sorts ad Observers

* A Part State Concept

Internal Qualities

Unique Identification

* Unique Identifiers: Sorts and Observers

* A Unique Identifier State Concept

* A Wellformedness Axiom

Mereology

* Mereology: Sorts and Observers

* A Wellformedness Axiom

Attributes

* Attributes: Sorts and Observers

* Wellformedness Axioms

* Intentional Pull

* Commands

Perdurants

* Communication

* Messages

* Behaviour Signatures

* Behaviour Definitions

* Initialization

* Values

* Auxiliary Types

* Auxiliary Functions

* Theorems

Only the *’ed entries are listed.

Endurant
sorts

EA ι31, 45

ES ι33, 45

E ι36, 45

NA ι32, 45

NS ι34, 45

N ι35, 45

P ι37, 45

C ι84, 55

CA ι150, 74, 85

CA ι18, 43

CK ι149, 74, 85

CKA ι147, 74, 85

CKS ι148, 74, 85

CO ι152, 74, 85

CS ι151, 74, 85

CS ι83, 55

E ι141, 72

E ι35, 45

EA ι139, 72

EA ι31, 45

EAI ι139, 72

EI ι141, 72

ES ι141, 72

ES ι33, 45

G ι137, 72

G ι17, 43

GI ι137, 72

KA ι144, 73

KS ι145, 73

LA ι154, 75

LS ι155, 75

M ι159, 77

MA ι142, 73

MS ι143, 73

N ι140, 72

N ι36, 45

NA ι138, 72

NA ι32, 45

NAI ι138, 72

NI ι140, 72

NS ι140, 72

NS ι34, 45

oL ι153, 74, 85

P ι37, 45

T, 72

T ι16, 43

U, 50

auxiliary types
Air ι84, 55

Rail ι84, 55

Road ι84, 55

Sea ι84, 55

A.3. FORMAL ENTITIES 177

observers
obs CA ι150, 74, 85

obs CKA ι147, 74, 85

obs CKS ι148, 74, 85

obs CO ι152, 74, 85

obs CS ι151, 74, 85

obs EA ι139, 72

obs EA ι31, 45

obs ES ι141, 72

obs ES ι33, 45

obs GT ι137, 72

obs KA ι144, 73

obs KAI ι144, 73

obs KI ι145, 73

obs KS ι145, 73

obs LA ι154, 75

obs LS ι155, 75

obs MA ι142, 73

obs MAI ι142, 73

obs MI ι143, 73

obs MS ι143, 73

obs NA ι138, 72

obs NA ι32, 45

obs NS ι140, 72

obs NS ι34, 45

obs oL ι153, 74, 85

obs obs CA ι18, 43

obs obs G ι17, 43

Unique Identification
sorts

CAI ι150, 74

CAI ι200, 87

CAI ι25, 44

CAI ι87, 55

CCAI ι198, 87

CI ι201, 87

CI ι88, 55

CIK ι149, 74

CKAI ι147, 74

CKSI ι199, 87

COI ι152, 74

