
D
RA
FT

AMoL: A [Domain] Modeling Language

Dines Bjørner
Techncal University of Denmark

Fredsvej 11, DK-2840 Holte
bjorner@gmail.com, https://www.imm.dtu.dk/˜dibj/

October 12, 2024

Abstract

We outline the specfication languages, AMoL, which is used in describing [i.e., modeling]
domains.

Contents

1 Introduction 4

2 Values and Types 5
2.1 Values and Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Types and Sorts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.1 Atomic Type Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.2 Type Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.3 Type Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 RSL Definition Units 8
3.1 Type Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.1.1 Abstract Types, Sorts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.1.2 Concrete Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.2 Value Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2.1 Function Signatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.3 Axiom Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.4 Variable Declaration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.5 Channel Declarations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

4 A Domain Analysis & Description Ontology 10
4.1 A Domain Description Ontology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.2 Analysis Predicates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.3 Analysis Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.4 Description Prompts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4.4.1 Cartesian Parts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.4.2 Part Set Parts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.4.3 Unique Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.4.4 Mereology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.4.5 Attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.4.6 Channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.4.7 Behaviour Signature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.4.8 Behaviour Functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.4.9 Domain Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1



D
RA
FT

5 AMoL Description Units 15
5.1 AMoL Sort Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

5.1.1 The Universe of Discourse . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.1.2 The Composite Endurant Sorts . . . . . . . . . . . . . . . . . . . . . . . . . 15

5.2 AMoL Value Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.3 AMoL Axiom Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.4 AMoL Variable Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.5 AMoL Variable Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

6 Conclusion 17

7 Bibliography 18
7.1 Bibliographical Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

A A RAISE Specification Language Primer 19
A.1 Types and Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

A.1.1 Sort and Type Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
A.1.1.1 Atomic Types: Identifier Expressions and Type Values . . . . . . 19
A.1.1.2 Composite Types: Expressions and Type Values . . . . . . . . . . 20

A.1.2 Type Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
A.1.2.1 Sorts — Abstract Types . . . . . . . . . . . . . . . . . . . . . . . 20
A.1.2.2 Concrete Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
A.1.2.3 Subtypes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

A.2 The Propositional and Predicate Calculi . . . . . . . . . . . . . . . . . . . . . . . . 22
A.2.1 Propositions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

A.2.1.1 Propositional Expressions . . . . . . . . . . . . . . . . . . . . . . 22
A.2.1.2 Propositional Calculus . . . . . . . . . . . . . . . . . . . . . . . . 22

A.2.2 Predicates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
A.2.2.1 Predicate Expressions . . . . . . . . . . . . . . . . . . . . . . . . 23
A.2.2.2 Predicate Calculus . . . . . . . . . . . . . . . . . . . . . . . . . . 23

A.3 Arithmetics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
A.4 Comprehensive Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

A.4.1 Set Enumeration and Comprehension . . . . . . . . . . . . . . . . . . . . . 24
A.4.1.1 Set Enumeration . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
A.4.1.2 Set Comprehension . . . . . . . . . . . . . . . . . . . . . . . . . . 24
A.4.1.3 Cartesian Enumeration . . . . . . . . . . . . . . . . . . . . . . . . 24

A.4.2 List Enumeration and Comprehension . . . . . . . . . . . . . . . . . . . . . 25
A.4.2.1 List Enumeration . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
A.4.2.2 List Comprehension . . . . . . . . . . . . . . . . . . . . . . . . . . 25

A.4.3 Map Enumeration and Comprehension . . . . . . . . . . . . . . . . . . . . . 25
A.4.3.1 Map Enumeration . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
A.4.3.2 Map Comprehension . . . . . . . . . . . . . . . . . . . . . . . . . 25

A.5 Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
A.5.1 Set Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

A.5.1.1 Set Operator Signatures . . . . . . . . . . . . . . . . . . . . . . . 26
A.5.1.2 Set Operation Examples . . . . . . . . . . . . . . . . . . . . . . . 26
A.5.1.3 Informal Set Operator Explication . . . . . . . . . . . . . . . . . 26
A.5.1.4 Set Operator Explications . . . . . . . . . . . . . . . . . . . . . . 27

A.5.2 Cartesian Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
A.5.3 List Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

A.5.3.1 List Operator Signatures . . . . . . . . . . . . . . . . . . . . . . . 28
A.5.3.2 List Operation Examples . . . . . . . . . . . . . . . . . . . . . . . 28
A.5.3.3 Informal List Operator Explication . . . . . . . . . . . . . . . . . 28
A.5.3.4 List Operator Explications . . . . . . . . . . . . . . . . . . . . . . 29

2



D
RA
FT

A.5.4 Map Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
A.5.4.1 Map Operator Signatures . . . . . . . . . . . . . . . . . . . . . . 30
A.5.4.2 Map Operation Examples . . . . . . . . . . . . . . . . . . . . . . 30
A.5.4.3 Informal Map Operation Explication . . . . . . . . . . . . . . . . 30
A.5.4.4 Map Operator Explication . . . . . . . . . . . . . . . . . . . . . . 31

A.6 λ-Calculus + Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
A.6.1 The λ-Calculus Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
A.6.2 Free and Bound Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
A.6.3 Substitution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
A.6.4 α-Renaming and β-Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . 32
A.6.5 Function Signatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
A.6.6 Function Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

A.7 Other Applicative Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
A.7.1 Simple let Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
A.7.2 Recursive let Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
A.7.3 Predicative let Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
A.7.4 Pattern and “Wild Card” let Expressions . . . . . . . . . . . . . . . . . . . 34

A.7.4.1 Conditionals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
A.7.5 Operator/Operand Expressions . . . . . . . . . . . . . . . . . . . . . . . . . 35

A.8 Imperative Constructs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
A.8.1 Statements and State Changes . . . . . . . . . . . . . . . . . . . . . . . . . 36
A.8.2 Variables and Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
A.8.3 Statement Sequences and skip . . . . . . . . . . . . . . . . . . . . . . . . . 36
A.8.4 Imperative Conditionals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
A.8.5 Iterative Conditionals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
A.8.6 Iterative Sequencing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

A.9 Process Constructs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
A.9.1 Process Channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
A.9.2 Process Composition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
A.9.3 Input/Output Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
A.9.4 Process Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

A.10 RSL Module Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
A.11 Simple RSL Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
A.12 RSL+: Extended RSL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

A.12.1 Type Names and Type Name Values . . . . . . . . . . . . . . . . . . . . . . 39
A.12.1.1 Type Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
A.12.1.2 Type Name Operations . . . . . . . . . . . . . . . . . . . . . . . . 39

A.12.2 RSL-Text . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
A.12.2.1 The RSL-Text Type and Values . . . . . . . . . . . . . . . . . . . 39
A.12.2.2 RSL-Text Operations . . . . . . . . . . . . . . . . . . . . . . . . . 39

A.13 Distributive Clauses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
A.13.1 Over Simple Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
A.13.2 Over Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

A.14 Indexes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3



D
RA
FT

1 Introduction

“To a man with a hammer, everything looks like a nail.”

– Mark Twain

To a computing scientist with a firmly established formal specification language, like VDM SL [4–6]
or RSL [7], every domain can be formalized.

So, with RSL, the RAISE method’s [8] formal specification language, I have the foundation for
a domain description language.

In this technical note I wish to explore the languages, informal and formal, that “go into” the
analysis and description of domains.

4



D
RA
FT

2 Values and Types

At the basis of every formal functional specification language are:

• The values denoted by Expressions [and Statements] of these languages, and thus

• their types [sorts].

2.1 Values and Operators

These are the values and operators that can be expressed in AMoL:

• Atomic: Atomic values are those for which it is meaningless to talk about their composition
from “other” values.

– Booleans: There are two truth values: false and true.

Operators are the usual ∼ [negation], ∧ [conjunction, “and”], ∨ [disjunction, “or”], ⇒
[implication, “if ... then ...”], and ≡ [identity, “if and only if”].

– Numbers:

∗ Natural Numbers: The positive natural numbers: 0, 1, ... .
Operators are: -, +, *, /, =, 6=, ≥, ≤.

∗ Integers: The negative and positive “whole” numbers: ..., -1, 0, 1, ... . Operators
are: -, +, *, /, =, 6=, ≥, ≤.

∗ Reals: Real numbers include rational numbers like positive and negative integers,
fractions, and irrational numbers. In other words, any number that we can think
of, except complex numbers, is a real number. For example, 3, 0, 1.5, 3/2, 5, and
so on are real numbers.
Operators are: -, +, *, /, =, 6=, ≥, ≤, d, e, abs.
In mathematics, a real number is a number that can be used to measure a contin-
uous one-dimensional quantity such as a distance, duration or temperature. Here,
continuous means that pairs of values can have arbitrarily small differences.[a]
Every real number can be almost uniquely represented by an infinite decimal ex-
pansion [Wikipedia].
We shall seldomly use reals in domain descriptions.

– Characters: ‘a’, ‘b’, ..., ‘z’, ‘A’, ‘B’, ..., ’Z’, ‘0’, ‘1’, ... .

Operators are =, 6=.

