
Double-entry Bookkeeping

Dines Bjørner∗

Technical University of Denmark
Fredsvej 11, DK-2840 Holte, Danmark

E–Mail: bjorner@gmail.com, URL: www.imm.dtu.dk/˜db

April 30, 2024, 16:06

77

Abstract

We step-wise unfold a formal model of a double-entry bookkeeping “system”. We develop the
model is stages: from very simplistic, to reasonably “full-blown” realistic. First we develop a
model in the traditional abstract software specification style. Then we embed a final stage of the
traditional model in a “prototype” domain model.

Contents

1 Introduction 3
1.1 What is This All About ? . 3
1.2 A Background – A Context . 3

1.2.1 Background . 4
1.2.1.1 Actual Double-entry Bookkeeping Systems. 4
1.2.1.2 Formal Software Development. 4

1.2.2 Context . 4
The Triptych Dogma . 4

1.3 Terminologies . 4
1.4 A Caveat . 5
1.5 Structure of Report . 5

2 Financial Management Terminology 5

3 A Sequence of Models of Single-entry Bookkeeping 8
3.1 A Simplest Single Entry Model . 8

3.1.1 A Formal Type Model . 8
3.1.2 A Formal ‘Semantics’ Model. 8

3.2 Two Simple Single Entry Semantic Type Models 9
3.2.1 Simple Account Lists . 9

3.2.1.1 A Formal Model. 9
3.2.1.2 Wellformedness. 10

∗This report is under copyright protection: c© Dines Bjørner, April 5, 2024

1

2 April 30, 2024. Dines Bjørner

3.2.2 Simple Account Maps. 10
3.2.2.1 A Formal Model. 10
3.2.2.2 Wellformedness. 11

3.3 A General Single Entry Model . 12
3.3.1 A Formal Model . 12

3.3.1.1 A Type Model. 12
3.3.1.2 Access Paths. 13
3.3.1.3 Well-formed Access Paths. 14
3.3.1.4 Account Access. 15
3.3.1.5 Summary Expense Accounts. 15

3.3.1.5.1 Paired Debit/Credit Entries 16
3.3.1.5.2 Summary Credit Entries 16

4 A Double-entry Bookkeeping Model 16
4.1 A Type Model . 16

4.1.1 Types . 17
4.1.2 Wellformedness . 17

4.1.2.1 Access Paths . 17
4.1.2.1.1 Common Constraints 17
4.1.2.1.2 Double-entry Constraints 18

4.1.2.2 Budgets . 19
4.1.2.3 Amounts . 20
4.1.2.4 Balance . 20
4.1.2.5 Intentional Pull . 20

4.2 Transactions . 21
4.2.1 Read . 21
4.2.2 Write . 21
4.2.3 Establish Accounts . 23

4.2.3.1 Command Syntax. 23
4.2.3.2 Command Semantics. 23

4.2.4 Save Accounts . 24

5 A Financial Management Prototype Domain 24
5.1 Endurants . 24

5.1.1 External Qualities . 24
5.1.1.1 Endurant Sorts . 24
5.1.1.2 Endurant Values . 25

5.1.2 Internal Qualities. 26
5.1.2.1 Unique Identifiers. 26

5.1.2.1.1 Unique Identifier Observers and Values 26
5.1.2.1.2 Wellformedness. 26

5.1.2.2 Mereologies. 27
5.1.2.2.1 Mereology Observers 27
5.1.2.2.2 Mereology Wellformedness 27

5.1.2.3 Attributes. 27
5.1.2.3.1 Debit/Credit Accounts 28
5.1.2.3.2 Asset/Liability Accounts 28

Double-entry Bookkeeping 2 Dines Bjørner. April 30, 2024, 16:06

Double-entry Bookkeeping. April 30, 2024. 3

5.1.2.3.3 Accountants . 29
5.2 Some Domain Facets. 29

5.2.1 A Complete Transaction. 29
5.2.1.1 Transaction Syntax, Syntactic Types. 30
5.2.1.2 Transaction Syntax, Semantic Types. 30

5.3 Perdurants . 30
5.3.1 Bookkeeping Channels. 30
5.3.2 Bookkeeping Behaviours. 31

5.3.2.1 Bookkeeping Perdurants. 31
5.3.2.2 Bookkeeping Domain Behaviour Signatures. 31
5.3.2.3 Bookkeeping Behaviour Definitions. 31

5.3.2.3.1 The Debit/Credit Account Behaviour 31
5.3.2.3.2 The Asset/Liability Account Behaviour 34
5.3.2.3.3 The Accountant Behaviour. 34
5.3.2.3.4 The Audit Behaviour. 35

5.3.3 Initialize System . 35

6 Summing Up 35

7 Bibliography 35

A Software Engineering Terminology 37

B Indexes 49
B.1 Financial Management Terminology . 49
B.2 Software Engineering Terminology . 49
B.3 Domain Description Formula . 51
B.4 “Statistics” . 53

1 Introduction

1.1 What is This All About ?

We shall present a description of certain aspects of double-entry bookkeeping.1 The description, in
Sects. 3 and 3, focus on the “classical” issue of single- and double-entry bookkeeping. Whereas the
description, in Sect. 5, focus on the domain modelling, that is, of embedding bookkeeping in models
of such domains as road-pricing, shipping, retailing, manufacturing, etc. We refer to the books [6, 11]
for introductions to domain modelling, and to the Internet document [9, Domain Models – A
Compendium] for a compendium on some 15 [such] domains.2 Double-entry bookkeeping, per se, is
not [really] a domain issue. But its relation to domains is obvious !

1.2 A Background – A Context

There are two issues at play here.

1https://en.wikipedia.org/wiki/Double-entry bookkeeping
2It is the intention, eventually, to include this document’s model of double-entry bookkeeping into that compendium.

c© Dines Bjørner. April 30, 2024, 16:06 3 Double-entry Bookkeeping

4 April 30, 2024. Dines Bjørner

1.2.1 Background

The working-out of this model of double-entry bookkeeping takes place on/in the following back-
ground.

1.2.1.1 Actual Double-entry Bookkeeping Systems.

Having first learned basic skills of double-entry bookkeeping and passed an examn during my MSc
studies, 1956–1962. Having realized that double-entry bookkeeping represents an example of in-
tentional pull , in recent years, cf. Sect. 5.6 of [11], 2020. Having a neighbour, “up the road”, who
has made a first fortune on double-entry bookkeeping software. But, having “studied” commercial,
on the market double-entry bookkeeping software packages3, never been quiet content with their
explanation of these software systems.

1.2.1.2 Formal Software Development.

Since 1973, i.e., since my work at the IBM Vienna Laboratory, Austria, it has been clear to me that
programs, their specification, and hence also now, domain descriptions and requirements prescriptions
are mathematical object. And that the development of software can, and, to me, thus should be orderly
developed: in phases from domain descriptions via requirements prescriptions to software and its
code. All this is presented in [5, 6, 11].

1.2.2 Context The Triptych Dogma

In order to specify software,
we must understand its requirements.

In order to prescribe requirements,
we must understand the domain.

So we must study, analyze and describe domains.

The specific context in which this report, on what may seem a rather “low-level” topic, is then con-
ceived is this. First: the above, the The Triptych Dogma. Then fact that each human artifact domain
— such as those described in [9] — somehow or other include a [double-entry] bookkeeping element.

The general context is that of the specific view of software development as represented by the
Software Engineering Terminology of Appendix A.

1.3 Terminologies

In any construction project, in any domain, whether for software or other, it is vitally important to
agree on all professional terms. It seems that this is especially important in the software business. The
domain description that we shall unfold, later, is one such registration of all the relevant professional
terms of the field of double-entry bookkeeping. But before any attempt at modelling the domain,
as an element of its study and analysis we urge the domain describer to first establish appropriate
terminologies.

There are basically two terminologies. One, in Sect. 2, for the financial management terms re-
lated to double-entry bookkeeping. And another, Appendix 2, related to domain, requirements and
software engineering .

3– but, it must be said: never personally used such software

Double-entry Bookkeeping 4 Dines Bjørner. April 30, 2024, 16:06

Double-entry Bookkeeping. April 30, 2024. 5

1.4 A Caveat

The present, Spring 2024, report is a torso. It sketches while also presenting the essential facets:
the updating of double-entry bookkeeping debit/credit and asset/liability accounts. We leave it to the
reader to complete possibly “dangling” descriptions: narratives and formalizations; to tie the various
description elements together, and “embed” the result in a specific [road pricing, container shipping,
retailer, banking, or pipeline domain.

1.5 Structure of Report

• In Sect. 2 we present, mostly from/courtesy Wikipadia, a vocabulary of terms relevant to book-
keeping.

• Section 3 then presents, in the style of [5, Software Engineering, vols. 1–3 2005/2006] a series
of from very simple to reasonably realistic single-entry bookkeeping models.

• Section 4 then “generalizes” this to a double-entry bookkeeping model.

• Section 5 finally “embeds” the double-entry bookkeeping model into a model f the domain of
accountancy.

2 Financial Management Terminology

I expect to insert more term explanations.

• Account: In bookkeeping, an account refers to assets, liabilities, income, expenses, and eq-
uity, as represented by individual ledger pages, to which changes in value are chronologically
recorded with debit and credit entries. These entries, referred to as postings, become part of
a book of final entry or ledger. Examples of common financial accounts are sales, accounts
receivable, mortgages, loans, PP&E (Property, Plant, and Equipment), common stock, sales,
services, wages and payroll.

A chart of accounts provides a listing of all financial accounts used by particular business,
organization, or government agency.

The system of recording, verifying, and reporting such information is called accounting. Prac-
titioners of accounting are called accountants.

• Asset: An asset is any resource owned or controlled by a business or an economic entity.
It is anything (tangible or intangible) that can be used to produce positive economic value.
Assets represent value of ownership that can be converted into cash (although cash itself is also
considered an asset). The balance sheet of a firm records the monetary value of the assets owned
by that firm. It covers money and other valuables belonging to an individual or to a business.[

Assets can be grouped into two major classes: tangible assets and intangible assets. Tangible as-
sets contain various sub-classes, including current assets and fixed assets. Current assets include
cash, inventory, accounts receivable, while fixed assets include land, buildings and equipment.
Intangible assets are non-physical resources and rights that have a value to the firm because they
give the firm an advantage in the marketplace. Intangible assets include goodwill, intellectual
property (such as copyrights, trademarks, patents, computer programs), and financial assets,
including financial investments, bonds, and companies’ shares.

c© Dines Bjørner. April 30, 2024, 16:06 5 Double-entry Bookkeeping

6 April 30, 2024. Dines Bjørner

IFRS (International Financial Reporting Standards), the most widely used financial reporting
system, defines: “An asset is a present economic resource controlled by the entity as a result
of past events. An economic resource is a right that has the potential to produce economic
benefits.”

• Audit: An audit is an independent examination of financial information of any entity, whether
profit oriented or not, irrespective of its size or legal form when such an examination is
conducted with a view to express an opinion thereon. Auditing also attempts to ensure that
the books of accounts are properly maintained by the concern as required by law. Auditors
consider the propositions before them, obtain evidence, roll forward prior year working papers,
and evaluate the propositions in their auditing report.

Audits provide third-party assurance to various stakeholders that the subject matter is free from
material misstatement The term is most frequently applied to audits of the financial information
relating to a legal person. Other commonly audited areas include: secretarial and compliance,
internal controls, quality management, project management, water management, and energy
conservation. As a result of an audit, stakeholders may evaluate and improve the effectiveness
of risk management, control, and governance over the subject matter.

• Auditor: An auditor is a person or a firm appointed by a company to execute an audit. To act as
an auditor, a person should be certified by the regulatory authority of accounting and auditing or
possess certain specified qualifications. Generally, to act as an external auditor of the company,
a person should have a certificate of practice from the regulatory authority.

• Balance: In banking and accounting, the balance is the amount of money owed (or due) on an
account.

In bookkeeping, “balance” is the difference between the sum of debit entries and the sum of
credit entries entered into an account during a financial period. When total debits exceed the
total credits, the account indicates a debit balance. The opposite is true when the total credit
exceeds total debits, the account indicates a credit balance. If the debit/credit totals are equal,
the balances are considered zeroed out. In an accounting period, “balance” reflects the net value
of assets and liabilities to better understand balance in the accounting equation.

• Credits and Debits: Credits and debits in double-entry bookkeeping are entries made in
account ledgers to record changes in value resulting from business transactions. A debit entry
in an account represents a transfer of value to that account, and a credit entry represents a
transfer from the account. Each transaction transfers value from credited accounts to debited
accounts. For example, a tenant who writes a rent cheque to a landlord would enter a credit for
the bank account on which the cheque is drawn, and a debit in a rent expense account. Similarly,
the landlord would enter a credit in the rent income account associated with the tenant and a
debit for the bank account where the cheque is deposited.

Debits and credits are traditionally distinguished by writing the transfer amounts in separate
columns of an account book. This practice simplified the manual calculation of net balances
before the introduction of computers; each column was added separately, and then the smaller
total was subtracted from the larger. Alternately, debits and credits can be listed in one column,
indicating debits with the suffix ”Dr” or writing them plain, and indicating credits with the suffix
”Cr” or a minus sign. Debits and credits do not, however, correspond in a fixed way to positive
and negative numbers. Instead the correspondence depends on the normal balance convention
of the particular account.

Double-entry Bookkeeping 6 Dines Bjørner. April 30, 2024, 16:06

Double-entry Bookkeeping. April 30, 2024. 7

• Double-entry accounting: See Double-entry bookkeeping.

• Double-entry bookkeeping: Double-entry bookkeeping, also known as double-entry ac-
counting, is a method of bookkeeping that relies on a two-sided accounting entry to maintain
financial information. Every entry to an account requires a corresponding and opposite entry
to a different account. The double-entry system has two equal and corresponding sides, known
as debit and credit4; this is based on the fundamental accounting principle that for every debit,
there must be an equal and opposite credit. A transaction in double-entry bookkeeping always
affects at least two accounts, always includes at least one debit and one credit, and always has
total debits and total credits that are equal.

A Complete Transaction: In our model “the two sides” are instead modelled as
a pair of pairs: A debit/credit pair and an asset/liability pair. Thus a “completed”
transaction5 in our double-entry bookkeeping should always affects at least two ac-
counts, always includes a debit/credit and an asset/liability , and always has total
debit/credits and total asset/liability that should be equal.

• Equity: Ownership of assets that have liabilities attached to them:

– Stock: equity based on original contributions of cash or other value to a business.

– Home equity: the difference between the market value and unpaid mortgage balance on
a home.

– Private equity: stock in a privately held company.

– Equity Method: Equity method in accounting is the process of treating investments in
associate companies. Equity accounting is usually applied where an investor entity holds
2050% of the voting stock of the associate company, and therefore has significant in-
fluence on the latter’s management. Under International Financial Reporting Standards,
equity method is also required in accounting for joint ventures.[1] The investor records
such investments as an asset on its balance sheet. The investor’s proportional share of
the associate company’s net income increases the investment (and a net loss decreases the
investment), and proportional payments of dividends decrease it. In the investors income
statement Equity accounting may also be appropriate where the investor has a smaller
interest, depending on the nature of the actual relationship between the investor and in-
vestee. Control of the investee, usually through ownership of more than 50% of voting
stock, results in recognition of a subsidiary, whose financial statements must be consoli-
dated with the parent’s. The ownership of less than 20% creates an investment position,
carried at historic book or fair market value (if available for sale or held for trading) in the
investor’s balance sheet.6

• Ledger:A ledger[1] is a book or collection of accounts in which accounting transactions are
recorded. Each account has: (1) an opening or brought-forward balance; (2) a list of transac-
tions, each recorded as either a debit or credit in separate columns (usually with a counter-entry
on another page) and (3) an ending or closing, or carry-forward, balance.