COI ι202, 87

EAI, 47

EI, 47

ESI, 47

GI, 47

GI ι24, 44

KAI ι144, 73

KI ι145, 73

KI ι180, 82

LAI ι154, 75

LI ι155, 75

MAI ι142, 73

MI ι143, 73

MI ι160, 78

NAI, 47

NI ι43, 47

NSI, 47

oLI ι153, 74

oLI ι203, 87

PI ι43, 47

TI ι23, 44

observers
uid C ι201, 87

uid CA ι150, 74

uid CAI ι25, 44

uid CAI ι87, 55

uid CCA ι198, 87

uid CI ι88, 55

uid CK ι200, 87

uid CKAI ι147, 74

uid CKI ι149, 74

uid CKS ι199, 87

uid CO ι152, 74

uid CO ι202, 87

uid E ι47, 47

uid EA ι45, 47

uid EAI ι139, 72

uid EI ι141, 72

uid ES ι46, 47

uid G ι44, 47

uid GI ι137, 72

uid GI ι24, 44

uid K ι180, 82

uid LAI ι154, 75

uid LI ι155, 75

uid M ι160, 78

uid N ι47, 47

uid NA ι45, 47

uid NAI ι138, 72

uid NI ι140, 72

uid NS ι46, 47

uid TI ι23, 44

uid oL ι153, 74

uid oL ι203, 87

Axioms
ι235, 94

All parts are uniquely identified ι92, 56

Commensurable Routes ι102, 58

Conveyor Mereology of Right Kind ι 95 , 57

Graph Mereology Wellformedness ι58 ι59, 48

Ordered Way and Conveyor Histories ι104, 59

Routes of commensurate kind ι98, 57

Unique Conveyor Companies Parts ι205, 88

Uniqueness of Part Identification ι55, 47

Uniqueness of Transport Identifiers ι30, 44

Wellformed Conveyor Company Mereologies

ι210, 89

Wellformed Transports ι257, 110

Mereology
types

CAM ι206, 88, 182

CM ι207, 88

CM ι224, 93

CM ι94, 56

COM ι208, 88

COST ι157d, 75

Cost ι166, 78

EHist ι157e, 75

178 APPENDIX A. INDEXES

EM ι157, 75

EM ι57, 48, 182

Flammability ι167, 78

Insurance ι168, 78

KM ι182, 82, 181

LEN ι157c, 75

MHist ι169, 78

MId ι162, 78

MM ι161, 78

NHist ι157b, 75

NM ι156, 75

NM ι56, 48, 182

OnHold ι157a, 75

Position ι163, 78

Size ι164, 78

Weight ι165, 78

observers
mereo C ι207, 88

mereo C ι224, 93

mereo C ι94, 56

mereo CA ι206, 88

mereo CO ι208, 88

mereo EM ι157, 75

mereo EM ι57, 48

mereo K ι182, 82

mereo M ι161, 78

mereo NM ι156, 75

mereo NM ι56, 48

auxiliary types
Event ι170, 78

Attribute
types:

AtNode ι99, 57

CKHist ι221, 90, 182

Contracts ι217, 90, 182

Contracts ι218, 90

ConvCompInfo ι215, 90, 182

ConvHist ι105, 59

COST ι72, 52

CPos ι99, 57

CurrBuss ι219, 90, 182

CustHist ι186, 82, 181

CustId ι183, 82, 181

EdgeKind ι70, 52

F ι99, 57

Kind ι225, 94

Kind ι97, 57

LEN ι71, 52

NodeKind ι69, 52

OnEdge ι99, 57

OnHold ι334, 149

Orders ι218, 182

OutReqs ι185, 82, 181

PastBuss ι220, 90, 182

Position ι231, 94

Possess ι184, 82, 181

Resources ι216, 90

SR ι227, 94, 182

SRIndex ι228, 94

Stowage ι226, 94

WHist ι104, 59

observers:
attr CHist ι233, 94

attr CKHist ι221, 90

attr COST ι157d, 75

attr COST ι72, 52

attr CPos ι231, 94

attr CPos ι99, 57

attr Contracts ι217, 90

attr ConvCompInfo ι215, 90

attr ConvHist, 59

attr Cost ι166, 78

attr CurrBuss ι219, 90

attr CustHist ι186, 82

attr CustId ι183, 82

attr EHist ι157e, 75

attr Edgekind ι70, 52

attr Finals ι230, 94

attr Flammability ι167, 78

attr Insurance ι168, 78

attr Kind ι225, 94

attr Kind ι97, 57

attr LEN ι157c, 75

attr LEN ι71, 52

attr MHist ι169, 78

attr MId ι162, 78

attr NHist ι157b, 75

attr NodeKind ι69, 52

attr OnHold ι157a, 75

attr OnHold ι334, 149

attr Orders ι218, 90

attr OutReqs ι185, 82

attr PastBuss ι220, 90

attr Position ι163, 78

attr Possess ι184, 82

attr SR ι227, 94

attr SRIndex ι228, 94

attr Size ι164, 78

attr Stowage ι226, 94

attr TBL ι229, 94

attr TBU ι229, 94

attr WH ι104, 59

attr Weight ι165, 78

auxiliary types:
CHist ι233, 94

ChoiceNu ι218c, 90, 182

ContractNu ι218a, 90, 182

Event ι187, 82, 181

Final ι230, 94

Finals ι230, 94

Move ι217a, 90, 182

Offer ι218b, 90

Offers ι218b, 182

TBL ι229, 94

TBU ι229, 94

Intentional Pull
Vehicles, Nodes and Edges ι106, 60

Commands
syntax

A.3. FORMAL ENTITIES 179

Acknowledgement ι248, 108

Acknowledgment ι240, 107

Acknowledgment ι248, 113

Acknowledgment ι266, 113

Acknowledgment ι271, 113

CNTransfe ι269, 113

CNTransfer ι247, 108

ConvCompConvDir ι243, 108, 114

ConvCompConvDir ι276, 114

ConvCompOffer ι241, 108, 114

ConvCompOffer ι274, 114

ConvCompOrdOK ι242, 108, 114

ConvCompOrdOK ι275, 114

CustDel ι239, 107

CustOrd ι237, 112

CustOrder ι237, 107

CustQuery ι236, 107, 111

K ι177, 81

KNTransfer ι238, 112

NCTransfer ι269, 113

NKTransfer ι279, 115

Notify ι246, 108, 113

Notify ι268, 113

OrderOK ι238, 107, 112

PendColl ι244, 108

PendColl ι245, 113

PendColl ι267, 113

PendDel ι249, 108, 113

PendDel ι273, 113

Transfer ι247, 113

auxiliary types
Addr ι264a, 111

Addr ι264f, 111

ChoiceNu ι274d, 114

ContractNu ι252, 110

ContractNu ι265a, 112

ContractNu ι274b, 114

ExpCost ι264e, 111

FromTo ι272, 113

FT ι264d, 111

MInfo ι264b, 111

M-set ι265b, 112

OfferChoice ι274e, 114

OrdrComp ι264c, 112

QueryComp ι263b, 111

QueryId ι263a, 111

TI ι264c, 111

TR ι250, 110

auxiliary functions
Addr ι264d, 112

ContractNu ι264b, 112

Cost ι264h, 112

FT ι264g, 112

MerchInfo ι264e, 112