We shall seldomly use characters in domain descriptions.

– Texts: Sequences of characters: “a”, “aa”, ..., “abc...”, “A”, ..., “CMq59ABc”, ... .

Operators are =, 6=.

We shall seldomly use characters in domain descriptions.

• Composite:

– Sets: Sets are here considered as sets in the usual mathematical sense: finite, possibly
zero, or infinite collections of distinct values as expressed by {a, b, c, ...}, where a, b, c,
... stand for distinct values.

Operators are: =, 6=, ∈, ∪, ∩, card.

– Cartesians: Cartesians are finite “groupings” of two or more values as expressed by
(a, b, ..., c), where a, b, c, ... stand for not necessarily distinct values.

Operators are: =, 6=.

– Lists: Lists are finite, possibly zero, or infinite “sequences” of zero or more values as
expressed by 〈a, b, ..., c〉, where a, b, c, ... stand for not necessarily distinct values.

Operators are: =, 6=, len, hd, tl, .[.].

5



D
RA
FT

– Maps: Maps are discrete, finite definition set functions from non-function values to
values: [ a7→b,c7→d,...,y 7→z ].

Operators are: =, 6=, dom, rng, ∪, †, 7→
– Functions: Functions can be explained as follows. There are definition sets and there

are range sets. A function is then “something”, which “maps” definition set elements
to range set elements. If there are definition set elements for which the “mapping” is
not defined, then the function is said to be partial, otherwise it is total. That is: a
function is “something” which, when applied to an element of its definition set “yields”
an element of its range set.1

The only operator is: .(.), i.e., function application. We cannot have functions, say
D[efinition set] and R[ange set], which yields these quanties: it is undecidable.

2.2 Types and Sorts

2.2.1 Atomic Type Names

Values can be ascribed types. That is: We can give names, i.e., type names, to certain collections
of values. To atomic values the type names are the literals:

• Boolean,

• Nat,

• Int,

• Real,

• Char and

• Text.

2.2.2 Type Operators

Let T, T1, T2, ..., Tm be type names. Then these are the type operators:

• -set, suffix,

• -infset, suffix,

• ×, infix,

• ∗, suffix,

• ω, suffix,

• →m , infix,

• →, infix,

• ∼→, infix,

• |, infix,

• {| ... | ... |}, distributed fix.

2.2.3 Type Expressions

Let T, T1, T2, ..., Tm be type names. Then the following are type expressions:

• (a) T-set stands for the collection of all finite sets of T elements;

• (b) T-infset stands for the collection of all finite and infinite sets of T elements;

• (c) T1×T2×...×Tm stands for the collection of all Cartesians (groupings) of T1, then T2, ...
finally Tm elements;

• (d) T∗ stands for the collection of all finite length lists of T elements;

• (e) Tω stands for the collection of all finite and infinite length lists of T elements;

• (f) T1→m T2 stands for the collection of all finite maps from T1 into T2;

• (g) T1→T2 stands for the collection of all total functions fromT1 into T2;

• (h) T1
∼→T2 stands for the collection of all partial functions from T1 into T2;

1We justify classifying functions as composite values in that we consider each “pairing”, (d, r), of a definition
set element d and a range set element r as a composable pair.

6



D
RA
FT

• (i) T1|T2 stands for the collection of all T1 and T2; and

• (j) {| v | v:T • P(v) |} stands for the sub-type of T for which the predicate P holds.

The operand Ts may be type expressions – as are the type identifiers.

7



D
RA
FT

3 RSL Definition Units

In this section we shall unfold some core aspects of a formal specification languge, the RSL [7].
The presentation is “traditional”: It describes certain language constructs from the point of

viw of the language.
The AMoL domain description language builds on RSL. In this section we list, and briefly

explain, the RSL clauses, here referred to as the RSL definition units, that form, so-to-speak, an
RSL “core” that AMoL builds upon.

This “core” can be summarized as the

• type definitions,

• value definitions,

• axiom definitions,

• variable declarations and the

• channel declarations.

3.1 Type Definitions

So far we have introduced the concepts of values and types. Now we show how to introduce named
types into a specification.

3.1.1 Abstract Types, Sorts

When, in a specification, we express:

type T

we mean to let the type identifier T stand for an “abstract type”, called a sort. A sort is a
collection of values. That collection and those values are not further described.

3.1.2 Concrete Types

When, in a specification, we express:

type T = Type Expression

where Type Expression is one of the forms outlined in Sect. 2.2.3 on page 6. that is, we mean to
let the type identifier T stand for an “concrete type”.

3.2 Value Definitions

Let v be identifier and T be a type expression, usually a type identifier. Then

value v:T
value v:T = E , where E is an RSL expression whose evaluation yields a value named v

introduces the v as a value of type T.

3.2.1 Function Signatures

Let f be an identifier A, B, ..., C and P, Q, ..., R be type expressions, usually “just” type identifiers.
Then

value f:(A×B×...×C) → (P×Q×...×R)

introduces f as a total (→) function whose signature is (A×B×...×C) → (P×Q×...×R). Similar
for partial functions

∼→.

8



D
RA
FT

3.3 Axiom Definitions

An axiom, postulate, or assumption is a statement that is taken to be true, to serve as a premise
or starting point for further reasoning and arguments. The word comes from the Ancient Greek
word αξιωµα (ax́ıǒma), meaning ’that which is thought worthy or fit’ or ’that which commends
itself as evident’.

axiom P – predicate expression

The predicate, P, usually expresses a type or a value constraint.

3.4 Variable Declaration

Variables are seldom used. Typically, in a domain description, there are two variables. One to
contain all the parts of a domain, another to contain all the unique identifiers of those parts.

variable v:T := E

3.5 Channel Declarations

A channel is a further undefined “medium”. Channels (in CSP and in RSL-Text) communicate
messages sent by behaviours to behaviours We can, for example, have just two behaviours in our
specification, so their channel would be that declared in a., or we could have that one behaviour
communicates with either of a number of other behaviours, so the communication channel would
be that declared in b., or we could have that any number of behaviours communicates with either
of a number of other behaviours, so the communication channel would be that declared in c.

a. channel ch T
b. channel { ch[ i ] | i:I • ... } T
c. channel { ch[ {i,j} ] | i,j:UI • ... } T

declare ch to be an array of channels. i, j are unique identifier indices. The channels carry
“messages” of type T between behaviours.

9



D
RA
FT

4 A Domain Analysis & Description Ontology

By a domain we shall understand a rationally describable segment of a discrete dynamics fragment
of a human assisted reality: the world that we daily observe – in which we work and act, a reality
made significant by human-created entities. The domain embody endurants and perdurants.

AMoL is the formal specification language in which we describe domains. The description is
based on the use of analysis and description prompts. These prompts “derive” from the domain
ontology as shown in Fig. 1. We shall briefly explain this figure.

In this section we shall reveiew the RSL-like language constructs used in describing domains –
see from the point of view of the specific domain ontology of [?, 1–3].

4.1 A Domain Description Ontology

Figure 1 shows an ontology for describing domains. Bulleted (•) items refer to concepts that are
thus “structurally related” by the ontology.

External Qualities

Describer "states"

PerdurantsEndurants

Phenomena of Natural and Artefactual Universes of Discourse

E

Entity Indescribable

Perdurant

Action
Event Actor

Channel Behaviour

Fluid

Endurant

Solid

Part
Living Specie

Animal Plant

O
th

er

Unique Identifiers
Mereologies
Attributes

transcendental injection of endurants into perdurants

Internal Qualities

Cartesian Part

E1,...,Ec

is
_m

an
if

es
t

is
_m

an
if

es
t

is
_m

an
if

es
t

E

P

F

Part Set

Ps=P−set

H
u

m
an

s

CompoundAtomic
Transcendense

Figure 1: A Domain Analysis & Description Ontology

The idea of Fig. 1 is the following:

• It presents a recipe for how to analyze a domain.

• You, the domain analyzer cum describer, are ‘confronted’2 with, or by a domain.

• You have Fig. 1 in front of you, on a piece of paper, or in Your mind, or both.

2By ‘confronted’ we mean: You are reading about it, in papers, in books, in postings on the Internet, visiting it,
talking with domain stakeholders: professional people working “in” the domain; You may, yourself, “be an entity”
of that domain !

10



D
RA
FT

• You are then “asked”/”urged”/”prompted”, by the domain analysis & description method,
to “start” at the uppermost •, just below and between the ‘r’ and the first ‘s’ in the main
title, Phenomena of Natural and Artifactual Universes of Discourse.

• The analysis & description ontology of Fig. 1 then directs You to inquire as to whether
the phenomenon – whichever You are ”looking at/reading about/...” – is either rationally
describable, i.e., is an entity (is entity) or is indescribable.

• That is, You are, in general, “positioned” at a bullet, •, labeled α, “below” which there may
be two alternative bullets, one, β, to the right and one to the left, γ.

• It is Your decision whether the answer to the “query” that each such situation warrants, is
yes, is β, or no, is γ.