4This is strange: I must check this. In the model of this paper one of the two accounts is a, or the, debit/credit account,
the other the asset/liability account.

5By a “complete” transaction we shall understand a set of two or more writes (updates): a debit/credit account update
and one or more asset/liability account updates – cf. Sect. 5.2.1 on page 29.

6https://ifrscommunity.com/knowledge-base/equity-method/

c© Dines Bjørner. April 30, 2024, 16:06 7 Double-entry Bookkeeping

8 April 30, 2024. Dines Bjørner

• Liability: Liability: a current obligation of an entity arising from past transactions or events.

In accounting, contingent liabilities are liabilities that may be incurred by an entity depend-
ing on the outcome of an uncertain future event[1] such as the outcome of a pending lawsuit.
These liabilities are not recorded in a company’s accounts and shown in the balance sheet when
both probable and reasonably estimable as ’contingency’ or ’worst case’ financial outcome. A
footnote to the balance sheet may describe the nature and extent of the contingent liabilities.
The likelihood of loss is described as probable, reasonably possible, or remote. The ability to
estimate a loss is described as known, reasonably estimable, or not reasonably estimable. It
may or may not occur.

Current liability, or short-term liabilities are obligations that will be settled by current
assets or by the creation of new current liabilities.

Non-current, or Long-term liabilities, are liabilities with a future benefit over a certain
period of time (e.g. longer than one year)

3 A Sequence of Models of Single-entry Bookkeeping

3.1 A Simplest Single Entry Model

The simplest possible accounting just records the budget and the debit/credit balance. There is no
recording of the earnings and expenditure transactions.

3.1.1 A Formal Type Model

1. An simplest account is just a pair of a budget and what has been accumulated: debit [income]
and credit [expense] .

2. The budget is a natural number of [currency] units allocated.

3. Debit [income] & Credit [expense] entry is an integer number of [currency] units that has been
earned or spent.

type
1. ACCOUNT 0 = BUDGET 0 × DEB CRE 0
2. BUDGET 0 = Nat
3. DEB CRE 0 = Int

3.1.2 A Formal ‘Semantics’ Model.

There is, basically, no bookkeeping to be associated with this model. Expenses result in the debit/credit
being lowered. Income result in the debit/credit being lowered. No record is made (i.e., “written
down”) of these “transactions.

4. There is an account value.

5. There are two kinds of transactions: expenses and incomes.

6. It’s debit/credit element is being decreased by expenses.

Double-entry Bookkeeping 8 Dines Bjørner. April 30, 2024, 16:06

Double-entry Bookkeeping. April 30, 2024. 9

7. And increased by income.

value
4. (budget,deb cre):ACCOUNT 0
type
5. Transaction = Expense | Income
6. Expense = Nat
7. Income = Nat
value
6. expense: Expense→ ACCOUNT 0→ ACCOUNT 0
6. expense(n)(budget)(deb cre) ≡ (budget,deb cre − n)
7. income: Income→ ACCOUNT 0→ ACCOUNT 0
7. income(n)(budget)(deb cre) ≡ (budget,deb cre + n)

3.2 Two Simple Single Entry Semantic Type Models

3.2.1 Simple Account Lists

3.2.1.1 A Formal Model.

8. A simple account is a pair of an debit [income] and credit [expense] accounts .

9. Debit [income] accounts are account triplets

10. Credit [expense] accounts are account triplets

11. Account triplets are triplets of a budget, an entry list and the sum total of what has been earned
or spent.7

12. A budget is as defined in Item 2 on the preceding page.

13. An entry list is a list of entries.

14. An entry 8 is a triplet of a time-stamp, some [explanatory] text, and an amount earned or spent.

15. A time stamp is further unspecified.

16. The explanatory text is further unspecified.

17. The amount is a natural number of [currency] units that has been earned or spent.

The simple account lists model thus has both the income and the expense accounts being lists of
time-stamped, text-explained transactions.

type
8. ACCOUNT 1 = DEBIT ACCOUNT 1 × CREDIT ACCOUNT 1
9. DEBIT ACCOUNT 1 = ACCOUNT TRIPLE 1

7The term ‘earned’ is used in connection with income accounts , and the term ‘spent’ in connection with expense
accounts .

8An entry is the recorded evidence of a transaction. A transaction is an action, i.e., something that changes a state.

c© Dines Bjørner. April 30, 2024, 16:06 9 Double-entry Bookkeeping

10 April 30, 2024. Dines Bjørner

10. CREDIT ACCOUNT 1 = ACCOUNT TRIPLE 1
11. ACCOUNT TRIPLE 1 = BUDGET 1 × s entries:ENTRY LIST 1 × s amount:AMOUNT 1
12. BUDGET 1 = BUDGET 0
13. ENTRY LIST 1 = ENTRY 1∗

14. ENTRY 1 = s time:TIME × s text:E Text 1 × s amount:AMOUNT 1
15. TIME = ...
16. E Text 1 = ...
17. AMOUNT 1 = Nat

3.2.1.2 Wellformedness.

18. Entries in a list of entries are ordered time-wise in ascending order – with adjacent entries
possibly have same time stamps.

19. The sum total of all amounts in an account entry list must equal the spent entry of the account.

axiom [Time-ordering]
18. ∀ el:ENTRIES 1 • ∀ i,j:Nat • {i,j}⊆inds el ∧ i<j ≡ s time(el(i))≤s time(el(j))

19. ∀ (inc acct 1,eps acct 1):ACCOUNT 1 •

19. let total inc = s amount(inc acct 1), total exp = s amount(exp acct 1) in
19. let income = sum(s entries(inc acct 1)), expenses = sum(s entries(exp acct 1)) in
19. total inc= income ∧ total exp = expenses end end

value
19.‘ sum: ENTRIES 1→ Amount 1
19.′ sum(el) ≡ case el of 〈〉 → 0, 〈(, ,a)〉̂el′→ a + sum amounts(el′) end

3.2.2 Simple Account Maps.

3.2.2.1 A Formal Model.

The simple account map model introduces separate account name lists of time-stamped, text-explained
transactions.

20. [ι 8 π 9] A simple account is a pair of an debit and credit accounts .

21. [ι 9 π 9] Debit accounts are account triplets

22. [ι 10 π 9] credit accounts are account triplets

23. [*] Account triplets are triplets of a budget, an entry map and the sum total of what has been
earned or spent.

24. [ι 12 π 9] A budget is as defined in Item 2 on page 8.

25. [*] An entry map is a map of account named entry lists .

26. [ι 8 π 9] An entry list is a list of entries.

Double-entry Bookkeeping 10 Dines Bjørner. April 30, 2024, 16:06

Double-entry Bookkeeping. April 30, 2024. 11

27. [ι 13 π 9] An entry is a triplet of a time-stamp, some [explanatory] text, and an amount earned
or spent.

28. [ι 14 π 9] A time stamp is further unspecified.

29. [ι 15 π 9] The explanatory text is further unspecified.

30. [ι 16 π 9] The amount is a natural number of [currency] units that has been earned or spent.

The [ι#π#] refers to ιtem/πage entries. The [*]-marked items represent the changes wrt. the simple
account lists model 3.2.1 on page 9.

type
20. ACCOUNT 2 = DEBIT ACCOUNT 2 × CREDIT ACCOUNT 2
21. DEBIT ACCOUNT 2 = ACCOUNT TRIPLE 2
22. CREDIT ACCOUNT 2 = ACCOUNT TRIPLE 2
23. ACCOUNT TRIPLE 2 = BUDGET 2 × s entries:ENTRY MAP 2 × s amount:AMOUNT 2
24. BUDGET 2 = BUDGET 0
25. ENTRY MAP 2 = Acc Name →m ENTRY LIST 2
26. ENTRY LIST 2 = ENTRY 2∗

27. ENTRY 2 = s time:TIME × s text:E Text 2 × s amount:AMOUNT 2
[ι 15 π 9]. TIME = ...
29. E Text 2 = ...
30. AMOUNT 2 = Int

3.2.2.2 Wellformedness.

31. [ι 18 π 10] Entries in a list of entries are ordered time-wise in ascending order – with adjacent
entries possibly have same time stamps.

32. [ι 19 π 10] The sum total of all amounts in an account entry list must equal the earned or
spent entry of the account.

axiom [Time-ordering]
18. ∀ el:ENTRIY LIST 2 • ∀ i,j:Nat • {i,j}⊆inds el ∧ i<j ≡ s time(el(i))≤s time(el(j))

19. ∀ (inc acct 2,eps acct 2):ACCOUNT 2 •

19. let total inc = s amount(inc acct 2), total exp = s amount(exp acct 2) in
19. let income = sum(s entries(inc acct 2)), expenses = sum(s entries(exp acct 2)) in
19. total inc= income ∧ total exp = expenses end end

value
sum: ENTRIES 2→ Amount 1
sum(el) ≡ case el of 〈〉 → 0, 〈(, ,a)〉̂el′→ a + sum amounts(el′) end

c© Dines Bjørner. April 30, 2024, 16:06 11 Double-entry Bookkeeping

12 April 30, 2024. Dines Bjørner

3.3 A General Single Entry Model

3.3.1 A Formal Model

3.3.1.1 A Type Model.

33. [ι 8 π 9] An account is a pair of an debit [income] and credit [expense] accounts .

34. [ι 9 π 9] Debit [Income] accounts are account triplets

35. [ι 10 π 9] Debit [Expense accounts are account triplets

36. [ι 23 π 10] Account triplets are triplets of a budget, an entries component and a sum total of
what has been earned or spent.

37. [ι 12 π 9] A budget is as defined in Item 2 on page 8.

38. [*] An entries component is a map from [sub-]account names to either an entry list or an
entry map.

39. [ι 8 π 9] An entry list is a triple of a budget, a list of simple entries, and a sum total of what has
been earned or spent.

40. [*] An entry map is a triplet of a budget, a map, and a sum total of what has been earned or
spent.

41. The map is from [sub]account names to account triplets

42. [ι 8 π 9] A simple entry is a triplet of a time-stamp, some [explanatory] text, and an amount
spent

43. [ι 15 π 9] A time stamp is further unspecified.

44. [ι 16 π 9] The explanatory text is further unspecified.

45. [ι 17 π 9] The amount is a natural number of [currency] units that has been earned or spent.

The [*]-marked items represent the changes wrt. the simple account lists model 3.2.2 on page 10.

type
33. ACCOUNT 3 = DEBIT ACCOUNT 3 × CREDIT ACCOUNT 3
34. DEBIT ACCOUNT 3 = ACCOUNT TRIPLET 3
35. CREDIT ACCOUNT 3 = ACCOUNT TRIPLET 3
36. ACCOUNT TRIPLET 3 = BUDGET 3 × s entries:ENTRIES 3 × s total:AMOUNT 3
37. BUDGET 3 = BUDGET 0
38. [*] ENTRIES 3 = Account Name →m s entries:(ENTRY LIST 3 | ENTRY MAP 3
39. ENTRY LIST 3 = BUDGET 3 × s entry list:ENTRY 3∗ × s sub total:AMOUNT 3
40. [*] ENTRY MAP 3 = s budget:BUDGET 3 ×MAP 3 × s total:AMOUNT 3
41. [*] MAP 3 = Acc Name →m ACCOUNT TRIPLET 3
42. ENTRY 3 = s time:TIME × s text:E Text 3 × s amount:AMOUNT 3
[ι 15 π 9]. TIME = ...
44. E Text 3 = ...
45. AMOUNT 3 = Nat

Figure 1 intends to graphically + textually illustrate a specific [ACCOUNT 3] account.

Double-entry Bookkeeping 12 Dines Bjørner. April 30, 2024, 16:06

Double-entry Bookkeeping. April 30, 2024. 13

_ −> (# ,

_ −> (# , < (_ , _ , *) , (_ , _ , *), ... , (_ , _ , *) > , *)

(# ,

_ −> (# , < (_ , _ , *) , (_ , _ , *), ... , (_ , _ , *) > , *) ,

_ −> (# , < (_ , _ , *) , (_ , _ , *), ... , (_ , _ , *) > , *) ,

_ −> (# , < (_ , _ , *), ... , (_ , _ , *) > , *) ,

, *) ,

_ −> (# , < (_ , _ , *), ... , (_ , _ , *) > , *)

, *)

[6]

[4]

[3]

[2]

. . . ,

. . . ,

[5]

[1]

Figure 1: An Account.
0. Slanted, bracketed numerals, e.g., [1,3,5] , refer to text lines of the figure.
1. Texts after→s in lines [1,2,6] stand 2. for ENTRY LIST 3s.
3. Text of leftmost→s in line [4] stands for an ENTRY MAP 3.
4. Text lines [3,5] within the ENTRY MAP 3 stand for ENTRY LIST 3s.
5. The ’#’s [1,2,3,4,4,5,6] stands for a budgets.
6. The ’ ’s immediately to the right of the opening square brackets [1,2,3,4,5,6]

stand for account names .
7. The ‘ ’s right after the ‘→ parentheses ‘ ’s [1,2,3,4,4,6] stands for budgets .
8. All other ‘ ’s stands for time, resp. texts .
9.The ‘*’s stands for amounts .

Constraints:
10. The first three ’*’s in the first two and the last text lines [1,2,6]

must sum up to the last ‘*’ in those lines.
11. Similarly for the first two ’*’s in the 3rd and the 4th [3,4] text lines:

they must sum up to the last ‘*’ in those lines.
12. The last ‘*’s in the arrowed (→) lines [1,2,3,5,6]

must sum up to the last two ‘*’, respectively, in the rightmost text lines [4] .
14. Similar constraints apply to budget entries:

15. The sum of the first #s in line [1,2,6] and the second # in line [4]
must equal the first # in line [1] .

16. The sum of the first #s in lines [3,5] must equal the second # in line [4] .

3.3.1.2 Access Paths.

We define an auxiliary function: access paths. An access path is a sequence of account names such
that the first element of the path applies to a [root] account and selects either an entry list or an entry
map of either an income or an expense account. And the first of a possible tail of the path accesses an
entry list or an entry map of the selected former such entry. Et cetera. Thus debit and credit accounts
define each their sets of access paths .

46. An access path is a sequence of account names .

47. access paths applies to either debit and credit accounts and yields a set of access paths.

48. Since debit and credit accounts are account triplets one can select their entries component.

[38. An entries component is a map to either entry lists or entry maps.]

c© Dines Bjørner. April 30, 2024, 16:06 13 Double-entry Bookkeeping

14 April 30, 2024. Dines Bjørner

49. If entry lists, then a set of singleton access paths , 〈an〉, for each of the account names of the
entry lists is yielded.