OrdrComp ι264c, 112

QueryId ι264a, 112

TI ι264f, 112

Channel
comm, 61

comm ι292, 123

M ι293, 123

Message
Types

M ι117, 61

Behaviour
Signatures

conv comp ι297, 124

conveyor ι118, 62, 137

conveyor ι298, 124

customer ι295, 124

edge ι118, 62, 147

edge ι131, 65, 147

edge ι299, 124

initialization ι132, 66

logistics ι296, 124

node ι118, 62

node ι130, 65, 149

node ι300, 124

Definitions
awaits msg ι315, 132

confirms offer ι314c, 133

conv msg handling ι323, 140

conveyor ι119, 62, 142

conveyor ι125, 64, 141

conveyor ι322, 139

conveyor change route ι120, 63, 137

conveyor company ι314, 132

conveyor enters edge ι122, 63, 138

conveyor enters node ι127, 65

conveyor moves on edge ι126, 64

conveyor remains at node ι121, 63, 138

conveyor stops at node ι123, 64, 138

conveyor stops on edge ι128, 65

cust delivers merchandises ι312, 130

cust issues order ι311, 129

cust order OK ι311, 129

cust requests merchandises ι313, 130

customer ι308, 127

customer issues query ι310, 128

customer receiv messages ι308g, 128

edge ι131, 65, 147

inform conveyors ι314d, 134

initialization ι132, 66

instantiation ι301, 125, 126

node ι130, 65, 149

pending collection ι321, 135

suggests offer ι314b, 133

Values
TIME, 59

TI, time-interval, 59

σCKuid
ι204, 88

σCK ι197, 87

σps ι42, 46

σtuis
ι29, 44

σt ι19, 43

σuis ι54, 47

σuis ι91, 56

ca ι21, 43

180 APPENDIX A. INDEXES

cai ι28, 44

cai ι89, 56

ccaui ι204, 88

ccksuid ι204, 88

cis ι90, 56

cka ι191, 86

cks ι192, 86

cksuid ι204, 88

cos ι195, 87

cosuid ι204, 88

cs ι194, 87

csuid ι204, 88

css ι193, 86

euis ι52, 47

ea ι38, 46

eauis ι50, 47

es ι40, 46

esuis ι51, 47

g ι20, 43

gi ι27, 44

gi ι49, 47

ks ι146, 73

ks ι179, 81

m ι159, 77

nuis ι53, 47

na ι39, 46

nauis ι50, 47

ns ι41, 46

nsuis ι51, 47

ols ι196, 87

paths ι66, 50

t, 72

t ι178, 81

t ι19, 43

ti ι26, 44

Auxiliary
Types

ConvDir ι319c, 134

Edge Node Path ι255, 110

Kind, 41

Load ι319d, 134

Path ι60, 49

Segment ι254, 110

Unload ι319d, 134

W ι103, 59

WI ι103, 59

Functions
calc offer ι316a, 133

commensurate query offer ι315, 133

commensurate query offers ι316a, 133

construct dirs ι319, 134

ContractNu ι263, 110

extract dir ι320, 135

kind ι73, 53

least costly route of kind, 53

path cost ι76, 53

path kind ι68, 51

path length ι75, 53

paths ι62, 50

retr conveyor ι93, 56

retr customer ι173, 83

retr edge ι61, 49

retr merchandise ι174, 79

retr merchandise ι175, 79

retr node ι61, 49

retr path cost ι76, 53

retr path length ι75, 53

retr unit ι61, 49

retr W ι103, 59

rev path ι67, 51

route kind ι74, 53

same kind ι259, 111

select next route ι120b, 63, 137

share conveyors ι210, 89

shortest route ι77, 53

shortest route of kind, 53

update orders ι317, 134

update res and ors ι316b, 133

update resources and orders ι316b, 133

xtr Addr ι280, 120

xtr CI ι282, 120

xtr CI ι283, 120

xtr CKI ι277, 114

xtr CKI ι281, 120

xtr CKI ι283, 120