• The characterizations of the concepts whose names, α, β, γ etc., are attached to the •s of
Fig. 1 are given in [?, 1–3].

• Whether they are precise enough to guide You in Your obtaining reasonable answers, “yes”
or “no”, to the •ed queries is, of course, a problem. I hope they are.

• If Your answer is “yes”, then Your analysis is to proceed “down the tree”, usually indicated
by “yes” or “no” answers.

• If one, or the other is a “leaf” of the ontology tree, then You have finished examining the
phenomena You set out to analyze.

• If it is not a leaf, then further analysis is required.

• (We shall, in this paper, leave out the analysis and hence description of living species.)

• If an analysis of a phenomenon has reached one of the (only) two ’s, then the analysis at
that • results in the domain describer describing some of the properties of that phenomenon.

• That analysis involves “setting aside”, for subsequent analysis & description, one or more
[thus analysis etc.-pending] phenomena (which are subsequently to be tackled from the
“root” of the ontology).

We do not [need to] prescribe in which order You analyze & describe the phenomena that has
been “set aside”.

4.2 Analysis Predicates

• is entity,

• is endurant,

• is perdurants,

• is solid,

• is fluid,

• is part,

• is living species,

• is atomic,

• is compound,

◦ is Cartesian,

◦ is part set,

• etc.

Satisfaction of the ◦’ed is Cartesian and the is part set predicates “triggers” the the respec-
tively ◦’ed analysis function mentioned next.

11



D
RA
FT

4.3 Analysis Functions

Analysis functions yield type names.

◦ record Cartesian part type names: P → ηP1×ηP2×...×ηPn,

◦ record part set part type names: P → ηPS×ηPE, and

• record attribute type names: P → A1×A2×...×Am

where P is the part being observed. If Cartesian, then P1, P2, ..., Pn are the types of its observed
components. If part set, the PS are the types of its set of parts, and these are of type PE. The Ais
are the types chosen to be attributes of P.

4.4 Description Prompts

4.4.1 Cartesian Parts

• Describe Cartesian Parts: P → RSL-Text

Describe Cartesian Parts

1 let (ηP1,ηP2,...,ηPn) = record Cartesian part type names(p) in
2 “type P1, P2, ..., Pn
3 value obs P1: P→P1, obs P2: P→P2, ..., obs Pn: P→Pn ”
4 end

Lines 1 and 4 are expessed in the domain analysis language, lines 2 and 3 in RSL-Text.

4.4.2 Part Set Parts

• Describe Part Set Parts P → RSL-Text

Describe Part Set Parts

1 let (ηPS,ηPE) = record part set part type names(p) in
2 “type PS = PE-set, PE
3 value obs P: P→PS”
4 end

Lines 1 and 4 are expessed in the domain analysis language, lines 2 and 3 in RSL-Text.

4.4.3 Unique Identification

Describe Unique Identifier

1 “type PUI
2 value uid P: P→PUI”

Line 1 expresses that PUI is a sort. Line 2 expresses that parts p:P have unique identifiers of sort
PUI.

12



D
RA
FT

4.4.4 Mereology

Describe Mereology

1 “type M = M(UI1,UI2,,...,UIm)
2 value ” mereo P: P → M

Line 1 expresses that mereology type M is a concrete type over unique identifier types.

4.4.5 Attributes

Describe Attributes

1 let {A1,A2,...,An} = record attribute type nmes(p) in
2 “type A1, A2, ..., An
3 value attr A1: P → A1, retr A2: P → A2, ..., attr An: P → An”
4 end

Lines 1 and 4 are expressed in the domain analysis language. Lines 2 and 4 3 in RSL-Text.

4.4.6 Channels

Describe Attributes

1 channel { ch[ {i,j} ] | i,j:UI • C(...) }”

Line 1 expresses that th channel is a [triangular] channel array over all the [unordered] unique
identifiers of the domain.

4.4.7 Behaviour Signature

Describe Attributes

1 value
2 Bp:P :
3 UI
4 → mereo P(p)
5 → static attrs(p)
6 → monitorable attrs(p)
7 → programmable attrs(p)
8 → Unit”

Line 1 expresses a value. Lines 2–6 that this value is a function.
Line 8 that the function “newer ends”, i.e., never “returns, yields” a typed value.
Line 2 expresses the name Bp:P of the function;, that is that it “derives” from part p of type P.
Lines 3–7 expresses that the function has a number, four, of arguments and that these are expressed
in the Schönfinckel’ed, i.e., the Curried manner.
Line 3 expresses that each behaviour over parts p of type P is unique.
Line 4 expresses that the mereology of p is an argument.
Lines 5–7 expresses that three groups of attributes are separate aguments. We do not define the
selector functions. They are defined in [?, 1–3].

13



D
RA
FT

4.4.8 Behaviour Functionality

Describe Behaviour Functionality

1 value
2 ”Bp:P (ui)(mereo)(sta attrs)(mon attrs)(pro attrs) ≡
3 let pro attrs′ = Cp:P (ui)(mereo)(sta attrs)(mon attrs)(pro attrs) in
4 Bp:P (ui)(mereo)(sta attrs)(mon attrs)(pro attrs′) end”

Line 2 expresses the invocation of behaviour Bp:P .
Line 3 expresses the elaboration of clause Cp:P with the arguments of the invoking Bp:P .
Line 4 expresses the tail-recursive [“never-ending”] invocation of Bp:P with the updated pro-
grammable attributes.

4.4.9 Domain Initialization

Describe Domain Initializaion

Bp:P (uid P(p))(mereo P(p))(stat attrs(p))(moni attrs(p))(prog attrs(p))

14



D
RA
FT

5 AMoL Description Units

In this section we shall reveiew the RSL-like language constructs used in describing domains – seen
from the point of view of the RSL [7].

An AMoL domain description consists of a set (textually ordered in any linear sequence) of
domain description units. We shall only treat five kinds of such units.

Domain descriptions focus on

The external qualities:

• endurants,

• states,

the internal qualities:

– unique identification

∗ states,

– mereology,

– attributes,

• the perdurants:

– channels,

– behaviour signatures, and

– behaviour functionality [definitions].

The AMoL description units

5.1 AMoL Sort Specifications

5.1.1 The Universe of Discourse

Prefixed by the keyword (literal) type, type specification units introduce distinct type names.

The basic form of a type specification unit is:

type T

where T is a distinct (type) identifier.

5.1.2 The Composite Endurant Sorts

Let T stand for a sort of composite parts. Then the

type
T, T1, T2, ... Tn

value
obs T1 : T→ T1, obs T2 : T → T2, ..., obs Tn : T → Tn

For more on types, see Sect. A.1.

15



D
RA
FT

5.2 AMoL Value Specifications

Prefixed by the keyword (literal) value value specification units introduce distinct value names.
The basic form of a value specification unit is:

value a:A

The value, a, is further unspecified. It is of type A, but which ... !
The basic form of a value specification unit is:

value a:A = E(...)

where E(...) is a value expression.
Value specification units may introduce several (new, distinctly named) values:

value a 1:A 1 = E1(...), a 2:A 2 = E2(...), ..., a n:A n = En(...)

Quite often the value specification is of the form:

value f: A → B, f(a) ≡ E(..,a,.) or f = λa.E(..,a,.)

that is: the value is a function, f , whose signature gives the name, f, and the type of the func-
tionality A → B (or A

∼→ B).3

5.3 AMoL Axiom Specifications

Prefixed by the keyword (literal) axiom, axiom specification units serve to limit values. The
general form of an axiom specification unit is:

axiom A(...)

where A(...) is some predicate expression over (specification unit) defined quantities. For more
on axiomatic expressions, see Sect. A.2.

5.4 AMoL Variable Specifications

Prefixed by the keyword (literal) variable, variable specification units introduce distinct variable
names. The general form of a variable specification unit is:

variable v:T := expression

where v is ..., T is ..., and expression is a value expression. For variables, see Sect. A.8.2.

5.5 AMoL Variable Specifications

Prefixed by the keyword (literal) channel, channel specification units introduce distinct channel
names.

The general form of a channel specification unit is:

channel { ch[ {i,j} ] | i,j:UI • ... } M

where ch is a distinct, here channel, name,we are declaring an array of channels. ch[{i, j}] expresses
that , {i, j} ranges of so-called unique identifier indices of type UI, and M is a type expression.
For more on channels, see Sect. A.9.1.

3We use the identity sign ≡ [instead of =] to allow for f to be recursively defined.

16



D
RA
FT

6 Conclusion

17



D
RA
FT

7 Bibliography

7.1 Bibliographical Notes

References

[1] Dines Bjørner. Domain Science & Engineering – A Foundation for Software Development. EATCS
Monographs in Theoretical Computer Science. Springer, Heidelberg, Germany, 2021. A revised
version of this book is [3].

[2] Dines Bjørner. Domain Modelling – A Primer. A short version of [3]. xii+202 pages4, May 2023.

[3] Dines Bjørner. Domain Science & Engineering – A Foundation for Software Development. Revised
edition of [1]. xii+346 pages5, January 2023.