50. If entry maps, then a set, map access paths(map), of all the access paths reachable from, and
including the map access path, 〈an〉 is yielded.

type
46. Acces Path = Account Name∗

value
47. access paths: (DEBIT ACCOUNT 3|CREDIT ACCOUNT 3)→ Access\ Path-set
47. access paths(acc trip) ≡
48. let entries = s entries(acc trip) in
49. is ENTRY LIST 3(entries(an))
49. → { 〈an〉 | an:Acc Name • an ∈ dom entries }
50. is ENTRY MAP 3(entries(an))
50. →∪ {map access paths(entries(an)) | an:Acc Name • an ∈ dom entries }
47. end
47. access paths: ACCOUNT 3→ Access Path-set
47. access paths(debit account,) ≡ access paths(debit account)

51. The map access paths function applies to map:ENTRY MAP 3s and yields a set of access
paths .

[36 [ι 23 π 10]. Each map range element is an account triplet and these are triplets of a budget,
an entries component and the sum total of what has been earned or spent.]

52. So for each account name, an, in the map that account name is prefixed each of the the access
paths from that account triple.

value
51. map access paths: ENTRY MAP 3→ Access Path-set
51. map access paths(entry map) ≡
52. { 〈an〉̂ap | an:Account Name • an ∈ dom entry map,
52. ap:Access Path • ap ∈ access paths(entry map(an)) }

3.3.1.3 Well-formed Access Paths.

We aim at expressing that all account names are distinct. To to so we build up that well-formedness
criterion in two stages.

53. The account names of any access path are distinct.

axiom
53. ∀ ap:Access Path • card elems ap = le ap

54. Any two distinct access paths , if they share an account name then it is the first element of
these access paths .

Double-entry Bookkeeping 14 Dines Bjørner. April 30, 2024, 16:06

Double-entry Bookkeeping. April 30, 2024. 15

axiom [Access Paths]
54. ∀ ap,ap′:Access Path •

54. elems ap ∩ elems elems ap′ 6= {}
54. ⇒ hd ap=hd ap′ ∧ {hd ap}=elems ap ∩ elems elems ap′

We can choose to let the debit and the credit accounts be “identically structured”, that is have exactly
the same access paths:

55. The debit and the credit accounts have exactly the same access paths:

axiom [Identical Access Paths]
55. ∀ (inc acc,exp acc):ACCOUNT 3 • access paths(inc acc) = access paths(exp acc)

Or we could choose otherwise, cf. Sect. 3.3.1.5. That should suffice. [Prove that !]

3.3.1.4 Account Access.

An access path “points” to an entry list. A proper prefix, i.e., if the access path is of length 2 or
more, “points” to an entry map.

56. The function access takes as argument an access path or a proper prefix thereof and applies

to either an debit or an credit account and yields either an entry list or an entry map.

57. If the access path

58. is of length 1, i.e., 〈an〉, then select the entries of the account as the result.

59. If the access path is of length more than 1, i.e., 〈an〉̂ap′, then access the account obtained from
access path 〈an〉 with access path ap′.

value
56. access: Access Path×(DEBIT ACCOUNT 3|CREDIT ACCOUNT 3)
56. → (ENTRY LIST 3|ENTRY MAP 3)
56. access(ap,account) ≡
57. case ap of
58. 〈an〉 → s entries(account),
59. 〈an〉̂ap′→ access(ap′,s entries(account))
56. end
56. pre ap ∈ access paths(account) ∨ ∃ ap′• ∈ access paths(account) ∧ ap ∈ prefix paths(ap′)

prefix paths: Access Path→ Access Path-set
prefix paths(ap) ≡ { 〈an(i)| i:Nat • 1≤i≤len ap 〉 }

3.3.1.5 Summary Expense Accounts.

There are at least two other possibilities of distinguishing between income and expenses.

c© Dines Bjørner. April 30, 2024, 16:06 15 Double-entry Bookkeeping

16 April 30, 2024. Dines Bjørner

3.3.1.5.1 Paired Debit/Credit Entries

• The ACCOUNT 3 model, cf. Item 33 on page 12,

– has the ENTRY LIST 3s cf. Item 39 on page 12,

– be simple triplets:

– ENTRY LIST 3 = BUDGET 3 × s entry list:ENTRY 3∗ × s total:AMOUNT 3.

• Instead we could avoid the distinction

– at the top level of the ACCOUNT 3 model

– between INCOME ACCOUNT 3s and EXPENSE ACCOUNT 3s.

∗ Instead ACCOUNT 3s are now just ACCOUNT TRIPLEs.
∗ But ENTRY LIST 3s now make the distinction between debit and credit:
∗ BUDGET 3×s entry lists(s inc:ENTRY 3∗,s exp:ENTRY 3∗)×s total:AMOUNT 3.

type
33. ACCOUNT 4 = ACCOUNT TRIPLET 4
36. ACCOUNT TRIPLET 4 = BUDGET 4×s entries:ENTRIES 4×s total:AMOUNT 4
37. BUDGET 4 = BUDGET 0
38. ENTRIES 4 = Account Name→m (ENTRY LIST 4|ENTRY MAP 4)
39. [*] ENTRY LIST 4 = BUDGET 4×s debit:ENTRY 4∗,s credit:ENTRY 4∗×s total:AMOUNT 4
40. [*] ENTRY MAP 4 = s budget:BUDGET 4 ×MAP 4 × s total:AMOUNT 4
41. [*] MAP 4 = Acc Name→m ACCOUNT TRIPLET 4
42. ENTRY 4 = s time:TIME×s text:E Text 4×s amount:AMOUNT 4
[ι 15 π 9]. TIME = ...
44. E Text 4 = ...
45. AMOUNT 4 = Nat

3.3.1.5.2 Summary Credit Entries

Instead of pairing, as in Sect. 3.3.1.5.1, debit and credit entries, one could summarize expenses in
“earlier” entries, that is, in entries with whose access path is a prefix of the the access path, ap, to
the debit entry, however with an account name 〈an〉, suffixed to ap,

We leave the formalization to the reader !

4 A Double-entry Bookkeeping Model

We present the double-entry bookkeeping as a pair of pairs ! That is: a pair of debit/credit accounts
and a pair of asset/liability accounts.

4.1 A Type Model

Each of the pairs are type-structured as were the accounts in Sect. 3.3.1.1 on page 12.

Double-entry Bookkeeping 16 Dines Bjørner. April 30, 2024, 16:06

Double-entry Bookkeeping. April 30, 2024. 17

4.1.1 Types

We repeat most of the type formulas from Sect. 3.3.1.1 on page 12.

60. Double-entry Bookkeeping Accounts are pairs of debit/credit accounts and asset/liability
accounts.

61. Asset/Liability Accounts are pairs of Asset Accounts and Liability Accounts .

62. Asset Accounts are account triplets .

63. Liability Accounts are account triplets .

type
60. DBL ENTRY ACCOUNT = DC ACCOUNT × AL ACCOUNT
[ι 33 π 12]. DC ACCOUNT = DEBIT ACCOUNT × CREDIT ACCOUNT
[ι 34 π 12]. DEBIT ACCOUNT = ACCOUNT TRIPLET
[ι 35 π 12]. CREDIT ACCOUNT = ACCOUNT TRIPLET
61. AL ACCOUNT = ASSET ACCOUNT × LIABILITY ACCOUNT
62. ASSET ACCOUNT = ACCOUNT TRIPLET
63. LIABILITY ACCOUNT = ACCOUNT TRIPLET
[ι 36 π 12]. ACCOUNT TRIPLET = BUDGET × s entries:ENTRIES × s total:AMOUNT
[ι 37 π 12]. BUDGET = Nat
[ι 38 π 12]. ENTRIES = Account Name →m s entries:(ENTRY LIST | ENTRY MAP)
[ι 39 π 12]. ENTRY LIST = BUDGET × s entry list:ENTRY∗ × s sub total:AMOUNT
[ι 40 π 12]. ENTRY MAP = s budget:BUDGET ×MAP × s total:AMOUNT
[ι 40 π 12]. MAP = Acc Name →m ACCOUNT TRIPLET
[ι 42 π 12]. ENTRY = s time:TIME × s text:E Text × s amount:AMOUNT
[ι 15 π 9]. TIME = ...
[ι 44 π 12]. E Text = ...
[ι 45 π 12]. AMOUNT = Nat

Please observe the recursion in formula [ι 41 π 12] “back to” formula [ι 36 π 12] above.

4.1.2 Wellformedness

We refer to Sects. 3.3.1.2 on page 13 and 3.3.1.3 on page 14 The signature of the function access
paths need be adjusted:

4.1.2.1 Access Paths

4.1.2.1.1 Common Constraints

value
47.′ access paths:
47.′ (DEBIT ACCOUNT|CREDIT ACCOUNT|ASSET ACCOUNT|LIABILITY ACCOUNT)
47.′ → Access Path-set

[ι 53 π 14] The account names of any access path are distinct.

c© Dines Bjørner. April 30, 2024, 16:06 17 Double-entry Bookkeeping

18 April 30, 2024. Dines Bjørner

axiom [Distinctness of Account Names, I]
[ι 53 π 14]. ∀ ap:Access Path • card elems ap = len ap

[ι 54 π 15] Any two distinct access paths , if they share an account name then it is the first element
of these access paths .

axiom [Distinctness of Account Names, II]
[ι 54 π 15]. ∀ ap,ap′:Access Path •

[ι 54 π 15]. elems ap ∩ elems elems ap′ 6= {}
[ι 54 π 15]. ⇒ hd ap=hd ap′ ∧ {hd ap}=elems ap ∩ elems elems ap′

The debit and the credit accounts have exactly the same access paths [ι 55 π 15], and debit/credit
account paths are “fully distinct”9 from asset/liability account paths , informally:

axiom [Distinctness of Account Names, III]
[ι 55 π 15]. ∀ deb acc:DEBIT ACCOUNT,cre acc:CREDIT ACCOUNT
[ι 55 π 15]. • access paths(deb acc) = access paths(cre acc) ∧
[ι 55 π 15]. ∀ ass acc:ASSET ACCOUNT,lia acc:LIABILITY ACCOUNT
[ι 55 π 15]. • access paths(ass acc) = access paths(lia acc) ∧
[ι 55 π 15]. access paths(deb acc) ∩ access paths(ass acc) = {}

4.1.2.1.2 Double-entry Constraints

64. The access paths of debit/credit and of asset/liability accounts are identical.10

axiom [Sameness of Debit/Credit and Asset/Liability Access Paths]
64. ∀ ((deb acc,cre acc),(ass acc,lai acc)):
64. ((DEBET ACCOUNT×CREDIT ACCOUNT)×(ASSET ACCOUNT×LIABILIY ACCOUNT))
64. • access paths(deb acc) = access paths(cre acc)
64. ∧ access paths(ass acc) = access paths(lia acc)

65. The set of account names of debit/credit and of asset/liability accounts are distinct.11

66. We define the auxiliary function: account names.

value
66. account names: ACCOUNT TRIPLET→ Acc Name-set
66. account names(acc trip) ≡
66. let acc pths = access paths(s entries(acc trip)) in
66. ∪ { ∪ { elems pth | pth:Acc Path • pth ∈ acc pths } }
66. end
axiom [Distinctness of Debit/Credit and Asset/Liability Account Names]
65. ∀ ((deb acc trip,cre acc trip))((ass acc trip,lia acc trip))

9— must be made more clear
10Cf. 3.3.1.3 on page 14
11Cf. 3.3.1.3 on page 14

Double-entry Bookkeeping 18 Dines Bjørner. April 30, 2024, 16:06

Double-entry Bookkeeping. April 30, 2024. 19

65. • (DEBIT ACCOUNT×DEBIT ACCOUNT)×(DEBIT ACCOUNT×DEBIT ACCOUNT)
65. (account names(deb acc trip) = account names(cre acc trip)
65. ∧ account names(ass acc trip) = account names(lia acc trip))
65. ∧ (account names(deb acc trip) ∪ account names(cre acc trip))
65. ∩ (account names(ass acc trip) ∪ account names(lia acc trip)) = {}

4.1.2.2 Budgets

We refer to lines [10–16] of the caption of Fig. 1 on page 13.

67. The budget of an ACCOUNT TRIPLET must equal the summation of the budgets of the BUD-
GETs of the ENTRY LIST or the ENTRY MAP .

This constraint looks “innocent”, at first. But since it applies to recursively embedded ACCOUNT -
TRIPLETs it is quite powerful. So we express it as a universal predicate over ACCOUNT TRIPLETs
rather than trying to figure out a recursively, first descending, then ascending, re-tracking, function.
[Try formulate such a function !]

axiom [Budgets]
67. ∀ (b,e,):ACCOUNT TRIPLET • b = budget sum(e)
value
67. budget sum: ENTRIES→ AMOUNT
67. budget sum(e) ≡
67. case e of
67. []→ 0,
67. [a 7→elom]∪ e‘→ entry sum(elom)+budget sum(e‘)
67. end

67.‘ entry sum: (ENTRY LIST|ENTRY MAP)→ AMOUNT
67.‘ entry sum(elom) ≡
67.‘ is ENTRY LIST(elom)→ list sum(s entry list(elom)),
67.‘ is ENTRY MAP(elom)→ map sum(s entry list(elom))

67.“ list sum: ENTRY LIST→ AMOUNT
67.“ list sum(el) ≡ sum(el) [cf.[ι 19 π 10].′]

67.“‘ map sum: ENTRY MAP→ AMOUNT
67.“‘ map sum(em) ≡
67.“‘ case em of
67.“‘ []→ 0,
67.“‘ [a 7→(b, ,)]∪ em‘→ b + map sum(em‘)
67.“‘ end

c© Dines Bjørner. April 30, 2024, 16:06 19 Double-entry Bookkeeping

20 April 30, 2024. Dines Bjørner

4.1.2.3 Amounts

68. The amount of an ACCOUNT TRIPLET must equal the summation of the amountss of the
BUDGETs of the ENTRY LIST or the ENTRY MAP .

axiom [Amounts]
68. ∀ (,e,a):ACCOUNT TRIPLET • a = amount sum(e)
value
68. amount sum: ENTRIES→ AMOUNT
68. amount sum(e) ≡
68. case e of
68. []→ 0,
68. [a 7→elom]∪ e‘→ amount entry sum(elom)+amount sum(e‘)
68. end

68.‘ amount entry sum: (ENTRY LIST|ENTRY MAP)→ AMOUNT
68.‘ amount entry sum(elom) ≡
68.‘ is ENTRY LIST(elom)→ amount list sum(s entry list(elom)),
68.‘ is ENTRY MAP(elom)→ amount map sum(s entry list(elom))

68.“ amount list sum: ENTRY LIST→ AMOUNT
68.“ amount list sum(el) ≡ sum(el) [cf.[ι 19 π 10].′]

68.“‘ amount map sum: ENTRY MAP→ AMOUNT
68.“‘ amount map sum(em) ≡
68.“‘ case em of
68.“‘ []→ 0,
68.“‘ [a 7→(, ,a)]∪ em‘→ a + amount map sum(em‘)
68.“‘ end

4.1.2.4 Balance

69. By a balance of DC ACCOUNT or a AL ACCOUNT

70. we shall mean the difference between their budgets and amounts .

value
69. balance: ACCOUNT TRIPLET→ Int
70. balance(budget, ,amount) ≡ budget −− amount

4.1.2.5 Intentional Pull

71. The balances of the DC ACCOUNT and the AL ACCOUNT of a double-entry bookkeeping
system must equal !

Well, there is no guarantee that the accounts balance ! Only proper accountancy and audit might
secure that !