xtr KI ι265, 112

xtr KI ι278, 114

xtr MIs ι284, 120

xtr Name ι280, 120

Theorems
All finite paths have finite reverse paths ι67, 51

All
attr CHist ι233, 94

attr CKHist ι221, 90

attr COST ι157d, 75

attr COST ι72, 52

attr CPos ι231, 94

attr CPos ι99, 57

attr Contracts ι217, 90

attr ConvCompInfo ι215, 90

attr ConvHist, 59

attr Cost ι166, 78

attr CurrBuss ι219, 90

attr CustHist ι186, 82

attr CustId ι183, 82

attr EHist ι157e, 75

attr Edgekind ι70, 52

attr Finals ι230, 94

attr Flammability ι167, 78

attr Insurance ι168, 78

attr Kind ι225, 94

attr Kind ι97, 57

attr LEN ι157c, 75

attr LEN ι71, 52

attr MHist ι169, 78

attr MId ι162, 78

attr NHist ι157b, 75

attr NodeKind ι69, 52

attr OnHold ι157a, 75

A.3. FORMAL ENTITIES 181

attr OnHold ι334, 149

attr Orders ι218, 90

attr OutReqs ι185, 82

attr PastBuss ι220, 90

attr Position ι163, 78

attr Possess ι184, 82

attr SR ι227, 94

attr SRIndex ι228, 94

attr Size ι164, 78

attr Stowage ι226, 94

attr TBL ι229, 94

attr TBU ι229, 94

attr WH ι104, 59

attr Weight ι165, 78

All finite paths have finite reverse paths ι67, 51

M ι117, 61

ι235, 94

TIME, 59

TI, time-interval, 59

σCKuid
ι204, 88

σCK ι197, 87

σps ι42, 46

σtuis
ι29, 44

σt ι19, 43

σuis ι54, 47

σuis ι91, 56

ca ι21, 43

cai ι28, 44

ccaui ι204, 88

ccksuid ι204, 88

cis ι90, 56

cka ι191, 86

cks ι192, 86

cksuid ι204, 88

cos ι195, 87

cosuid ι204, 88

cs ι194, 87

csuid ι204, 88

css ι193, 86

euis ι52, 47

ea ι38, 46

eauis ι50, 47

es ι40, 46

esuis ι51, 47

g ι20, 43

gi ι27, 44

gi ι49, 47

ks ι146, 73

ks ι179, 81

m ι159, 77

nuis ι53, 47

na ι39, 46

nauis ι50, 47

ns ι41, 46

nsuis ι51, 47

ols ι196, 87

paths ι66, 50

t ι19, 43

t, 72

ti ι26, 44

Air ι84, 55

All parts are uniquely identified ι92, 56

AtNode ι99, 57

C ι224, 93

C ι84, 55

C ι94, 56

CA ι150, 74, 85

CA ι18, 43

CA ι206, 88

CAI ι150, 74

CAI ι200, 87

CAI ι25, 44

CAI ι87, 55

CAM ι206, 88, 182

CCAI ι198, 87

CHist ι233, 94

CI ι88, 55

CIK ι149, 74

CK ι149, 74, 85

CKA ι147, 74, 85

CKAI ι147, 74

CKHist ι221, 90, 182

CKS ι148, 74, 85

CKSI ι199, 87

CM ι224, 93

CM ι94, 56

CO ι152, 74, 85

CO ι208, 88

COI ι152, 74

COI ι202, 87

COM ι208, 88

COST ι157d, 75

COST ι72, 52

CPos ι99, 57

CS ι151, 74, 85

CS ι83, 55

ChoiceNu ι218c, 90, 182

Commensurable Routes ι102, 58

ContractNu ι218a, 90, 182

ContractNu ι263, 110

Contracts ι217, 90, 182

Contracts ι218, 90

ConvCompInfo ι215, 90, 182

ConvDir ι319c, 134

ConvHist ι105, 59

Conveyor Mereology of Right Kind ι 95 , 57

Cost ι166, 78

CurrBuss ι219, 90, 182

CustHist ι186, 82, 181

CustId ι183, 82, 181

E ι141, 72

E ι35, 45

EA ι139, 72

EA ι31, 45

EAI ι139, 72

EAI, 47

EHist ι157e, 75

EI ι141, 72

EI, 47

EM ι157, 75

EM ι57, 48, 182

ES ι141, 72

182 APPENDIX A. INDEXES

ES ι33, 45

ESI, 47

EdgeKind ι70, 52

Edge Node Path ι255, 110

Event ι170, 78

Event ι187, 82, 181

F ι99, 57

Final ι230, 94