[4] Dines Bjørner and Cliff B. Jones, editors. The Vienna Development Method: The Meta-Language,
volume 61 of LNCS. Springer, Heidelberg, Germany, 1978.

[5] Dines Bjørner and Cliff B. Jones, editors. Formal Specification and Software Development.
Prentice-Hall, London, England, 1982.

[6] John Fitzgerald and Peter Gorm Larsen. Modelling Systems – Practical Tools and Techniques
in Software Development. Cambridge University Press, The Edinburgh Building, Cambridge CB2
2RU, UK, 1998. ISBN 0-521-62348-0.

[7] Chris W. George, Peter Haff, Klaus Havelund, Anne Elisabeth Haxthausen, Robert Milne,
Claus Bendix Nielsen, Søren Prehn, and Kim Ritter Wagner. The RAISE Specification Language.
The BCS Practitioner Series. Prentice-Hall, Hemel Hampstead, England, 1992.

[8] Chris W. George, Anne Elisabeth Haxthausen, Steven Hughes, Robert Milne, Søren Prehn, and
Jan Storbank Pedersen. The RAISE Development Method. The BCS Practitioner Series. Prentice-
Hall, Hemel Hampstead, England, 1995.

[9] James Gosling and Frank Yellin. The Java Language Specification. Addison-Wesley & Sun
Microsystems. ACM Press Books, 1996. 864 pp, ISBN 0-10-63451-1.

[10] Michael Reichhardt Hansen and Hans Rischel. Functional Programming Using F#. Cambridge
University Press, 2013.

[11] R. Milner, M. Tofte, and R. Harper. The Definition of Standard ML. The MIT Press, Cambridge,
Mass., USA and London, England, 1990.

[12] Peter Sestoft. Java Precisely. The MIT Press, 25 July 2002.

[13] N. Wirth. The Programming Language Oberon. Software — Practice and Experience, 18:671–690,
1988.

4This book is currently being translated into Chinese by Dr. Yang ShaoFa, IoS/CAS (Institute of Software,
Chinese Academy of Sciences), Beijing and into Russian by Dr. Mikhail Chupilko and his colleagues, ISP/RAS
(Institute of Systems Programming, Russian Academy of Sciences), Moscow

5Due to copyright reasons no URL is given to this document’s possible Internet location. A primer version,
omitting certain chapters, is [2]

18



D
RA
FT

A A RAISE Specification Language Primer

We present an RSL Primer. Indented text, in slanted font, such as this, presents informal material
and examples. Non-indented text, in roman font, presents narrative and formal explanation of
RSL constructs.

This RSL Primer omits treatment of a number of language constructs, notably the RSL module
concepts of schemes, classes and objects. Although we do cover the imperative language construct
of [declaration of] variables and, hence, assignment, we shall omit treatment of structured imper-
ative constructs like for ..., do s while b, while b do s loops.

Section A.12 on page 39 introduces additional language constructs, thereby motivation the +

in the RSL+ name.

A.1 Types and Values

Types are, in general, set-like structures6 of things, i.e., values, having common characteristics.
A bunch of zero, one or more apples (type apples) may thus form a [sub]set of type Belle de

Boskoop apples. A bunch of zero, one or more pears (type pears) may thus form a [sub]set of type
Concorde pears. A union of zero, one or more of these apples and pears then form a [sub]set of
entities of type fruits.

A.1.1 Sort and Type Expressions

Sort and type expressions are expressions whose values are types, that is, possibly infinite set-like
structures of values (of “that” type).

A.1.1.1 Atomic Types: Identifier Expressions and Type Values Atomic types have
(atomic) values. That is, values which we consider to have no proper constituent (sub-)values,
i.e., cannot, to us, be meaningfully “taken apart”.

RSL has a number of [so-called] built-in atomic types. They are expressed in terms of literal
identifiers. These are the Booleans, integers, Natural numbers, Reals, Characters, and Texts.
Texts are free-form texts and are more general than just texts of RSL-like formulas. RSL-Text’s
will be introduced in Sect. A.12 on page 39.

We shall not need the base types Characters, nor the general type Texts for domain modelling
in this primer. They will be listed below, but not mentioned further.

The base types are:

Basic Types

type
[ 1 ] Bool
[ 2 ] Int
[ 3 ] Nat
[ 4 ] Real
[ 5 ] Char
[ 6 ] Text

1. The Boolean type of truth values false and true.

2. The integer type on integers ..., –2, –1, 0, 1, 2, ... .

3. The natural number type of positive integer values 0, 1, 2, ...

6We shall not, in this primer, go into details as to the mathematics of types.

19



D
RA
FT

4. The real number type of real values, i.e., values whose numerals can be written as an integer,
followed by a period (“.”), followed by a natural number (the fraction).

5. The character type of character values ′′a′′, ′′bbb′′, ...

6. The text type of character string values ′′aa′′, ′′aaa′′, ..., ′′abc′′, ...

A.1.1.2 Composite Types: Expressions and Type Values Composite types have com-
posite values. That is, values which we consider to have proper constituent (sub-)values, i.e., can,
to us, be meaningfully “taken apart”.

From these one can form type expressions: finite sets, infinite sets, Cartesian products, lists,
maps, etc.

Let A, B and C be any type names or type expressions, then these are the composite types,
hence, type expressions:

Composite Type Expressions

[ 7 ] A-set
[ 8 ] A-infset
[ 9 ] A × B × ... × C
[ 10 ] A∗

[ 11 ] Aω

[ 12 ] A →m B
[ 13 ] A → B

[ 14 ] A
∼→ B

[ 15 ] A | B | ... | C
[ 16 ] mk id(sel a:A,...,sel b:B)
[ 17 ] sel a:A ... sel b:B

1
Section A.12 on page 39 introduces the extended RSL concepts of type name values and the type,
T, of type names.

A.1.2 Type Definitions

A.1.2.1 Sorts — Abstract Types Types can be (abstract) sorts in which case their structure
is not specified:

Sorts

type
A, B, ..., C

A.1.2.2 Concrete Types Types can be concrete in which case the structure of the type is
specified by type expressions:

Type Definition

type
A = Type expr

RSL Example: Sets. Narrative: H stand for the domain type of street intersections – we shall
call then hubs, and let L stand for the domain type of segments of streets between immediately

20



D
RA
FT

neighboring hubs – we shall call then links. Then Hs and Ls are to designate the types of finite
sets of zero, one or more hubs, respectively links. Formalisation:

type H, L, Hs=H-set, Ls=L-set •

RSL Example: Cartesians. Narrative: Let RN stand for the domain type of road nets consisting
of hub aggregates, HA, and link aggregates, LA. Hub and link aggregates can be observed from
road nets, and hub sets and link sets can be observed from hub, respectively link aggregates.
Formalisation:

type RN = HA×LA, Hs, Ls
value obs HA: RN→HA, obs LA: RN− LA, obs Hs: HA→Hs, obs Ls: LA→Ls

Observer functions, obs ... are not further defined – beyond their signatures. They will (subse-
quently) be defined through axioms over their results •
Some schematic type definitions are:

Variety of Type Definitions

[ 18 ] Type name = Type expr /∗ without | s or subtypes ∗/
[ 19 ] Type name = Type expr 1 | Type expr 2 | ... | Type expr n
[ 20 ] Type name ==

mk id 1(s a1:Type name a1,...,s ai:Type name ai) |
... |
mk id n(s z1:Type name z1,...,s zk:Type name zk)

[ 21 ] Type name :: sel a:Type name a ... sel z:Type name z
[ 22 ] Type name = {| v:Type name′ • P(v) |}

where a form of [19–20] is provided by combining the types:

Record Types

[ 23 ] Type name = A | B | ... | Z
[ 24 ] A == mk id 1(s a1:A 1,...,s ai:A i)
[ 25 ] B == mk id 2(s b1:B 1,...,s bj:B j)
[ 26 ] ...
[ 27 ] Z == mk id n(s z1:Z 1,...,s zk:Z k)

Of these we shall almost exclusively make use of [23–27].
Disjoint Types. Narrative: A pipeline consists of a finite set of zero, one or more [intercon-

nected]7 pipe units. Pipe units are either wells, or are pumps, or are valves, or are joins, or are
forks, or are sinks. Formalisation:

type PL = P-set, P == WU|PU|VA|JO|FO|SI, Wu,Pu,Vu,Ju,Fu,Su
WU::mkWU(swu:Wu), PU::mkPU(spu:Pu), VA::mkVU(svu:Vu),
JO::mkJu(sju:Ju), FO::mkFu(sfu:Fu), SI::mkSi(ssu:Su)

where we leave types Wu, Pu, Vu, Ju, Fu and Su further undefined •
Types A, B, ..., Z are disjoint, i.e., shares no values, provided all mk id k are distinct and due to
the use of the disjoint record type constructor ==.

axiom
∀ a1:A 1, a2:A 2, ..., ai:Ai •

s a1(mk id 1(a1,a2,...,ai))=a1 ∧ s a2(mk id 1(a1,a2,...,ai))=a2 ∧
... ∧ s ai(mk id 1(a1,a2,...,ai))=ai ∧

21



D
RA
FT

∀ a:A • let mk id 1(a1′,a2′,...,ai′) = a in
a1′ = s a1(a) ∧ a2′ = s a2(a) ∧ ... ∧ ai′ = s ai(a) end

Note: Values of type A, where that type is defined by A::B×C×D, can be expressed A(b,c,d) for
b:B, c:D, d:D.