Double-entry Bookkeeping 20 Dines Bjørner. April 30, 2024, 16:06

Double-entry Bookkeeping. April 30, 2024. 21

value
71. proper accountancy: ENTRY ACCOUNT→ Bool
71. proper accountancy(dc acc,al acc) ≡ balance(dc acc)=balance(al acc)

This constraint is the “hall-mark” of double-entry bookkeeping systems !

4.2 Transactions

4.2.1 Read

72. To read , is to [screen] “display” an account entry of a double-entry bookkeeping system -
given an access path to either a debit/credit account or an access/liability account for that
system.

value
72. view: DBL ENTRY ACCOUNT × (DCorAL × Access Path)→ (ENTRY LIST | ENTRY MAP)
type
72. DCorAL = ′′dc′′ | ′′al′′
value
72. read((dca,ala),(dcoral,ap)) ≡
72. case dcoral of
72. ′′dc′′→access(ap,dca), cf. [ι 56 π 15]
72. ′′al′′→access(ap,ala) cf. [ι 56 π 15]
72. end
72. pre: dcoral=′′dc′′→ap ∈ access paths(dca), →ap ∈ access paths(ala)

4.2.2 Write

To write is to insert a new entry is an ENTRY LIST, that is, at the end of the viewed entry.
Writes can occur to either a debit/credit account or to an asset/liability account. Updating a

debit/credit account usually requires a corresponding one or more updates to the asset/liability
account.

This is required in order to maintain the intentional pull of the double-entry bookkeeping system.
Cf. Sect. 4.1.2.5 on the facing page.

We model writes follows:

73. To write syntactically takes (i) an indication as to whether the update is to that of a debit account,
to a credit account, to an asset or to a liability account, (ii) an access path and (iii) the text and
(iv) amount with which to update the accessed entry.

74. Semantically the write occurs in the context of a double-entry bookkeeping system and yields
such a system.

75. We express the effect of a write to a double-entry bookkeeping system (dca,ala) as that of
yielding a changed double-entry bookkeeping system (dca′,ala′).

76. The “difference” between (dca,ala) and (dca′,ala′) is expressed in the where predicate.

77. The access paths are unchanged.

c© Dines Bjørner. April 30, 2024, 16:06 21 Double-entry Bookkeeping

22 April 30, 2024. Dines Bjørner

78. A time, τ , is recorded.12

79. Either the write is to a debit/credit account or it is to an asset/liability account.

(a) If to a debit/credit account then the asset/liability account is unchanged.

(b) For all accesses , ap′,

(c) to the debit/credit account other than the prescribed (to be updated) entry,

(d) the entries are unchanged.

(e) For the accessed entry list their sub-entries differ as follows:

(f) • the budget is unchanged;

• the entry list extended with suffix triplet of

– the time stamp; – a text; and – an amount;

• and the entire entry list amount is adjusted accordingly.

80. A similar [where] predicate applies to asset/liability accounts

type
73. Write :: mkWrite(D C A L,Access Path,E Text,AMOUNT)
73. D C A L = ′′da′′ | ′′ca′′ | ′′aa′′ | ′′la′′
value
74. write: Write→ DBL ENTRY ACCOUNT→ DBL ENTRY ACCOUNT
75. write(dcal,ap,txt,a)(dca,ala) as (dca′,ala′)
76. where
77. access paths(dca)=access paths(dca′) ∧ access paths(ala)=access paths(ala′)
78. ∧ let τ = record TIME() in
79. case dcal of
79a. ′′da′′→ ala′ = ala ∧
79b. ∀ ap′ •
79c. ap′ ∈ Access Path(read((dca,),(′′dc′′,ap)))\{ap}
79d. ⇒ read((dca,),(′′da′′,ap′)) = read((dca,),(′′da′′,ap))
79e. ∧ let (b,el,am) =read((dca,),(′′da′′,ap)), (b′,el′,am′) = read((dca,),(dcoral,ap)) in
79f. b=b′ ∧ el′=el̂ 〈(τ ,txt,a)〉 ∧ am′ = am + a end
80. ′′ca′′→ [similarly !]
80. ′′aa′′→ [similarly !]
80. ′′la′′→ [similarly !]
79. end
78. end
74. pre: dcal ∈ {′′da′′,′′ca′′} → ap ∈ access paths(dca), → ap ∈ access paths(ala)

The above model is inspired by the storage model – for such languages as PL/I, Algol 68, CHILL

and Ada [20, 3, 1, 4] – put forward by Hans Bekič and Kurt Walk [2].

12record TIME() is a “built-in” primitive of the description language.

Double-entry Bookkeeping 22 Dines Bjørner. April 30, 2024, 16:06

Double-entry Bookkeeping. April 30, 2024. 23

4.2.3 Establish Accounts

So far the bookkeeping operations were concerned with established, fixed access path accounts. In this
section we shall suggest an establish accounts command. Account structures, their composition of
entry lists and entry maps , can be fully described by their access paths . Additionally, by supplying,
for each access path a budget, one have said all there is to say about any “freshly opened” year
accounts book !

4.2.3.1 Command Syntax.

81. Syntactically the establish accounts command consists of a pair: establish debit/credit ac-
counts and establish asset/liability accounts

82. An establish debit/credit accounts , respectively

83. an establish asset/liability accounts .

84. Each of these map access paths to budgets.

85. The implied sets of access paths form distinct sets as outlined above.

type
81. Estab Accounts :: mkEstablish(dc accs:Estab DC Accounts,al accs:Estab AL Accounts)
82. Estab DC Accounts = Access Path →m Budget
83. Estab AL Accounts = Access Path →m Budget
value
85. access paths: Estab Accounts→ Access Path-set × Access Path-set
85. ∀ (dc accs,al accs):Establish Accounts •
85. dom dc accs ∩ dom al accs = {}
85. ∧ { ans(p) | p:Access Path • p ∈ dom dc accs } ∩ { ans(p) | p:Access Path • p ∈ al accs } = {}

85. ans: Access−Path→ Account Name-set
85. ans(p) ≡ elems p, pre: len p = card p

The establish account budgets, thus, are only ascribed to entry list accounts .

4.2.3.2 Command Semantics.

The establish accounts command can be narrated as follows:

86. It takes an Estab Accounts command

87. and yields (as) a pair of (pairs of) debit/credit and asset/liability accounts . These four ac-
counts

88. have their access paths “select” account triplets

• all of whose budgets are those of the command,

• all of whose entry lists are empty, and

• all of whose entry list amounts are zero (0).

c© Dines Bjørner. April 30, 2024, 16:06 23 Double-entry Bookkeeping

24 April 30, 2024. Dines Bjørner

89. The intermediate budgets of entry maps conform to the constraints expressed in Sect. 4.1.2.3
on page 20.

value
86. establish accounts: Estab Accounts
87. → (DEBIT ACCOUNT×CREDIT ACCOUNT)×(ASSET ACCOUNT×LIABILITY ACCOUNT)
87. establish accounts(mkEstablish(dc accs,al accs)) as ((dacc,cacc),(aacc,lacc))

where:
88. ∀ p:Access Path • p ∈ dom dacc⇒ access(p,dacc) = (daac(p),〈〉,0)
88. ∧ ∀ p:Access Path • p ∈ dom cacc⇒ access(p,cacc) = (caac(p),〈〉,0)
88. ∧ ∀ p:Access Path • p ∈ dom aacc⇒ access(p,aacc) = (aacc(p),〈〉,0)
88. ∧ ∀ p:Access Path • p ∈ dom aacc⇒ access(p,lacc) = (lacc(p),〈〉,0)
89. ∧ [ι 68 π 20]

4.2.4 Save Accounts

5 A Financial Management Prototype Domain

We refer to [10, Domain Modelling].
There are three main subsections of this section.
In Sect. 5.1 we “embed” the model of double-entry bookkeeping , of Sect. 4, in “a[ny]” domain,

focusing on domain endurants . In Sect. 5.2 we present the domain facet of transaction scripts –
cf. [6, Chapter 8: Domain Facets]. And in Sect. 5.3 we focus on domain perdurants: especially the
behaviours that can be transcendentally deduced from endurant parts .

5.1 Endurants

Endurants can be considered in two stages. The external qualities and the internal qualities stages.
The latter can be considered in three sub-stages. The unique identification, the mereologies , and the
attributes stages.

5.1.1 External Qualities

External qualities will be considered in two steps. The endurant sorts, and the endurant values steps.

5.1.1.1 Endurant Sorts

90. From any domain, cf. [9, Domain Models A Compendium], we can, besides the “core” of the
domain, observe:

91. its management.

From this management we can observe:

92. the double-entry account and

93. its accountancy .

From the double-entry account we can observe the

Double-entry Bookkeeping 24 Dines Bjørner. April 30, 2024, 16:06

Double-entry Bookkeeping. April 30, 2024. 25

94. debit/credit account, and the

95. asset/liability account.

From the accountancy we can observe:

96. a set of zero, one or more accountants.

We leave the audit[or] further undefined.

type
90. DOMAIN
91. MGT
92. DEBK = DBL ENTRY ACCOUNT
94. DC ACCOUNT
95. AL ACCOUNT
93. ACCOUNTANCY
96. ACCOUNTANT
value
91. obs MGT: DOMAIN→MGT
92. obs DEBK: MGT→ DEBK
93. obs ACCOUNTANCY: MGT→ ACCOUNTANCY
96. obs ACCOUNTANTs: ACCOUNTANCY→ ACCOUNTANT-set

5.1.1.2 Endurant Values

For use in later descriptions we introduce some relevant endurant values.

97. There is given a domain.

98. From its management we observe its double-entry account.

99. From the double-entry account we observe its debit/credit account.

100. From the double-entry account we observe its asset/liability account.

101. From the management we can observe the debit/credit to asset/liability relation, an attribute,
DB AL REL.

102. From the management we can observe observe the accountancy .

103. From the accountancy a set of accountants .

value
97. domain:DOMAIN
98. mgt:MGT = obs MGT(domain)
98. debk:DEBK = obs DEBK(mgt)
99. dc acc:DC ACCOUNT = obs DC ACCOUNT(debk)
100. al acc:AL ACCOUNT = obs AL ACCOUNT(debk)
102. accountancy:ACCOUNTANCY = obs ACCOUNTANCY(mgt)
103. accountants:ACCOUNTANTs = obs ACCOUNTANTs(accountancy)
type
120. DB AL REL = Access Path →m REL

c© Dines Bjørner. April 30, 2024, 16:06 25 Double-entry Bookkeeping

26 April 30, 2024. Dines Bjørner

5.1.2 Internal Qualities.

Internal qualities will e considered in three, sequential, sub-stages.13 The unique identification, the
mereologies, and the attributes sub-stages.

5.1.2.1 Unique Identifiers.

Behaviours are uniquely distinguished by he Unique Identifiers of “their parts”: p : P: uid P(p). So
the unique identifier π:UI of p is a static, constant, argument of behaviour behaviourP.

5.1.2.1.1 Unique Identifier Observers and Values

104. There is the type of [all] unique identifiers.

105. There is the unique identifier of the debit/credit account.

106. There is the unique identifier of the asset/liability account.

107. The are the unique identifiers of each of the accountants of the set of accountants.

type
104. UI
value
105. uid DC ACCOUNT: DC ACCOUNT→ UI
106. uid AL ACCOUNT: AL ACCOUNT − >UI
107. uid ACCOUNTANT: ACCOUNTANT→ UI

105. dci:UI = uid DC ACCOUNT(dc acc)
106. ali:UI = uid AL ACCOUNT(al acc)
107. ais:UI-set = { uid ACCOUNTANT(acc)|acc:ACCOUNTANT•acc∈accountants }

5.1.2.1.2 Wellformedness.

All parts of a domain have distinct identification. That is:

108. The number of accountants equals the number of their unique identifiers.

109. And these are distinct from the debit/credit and asset/liability account identifiers

110. – which are distinct.

axiom [Uniqueness of Parts]
108. card accountants = card ais ∧
109. ais ∩ {dci,ali} = {} ∧
110. dci 6= ali

13A usual fourth sub-stage, ‘Intentional Pull’ was already considered in Sect. 4.1.2.5 on page 20.

Double-entry Bookkeeping 26 Dines Bjørner. April 30, 2024, 16:06

Double-entry Bookkeeping. April 30, 2024. 27

5.1.2.2 Mereologies.

Behaviours communicate with other behaviours. So the mereology of part p indicates with which
other behaviours behaviour p interacts. So the mereology mereo P(p), usually modelled as a set of
unique identifies, is a [usually] static argument of behaviour behaviourP.

5.1.2.2.1 Mereology Observers

111. The double-entry debit/credit bookkeeping behaviour, dbl dc book, communicates with a the
set of all accountants [a mereology argument], and has the debit/credit account, dc acc, as its
programmable argument.

112. The double-entry asset/liability bookkeeping behaviour, dbl al book, communicates with just
the asset/liability account, al acc [a mereology argument], and has the asset/liability account,
al acc, as its programmable argument.

113. The accountant behaviour communicates with just the double-entry asset/liability bookkeep-
ing behaviour [a mereology argument], dbl al book.

114. The debit/credit account relates to the asset/liability account and the whole set of all accoun-
tants.

115. The asset/liability account relates only to the debit/credit account.

116. Accountants relate, in this [abbreviated] model, only to the [one] debit/credit account.

114. mereo DC ACCOUNT: DC ACCOUNT→ UI × UI-set
115. mereo AL ACCOUNT: AL ACCOUNT→ UI
116. mereo ACCOUNTANT: ACCOUNTANT→ UI

5.1.2.2.2 Mereology Wellformedness

117. The mereology of debit/credit account dc acc is the pair of the unique identifier of the as-
set/liability account al acc and the the set of unique identifiers of all the accountants .

118. The mereology of the asset/liability account al acc is the pair of the unique identifier of the
debit/credit account.

119. The mereology of each accountant is just that of the debit/credit account dc acc.

axiom [Mereology Constraints]
117. mereo DC ACCOUNT(dc acc) = (dci,ais)
118. mereo AL ACCOUNT(al acc) = dci
119. ∀ acc:ACCOUNTANT • acc ∈ accountants⇒mereo ACCOUNTANT(acc) = dci

5.1.2.3 Attributes.

We shall focus on a very few endurant attributes. Attributes [also] become behaviour arguments.
Some are static , cannot change value. Others are programmable, does, indeed, change value.

c© Dines Bjørner. April 30, 2024, 16:06 27 Double-entry Bookkeeping

28 April 30, 2024. Dines Bjørner

5.1.2.3.1 Debit/Credit Accounts

pp:Debit Credit Accounts

[ι 33 π 12]. The [foremost] debit/credit account endurant attribute is that of the debit/credit
account. It is a programmable attribute.