Finals ι230, 94

Flammability ι167, 78

G ι137, 72

G ι17, 43

GI ι137, 72

GI ι24, 44

GI, 47

Graph Mereology Wellformedness ι58 ι59, 48

Insurance ι168, 78

K ι182, 82

KA ι144, 73

KAI ι144, 73

KI ι145, 73

KI ι180, 82

KM ι182, 82, 181

KS ι145, 73

Kind ι225, 94

Kind ι97, 57

Kind, 41

LA ι154, 75

LAI ι154, 75

LEN ι157c, 75

LEN ι71, 52

LI ι155, 75

LS ι155, 75

Load ι319d, 134

M ι159, 77

M ι161, 78

M ι293, 123

MA ι142, 73

MAI ι142, 73

MHist ι169, 78

MI ι143, 73

MI ι160, 78

MId ι162, 78

MM ι161, 78

MS ι143, 73

Move ι217a, 90, 182

N ι140, 72

N ι36, 45

NA ι138, 72

NA ι32, 45

NAI ι138, 72

NAI, 47

NHist ι157b, 75

NI ι140, 72

NI ι43, 47

NM ι156, 75

NM ι56, 48, 182

NS ι140, 72

NS ι34, 45

NSI, 47

NodeKind ι69, 52

Offer ι218b, 90

Offers ι218b, 182

OnEdge ι99, 57

OnHold ι157a, 75

OnHold ι334, 149

Ordered Way and Conveyor Histories ι104, 59

Orders ι218, 182

OutReqs ι185, 82, 181

P ι37, 45

PI ι43, 47

PastBuss ι220, 90, 182

Path ι60, 49

Position ι163, 78

Position ι231, 94

Possess ι184, 82, 181

Rail ι84, 55

Resources ι216, 90

Road ι84, 55

Routes of commensurate kind ι98, 57

SR ι227, 94, 182

SRIndex ι228, 94

Sea ι84, 55

Segment ι254, 110

Size ι164, 78

Stowage ι226, 94

T ι16, 43

TBL ι229, 94

TBU ι229, 94

TI ι23, 44

T, 72

Unique Conveyor Companies Parts ι205, 88

Uniqueness of Part Identification ι55, 47

Uniqueness of Transport Identifiers ι30, 44

Unload ι319d, 134

U, 50

Vehicles, Nodes and Edges ι106, 60

W ι103, 59

WHist ι104, 59

WI ι103, 59

Weight ι165, 78

Wellformed Conveyor Company Mereologies

ι210, 89

Wellformed Transports ι257, 110

comm ι292, 123

comm, 61

awaits msg ι315, 132

calc offer ι316a, 133

commensurate query offer ι315, 133

commensurate query offers ι316a, 133

confirms offer ι314c, 133

construct dirs ι319, 134

conv comp ι297, 124

conv msg handling ι323, 140

conveyor ι118, 62, 137

conveyor ι119, 62, 142

conveyor ι125, 64, 141

conveyor ι298, 124

conveyor ι322, 139

conveyor change route ι120, 63, 137

conveyor company ι314, 132

conveyor enters edge ι122, 63, 138

A.3. FORMAL ENTITIES 183

conveyor enters node ι127, 65

conveyor moves on edge ι126, 64

conveyor remains at node ι121, 63, 138

conveyor stops at node ι123, 64, 138

conveyor stops on edge ι128, 65

cust delivers merchandises ι312, 130

cust issues order ι311, 129

cust order OK ι311, 129

cust requests merchandises ι313, 130

customer ι295, 124

customer ι308, 127

customer issues query ι310, 128

customer receiv messages ι308g, 128

edge ι118, 62, 147

edge ι131, 65, 147

edge ι299, 124

extract dir ι320, 135

inform conveyors ι314d, 134

initialization ι132, 66

instantiation ι301, 125, 126

kind ι73, 53

least costly route of kind, 53

logistics ι296, 124

node ι118, 62

node ι130, 65, 149

node ι300, 124

oL ι153, 74, 85

oLI ι153, 74

oLI ι203, 87

path cost ι76, 53

path kind ι68, 51

path length ι75, 53

paths ι62, 50