A.1.2.3 Subtypes In RSL, each type represents a set of values. Such a set can be delimited
by means of predicates. The set of values b which have type B and which satisfy the predicate P,
constitute the subtype A:

Subtypes

type
A = {| b:B • P(b) |}

Subtype. Narrative: The subtype of even natural numbers.
Formalisation: type ENat = {| en | en:Nat • is even natural number(en) |} •

A.2 The Propositional and Predicate Calculi

A.2.1 Propositions

In logic, a proposition is the meaning of a declarative sentence. [A declarative sentence is a type
of sentence that makes a statement]

A.2.1.1 Propositional Expressions Propositional expressions, informally speaking, are quantifier-
free expressions having truth (or chaos) values. ∀, ∃ and ∃ ! are quantifiers, see below.

Below, we will first treat propositional expressions all of whose identifiers denote truth val-
ues. As we progress, in sections on arithmetic, sets, list, maps, etc., we shall extend the range of
propositional expressions

Let identifiers (or propositional expressions) a, b, ..., c designate Boolean values (true or false
[or chaos]). Then:

Propositional Expressions

false, true
a, b, ..., c ∼a, a∧b, a∨b, a⇒b, a=b, a 6=b

are propositional expressions having Boolean values. ∼, ∧, ∨, ⇒, =, 6= and � are Boolean
connectives (i.e., operators). They can be read as: not, and, or, if then (or implies), equal, not
equal and always.

A.2.1.2 Propositional Calculus Propositional calculus is a branch of logic. It is also called
propositional logic, statement logic, sentential calculus, sentential logic, or sometimes zeroth-order
logic. It deals with propositions (which can be true or false) and relations between propositions,
including the construction of arguments based on them. Compound propositions are formed by
connecting propositions by logical connectives. Propositions that contain no logical connectives
are called atomic propositions [Wikipedia]

A simple two-value Boolean logic can be defined as follows:

type
Bool

22



D
RA
FT

value
true, false
∼: Bool → Bool
∧, ∨, ⇒, =, 6=, ≡: Bool × Bool → Bool

axiom
∀ b,b′:Bool •

∼b ≡ if b then false else true end
b ∧ b′ ≡ if b then b′ else false end
b ∨ b′ ≡ if b then true else b′ end
b ⇒ b′ ≡ if b then b′ else true end
b = b′ ≡ if (b∧b′)∨(∼b∧∼b′) then true else false end
(b 6= b′) ≡ ∼(b = b′)
(b ≡ b′) ≡ (b = b′)

We shall, however, make use of a three-value Boolean logic. The model-theory explanation of
the meaning of propositional expressions is now given in terms of the truth tables for the logic
connectives:

∨,∧, and ⇒ Syntactic Truth Tables

∨ true false chaos

true true true true
false true false chaos
chaos chaos chaos chaos

∧ true false chaos

true true false chaos
false false false false
chaos chaos chaos chaos

⇒ true false chaos

true true false chaos
false true true true
chaos chaos chaos chaos

The two-value logic defined earlier ‘transpires’ from the true,false columns and rows of the above
truth tables.

A.2.2 Predicates

Predicates are mathematical assertions that contains variables, sometimes referred to as predicate
variables, and may be true or false depending on those variables’ value or values8

A.2.2.1 Predicate Expressions Let x, y, ..., z (or term expressions) designate non-Boolean
values, and let P(x), Q(y) and R(z) be propositional or predicate expressions, then:

Simple Predicate Expressions

[ 28 ] ∀x:X • P(x)
[ 29 ] ∃y:Y • Q(y)
[ 30 ] ∃!z:Z • R(z)

are quantified, i.e., predicate expressions. ∀, ∃ and ∃ ! are the quantifiers.

A.2.2.2 Predicate Calculus 1
[28–30] The predicates P(x), Q(y) or R(z) may yield chaos in which case the whole expression

yields chaos.

8https://calcworkshop.com/logic/predicate-logic/, and: predicate logic, first-order logic or quantified logic is a
formal language in which propositions are expressed in terms of predicates, variables and quantifiers. It is different
from propositional logic which lacks quantifiers https://brilliant.org/wiki/predicate-logic/.

23



D
RA
FT

A.3 Arithmetics

RSL offers the usual set of arithmetic operators. From these the usual kind of arithmetic expressions
can be formed.

Arithmetic

type
Nat, Int, Real

value
+,−,∗: Nat×Nat→Nat | Int×Int→Int | Real×Real→Real

/: Nat×Nat
∼→Nat | Int×Int

∼→Int | Real×Real
∼→Real

<,≤,=, 6=,≥,> (Nat|Int|Real) → (Nat|Int|Real)

A.4 Comprehensive Expressions

Comprehensive expressions are common in mathematics texts. They capture properties conve-
niently abstractly

A.4.1 Set Enumeration and Comprehension

A.4.1.1 Set Enumeration Let the below a’s denote values of type A:

Set Enumerations

{{}, {a}, {e1,e2,...,en}, ...} ∈ A-set
{{}, {a}, {e1,e2,...,en}, ..., {e1,e2,...}} ∈ A-infset

A.4.1.2 Set Comprehension The expression, last line below, to the right of the ≡, expresses
set comprehension. The expression “builds” the set of values satisfying the given predicate. It is
abstract in the sense that it does not do so by following a concrete algorithm.

Set Comprehension

type
A, B
P = A → Bool

Q = A
∼→ B

value
comprehend: A-infset × P × Q → B-infset
comprehend(s,P,Q) ≡ { Q(a) | a:A • a ∈ s ∧ P(a)}

A.4.1.3 Cartesian Enumeration Let e range over values of Cartesian types involving A, B,
. . ., C, then the below expressions are simple Cartesian enumerations:

Cartesian Enumerations

type
A, B, ..., C
A × B × ... × C

24



D
RA
FT

value
(e1,e2,...,en)

A.4.2 List Enumeration and Comprehension

A.4.2.1 List Enumeration Let a range over values of type A, then the below expressions are
simple list enumerations:

List Enumerations

{〈〉, 〈e〉, ..., 〈e1,e2,...,en〉, ...} ∈ A∗

{〈〉, 〈e〉, ..., 〈e1,e2,...,en〉, ..., 〈e1,e2,...,en,... 〉, ...} ∈ Aω

〈 a i .. a j 〉

The last line above assumes ai and aj to be integer-valued expressions. It then expresses the set
of integers from the value of ei to and including the value of ej . If the latter is smaller than the
former, then the list is empty.

A.4.2.2 List Comprehension The last line below expresses list comprehension.

List Comprehension

type

A, B, P = A → Bool, Q = A
∼→ B

value

comprehend: Aω × P × Q
∼→ Bω

comprehend(l,P,Q) ≡ 〈 Q(l(i)) | i in 〈1..len l〉 • P(l(i))〉

A.4.3 Map Enumeration and Comprehension

A.4.3.1 Map Enumeration Let (possibly indexed) u and v range over values of type T1 and
T2, respectively, then the below expressions are simple map enumerations:

Map Enumerations

type
T1, T2
M = T1 →m T2

value
u,u1,u2,...,un:T1, v,v1,v2,...,vn:T2
[ ], [ u 7→v ], ..., [ u1 7→v1,u27→v2,...,un7→vn ] ∀ ∈ M

A.4.3.2 Map Comprehension The last line below expresses map comprehension:

Map Comprehension

type
U, V, X, Y
M = U →m V

25



D
RA
FT

F = U
∼→ X

G = V
∼→ Y

P = U → Bool
value

comprehend: M×F×G×P → (X →m Y)
comprehend(m,F,G,P) ≡ [ F(u) 7→ G(m(u)) | u:U • u ∈ dom m ∧ P(u) ]

A.5 Operations

A.5.1 Set Operations

A.5.1.1 Set Operator Signatures

Set Operator Signatures

value
7 ∈: A × A-infset → Bool
8 6∈: A × A-infset → Bool
9 ∪: A-infset × A-infset → A-infset
10 ∪: (A-infset)-infset → A-infset
11 ∩: A-infset × A-infset → A-infset
12 ∩: (A-infset)-infset → A-infset
13 \: A-infset × A-infset → A-infset
14 ⊂: A-infset × A-infset → Bool
15 ⊆: A-infset × A-infset → Bool
16 =: A-infset × A-infset → Bool
17 6=: A-infset × A-infset → Bool

18 card: A-infset
∼→ Nat

A.5.1.2 Set Operation Examples

Set Operation Examples

examples
a ∈ {a,b,c}
a 6∈ {}, a 6∈ {b,c}
{a,b,c} ∪ {a,b,d,e} = {a,b,c,d,e}
∪{{a},{a,b},{a,d}} = {a,b,d}
{a,b,c} ∩ {c,d,e} = {c}
∩{{a},{a,b},{a,d}} = {a}
{a,b,c} \ {c,d} = {a,b}
{a,b} ⊂ {a,b,c}
{a,b,c} ⊆ {a,b,c}
{a,b,c} = {a,b,c}
{a,b,c} 6= {a,b}
card {} = 0, card {a,b,c} = 3

A.5.1.3 Informal Set Operator Explication The following is not a definition of RSL se-
mantics. In RSL formulas we present an explication of RSL operators. Read, what appears as

26



D
RA
FT

definitions, ≡, as [a kind of] identities.