[ι 120 π 28] Besides this, the debit/credit account endurant has the static attribute of the
debit/credit to asset/liability relation, DB AL REL. See wellformedness below.

type
[ι 120 π 28]. DB AL REL = ... [see below]
value
[ι 33 π 12]. attr DC ACCOUNT: DC ACCOUNT→ DC ACCOUNT
[ι 33 π 12]. dc acc = attr DC ACCOUNT(dc acc)

120. The debit/credit to asset/liability relation, DB AL REL, maps debit/credit access paths to

121. a map, REL, from access/liability access paths to a rational lying properly between 0 and 1,

122. and such that these sum up to 1 !

type
[ι 120 π 28]. DB AL REL = Access Path →m REL
121. REL = Access Path →m Rat
value
121. attr DB AL REL: MGT→ DB AL REL
121. db al rel = attr DB AL REL(mgt)
axiom [Proper Management]
120. ∀ db al rel:DB AL REL • dom db al rel = ...
122. ∀ rel:REL • dom rel = ... ∧ rng rel sum(rel)=1.
value
122. rng rel sum(rel) ≡ + {r|ap:Access Path,r:Rat•ap ∈ dom rel ∧ r=rel(ap)}
122. pre: ∀ r:Rat • r ∈ rng rel⇒ 0<r≤1 ∧ + is the distributed-fix addition operator

The idea behind the DB AL REL is explained in Sect. 5.2.1 on the next page.

5.1.2.3.2 Asset/Liability Accounts

[ι 61 π 17] The [foremost, well only] asset/liability account endurant attribute is that of the
asset/liability account. It is a programmable attribute.

value
[ι 61 π 17]. attr AL ACCOUNT: AL ACCOUNT→ AL ACCOUNT

Double-entry Bookkeeping 28 Dines Bjørner. April 30, 2024, 16:06

Double-entry Bookkeeping. April 30, 2024. 29

5.1.2.3.3 Accountants

123. Each accountant has, in our somewhat “reduced” model, just one static attribute: a set og
access paths partitioning. It lists the debit/credit account access paths that this accountant can
read [view] and write.

type
123. Access Rights = Access Path-set
value
123. attr Access Rights: ACCOUNTANT→ Access Rights

124. No two accountants share access paths.

125. The set of all accountants possess all access path of the debit/credit account attribute.

axiom [Distinct Access Rights]
124. ∀ acc1,acc2:ACCOUNTANT•{acc1,acc2} ⊆ accountants
124. • acc1 6= acc2⇒ attr Access Rights(acc1) ∩ attr Access Rights(acc1) = {}
125. ∪{attr Access Rights(acc) acc:ACCOUNTANT • acc∈ accountants} = access paths(dc acc)

5.2 Some Domain Facets.

We refer to [6, Chapter 8]. Usually, in the many models of [9], we have not illustrated the concept of
domain facets . Among domain facets we can list

• support technologies ,

• rules & regulations ,

• scripts ,

• script languages ,

• management & organization,

• and human behaviour .

The domain facet that we shall illustrate is one of scripts .

5.2.1 A Complete Transaction.

We refer to the A Complete Transaction comment on Page 7.
The idea behind the DB AL REL is the following: When a debit [or credit] entry is posted, for a

certain amount, it should be followed by one (or more) liability [resp., asset] posting(s). For any given
debit [or credit] posting there is one or more specific liability [resp., asset] posting(s) to be made,
each such posting being in the amount of a fraction of the debit [or credit] posting, with their sum
being equal to the debit [or credit] posting amount. The rational number fractions do not necessarily
result in a natural number liability [resp., asset] posting. Hence these must be suitably “rounded”.

c© Dines Bjørner. April 30, 2024, 16:06 29 Double-entry Bookkeeping

30 April 30, 2024. Dines Bjørner

5.2.1.1 Transaction Syntax, Syntactic Types.

126. A transaction is a pair commands: an debit/credit enter and a of set of liability/asset enter
one or more commands —

127. such that these latter conform to the constraints expresses in [ι 128 π 30].

type
126. Transaction = DC Enter × LA−Enter-set
axiom [Well-formed Transaction]
127. [ι 128 π 30] ...

5.2.1.2 Transaction Syntax, Semantic Types.

128. The actual posting is thus a map from debit [or credit] access paths to maps from liability
respectively [asset] access paths to natural number amounts .

type
128. ACT A POST = Deb AccessPath →m Lia A A REL
128. ACT L POST = Cre AccessPath →m Ass A L REL
128. Lia A A REL = Lia AccessPath →m Amount
128. Ass A L REL = Ass AccessPath →m Amount
128. Deb AccessPath,Cre AccessPath,Lia AccessPath,Ass AccessPath = AccessPath

5.3 Perdurants

5.3.1 Bookkeeping Channels.

Behaviours interact. Accountants communicate read , write and other commands to the debit/credit
account behaviour . The debit/credit account behaviour communicates read and write commands to
the asset/liability behaviour . To “effect” so, in our CSP [16] model, we introduce the abstract notion
of channels .

129. The abstract notion of bookkeeping channels is here a CSP channel array whose indices are
un-ordered pairs of unique identifiers of unique accountant, debit/credit account and/or as-
set/liability account identifiers – and

130. a message, MSG – which is either a read , a write, or some other command.

type
130. MSG = Read |Write | ...
channel
129. { ch[{ui,uj}] | ui,uj:UI • {ui,uj}⊆uis } : MSG

Double-entry Bookkeeping 30 Dines Bjørner. April 30, 2024, 16:06

Double-entry Bookkeeping. April 30, 2024. 31

5.3.2 Bookkeeping Behaviours.

5.3.2.1 Bookkeeping Perdurants.

We refer to Sect. 5.1.1.2. We shall consider the following domain perdurants to be transcendentally
deduced into domain behaviours.

131. a double-entry debit/credit bookkeeping account behaviour,

132. a double-entry asset/liability bookkeeping account behaviour, and

133. a set of accountant behaviours.

131. dc account [basd on] DC ACCOUNT [i.e.,] dc acc
132. al account: [basd on] AL ACCOUNT [i.e.,] al acc
133. accountant: [basd on] ACCOUNTANTs [i.e.,]accountants

5.3.2.2 Bookkeeping Domain Behaviour Signatures.

We shall not follow the ’doctrine” of expressing the domain behaviour signatures strictly according
to [6]. That is: We omit a “full treatment” of all attributes. But to remind you:

134. The debit/credit account behaviour, dc account, communicates with a the set of all accoun-
tants [a mereology argument], and has the debit/credit account, dc acc, as its programmable
argument.

135. The asset/liability account behaviour, al account, communicates with just the asset/liability
account, al acc [a mereology argument], and has the asset/liability account, al acc, as its
programmable argument.

136. The accountant behaviour communicates with just the double-entry asset/liability bookkeep-
ing behaviour [a mereology argument], dbl al book.

value
134. dc account: UI→ UI-set→ ...→ DC ACCOUNT ... Unit
135. al account: UI→ UI-set→ ...→ AL ACCOUNT ... Unit
136. accountant: UI→ UI→ (Acces Path-set × ...)→ ... Unit

5.3.2.3 Bookkeeping Behaviour Definitions.

5.3.2.3.1 The Debit/Credit Account Behaviour

[ι 75 π 21]. We remind the reader of the definition of the write function.

137. The dc account behaviour is here defined without detailing possible [static and monitorable]
arguments (...).

138. The dc account behaviour external non-deterministically, debc, awaits write commands from ei-
ther of the accountant behaviours (cf. [ι 139d π 32]).

c© Dines Bjørner. April 30, 2024, 16:06 31 Double-entry Bookkeeping

32 April 30, 2024. Dines Bjørner

These commands are either debit/credit, i.e., write, commands, or a establish “fresh, new” accounts ,
or are

139. If write commands

(a) the dbl dc book behaviour then performs the write function on the double-entry book-
keeping’s debit/credit account dc acc.

(b) After which it then performs the “corresponding” updates, at least one, possible [“a few”]
more, on the double-entry bookkeeping’s asset/liability account ”al”.

(c) After which it “reverts” to being the The dbl dc book behaviour –

(d) [with this external non-deterministic actions “ranging” over all accounts]

140. If view commands the dbl dc book behaviour then ...

141. If errata commands the dbl dc book behaviour then ...

142. If establish commands the dbl dc book behaviour then ...

143. If audit commands the dbl dc book behaviour then ...

value
137. dc account: UI→ UI-set→ ...→ DC ACCOUNT→ Unit
137. dc account(dci)(auis)(...)(dc acc) ≡
139. debc { let mkWrite(daorca,ap,txt,a) = ch[{dci,aui}] ? in
139a. let dci acc′ = write(daorca,ap,txt,a)(dc acc) in
139b. update asset liability accounts(daorca)(ap,txt,a);
139c. dc account(dci)(auis)(...)(dc acc′)
139d. end end | aui:Acc UI • aui ∈ auis
139. | aui:Acc UI • aui ∈ auis }
140. debc { let mkView(...) = ch[{dci,aui}] ? in
140. ... end | aui:Acc UI • aui ∈ auis }
141. debc { let Errata(...) = ch[{dci,aui}] ? in
141. ... end | aui:Acc UI • aui ∈ auis }
142. debc { let mkEstablish() = ch[{dci,aui}] ? in
142. ... end | aui:Acc UI • aui ∈ auis }
143. debc { let mkAudit(...) = ch[{dci,aui}] ? in
143. ... end | audit ii:Aaudit UI UI • audit ui ∈ audit uis }

[ι 121 π 28]. We remind the reader of the value definition of db al rel,

144. To update the asset/liability account

145. is to provide the debit or credit account “marker”: ”da”,”ca”, the debit/credit account path,
some entry text, and the amount with which the debit/credit account was updated and a pair
of the debit or credit access path and an amount.14

14The time stamp is “provided” at the time point when the actual asset/liability account is updated, cf. [ι 78 π 22].

Double-entry Bookkeeping 32 Dines Bjørner. April 30, 2024, 16:06

Double-entry Bookkeeping. April 30, 2024. 33

146. When a debit or credit account is updated then one or more corresponding liability , respectively
asset accounts must be “balanced”. The DB AL REL “table”, db al rel, serves to indicate with
which fractions of the debit or credit account amount respective liability , respectively asset
accounts shall be “balanced”. These fractions may result in non-natural, rational amounts.
These are rounded off “by” the round function – once and for all,

147. before the liability , or asset accounts are updated.

value
[ι 121 π 28]. db al rel = attr DB AL REL(mgt)

144. update asset liability accounts: (′′dc′′|′′ca′′)→ Access Path×Txt×Amount→ Unit
145. update asset liability accounts(dcorca)(ap,txt,a) ≡
146. let dbalrel = round(db al rel(ap),a) in
147. upd ass lia acc(dcorca)(dbalrel)(ap,txt,a) end

148. The asset/liability accounts update provides a marker, ”dc” or ”al”, as to whether a liability or
an asset account is to be updated – and for that update it provides the rounded overall amounts
dbalrel, a liability/asset access path dc ap, a suitable entry text, and the amount, a, with which
the debit/credit account was updated.

149. Either the rounded overall amounts dbalrel

150. is “empty”, i.e., [], and the updates have been done,

151. or there is an access path, ac ap, for which a fraction, f, is to be updated –

152. in which case a write command is communicated to the asset/liability account behaviour as a
asset or a liability update with the access path of the debit/credit account that was updated,
the update text, and the rounded update amount –

153. whereupon the update asset/liability account behaviour resumes being so.

value
148. upd ass lia acc: DCorAL→ DBALREL→ Access Path×Txt×Amount→ Unit
148. upd ass lia acc(dcorca)(dbalrel)(dc ap,txt,a) ≡
149. case dbalrel of
150. []→ skip,
151. [ac ap7→f] ∪ dbalrel′→
152. ch[{aci,aui}] ! mkWrite(if dcorca = ′′dc′′ then ′′al′′ else ′′la′′ end,dc ap,txt,dbalrel(ac ap)) ;
153. upd ass lia acc(dcorca)(dbalrel′)(dc ap,txt,a)
149. end

154. There is a type, Amounts, whose values record the rounded amounts that specified access path
entries are to be updated with.

155. The [auxiliary] round function takes a debit/credit to asset/liability relation, an access path,
and an amount and yields the rounded amounts for that access path in the debit/credit to
asset/liability relation.

c© Dines Bjørner. April 30, 2024, 16:06 33 Double-entry Bookkeeping

34 April 30, 2024. Dines Bjørner

156. The definition sets of the debit/credit to asset/liability relation and the amounts shall be
identical.

157. The sum of amount entries in amounts shall match the debit/credit update amount, a, and

158. the amounts range entries must be suitably rounded up or down to a “whole”, natural number
value.15

type
154. Amounts = Access Path →m Amount
value
155. round: REL × Access Path × Amount→ Amounts
155. round(rel,ap,a) as amounts

where:
156. dom rel = dom amounts
157. ∧ a = sum(amounts)
158. ∧ ∀ ap:Access Path • ap ∈ dom rel⇒ amounts(ap) ∈ {b(rel(ap)∗a)c,d(rel(ap)∗a)e}

159. The b·c and d·e are the floor , respectively ceiling distributed-fix operators.

value
159. b·c,d·e: Rat→ Nat

160. We leave it to the reader to “decipher” the sum function !

value
160. sum: Amounts→ Nat
160. sum(am) ≡ case am of []→ 0, [ap7→a]∪am′→a+sum(am′) end

The dbl al book behaviour is much like the dbl dc book behaviour: a few renamings and item
[ι 139b π 32] omitted !

5.3.2.3.2 The Asset/Liability Account Behaviour

5.3.2.3.3 The Accountant Behaviour.

The accountant behaviour is one amongst a definite set of one or more accountants. Each accountant
has access to the debit/credit account and, within it, to a distinct set of debit/credit sub-accounts. Each
accountant receives copies of debit/credit messages from, as we shall call them, agents , and “passes”
these on, in the form of debit or credit “writes” to the dc account behaviour.

161.

162.

163.
15Now, this “rounding” operation is somewhat “doubtful”. It must be subject to some statistical distribution, etc., etc. !

Double-entry Bookkeeping 34 Dines Bjørner. April 30, 2024, 16:06

Double-entry Bookkeeping. April 30, 2024. 35

164.

165.

166.

value
161. accountant: UI→ (UI×UI-set)→ DC Paths→ Accountant History→ Unit
161. accountant(aci)(dci,agent uis)(dc paths)(ahist) ≡
162. debc { let ag msg = ch[{dci,aui}] in
163. let daorca = debit or credit(agent msg,ahist),
163. ap = access path(agent msg,dc paths),
163. txt = text(agent msg,ahist),
163. a = cost(agent msg) in
164. let a hist′ = update Accountant History(ag msg,aui,record TIME,daorca)(ahist) in
165. ch[{aci,dci}] ! mkWrite(daorca,ap,txt,a) ;
166. accountant(aci)(dci,agent uis)(dc paths)(ahist′) end end end
162. | aui:UI • aui ∈ agent uis }

5.3.2.3.4 The Audit Behaviour.

5.3.3 Initialize System

6 Summing Up

7 Bibliography

References

[1] Anon. C.C.I.T.T. High Level Language (CHILL), Recommendation Z.200, Red Book Fascicle
VI.12. See [13]. ITU (Intl. Telecmm. Union), Geneva, Switzerland, 1980 – 1985.

[2] Hans Bekič and Kurt Walk. Formalization of Storage Properties. In Symposium on Semantics
of Algorithmic Languages, volume LNM 188. Springer, 1971.

[3] B.J. Mailloux and J.E.L Peck and C.H.A. Koster and Aad van Wijngaarden. Report on the
Algorithmic Language ALGOL 68. Springer, Berlin, Heidelberg, 1969.