pending collection ι321, 135

retr W ι103, 59

retr conveyor ι93, 56

retr customer ι173, 83

retr edge ι61, 49

retr merchandise ι174, 79

retr merchandise ι175, 79

retr node ι61, 49

retr path cost ι76, 53

retr path length ι75, 53

retr unit ι61, 49

rev path ι67, 51

route kind ι74, 53

same kind ι259, 111

select next route ι120b, 63, 137

share conveyors ι210, 89

shortest route ι77, 53

shortest route of kind, 53

suggests offer ι314b, 133

update orders ι317, 134

update res and ors ι316b, 133

update resources and orders ι316b, 133

xtr Addr ι280, 120

xtr CI ι282, 120

xtr CI ι283, 120

xtr CKI ι277, 114

xtr CKI ι281, 120

xtr CKI ι283, 120

xtr KI ι265, 112

xtr KI ι278, 114

xtr MIs ι284, 120

xtr Name ι280, 120

obs CA ι150, 74

obs CKA ι147, 74

obs CKS ι148, 74

obs CO ι152, 74

obs CS ι151, 74

obs EA ι139, 72

obs EA ι31, 45

obs ES ι141, 72

obs ES ι33, 45

obs GT ι137, 72

obs KA ι144, 73

obs KAI ι144, 73

obs KI ι145, 73

obs KS ι145, 73

obs LA ι154, 75

obs LS ι155, 75

obs MA ι142, 73

obs MAI ι142, 73

obs MI ι143, 73

obs MS ι143, 73

obs NA ι138, 72

obs NA ι32, 45

obs NS ι140, 72

obs NS ι34, 45

obs oL ι153, 74

obs obs CA ι18, 43

obs obs G ι17, 43

uid CA ι150, 74

uid CAI ι25, 44

uid CAI ι87, 55

uid CCA ι198, 87

uid CI ι88, 55

uid CK ι200, 87

uid CKAI ι147, 74

uid CKI ι149, 74

uid CKS ι199, 87

uid CO ι152, 74

uid CO ι202, 87

uid E ι47, 47

uid EA ι45, 47

uid EAI ι139, 72

uid EI ι141, 72

uid ES ι46, 47

uid G ι44, 47

uid GI ι137, 72

uid GI ι24, 44

uid K ι180, 82

uid LAI ι154, 75

uid LI ι155, 75

uid M ι160, 78

uid N ι47, 47

uid NA ι45, 47

uid NAI ι138, 72

uid NI ι140, 72

uid NS ι46, 47

uid TI ι23, 44

uid oL ι153, 74

184 APPENDIX A. INDEXES

uid oL ι203, 87

Acknowledgement ι248, 108

Acknowledgment ι240, 107

Acknowledgment ι248, 113

Acknowledgment ι266, 113

Acknowledgment ι271, 113

Addr ι264a, 111

Addr ι264d, 112

Addr ι264f, 111

ChoiceNu ι274d, 114

CNTransfe ι269, 113

CNTransfer ι247, 108

ContractNu ι252, 110

ContractNu ι264b, 112

ContractNu ι265a, 112

ContractNu ι274b, 114

ConvCompConvDir ι243, 108, 114

ConvCompOffer ι241, 108, 114

ConvCompOrdOK ι242, 108, 114

ConvCompOrdOK ι275, 114

Cost ι264h, 112

CustDel ι239, 107

CustOrder ι237, 107

CustQuery ι236, 107

ExpCost ι264e, 111

FromTo ι272, 113

FT ι264d, 111

FT ι264g, 112

K ι177, 81

KNTransfer ι238, 112

MerchInfo ι264e, 112

MInfo ι264b, 111

M-set ι265b, 112

NCTransfer ι269, 113

NKTransfer ι279, 115

Notify ι246, 108, 113

Notify ι268, 113

OfferChoice ι274e, 114

OrderOK ι238, 107, 112

OrdrComp ι264c, 112

PendColl ι244, 108

PendColl ι245, 113

PendColl ι267, 113

PendDel ι249, 108, 113

PendDel ι273, 113

QueryComp ι263b, 111

QueryId ι263a, 111

QueryId ι264a, 112

TI ι264c, 111

TI ι264f, 112

TR ι250, 110

Transfer ι247, 113

There are 483 formal RSL entities, and there are 504 RSL definitions – the former counted among the latter.