7. ∈: The membership operator expresses that an element is a member of a set.

8. 6∈: The nonmembership operator expresses that an element is not a member of a set.

9. ∪: The infix union operator. When applied to two sets, the operator gives the set whose
members are in either or both of the two operand sets.

10. ∪: The distributed prefix union operator. When applied to a set of sets, the operator gives
the set whose members are in some of the operand sets.

11. ∩: The infix intersection operator. When applied to two sets, the operator gives the set
whose members are in both of the two operand sets.

12. ∩: The prefix distributed intersection operator. When applied to a set of sets, the operator
gives the set whose members are in some of the operand sets.

13. \: The set complement (or set subtraction) operator. When applied to two sets, the operator
gives the set whose members are those of the left operand set which are not in the right
operand set.

14. ⊆: The proper subset operator expresses that all members of the left operand set are also
in the right operand set.

15. ⊂: The proper subset operator expresses that all members of the left operand set are also
in the right operand set, and that the two sets are not identical.

16. =: The equal operator expresses that the two operand sets are identical.

17. 6=: The nonequal operator expresses that the two operand sets are not identical.

18. card: The cardinality operator gives the number of elements in a finite set.

A.5.1.4 Set Operator Explications The set operations can be “equated” as follows:

Set Operator Explications

value
s′ ∪ s′′ ≡ { a | a:A • a ∈ s′ ∨ a ∈ s′′ }
s′ ∩ s′′ ≡ { a | a:A • a ∈ s′ ∧ a ∈ s′′ }
s′ \ s′′ ≡ { a | a:A • a ∈ s′ ∧ a 6∈ s′′ }
s′ ⊆ s′′ ≡ ∀ a:A • a ∈ s′ ⇒ a ∈ s′′

s′ ⊂ s′′ ≡ s′ ⊆ s′′ ∧ ∃ a:A • a ∈ s′′ ∧ a 6∈ s′

s′ = s′′ ≡ ∀ a:A • a ∈ s′ ≡ a ∈ s′′ ≡ s⊆s′ ∧ s′⊆s
s′ 6= s′′ ≡ s′ ∩ s′′ 6= {}
card s ≡

if s = {} then 0 else
let a:A • a ∈ s in 1 + card (s \ {a}) end end
pre s /∗ is a finite set ∗/

card s ≡ chaos /∗ tests for infinity of s ∗/

27



D
RA
FT

A.5.2 Cartesian Operations

Cartesian Operations

type
A, B, C
g0: G0 = A × B × C
g1: G1 = ( A × B × C )
g2: G2 = ( A × B ) × C
g3: G3 = A × ( B × C )

value
va:A, vb:B, vc:C, vd:D
(va,vb,vc):G0,

(va,vb,vc):G1
((va,vb),vc):G2
(va3,(vb3,vc3)):G3

decomposition expressions
let (a1,b1,c1) = g0,

(a1′,b1′,c1′) = g1 in .. end
let ((a2,b2),c2) = g2 in .. end
let (a3,(b3,c3)) = g3 in .. end

A.5.3 List Operations

A.5.3.1 List Operator Signatures

List Operator Signatures

value

hd: Aω ∼→ A

tl: Aω ∼→ Aω

len: Aω ∼→ Nat
inds: Aω → Nat-infset
elems: Aω → A-infset

.(.): Aω × Nat
∼→ Â: A∗ × Aω → Aω

=: Aω × Aω → Bool
6=: Aω × Aω → Bool

A.5.3.2 List Operation Examples

List Operation Examples

examples
hd〈a1,a2,...,am〉=a1
tl〈a1,a2,...,am〉=〈a2,...,am〉
len〈a1,a2,...,am〉=m
inds〈a1,a2,...,am〉={1,2,...,m}
elems〈a1,a2,...,am〉={a1,a2,...,am}
〈a1,a2,...,am〉(i)=ai
〈a,b,c〉̂〈a,b,d〉 = 〈a,b,c,a,b,d〉
〈a,b,c〉=〈a,b,c〉
〈a,b,c〉 6= 〈a,b,d〉

A.5.3.3 Informal List Operator Explication The following is not a definition of RSL se-
mantics. In RSL formulas we present an explication of RSL operators. Read, what appears as

28



D
RA
FT

definitions, ≡, as [a kind of] identities.

• hd: Head gives the first element in a nonempty list.

• tl: Tail gives the remaining list of a nonempty list when Head is removed.

• len: Length gives the number of elements in a finite list.

• inds: Indices give the set of indices from 1 to the length of a nonempty list. For empty lists,
this set is the empty set as well.

• elems: Elements gives the possibly infinite set of all distinct elements in a list.

• `(i): Indexing with a natural number, i larger than 0, into a list ` having a number of
elements larger than or equal to i, gives the ith element of the list.

• ̂: Concatenates two operand lists into one. The elements of the left operand list are followed
by the elements of the right. The order with respect to each list is maintained.

• =: The equal operator expresses that the two operand lists are identical.

• 6=: The nonequal operator expresses that the two operand lists are not identical.

The operations can also be defined as follows:

A.5.3.4 List Operator Explications The following is not a definition of RSL semantics. In
RSL formulas we present an explication of RSL operators. Read, what appears as definitions, ≡,
as [a kind of] identities.

List Operator Explications

value
is finite list: Aω → Bool

len q ≡
case is finite list(q) of

true → if q = 〈〉 then 0 else 1 + len tl q end,
false → chaos end

inds q ≡
case is finite list(q) of

true → { i | i:Nat • 1 ≤ i ≤ len q },
false → { i | i:Nat • i6=0 } end

elems q ≡ { q(i) | i:Nat • i ∈ inds q }

q(i) ≡
if i=1

then
if q 6=〈〉

then let a:A,q′:Q • q=〈a〉̂q′ in a end
else chaos end

else q(i−1) end

fq ̂ iq ≡
〈 if 1 ≤ i ≤ len fq then fq(i) else iq(i − len fq) end
| i:Nat • if len iq6=chaos then i ≤ len fq+len end 〉

29



D
RA
FT

pre is finite list(fq)

iq′ = iq′′ ≡
inds iq′ = inds iq′′ ∧ ∀ i:Nat • i ∈ inds iq′ ⇒ iq′(i) = iq′′(i)

iq′ 6= iq′′ ≡ ∼(iq′ = iq′′)

A.5.4 Map Operations

A.5.4.1 Map Operator Signatures

Map Operator Signatures

value

[ 30 ] ·(·): M → A
∼→ B

[ 31 ] dom: M → A-infset [ domain of map ]
[ 32 ] rng: M → B-infset [ range of map ]
[ 33 ] †: M × M → M [ override extension ]
[ 34 ] ∪: M × M → M [ merge ∪ ]
[ 35 ] \: M × A-infset → M [ restriction by ]
[ 36 ] /: M × A-infset → M [ restriction to ]
[ 37 ] =,6=: M × M → Bool
[ 38 ] ◦: (A →m B) × (B →m C) → (A →m C) [ composition ]

A.5.4.2 Map Operation Examples

Map Operation Examples

value
[ 30 ] m(a) = b
[ 31 ] dom [ a17→b1,a27→b2,...,an7→bn ] = {a1,a2,...,an}
[ 32 ] rng [ a17→b1,a27→b2,...,an7→bn ] = {b1,b2,...,bn}
[ 33 ] [ a7→b,a′7→b′,a′′7→b′′ ] † [ a′7→b′′,a′′7→b′ ] = [ a7→b,a′7→b′′,a′′7→b′ ]
[ 34 ] [ a7→b,a′7→b′,a′′7→b′′ ] ∪ [ a′′′7→b′′′ ] = [ a7→b,a′7→b′,a′′7→b′′,a′′′7→b′′′ ]
[ 35 ] [ a7→b,a′7→b′,a′′7→b′′ ]\{a} = [ a′7→b′,a′′7→b′′ ]
[ 37 ] [ a7→b,a′7→b′,a′′7→b′′ ]/{a′,a′′} = [ a′7→b′,a′′7→b′′ ]
[ 38 ] [ a7→b,a′7→b′ ] ◦ [ b7→c,b′7→c′,b′′7→c′′ ] = [ a7→c,a′7→c′ ]

A.5.4.3 Informal Map Operation Explication

• m(a): Application gives the element that a maps to in the map m.

• dom: Domain/Definition Set gives the set of values which maps to in a map.