[4] D. Bjørner and O. Oest. Towards a Formal Description of Ada, volume 98 of LNCS. Springer-
Verlag, 1980.

[5] Dines Bjørner. Software Engineering, Vol. 1: Abstraction and Modelling; Vol. 2: Specification
of Systems and Languages; Vol. 3: Domains, Requirements and Software Design. Texts in
Theoretical Computer Science, the EATCS Series. Springer, Heidelberg, Germany, 2006.

[6] Dines Bjørner. Domain Science & Engineering – A Foundation for Software Development.
EATCS Monographs in Theoretical Computer Science. Springer, Heidelberg, Germany, 2021.
A revised version of this book is [8].

c© Dines Bjørner. April 30, 2024, 16:06 35 Double-entry Bookkeeping

36 April 30, 2024. Dines Bjørner

[7] Dines Bjørner. Domain Modelling – A Primer. A short version of [8]. xii+202 pages16, May
2023.

[8] Dines Bjørner. Domain Science & Engineering – A Foundation for Software Development.
Revised edition of [6]. xii+346 pages17, January 2023.

[9] Dines Bjørner. Domain Models – A Compendium. Internet: http://www.imm.dtu.-

dk/~dibj/2024/models/domain-models.pdf, March 2024. This is a very early draft.
19 domain models are presented.

[10] Dines Bjørner. Domain Models – A Compendium. Internet: http://www.imm.dtu.-

dk/~dibj/2024/models/domain-models.pdf, March 2024. This is a very early draft.
19 domain models are presented.

[11] Dines Bjørner and Yang ShaoFa. Domain Modelling. Techni-
cal University of Denmark. Revised edition of [10]. xii+208 pages.
https://www.imm.dtu.dk/ dibj/2023/dommod/dommod.pdf, May 2023.

[12] O.-J. Dahl, E.W. Dijkstra, and Charles Anthony Richard Hoare. Structured Programming.
Academic Press, 1972.

[13] P.L. Haff, editor. The Formal Definition of CHILL. ITU (Intl. Telecmm. Union), Geneva,
Switzerland, 1981.

[14] Charles Anthony Richard Hoare. Notes on Data Structuring. In [12], pages 83–174, 1972.

[15] Charles Anthony Richard Hoare. Communicating Sequential Processes. C.A.R. Hoare Series
in Computer Science. Prentice-Hall International, 1985.

[16] Charles Anthony Richard Hoare. Communicating Sequential Processes. Published electroni-
cally: usingcsp.com/cspbook.pdf, 2004. Second edition of [15]. See also usingcsp.com/.

[17] Michael A. Jackson. Software Requirements & Specifications: a lexicon of practice, principles
and prejudices. ACM Press. Addison-Wesley, Reading, England, 1995.

[18] W. Little, H.W. Fowler, J. Coulson, and C.T. Onions. The Shorter Oxford English Dictionary
on Historical Principles. Clarendon Press, Oxford, England, 1973, 1987. Two vols.

[19] E.C. Luschei. The Logical Systems of Leśniewksi. North Holland, Amsterdam, The Nether-
lands, 1962.

[20] ANSI X3.53-1976. The PL/I programming language. Technical report, American National
Standards Institute, Standards on Computers and Information Processing, 1976.

[21] Achille C. Varzi. On the Boundary between Mereology and Topology, pages 419–438. Hölder-
Pichler-Tempsky, Vienna, 1994.

[22] George Wilson and Samuel Shpall. Action. In Edward N. Zalta, editor, The Stanford Ency-
clopedia of Philosophy. Stanford University, summer 2012 edition, 2012.

16This book is currently being translated into Chinese by Dr. Yang ShaoFa, IoS/CAS, Beijing and into Russian by Dr.
Mikhail Chupilko, ISP/RAS, Moscow

17Due to copyright reasons no URL is given to this document’s possible Internet location. A primer version, omitting
certain chapters, is [7]

Double-entry Bookkeeping 36 Dines Bjørner. April 30, 2024, 16:06

Double-entry Bookkeeping. April 30, 2024. 37

A Software Engineering Terminology

I still need to fill in the below entries — from other documents !
The field of computing science is still youngIts lexicon is not yet firmly established – though [17,

Michael A. Jackson] is a seminal example. Over the last 1
2 century I have developed and adhered to

the terminology of this section.
The explication of the highlighted terms in this appendix are mine in the sense that I adhere,

systematically, to these explications. You, the reader, may have some previously conceived under-
standing of these terms. Please, temporarily, in the context of the present report, forget about Your
“previous” understanding. It is not a matter of whether my explications are right or wrong. They are
the ones I adhere to. So in the present context they are right !

1. Abstraction. By an abstraction we shall understand a formulation of some phenomenon or
concept of some universe of discourse such that some aspects of the phenomenon or concept
are emphasized (i.e., considered important or relevant) while others are left out of consideration
(i.e., considered unimportant or irrelevant)

Abstraction relates to conquering complexity of systems description through the ju-
dicious use of abstraction, where abstraction, briefly, is the act and result of omit-
ting consideration of (what would then be called) details while, instead, focusing on
(what would therefore be called) important facets.

Conception, my boy, fundamental brain-work,
is what makes the difference in all art

D.G. Rossetti18: letter to H. Caine19

In the natural sciences one observes phenomena — and then one abstracts. In pro-
gramming we create universes, but first abstractly.
The following is from the opening paragraphs of C.A.R. Hoare’s: Notes on Data
Structuring [14].

Abstraction is a tool, used by the human mind, and to be applied in the
process of describing (understanding) complex phenomena. Abstraction is
the most powerful such tool available to the human intellect. Science pro-
ceeds by simplifying reality. The first step in simplification is abstraction.
Abstraction (in the context of science) means leaving out of account all
those empirical data which do not fit the particular, conceptual framework
within which science at the moment happens to be working. Abstraction
(in the process of specification) arises from a conscious decision to advo-
cate certain desired objects, situations and processes as being fundamental;
by exposing, in a first, or higher, level of description, their similarities and
— at that level — ignoring possible differences.

18Gabriel Charles Dante Rossetti, generally known as Dante Gabriel Rossetti, was an English poet, illustrator, painter,
translator, and member of the Rossetti family. He founded the Pre-Raphaelite Brotherhood in 1848 with William Holman
Hunt and John Everett Millais. Born: May 12, 1828, London, United Kingdom Died: April 9, 1882 (age 53 years),
Birchington-on-Sea, United Kingdom

19Sir Thomas Henry Hall Caine CH KBE (14 May 1853 31 August 1931), usually known as Hall Caine, was a British
novelist, dramatist, short story writer, poet and critic of the late nineteenth and early twentieth century.

c© Dines Bjørner. April 30, 2024, 16:06 37 Double-entry Bookkeeping

38 April 30, 2024. Dines Bjørner

2. Informatics. Informatics is the confluence of mathematics, computer and computing science.

3. Mathematics. Mathematics is the science and study of quality, structure, space, and change.
Mathematicians seek out patterns, formulate new conjectures, and establish truth by rigorous
deduction from appropriately chosen axioms and definition.

4. Computing. Computing is the act of calculating something – adding it up, multiplying it, or
doing more complex mathematical, including logical, functions. The verb compute comes from
a Latin word for pruning.

5. Computer. A computer is a mechanical, electro-mechanical, electrical or electronic device
that can be so-called ‘programmed’ to automatically carry out sequences of arithmetic and
logical operations (computation).

6. Computer Science. Computer science is the mathematical study and knowledge of the
phenomena that “exists inside” computers: data& processes.

7. Computing Science. Computing science is the study and knowledge of how to construct
the phenomena that “exists inside” computers: data& processes, including methodologies for
domain descriptions, requirements prescriptions, software designs and program codes.

Informatics is in contrast to IT, we think: where informatics is a “more-or-less intellectual world”
of its “products” being more-or-less appropriate, pleasing, correct, ...; IT is a “more-or-less material
world” of its “products” being more-or-less bigger, smaller, faster, cheaper, etc.

8. Information. Information is an abstract concept that refers to something which has the power
to inform. At the most fundamental level, it pertains to the interpretation (perhaps formally)
of that which may be sensed, or their abstractions. Any natural process that is not completely
random and any observable pattern in any medium can be said to convey some amount of infor-
mation. Whereas digital signals and other data use discrete signs to convey information, other
phenomena and artifacts such as analogue signals, poems, pictures, music or other sounds, and
currents convey information in a more continuous form. Information is not knowledge itself,
but the meaning that may be derived from a representation through interpretation. Wikipedia

9. Information Technology. Hardware and software systems to manage, process, protect, and
exchange information.

(a) Hardware. By IT hardware we shall understand the mechanical, electro-mechanical,
electric and electronic systems that facilitate computations.

(b) Software. By IT software we shall understand the full set of documents that record
the full computing science development of domain descriptions, requirements prescrip-
tions, software design and program code: management plans, including budgets and
accounts, manpower resources and their deployment, all validation documents: testing,
model checking and theorem proofs, all maintenance records: corrective, preventive, per-
fective, etc., etc.

10. IT. Same as information technology.

Double-entry Bookkeeping 38 Dines Bjørner. April 30, 2024, 16:06

Double-entry Bookkeeping. April 30, 2024. 39

11. The Triptych Dogma. In order to specify Software, we must understand its Requirements.
In order to prescribe Requirements we must understand the Domain. So we must study,
analyze and describe Domains. D,S |= R20

12. Method. By a method we shall understand a set of principles and procedures for
selecting and applying a set of techniques and tools to a problem in order to achieve an
orderly construction of a solution, i.e., an artifact.

13. Methodology. By methodology we shall understand the study & application of one or
more methods.

14. Formal Method. By a formal method we shall mean a method whose techniques and
tools can be given a mathematical meaning.

15. Principle: By a principle we mean: a principle is a proposition or value that is a guide
for behavior or evaluation Wikipedia, i.e., code of conduct.

16. Procedure. By a procedure we mean: instructions or recipes, a set of commands that
show how to achieve some result, such as to prepare or make something Wikipedia, i.e.,
an established way of doing something .

17. Technique. By a technique we mean: a technique, or skill, is the learned ability to
perform an action with determined results with good execution often within a given amount
of time, energy, or both Wikipedia, i.e., a way of carrying out a particular task.

18. Tool. By a tool we mean: a tool is an object that can extend an individual’s ability to
modify features of the surrounding environment. Wikipedia

19. Language. The principal method of human communication, consisting of words used
in a structured and conventional way and conveyed by speech, writing, or gesture. More
specifically, in this document, the set of words (terms) structured in some form of syntax,
adhering, more-or-less to some form of semantics, and formed and communicated with some
form of pragmatics in mind.

Animals with higher social interaction uses signs, eventually developing a language. These
languages adhere to the same system of defined concepts which are a prerequisite for any
description of any world: namely the system that philosophy lays bare from a basis of
transcendental deductions and the principle of contradiction and its implicit meaning theory .
A human is an animal which has a language.

Homo sapiens, in early forms, have existed, some estimate, for millions of years. And,
apparently, according to some archaeologists/linguists, did communicate by means of lan-
guage, but with no abstractions, no metaphors, no concepts. These archaeologists/linguists
think that abstractions first came into human language some 15.000 to 35.000 years ago.
And that this marks humans from other animals and explains why humans effected societal
development in its broadest terms.

20. Formal Language. By a formal language we shall understand a language whose syntax
and semantics can be expressed a formal, mathematical manner.

20In proofs of Software correctness, with respect to Requirements, assumptions are made with respect to the Domain.

c© Dines Bjørner. April 30, 2024, 16:06 39 Double-entry Bookkeeping

40 April 30, 2024. Dines Bjørner

21. Semiotics. By semiotics we understand the study of the Pragmatics, the Semantics and
the Syntax of languages.

22. Syntax. By syntax we understand the rules for and form of structures, be they sentential
or otherwise.

By a formal syntax we understand a syntax such that we can also analyse sentential
structures wrt. their possibly ambiguous composition.

(a) Discussion:

By sentential structures we mean sequences of characters such as you are reading right
now, and such as those of the formulas: Expressions and statements of specification
and programming languages.

By ‘other’ structures we mean atomic and composite values such as those of RSL,
Java and other specification or programming languages, or of other mathematical
systems: Algebras, logics, etc.

Syntax is about form, not content: “Appearance”, not meaning. I can express the
number seven in many different ways:

7,seven,vii, ıııııııı,00111,13,

that is: As an arabic-like numeral, spelled out in letters, as a roman numeral, as a
sequence of seven “strokes”, as a binary numeral, or as a radix four numeral !

There may be many syntactic instances signifying the “same thing” (as here the number
seven), but one may say that there is exactly one (instance of the) number (that we
name) seven !

(b) Concrete Syntax: By a concrete syntax we mean a grammar for specifying strings
of sentences (sequences of characters), or for specifying layout of two-dimensional
diagrams (pictures) — both as communicated between people, or for specifying the
bit and byte-wise layout of storage cells for structured values, etc.

By the “etcetera” we are appealing to your intuition.

Natural languages do not have precise means of specifying the exact set of (syntac-
tically) “correct” sentences. But programming and specification languages have. In
fact: A formal language is a language which has a precise way of delineating all, and
only its correct, ie. allowable sentences.

We speak of the concrete forms of communicating between humans, of a humans pre-
senting to computers, such mathematical formulas, respectively programs and specifi-
cations, as sentences subject to concrete syntax, ie. a grammar. We shall use the term
grammar to mean a syntax for a concrete representation.

(c) BNF Grammar BackusNaur form (BNF or Backus normal form) is a notation used
to describe the syntax of programming languages or other formal languages. It was
developed by John W. Backus and Peter Naur. BNF can be described as a meta-
syntax notation for context-free grammars. BackusNaur form is applied wherever
exact descriptions of languages are needed, such as in official language specifications,
in manuals, and in textbooks on programming language theory. BNF can be used to
describe document formats, instruction sets, and communication protocols.

Double-entry Bookkeeping 40 Dines Bjørner. April 30, 2024, 16:06

Double-entry Bookkeeping. April 30, 2024. 41

23. Semantics. The branch of linguistics and logic concerned with meaning. The two main
areas are logical semantics, concerned with matters such as sense and reference and pre-
supposition and implication, and lexical semantics, concerned with the analysis of word
meanings and relations between them [Oxford Languages]. We shall be concerned with
lexical semantics in this paper.

24. Pragmatics. In linguistics and related fields, pragmatics is the study of how context
contributes to meaning. The field of study evaluates how human language is utilized in
social interactions, as well as the relationship between the interpreter and the interpreted
[Wikipedia]. We shall not really be concerned with pragmatics in this paper.

25. Transcendense. is the basic ground concept from the word’s literal meaning (from Latin),
of climbing or going beyond, albeit with varying connotations in its different historical and
cultural stages. [Wikipedia]

(a) Transcendental. By transcendental we shall understand the philosophical notion:
the a priori or intuitive basis of knowledge, independent of experience.

(b) Transcendental Deduction. By a transcendental deduction we shall understand the
philosophical notion: a transcendental “conversion” of one kind of knowledge into a
seemingly different kind of knowledge.

26. Science. Science is the pursuit and application of knowledge and understanding of the
natural and social world following a systematic methodology based on evidence [Science
Council, UK].

27. Engineering. Engineering is the practice of using natural science, mathematics, and the
engineering design process to solve technical problems, increase efficiency and productivity,
and improve systems [Wikipedia].