Appendix B

Summaries

B.1 Commands

ι241π111. [k1] CustQuery ::<QueryId×QueryComp

ι279π118. [k2] ConvCompOffer :: CKI×ContractNu×QueryNu×(ChoiceNu→m OfferChoice)

ι279eπ118. OfferChoice = TR×Cost

ι242π111. [k3] CustOrd :: QueryId×ContractNu×OrdrComp
ι280π118. [k4] ConvCompOrdOK :: CKI×ContractNu×ChoiceNu×TR×Cost
ι243π111. [k5] OrderOK :: ContractNu×ChoiceNu×Payment

ι281aπ118. [k7] ConvCompConvDir :: CKI×ContractNu×Segment

ι272π117. [k8] PendColl :: (NI×ContractNu×MI-set) mayby not the MI-set
ι243π111. [k9] KNTransfer :: ContractNu×M-set

ι273π117. [k10] Notify :: AtNode | OnEdge

ι274π117. [k11a] NCTransfer :: ContractNu→m M-set

ι275π117. [k11b] CNTransfer :: ContractNu→m M-set

ι276π117. [k12] Acknowledgment :: TIME×ContractNu×((NI×CI)|(CI×NI))

ι278π117. [k13] PendDel :: NI×ContractNu×MI-set mayby not the MI-set
ι284π119. [k14a] NKTransfer :: NI×ContractNu×MI-set mayby not the MI-set
ι271π117. [k15a] Acknowledgment :: TIME×ContractNu×(NI×KI)

ι271π117. [k15b] Acknowledgment :: TIME×ContractNu×(KI×NI)

B.2 Mereologies and Attributes

B.2.1 Customers

Mereology:
ι187π86. KM = MI-set × (CKI|LI)-set × CI-set

Attributes:
ι188π86. CustId = CustNam × CustAdd × ...

ι189π86. Possess = MI-set

ι190π86. OutReqs = ...

ι191π86. CustHist = (TIME × Event)∗

ι192π86. Event = ...

ι193π86. ...

185

186 APPENDIX B. SUMMARIES

B.2.2 Conveyor Companies

Mereology:
ι211π92. CAM = CI-set × COI

Attributes:
ι220π94. ConvCompInfo = ...

ι222π94. Contracts = ContractNu →m Move∗

ι222aπ94. Move = (KI×NI)|(NI×CI)|(CI×NI)|(NI×KI)

ι223π94. Orders = ContractNu →m Offers

ι223aπ94. ContractNu

ι223bπ94. Offers = ChoiceNu →m TR

ι223cπ94. ChoiceNu

ι224π94. CurrBuss = MSG-set

ι225π94. PastBuss = MSG-set

ι226π94. CKHist = MSG∗

B.2.3 Conveyors

Mereology:
ι229π97. CM = (NI|EI)set × CKI-set × KI-set

Attributes:
ι230π98. Kind

ι231π98. Stowage = ContractNu →m M-set

ι234π98. TBU,TBL = NI→m ContractNu-set

ι232π98. SR = Path

ι233π98. SRIndex = Na

ι235π98. Finals = NI →m (KI →m ContractNu)

ι235π98. Final = NI × ContractNo × KI

ι236π98. CPos = OnEdge (= NI×(F<>EI)×NI)

ι236π98. CPos = AtNode (= NI)

ι238π98. CHist = MSG∗

B.2.4 Nodes and Edges

Mereology:
ι61 π52. NM = EI-set axiom ∀ nm:NM • card nm>0

ι62 π52. EM = NI-set axiom ∀ em:EM • card em=2

Attributes:
ι74 π56. NodeKind = Kind-set axiom ∀ nk:NodeKind • nk 6={}
ι75 π56. EdgeKind = Kind-set axiom ∀ ek:EdgeKind • cardek=1

ι76 π56. LEN = Nat

ι77 π56. COST = Nat

ι339π153. OnHold = ContractNu →m M-set