• rng: Range/Image Set gives the set of values which are mapped to in a map.

• †: Override/Extend. When applied to two operand maps, it gives the map which is like an
override of the left operand map by all or some “pairings” of the right operand map.

• ∪: Merge. When applied to two operand maps, it gives a merge of these maps.

30



D
RA
FT

• \: Restriction. When applied to two operand maps, it gives the map which is a restriction
of the left operand map to the elements that are not in the right operand set.

• /: Restriction. When applied to two operand maps, it gives the map which is a restriction
of the left operand map to the elements of the right operand set.

• =: The equal operator expresses that the two operand maps are identical.

• 6=: The nonequal operator expresses that the two operand maps are not identical.

• ◦: Composition. When applied to two operand maps, it gives the map from definition set
elements of the left operand map, m1, to the range elements of the right operand map, m2,
such that if a is in the definition set of m1 and maps into b, and if b is in the definition set
of m2 and maps into c, then a, in the composition, maps into c.

A.5.4.4 Map Operator Explication The following is not a definition of RSL semantics. In
RSL formulas we present an explication of RSL operators. Read, what appears as definitions, ≡,
as [a kind of] identities.
The map operations can also be defined as follows:

Map Operator Explications

value
rng m ≡ { m(a) | a:A • a ∈ dom m }

m1 † m2 ≡
[ a7→b | a:A,b:B •

a ∈ dom m1 \ dom m2 ∧ b=m1(a) ∨ a ∈ dom m2 ∧ b=m2(a) ]

m1 ∪ m2 ≡ [ a7→b | a:A,b:B •

a ∈ dom m1 ∧ b=m1(a) ∨ a ∈ dom m2 ∧ b=m2(a) ]

m \ s ≡ [ a7→m(a) | a:A • a ∈ dom m \ s ]
m / s ≡ [ a7→m(a) | a:A • a ∈ dom m ∩ s ]

m1 = m2 ≡
dom m1 = dom m2 ∧ ∀ a:A • a ∈ dom m1 ⇒ m1(a) = m2(a)

m1 6= m2 ≡ ∼(m1 = m2)

m◦n ≡
[ a7→c | a:A,c:C • a ∈ dom m ∧ c = n(m(a)) ]
pre rng m ⊆ dom n

A.6 λ-Calculus + Functions

The λ-Calculus is a foundation for the abstract specification language that RSL is

A.6.1 The λ-Calculus Syntax

λ-Calculus Syntax

type /∗ A BNF Syntax: ∗/
〈L〉 ::= 〈V〉 | 〈F〉 | 〈A〉 | ( 〈A〉 )
〈V〉 ::= /∗ variables, i.e. identifiers ∗/

31



D
RA
FT

〈F〉 ::= λ〈V〉 • 〈L〉
〈A〉 ::= ( 〈L〉〈L〉 )

value /∗ Examples ∗/
〈L〉: e, f, a, ...
〈V〉: x, ...
〈F〉: λ x • e, ...
〈A〉: f a, (f a), f(a), (f)(a), ...

A.6.2 Free and Bound Variables

Free and Bound Variables
Let x, y be variable names and e, f be λ-expressions.

• 〈V〉: Variable x is free in x.

• 〈F〉: x is free in λy •e if x 6= y and x is free in e.

• 〈A〉: x is free in f(e) if it is free in either f or e (i.e., also in both).

A.6.3 Substitution

1

Substitution

• subst([N/x]x) ≡ N;

• subst([N/x]a) ≡ a,

for all variables a6= x;

• subst([N/x](P Q)) ≡ (subst([N/x]P) subst([N/x]Q));

• subst([N/x](λx•P )) ≡ λ y•P;

• subst([N/x](λ y•P)) ≡ λy• subst([N/x]P),

if x 6=y and y is not free in N or x is not free in P;

• subst([N/x](λy•P)) ≡ λz•subst([N/z]subst([z/y]P)),

if y 6=x and y is free in N and x is free in P

(where z is not free in (N P)).

A.6.4 α-Renaming and β-Reduction

α and β Conversions

• α-renaming: λx•M

If x, y are distinct variables then replacing x by y in λx•M results in λy•subst([y/x]M). We
can rename the formal parameter of a λ-function expression provided that no free variables
of its body M thereby become bound.

• β-reduction: (λx•M)(N)

32



D
RA
FT

All free occurrences of x in M are replaced by the expression N provided that no free
variables of N thereby become bound in the result. (λx•M)(N) ≡ subst([N/x]M)

A.6.5 Function Signatures

For sorts we may want to postulate some functions:

Sorts and Function Signatures

type
A, B, C

value
obs B: A → B,
obs C: A → C,
gen A: B×C → A

A.6.6 Function Definitions

Functions can be defined explicitly:

Explicit Function Definitions

value
f: Arguments → Result
f(args) ≡ DValueExpr

g: Arguments
∼→ Result

g(args) ≡ ValueAndStateChangeClause
pre P(args)

Or functions can be defined implicitly:

Implicit Function Definitions

value
f: Arguments → Result
f(args) as result
post P1(args,result)

g: Arguments
∼→ Result

g(args) as result
pre P2(args)
post P3(args,result)

1

A.7 Other Applicative Expressions

RSL offers the usual collection of applicative constructs that functional programming languages
(Standard ML [11, 11] or F# [10]) offer

33



D
RA
FT

A.7.1 Simple let Expressions

Simple (i.e., nonrecursive) let expressions:

Let Expressions

let a = Ed in Eb(a) end

is an “expanded” form of:

(λa.Eb(a))(Ed)

A.7.2 Recursive let Expressions

Recursive let expressions are written as:

Recursive let Expressions

let f = λa:A • E(f) in B(f,a) end

is “the same” as:

let f = YF in B(f,a) end

where:

F ≡ λg•λa•(E(g)) and YF = F(YF)

A.7.3 Predicative let Expressions

Predicative let expressions:

Predicative let Expressions

let a:A • P(a) in B(a) end

express the selection of a value a of type A which satisfies a predicate P(a) for evaluation in the
body B(a).

A.7.4 Pattern and “Wild Card” let Expressions

Patterns and wild cards can be used:

Patterns

let {a} ∪ s = set in ... end
let {a, } ∪ s = set in ... end

let (a,b,...,c) = cart in ... end
let (a, ,...,c) = cart in ... end

let 〈a〉̂` = list in ... end
let 〈a, ,b〉̂` = list in ... end

34



D
RA
FT

let [ a7→b ] ∪ m = map in ... end
let [ a7→b, ] ∪ m = map in ... end

A.7.4.1 Conditionals Various kinds of conditional expressions are offered by RSL:

Conditionals

if b expr then c expr else a expr
end

if b expr then c expr end ≡ /∗ same as: ∗/
if b expr then c expr else skip end

if b expr 1 then c expr 1
elsif b expr 2 then c expr 2
elsif b expr 3 then c expr 3
...
elsif b expr n then c expr n end

case expr of
choice pattern 1 → expr 1,
choice pattern 2 → expr 2,
...
choice pattern n or wild card → expr n

end

A.7.5 Operator/Operand Expressions

Operator/Operand Expressions

〈Expr〉 ::=
〈Prefix Op〉 〈Expr〉
| 〈Expr〉 〈Infix Op〉 〈Expr〉
| 〈Expr〉 〈Suffix Op〉
| ...

〈Prefix Op〉 ::=
− | ∼ | ∪ | ∩ | card | len | inds | elems | hd | tl | dom | rng

〈Infix Op〉 ::=
= | 6= | ≡ | + | − | ∗ | ↑ | / | < | ≤ | ≥ | > | ∧ | ∨ | ⇒
| ∈ | 6∈ | ∪ | ∩ | \ | ⊂ | ⊆ | ⊇ | ⊃ | ̂ | † | ◦

〈Suffix Op〉 ::= !

A.8 Imperative Constructs

RSL offers the usual collection of imperative constructs that imperative programming languages
(Java [9, 12] or Oberon (!) [13]) offer

35



D
RA
FT

A.8.1 Statements and State Changes

Often, following the RAISE method, software development starts with highly abstract-applicative
constructs which, through stages of refinements, are turned into concrete and imperative con-
structs. Imperative constructs are thus inevitable in RSL.

Statements and State Change

value
stmt: Unit → Unit
stmt()

• Statements accept no arguments.

• Statement execution changes the state (of declared variables).

• Unit → Unit designates a function from states to states.

• Statements, stmt, denote state-to-state changing functions.

• Writing () as “only” arguments to a function “means” that () is an argument of type Unit.

A.8.2 Variables and Assignment

Variables and Assignment

0. variable v:Type := expression
1. v := expr

A.8.3 Statement Sequences and skip

Sequencing is expressed using the ‘;’ operator. skip is the empty statement having no value or
side-effect.