28. Domain Engineering. The [computing science “inspired”] engineering of constructing
domain descriptions. See [6, 11].

29. Requirements Engineering. The [computing science “inspired”] engineering of deriving
requirements prescriptions from domain descriptions. See [6, Chapter 9].

30. Program Engineering. The [computing science “inspired”] engineering of deriving pro-
gram code from requirements prescriptions. See [5].

31. Domain. By a domain we shall understand a rationally describable segment of a discrete
dynamics fragment of a human assisted reality: the world that we daily observe – in which
we work and act, a reality made significant by human-created entities. The domain embody
endurants and perdurants

32. Domain Analysis. The analysis of domains according, as we see it, to the following
scheme:

33. Ontology. A set of concepts and categories applicable to a suitable subject area or domain
that shows their properties and the relations between them [Oxford Languages].

34. Taxonomy is the practice and science of categorization or classification of of specific
domain instance Wikipedia.

c© Dines Bjørner. April 30, 2024, 16:06 41 Double-entry Bookkeeping

42 April 30, 2024. Dines Bjørner

External Qualities

Describer "states"

PerdurantsEndurants

Phenomena of Natural and Artefactual Universes of Discourse

E

Entity Indescribable

Perdurant

Action
Event Actor

Channel Behaviour

Fluid

Endurant

Solid

Part
Living Specie

Animal Plant

O
th

er

Unique Identifiers
Mereologies
Attributes

transcendental injection of endurants into perdurants

Internal Qualities

Cartesian Part

E1,...,Ec

is
_m

an
if

es
t

is
_m

an
if

es
t

is
_m

an
if

es
t

E

P

F

Part Set

Ps=P−set
H

u
m

an
s

CompoundAtomic
Transcendense

Figure 2: A Domain Analysis & Description Ontology

35. Phenomenon. By a phenomenon we shall understand a fact that is observed to exist or
happen.

36. Entity. By an entity we shall understand a more-or-less rationally describable phenomenon.

[is entity is an informal predicate prompt, i.e., a function which when applied, by the domain analyzer,

to a phenomenon, φ , yields the Boolean truth value true if the phenomenon is a more-or-less rationally

describable.].

37. Domain Endurants are those quantities of domains that we can observe (see and touch),
in space, as “complete” entities at no matter which point in time – “material” entities that
persists, endures – capable of enduring adversity, severity, or hardship [Merriam Webster].

[is endurant is an informal predicate prompt, i.e., a function which when applied, by the domain analyzer,

to a entity, e, yields the Boolean truth value true if the entity is a an endurant.]

Endurants may be either solid (discrete) or fluid , and solid endurants, called parts, may be
considered atomic or compound parts. or solid endurants may be further analyzed living
species: plants and animals – including humans.

38. External Qualities External qualities of endurants of a manifest domain are, in a simplifying
sense, those we can see, touch and have spatial extent. They, so to speak, take form.

39. Internal Qualities are those properties [of endurants] hat do not occupy space but can
be measured or spoken about, that is properties which we cannot see but can measure,

Double-entry Bookkeeping 42 Dines Bjørner. April 30, 2024, 16:06

Double-entry Bookkeeping. April 30, 2024. 43

mechanically, chemically, electrically, electronically, or otherwise.

40. Solid By a solid [or discrete] endurant we shall understand an endurant which is separate,
individual or distinct in form or concept, or, rephrasing: have ‘body’ [or magnitude] of three-
dimensions: length, breadth and depth [18].

[is solid is an informal predicate prompt, i.e., a function which when applied, by the domain analyzer, to a

endurant, e, yields the Boolean truth value true if the endurant is a a solid .]

41. Fluid By a fluid endurant we shall understand an endurant which is prolonged, without
interruption, in an unbroken series or pattern; or, rephrasing: a substance (liquid, gas or
plasma) having the property of flowing, consisting of particles that move among themselves
[18, Vol. I, pg. 774].

[is fluid is an informal predicate prompt, i.e., a function which when applied, by the domain analyzer, to a

endurant, e, yields the Boolean truth value true if the endurant is a a fluid .]

42. Part. By a [physical] part we shall understand a discrete endurant existing in time and
subject to laws of physics, including the causality principle and gravitational pull

[is part is an informal predicate prompt, i.e., a function which when applied, by the domain analyzer, to a

solid, s, yields the Boolean truth value true if the solid is a part.]

(a) Manifest Part. A manifest part is a part, a discrete endurant, which the domain
engineer chooses to describe as consisting of one or more endurants, whether discrete or
continuous, but to indeed endow with internal qualities: unique identifiers, mereology
or attributes.

[is manifest is an informal predicate prompt, i.e., a function which when applied, by the domain

analyzer, to a part, p, yields the Boolean truth value true if the part is a manifest.]

(b) Structure Part. A structure part is a part, a discrete endurant, which the domain
engineer chooses to describe as consisting of one or more endurants, whether discrete
or continuous, but to not endow with internal qualities: unique identifiers, mereology
or attributes.

[is structure is an informal predicate prompt, i.e., a function which when applied, by the domain

analyzer, to a part, p, yields the Boolean truth value true if the part is a a structure.]

43. Living Species. By a living species we shall understand a discrete endurant, subject to
laws of physics, and additionally subject to causality of purpose.

[is living species is an informal predicate prompt, i.e., a function which when applied, by the domain

analyzer, to a solid, s, yields the Boolean truth value true if the solid is a living species.]

(a) Plant. We refer to the initial definition of living species above – while emphasizing the
following traits: (i) form animals can be developed to reach; (ii) causally determined
to maintain. (iii) development and maintenance in an exchange of matter with an
environment, and (iv) ability to purposeful movement.

[is plant is an informal predicate prompt, i.e., a function which when applied, by the domain analyzer,

to a living species, `, yields the Boolean truth value true if the living species is a plant.]

(b) Animal. We refer to the definition of living species above – while emphasizing the
following traits: (i) form animals can be developed to reach; (ii) causally determined

c© Dines Bjørner. April 30, 2024, 16:06 43 Double-entry Bookkeeping

44 April 30, 2024. Dines Bjørner

to maintain. (iii) development and maintenance in an exchange of matter with an
environment, and (iv) ability to purposeful movement.

[is animal is an informal predicate prompt, i.e., a function which when applied, by the domain analyzer,

to a yields the Boolean truth value true if the is a .]

(c) Human. A human (a person) is an animal , see above, with the additional properties
of having language, being conscious of having knowledge (of its own situation), and
responsibility .

[is human is an informal predicate prompt, i.e., a function which when applied, by the domain analyzer,

to a living species, `, yields the Boolean truth value true if the living species is a human.]

44. Atomic Part. Atomic parts are those which, in a given context, are deemed to not consist
of meaningful, separately observable proper sub-parts. A sub-part is a part.

[is atomic is an informal predicate prompt, i.e., a function which when applied, by the domain analyzer, to

a part, p, yields the Boolean truth value true if the part is a atomic.]

45. Compound Part. Compound parts are those which are observed to [potentially] consist
of several parts.

[is compound is an informal predicate prompt, i.e., a function which when applied, by the domain analyzer,

to a part, p, yields the Boolean truth value true if the part is a compound.]

46. Cartesian Cartesian parts are those compound parts which are observed to consist of a
definite number of (two or more) distinctly sort-named endurants (solids or fluids).

[is Cartesian is an informal predicate prompt, i.e., a function which when applied, by the domain analyzer,

to a compound part, p, yields the Boolean truth value true if the compound is a Cartesian.]

47. Set Part Part sets are those compound parts which are observed to consist of an indefinite
number of zero, one or more “similar” parts.

[is part set is an informal predicate prompt, i.e., a function which when applied, by the domain analyzer,

to a compound part, p, yields the Boolean truth value true if the compound is a set of parts.]

48. Unique Identifiers. A unique identity is an immaterial property that distinguishes any
two spatially distinct solids.

[uid P is an informal function prompt, i.e., a function which when applied, by the domain analyzer, to a

manifest part, yields the unique identifier of that part]

49. Mereologies. Mereology is a theory of [endurant] part-hood relations: of the relations
of an [endurant] parts to a whole and the relations of [endurant] parts to [endurant] parts
within that whole.,21

[mereo P is an informal function prompt, i.e., a function which when applied, by the domain analyzer, to a

manifest part, yields yields the mereology of that part]

50. Attributes. Attributes are properties of endurants that can be measured either physically
(by means of length (ruler) and spatial quantity measuring equipment, electronically, chem-
ically, or otherwise) or can be objectively spoken about.

[attributes P is an informal function prompt, i.e., a function which when applied, by the domain analyzer,

21Mereology in this sense was first studied by the Polish mathematician and philosopher Stanisław Leśniewski (1886–
1939) [19, 21].

Double-entry Bookkeeping 44 Dines Bjørner. April 30, 2024, 16:06

Double-entry Bookkeeping. April 30, 2024. 45

to a part, yields a set of one or more attribute names (ηA1,ηA2,...,ηAn)]

[attr A is an informal function prompt, i.e., a function which when applied, by the domain analyzer, to a

manifest part, yields the value of attribute A for that part]

Michael A. Jackson [17] has suggested a hierarchy of attribute categories: from static
(is static) to dynamic (is dynamic) values – and within the dynamic value category:
inert values (is inert), reactive values (is reactive), active values (is active) – and
within the dynamic active value category: autonomous values (is autonomous), biddable
values (is biddable), and programmable values (is programmable) .

dynamic

active

endurant

static

biddable programmable

reactiveinert

autonomous

controllable attributes

monitorable attributes

Figure 3: Michael Jackson’s Attribute Categories

We elaborate, informally, on the domain analysis attribute predicates, “performed” by the
domain analyzer:

(a) Static. By a static attribute we shall understand an attribute whose values are con-
stants, i.e., cannot change.

[is static is an informal predicate prompt, i.e., a function which when applied, by the domain analyzer,

to a an attribute value yields the Boolean truth value true if the value is a static attribute.]

(b) Dynamic. By a dynamic attribute we shall understand an attribute whose values are
variable, i.e., can change.

[is dynamic is an informal predicate prompt, i.e., a function which when applied, by the domain

analyzer, to a an attribute value yields the Boolean truth value true if the value is a dynamic attribute.]

(c) Inert. By an inert attribute we shall understand a dynamic attribute whose values
only change as the result of external stimuli where these stimuli prescribe new values.

[is inert is an informal predicate prompt, i.e., a function which when applied, by the domain analyzer,

to a a dynamic attribute value yields the Boolean truth value true if the value is an inert attribute.]

(d) Reactive.

By a reactive attribute we shall understand a dynamic attribute whose values, if they
vary, change in response to external stimuli, where these stimuli come from outside
the domain of interest.

[is reactive is an informal predicate prompt, i.e., a function which when applied, by the domain

analyzer, to a a dynamic attribute value yields the Boolean truth value true if the is a .]

(e) Active. By an active attribute we shall understand a dynamic attribute whose values
change (also) of its own volition.

c© Dines Bjørner. April 30, 2024, 16:06 45 Double-entry Bookkeeping

46 April 30, 2024. Dines Bjørner

[is active is an informal predicate prompt, i.e., a function which when applied, by the domain analyzer,

to a a dynamic attribute value yields the Boolean truth value true if the value is an active attribute.]

(f) Autonomous. By an autonomous attribute we shall understand a dynamic active
attribute whose values change only “on their own volition”. The values of an au-
tonomous attributes are a “law onto themselves and their surroundings”.

[is autonomous is an informal predicate prompt, i.e., a function which when applied, by the domain an-

alyzer, to a an active attribute value yields the Boolean truth value true if the value is an autonomous

attribute.]

(g) Biddable. By a biddable attribute we shall understand a dynamic active attribute
whose values are prescribed but may fail to be observed as such.

[is biddable is an informal predicate prompt, i.e., a function which when applied, by the domain

analyzer, to a an active attribute value yields the Boolean truth value true if the value is a biddable

attribute.]

(h) Programmable. By a programmable attribute we shall understand a dynamic active
attribute whose values can be prescribed.

[is programmable is an informal predicate prompt, i.e., a function which when applied, by the do-

main analyzer, to a an active attribute value yields the Boolean truth value true if the value is a

programmable attribute.]

Figure 3 on the preceding page hints at two major categories of dynamic attributes: mon-
itorable and controllable attributes.

(a) Monitorable Attribute. By a monitorable attribute we shall understand a dynamic
active attribute which is either inert or reactive or autonomous or biddable. That is:

is monitorable(e)≡is inert(e)∨is reactive(e)∨is autonomous(e)∨is biddable(e).

(a) Controllable Attribute.

By a controllable attribute we shall understand a dynamic active attribute which is
either biddable or programmable. That is:

is controllable(e)≡is biddable(e)∨is programmable(e).

51. Perdurant. Perdurants are those quantities of domains for which only a fragment exists,
in space, if we look at or touch them at any given snapshot in time.

52. State. By a state [of a domain] we shall understand a[ny] set of manifest parts.

53. Actor. By an actor we shall understand something that is capable of initiating and/or
carrying out actions, events or behaviours.

Actors will be described as behaviours. These behaviours evolve around a state. The state
is the set of qualities, in particular the dynamic attributes, of the associated parts and/or
any possible components or materials of the parts.

54. Discrete Action. By a discrete action [22, Wilson and Shpall] we shall understand
a foreseeable thing which deliberately and potentially changes a well-formed state, in one
step, usually into another, still well-formed state, for which an actor can be made responsible.

Double-entry Bookkeeping 46 Dines Bjørner. April 30, 2024, 16:06

Double-entry Bookkeeping. April 30, 2024. 47

55. Discrete Event. By a discrete event we shall understand some unforeseen thing, that
is, some ‘not-planned-for’ “action”, one which surreptitiously, non-deterministically changes
a well-formed state into another, but usually not a well-formed state, and for which no
particular domain actor can be made responsible.

56. Discrete Behaviour. By a discrete behaviour we shall understand a set of sequences of
potentially interacting sets of discrete actions, discrete events and discrete behaviours.

57. Channels: Behaviours sometimes synchronise and usually communicate. Synchronisation
and communication is abstracted as the sending (ch ! m) and receipt (ch ?) of messages,
m:M, over channels, ch. Channels are abstractions. They are abstractions of the ‘medium’
in which synchronizaion and communication takes place.

58. Domain Description. A domain description consists of a set of one or more description
units. There are six kinds of description units.

(a) Type Description Unit. A type description unit specifies one or more types.

(b) Value Description Unit. A value description unit specifies one or more values of
specified types.

(c) Function Description Unit. A function description unit [is a value description unit
and] specifies one or more functions: their signatures and their corresponding [body]
definition. [Behaviours and actions are described by such units.]

(d) Variable Description Unit. A variable description unit declares one or more variables
of specified types.

(e) Axiom Description Unit. An axiom description unit specifies properties of types
and values (incl. funtions).

(f) Channel Description Unit. A channel description unit declares a channel [array].

59. Domain Initialization. Domain initialization specifies the initial argument values for all
part behaviours and “starts” their behaviour.

60. Domain Engineering. Domain engineering is the engineering of studying, analyzing and
decribing domains.

61. Domain Science. Domain science is the scietific, i.., mathematical study of how to
describe domains and of the general properties of domains.22.

62. Machine. By machine we shall understand a, or the, combination of hardware and software
that is the target for, or result of the required computing systems development.

63. Requirements. We present three complementary characterizations:

(a) By a requirements we understand (cf., [?, IEEE Standard610.12]): “A condition or
capability needed by a user to solve a problem or achieve an objective”.

22Typical studies could be studies of how to describe time-continous, i.e., non-discrete behaviours and studies of inten-
tional pulls

c© Dines Bjørner. April 30, 2024, 16:06 47 Double-entry Bookkeeping

48 April 30, 2024. Dines Bjørner

(b) By requirements we shall understand a document which prescribes desired properties
of a machine: what endurants the machine shall “maintain”, and what the machine
shall (must; not should) offer of functions and of behaviours while also expressing
which events the machine shall “handle”.

(c) By requirements we shll mean: to specify the/a machine.

Domain Requirements can be analyzed and prescribed in three stages: domain, interface
and machine requirements.

(a) Domain Requirements. Domain requirements are those requirements which can be
expressed withou any reference to the machine.

Domain requirements can be prescribed in a number of stages.

i. Domain Projection. By a domain projection is meant a subset of the domain
description, one which projects out all those endurants: parts, materials and
components, as well as perdurants: actions, events and behaviours that the stake-
holders do not wish represented or relied upon by the machine.

ii. Domain Instantiation. By domaininstantiation we mean a refinement of the
partial domain requirements prescription (resulting from the projection step) in
which the refinements aim at rendering the endurants: parts, materials and com-
ponents, as well as the perdurants: actions, events and behaviours of the domain
requirements prescription more concrete, more specific.

iii. Domain Determination. By domain determination we mean a refinement
of the partial domain requirements prescription, resulting from the instantiation
step, in which the refinements aim at rendering the endurants: parts, materials and
components, as well as the perdurants: functions, events and behaviours of the
partial domain requirements prescription less non-determinate, more determinate.

iv. Domain Extension. By domain extension we understand the introduction of
endurants and perdurants that were not feasible in the original domain, but for
which, with computing and communication, and with new, emerging technologies,
for example, sensors, actuators and satellites, there is the possibility of feasible
implementations, hence the requirements, that what is introduced becomes part
of the unfolding requirements prescription.

(b) Interface Requirements. Interface requirements are those requirements which can
be expressed with reference to bot the domain and the machine.

(c) Machine Requirements. Machine requirements are those requirements which can
be expressed without any reference to the domain, solely to the machine.

Concepts such as shared and derived requirements and requirements fitting are also relevant,
but not defined here; cf. [6, Chapter 9].

64. Software Design.

65. Validation.

(a) Verification.

(b) Testing.

Double-entry Bookkeeping 48 Dines Bjørner. April 30, 2024, 16:06

Double-entry Bookkeeping. April 30, 2024. 49

(c) Model Checking.

The are 102 Software Engineering terms defined in this section.

B Indexes

B.1 Financial Management Terminology

I expect there to be several more terms to be defined, hence to be indexed.

Account, 5
Asset, 5
Audit, 6
Auditor, 6

Balance, 6

Complete Transaction, 7
Credit, 6
Current, i.e., Short-term, Liability, 8

Debit, 6
Double-entry

accounting, 7
bookkeeping, 7

Equity, 7
Home, 7
Method, 7
Private, 7

Stock, 7

Home Equity, 7

Ledger, 7
Liability, 8

Current, i.e., Short-term, 8
Long-term, i.e., Non-Current, 8
Non-current i.e., Long-term, 8
Short-term, i.e., Current, 8

Long-term, i.e., Non-Current, Liability, 8

Method, Equity, 7

Non-current, i.e., Long-term, Liability, 8

Private Equity, 7

Short-term, i.e., Current, Liability, 8
Stock, Equity, 7

B.2 Software Engineering Terminology

There are some 100 terms indexed here.

attributes P, 45
is active, 45
is animal, 44
is atomic, 44
is autonomous, 46
is biddable, 46
is compound, 44
is dynamic, 45
is endurant, 42
is entity, 42
is fluid, 43
is human, 44
is inert, 45
is living species, 43
is manifest, 43
is part, 43
is part set, 44
is plant, 43
is programmable, 46
is reactive, 45

is solid, 43
is static, 45
is structure, 43
attr A, 45
attr A, 45
mereo P, 44
uid P, 44

Abstraction, 37
Action, 46
Active, Attribute, 45
Actor, 46
Analysis, Domain, 41
Animal, 43
Atomic Part, 44
Attribute

Active, 45
Autonomous, 46
Biddable, 46
Controllable, 46

c© Dines Bjørner. April 30, 2024, 16:06 49 Double-entry Bookkeeping

50 April 30, 2024. Dines Bjørner

Dynamic, 45
Inert, 45
Monitorable, 46
Programmable, 46
Reactive, 45
Static, 45

Attributes, 44
attributes P, 45
Autonomous, Attribute, 46
Axiom

Description Unit, 47

Behaviour, 46
Biddable, Attribute, 46
BNF Grammar, 40

Cartesian Part, 44
Channel, 46

Description Unit, 47
Compound Part, 44
Computer, 38

Science, 38
Computing, 38

Science, 38
Concrete Syntax, 40
Controllable Attribute, 46

Derived Requirements, 47
Description, 46
Description Unit, 46

Axiom, 47
Channel, 47
Function, 47
Type, 47
Value, 47

Design
Software, 47

Determinatio, Domain, 47
Domain, 41

Action, 46
Actor, 46
Analysis, 41
Attributes, 44
Behaviours, 46
Channels, 46
Description, 46
Description Unit, 46

Axiom, 47
Channel, 47
Function, 47
Type, 47
Value, 47

Determination, 47
Endurant, 42
Engineering, 41, 47
Event, 46
Extension, 47
External Qualities, 42

Initialization, 47
Instantiaton, 47
Internal Qualities, 42
Mereologies, 44
Perdurants, 46
Projection, 47
Requirements, 47
Science, 47
State, 46
Unique Identifiers, 44

Dynamic, Attribute, 45

Endurant, 42
Engineering, 41

Domain, 41, 47
Program, 41
Requirements, 41

Entity, 42
Event, 46
Extension, Domain, 47
External Qualities, 42

Fluid, 43
Formal

Language, 39
Method, 39

Function
Description Unit, 47

Hardware, 38
Human, 44

Inert, Attribute, 45
Informatics, 37
Information, 38

Technology, 38
Initialization, Domain, 47
Instantiaton, Domain, 47
Interface Requirements, 47
Internal Qualities, 42
IT, 38

Language, 39
Living Species, 43

Machine, 47
Machine Requirements, 47
Manifest Part, 43
Mathematics, 38
mereo P, 44
Mereology, 44
Method, 39

Principle, 39
Procedure, 39
Technique, 39
Tool, 39

Methodology, 39
Model Checking, 47

Double-entry Bookkeeping 50 Dines Bjørner. April 30, 2024, 16:06

Double-entry Bookkeeping. April 30, 2024. 51

Monitorable Attribute, 46

Ontology, 41

Part, 43
Atomic, 44
Cartesian, 44
Compound, 44
Manifest, 43
Set, 44
Structure, 43

Perdurant, 46
Phenomenon, 41
Plant, 43
Pragmatics, 41
Principle, 39
Procedure, 39
Program

Engineering, 41
Programmable, Attribute, 46
Projection, Domain, 47

Reactive, Attribute, 45
Requirements, 47

Derived, 47
Domain, 47
Engineering, 41
Interface, 47
Machine, 47
Shared, 47

Science, 41

Domain, 47
Semantics, 40
Semiotics, 39
Set Part, 44
Shared Requirements, 47
Software, 38, 47

Design, 47
Requirements, 47

Solid, 43
State, 46
Static, Attribute, 45
Structure Part, 43
Syntax, 39

Concrete, 40

Taxonomy, 41
Technique, 39
Testing, 47
The Triptych Dogma, 38
Tool, 39
Transcendense, 41
Transcendental, 41
Type

Description Unit, 47

uid P, 44
Unique Identifiers, 44

Validation, 47
Value

Description Unit, 47
Verification, 47

B.3 Domain Description Formula

Entry ιs refer to Items. Some functions are so-called overloaded , i.e., same function name for different
signatures: different in definition set types, but same in range set type.

Axioms

Access Paths ι54, 15
Amounts ι68, 20
Budets tally-up ι19, 11
Budgets ι67, 19
Budgets tally-up ι19, 10
Distinct Access Rights ι124, 29
Distinctness of Account Names, I ι53, 18
Distinctness of Account Names, II ι54, 18
Distinctness of Account Names, III ι55, 18
Distinctness of Debit/Credit and Asset/Liability Ac-

count Names ι65, 18
Identical Access Paths ι55, 15
Mereology Constraints ι117, 27
Mereology Constraints ι118, 27
Mereology Constraints ι119, 27
Proper Management ι120, 28
Proper Management ι122, 28

Sameness of Debit/Credit and Asset/Liability Access
Paths ι64, 18

Time-ordering ι18, 10, 11
Uniqueness of Parts ι108, 26
Uniqueness of Parts ι109, 26
Uniqueness of Parts ι110, 26

Behaviours

accountant ι133, 31
accountant ι139a, 31
acountant ι161, 35
al account ι135, 31
al acount ι132, 31
dbl dc book ι137, 32
dc account ι131, 31
dc account ι134, 31

Channel

ch ι129, 30
Functions

c© Dines Bjørner. April 30, 2024, 16:06 51 Double-entry Bookkeeping

52 April 30, 2024. Dines Bjørner

attr AL ACCOUNT ι61, 28
attr Access Rights ι123, 29
attr DB AL REL ι121, 28
attr DC ACCOUNT ι33, 28
mereo ACCOUNTANT ι116, 27
mereo AL ACCOUNT ι115, 27
mereo DC ACCOUNT ι114, 27
obs ACCOUNTANCY ι93, 25
obs ACCOUNTANTs ι96, 25
obs DEBK ι92, 25
obs MGT ι91, 25
uid ACCOUNTANT ι107, 26
uid AL ACCOUN ι106, 26
uid DC ACCOUNT ι105, 26
access ι56, 15
access paths ι47, 14, 17
access paths ι85, 23
account names ι66, 18
amount entry sum ι68, 20
amount list sum ι68, 20
amount map sum ι68, 20
amount sum ι68, 20
ans ι85, 23
balance ι69, 20
budget sum ι67, 19
entry sum ι67, 19
establish accounts ι86, 24
expense ι6, 9
income ι7, 9
list sum ι67, 19
map access paths ι51, 14
map sum ι67, 19
proper accountancy ι71, 21
read ι72, 21
rng rel sum ι122, 28
round ι155, 34
sum ι160, 34
sum ι19, 10, 11
upd ass lia acc ι148, 33
update asset liability accounts ι144, 33
view ι72, 21
write ι74, 22

Types
Acces Path ι46, 14
Access Rights ι123, 29
ACCOUNT 0 ι1, 8
ACCOUNT 1 ι8, 9
ACCOUNT 2 ι20, 11
ACCOUNT 3 ι33, 12
ACCOUNT 4 ι33, 16
ACCOUNT TRIPLE 1 ι11, 10
ACCOUNT TRIPLE 2 ι23, 11
ACCOUNT TRIPLET ι36, 17
ACCOUNT TRIPLET 3 ι36, 12
ACCOUNT TRIPLET 4 ι36, 16
ACCOUNTANCY ι93, 25
ACCOUNTANT ι96, 25

ACT A POST ι128, 30
ACT L POST ι128, 30
AL ACCOUNT ι61, 17
AL ACCOUNT ι95, 25
AMOUNT ι45, 17
AMOUNT 1 ι17, 10
AMOUNT 2 ι30, 11
AMOUNT 3 ι45, 12
AMOUNT 4 ι45, 16
Amounts ι154, 34
Ass A L REL ι128, 30
Ass AccessPath ι128, 30
ASSET ACCOUNT ι62, 17
BUDGET ι37, 17
BUDGET 0 ι2, 8
BUDGET 1 ι12, 10
BUDGET 1 ι24, 11
BUDGET 3 ι37, 12
BUDGET 4 ι37, 16
Cre AccessPath ι128, 30
CREDIT ACCOUNT ι35, 17
CREDIT ACCOUNT 1 ι10, 10
CREDIT ACCOUNT 2 ι22, 11
CREDIT ACCOUNT 3 ι35, 12
D C A L ι73, 22
DB AL REL ι120, 25, 28
DBL ENTRY ACCOUNT ι60, 17
DC ACCOUNT ι33, 17
DC ACCOUNT ι94, 25
DCorAL ι72, 21
Deb AccessPath ι128, 30
DEB CRE 0 ι3, 8
DEBIT ACCOUNT ι34, 17
DEBIT ACCOUNT 1 ι9, 9
DEBIT ACCOUNT 2 ι21, 11
DEBIT ACCOUNT 3 ι34, 12
DEBK ι92, 25
DOMAIN ι90, 25
E Text ι44, 17
E Text 1 ι16, 10
E Text 1 ι29, 11
E Text 3 ι44, 12
E Text 4 ι44, 16
ENTRIES ι38, 17
ENTRIES 3 ι38, 12
ENTRIES 4 ι38, 16
ENTRY ι42, 17
ENTRY 1 ι14, 10
ENTRY 2 ι27, 11
ENTRY 3 ι42, 12
ENTRY 4 ι42, 16
ENTRY LIST ι39, 17
ENTRY LIST 1 ι13, 10
ENTRY LIST 2 ι26, 11
ENTRY LIST 3 ι39, 12
ENTRY LIST 4 ι39, 16
ENTRY MAP ι40, 17

Double-entry Bookkeeping 52 Dines Bjørner. April 30, 2024, 16:06

Double-entry Bookkeeping. April 30, 2024. 53

ENTRY MAP 2 ι25, 11
ENTRY MAP 3 ι40, 12
ENTRY MAP 4 ι40, 16
Estab Accounts ι81, 23
Estab AL Accounts ι83, 23
Estab DC Accounts ι82, 23
Expense ι6, 9
Income ι7, 9
Lia A A REL ι128, 30
Lia AccessPath ι128, 30
LIABILITY ACCOUNT ι63, 17
MAP ι40, 17
MAP 3 ι41, 12
MAP 4 ι41, 16
MGT ι91, 25
MSG ι130, 30
REL ι121, 28
TIME ι15, 10–12, 16, 17

Transaction ι5, 9
UI ι104, 26
Write ι73, 22

Values
accountancy ι102, 25
accountants ι103, 25
ais ι107, 26
al acc ι100, 25
ali ι106, 26
db al rel ι121, 28, 33
dc acc ι33, 28
dc acc ι99, 25
dci ι105, 26
debk ι98, 25
domain ι97, 25
mgt ι98, 25
budget ι4, 9
deb cre ι4, 9

B.4 “Statistics”

There are

• 29 financial management terminology (Sect. 2),

• 194 software engineering terminology (Appendix A),

and

• 189 formal, double-entry bookkeeping description (Sects. 3-5):

– 22 axiom,

– 8 behaviour,

– 1 channel,

– 45 function,

– 98 type, and

– 15 value

index entries – for a current total of 412 index entries.
I expect to add several more financial management terms. A few more software engineering terms.

And more domain description formula entries as I finalize and correct my domain description.

c© Dines Bjørner. April 30, 2024, 16:06 53 Double-entry Bookkeeping