Statement Sequences and skip

2. skip
3. stm 1;stm 2;...;stm n

A.8.4 Imperative Conditionals

Imperative Conditionals

4. if expr then stm c else stm a end
5. case e of: p 1→S 1(p 1),...,p n→S n(p n) end

36



D
RA
FT

A.8.5 Iterative Conditionals

Iterative Conditionals

6. while expr do stm end
7. do stmt until expr end

A.8.6 Iterative Sequencing

Iterative Sequencing

8. for e in list expr • P(b) do S(b) end

A.9 Process Constructs

RSL offers several of the constructs that CS [?] offers

A.9.1 Process Channels

As for channels we deviate from common RSL [7] in that we directly declare channels – and not
via common RSL objects etc.

Let A and B stand for two types of (channel) messages and i:KIdx for channel array indexes,
then:

Process Channels

channel c:A
channel { k[ i ]:B • i:Idx }
channel { k[ i,j,...,k ]:B • i:Idx,j:Jdx,...,k:Kdx }

declare a channel, c, and a set (an array) of channels, k[i], capable of communicating values of the
designated types (A and B).

A.9.2 Process Composition

Let P and Q stand for names of process functions, i.e., of functions which express willingness to
engage in input and/or output events, thereby communicating over declared channels. Let P()
and Q stand for process expressions, then:

Process Composition

P ‖ Q Parallel composition
P debc Q Nondeterministic external choice (either/or)
P de Q Nondeterministic internal choice (either/or)
P –‖ Q Interlock parallel composition

express the parallel (‖) of two processes, or the nondeterministic choice between two processes:
either external (debc) or internal (de). The interlock (–‖) composition expresses that the two processes
are forced to communicate only with one another, until one of them terminates.

37



D
RA
FT

A.9.3 Input/Output Events

Let c, k[i] and e designate channels of type A and B, then:

Input/Output Events

c ?, k[ i ] ? Input
c ! e, k[ i ] ! e Output

expresses the willingness of a process to engage in an event that “reads” an input, respectively
“writes” an output.

A.9.4 Process Definitions

The below signatures are just examples. They emphasise that process functions must somehow
express, in their signature, via which channels they wish to engage in input and output events.

Process Definitions

value
P: Unit → in c out k[ i ]
Unit
Q: i:KIdx → out c in k[ i ] Unit

P() ≡ ... c ? ... k[ i ] ! e ...
Q(i) ≡ ... k[ i ] ? ... c ! e ...

The process function definitions (i.e., their bodies) express possible events.

A.10 RSL Module Specifications

We shall not include coverage nor use of the RSL module concepts of schemes, classes and objects.

A.11 Simple RSL Specifications

Often, we do not want to encapsulate small specifications in schemas, classes, and objects, as is
often done in RSL. An RSL specification is simply a sequence of one or more types, values (including
functions), variables, channels and axioms:

Simple RSL Specifications

type
...

variable
...

channel
...

value
...

axiom
...

38



D
RA
FT

A.12 RSL+: Extended RSL

Section A.1 on page 19 covered standard RSL types. To them we now add two new types: Type
names and RSL-Text.

We refer to Sect. ?? (the An RSL Extension box) Page ?? for a first introduction to extended
RSL.

A.12.1 Type Names and Type Name Values

A.12.1.1 Type Names

• Let T be a type name.

• Then ηT is a type name value.

• And ηT is the type of type names.

A.12.1.2 Type Name Operations

• η can be considered an operator.

– It (prefix) applies, then, to type (T) identifiers and yields the name of that type.

– Two type names, nTi, nTj , can be compared for equality: nTi = nTj iff i = j.

• It, vice-versa, suffix applies to type name (nT) identifiers and yields the name, T, of that
type: nTη = T.

A.12.2 RSL-Text

A.12.2.1 The RSL-Text Type and Values

• RSL-Text is the type name for ordinary, non-extended RSL texts.

We shall not here give a syntax for ordinary, non-extended RSL texts – but refer to [7].

A.12.2.2 RSL-Text Operations

• RSL-Texts can be compared and concatenated:

– rsl-texta=rsl-textb

– rsl-textârsl-textb

The ̂ operator thus also applies, besides, lists (tuples), to RSL texts – treating RSL texts as (if
they were) lists of characters.

A.13 Distributive Clauses

We clarify:

A.13.1 Over Simple Values

⊕ { a | a:A • a ∈ {a 1,a 2,...,a n} } =
if n>0 then a 1⊕a 1⊕...⊕a n else

case ⊕ of
+ → 0, − → 0, ∗ → 1, / → chaos, ∪ → {}, ∩ → {}, ...

end end

(f 1,f 2,...,f n)(a) ≡ if n>0 then (f 1(a),f 2(a),...,f n(a)) else chaos end

39



D
RA
FT

A.13.2 Over Processes

‖ { p(i) | i:I • i ∈ {i 1,i 2,...,i n} } ≡ if n>0 then p(i 1)‖p(i 2)‖...‖p(i n) else () end
de { p(i) | i:I • i ∈ {i 1,i 2,...,i n} } ≡ if n>0 then p(i 1)dep(i 2)de...dep(i n) else () end
debc { p(i) | i:I • i ∈ {i 1,i 2,...,i n} } ≡ if n>0 then p(i 1)debcp(i 2)debc...debcp(i n) else () end

A.14 Indexes

Literals , 19–30
η, 31
false, 11
true, 11
RSL-Text, 31̂, 31
=, 31
Unit, 30
chaos, 19, 21
false, 14
true, 14

Arithmetic Constructs, 16
ai*aj , 16
ai+aj , 16
ai/aj , 16
ai=aj , 16
ai≥aj , 16
ai>aj , 16
ai≤aj , 16
ai<aj , 16
ai 6=aj , 16
ai−aj , 16
�, 14
⇒, 14
=, 14
6=, 14
∼, 14
∨, 14
∧, 14

Cartesian Constructs, 16–17, 20
(e1,e2,...,en) , 17

Combinators, 26–29
... elsif ... , 27
case be of pa1 → c1, ... pan → cn end , 27, 28
do stmt until be end , 29
for e in listexpr • P(b) do stm(e) end , 29
if be then cc else ca end , 27, 28
let a:A • P(a) in c end , 26
let pa = e in c end , 26
variable v:Type := expression , 28
while be do stm end , 28
v := expression , 28

Function Constructs, 25
post P(args,result), 25
pre P(args), 25
f(args) as result, 25
f(a), 24
f(args) ≡ expr, 25
f(), 28

List Constructs, 20
List Constructs, 17, 22
<Q(l(i))|i in<1..lenl> •P(a)> , 17
<> , 17
`(i) , 20
`′ = `′′ , 20
`′ 6= `′′ , 20
`′̂`′′ , 20
elems ` , 20
hd ` , 20
inds ` , 20
len ` , 20
tl ` , 20
e1 <e2,e2,...,en > , 17

Logic Constructs, 14–15
bi ∨ bj , 14
∀ a:A • P(a) , 15
∃! a:A • P(a) , 15
∃ a:A • P(a) , 15
∼ b , 14
false, 11
true, 11
false, 14
true, 14
bi ⇒ bj , 14
bi ∧ bj , 14

Map Constructs, 17–18, 22–23

mi \ mj , 22

mi ◦ mj , 22

mi / mj , 22
dom m , 22
rng m , 22
mi † mj , 22
mi = mj , 22
mi ∪ mj , 22

40



D
RA
FT

mi 6= mj , 22
m(e) , 22
[ ] , 17
[u1 7→v1,u2 7→v2,...,un 7→vn] , 17
[F(e)7→G(m(e))|e:E•e∈dom m∧P(e)] , 18

Process Constructs, 29–30
channel c:T , 29
channel {k[i]:T•i:Idx} , 29
c ! e , 29
c ? , 29
k[i] ! e , 29
k[i] ? , 29
pidebcpj , 29
pidepj , 29
pi‖pj , 29
pi–‖pj , 29
P: Unit → in c out k[i] Unit , 30
Q: i:KIdx → out c in k[i] Unit, 30

Set Constructs, 16, 18–19
∩{s1,s2,...,sn} , 18
∪{s1,s2,...,sn} , 18
card s , 18
e∈s , 18
e 6∈s , 18
si=sj , 18
si∩sj , 18
si∪sj , 18
si⊂sj , 18
si⊆sj , 18
si 6=sj , 18

si\sj , 18
{} , 16
{e1, e2, ..., en} , 16
{Q(a)|a:A•a∈s∧P(a)} , 16

Type Expressions, 11, 12
(T1×T2×... ×Tn) , 12
Bool, 11
Char, 11
Int, 11
Nat, 11
Real, 11
Text, 11
Unit, 28
mk id(s1:T1,s2:T2,...,sn:Tn) , 12
s1:T1 s2:T2 ... sn:Tn , 12
T∗ , 12
Tω , 12
T1 × T2 × ... × Tn , 12
T1 | T2 | ... | T1 | Tn , 12
Ti →m Tj , 12

Ti
∼→Tj , 12

Ti→Tj , 12
T-infset, 12
T-set, 12

Type Definitions, 12–14
T = Type Expr, 12
T={| v:T′• P(v)|} , 13, 14
T==TE1 | TE2 | ... | TEn , 13
ηT, 31

41


