DOMAIN SCIENCE & ENGINEERING

The TU Wien Lectures, Fall 2022

Dines Bjarner

Technical University of Denmark

© Dines Bjarner, October 20, 2022 1 The TU Wien Lectures, Fall 2022

The Triptych Dogma

In order to specify software,
we must understand its requirements.

In order to prescribe requirements
we must understand the domain.

So we must study, analyse and describe domains.

Domain Science & Engineering 2 © Dines Bjorner, October 20, 2022

* Day #1 von Neumann Mon.24 Oct. 2022 e Seminar & Example ¢ 10:15-11:00,11:15-12:00

— Domain Overview 8—-47

— Example: Road Transport 452-?7
* Day # 2 von Neumann Tue. 25 Oct. 2022 e Endurants e 8:15-9:00, 9:15-10:00

— External Qualities, Analysis 49-125

— External Qualities, Synthesis 133-164
* Day # 3 von Neumann Thu. 27 Oct. 2022 e Endurants e 8:15-9:00, 9:15-10:00

— Internal Qualities, Unique Identifiers 166-203

— Internal Qualities, Mereology 204-230
* Day #4 von Neumann Fri. 28 Oct. 2022 e Endurants e 8:15-9:00, 9:15-10:00

— Internal Qualities, Attributes 232-323

* Day #5 von Neumann Mon. 31 Oct. 2022 e Example o 8:15-9:00, 9:15-10:00

— Example: Pipelines 534-611
* Day #6 von Neumann Thu. 3 Nov. 2022 e Perdurants e 8:15-9:00, 9:15-10:00

— The “Discrete Statics” 370-401
e Day #7 Godel Fri. 4 Nov. 2022 e Perdurants e 8:15-9:00, 9:15-10:00

— The “Discrete Dynamics” 402-440

— Summary Discussion 441-451

© Dines Bjarner, October 20, 2022 3 The TU Wien Lectures, Fall 2022

Day #6: Perdurants, |

Domain Science & Engineering 370 © Dines Bjorner, October 20, 2022

CHAPTER 6. Perdurants

* Please consider Fig. 4.1 on Slide 64.

—The previous two chapters covered the left of Fig. 4.1.
— This chapter covers the right of Fig. 4.1.

e This chapter is a rather “drastic” reformulation and simplification
of [18, Chapter 7, i.e., pages 159-196|.

— Besides, Sect. 6.5 is new.
* In this chapter we transcendentally “morph” manifest

— parts into behaviours, that is:

— endurants into perdurants.

371

 We analyse that notion and its constituent notions of

— actors,

— channels and communication,
— actions and

— behaviours.

e We shall investigate the, as we shall call them, perdurants of
domains.

e That is state and time-evolving domain phenomena.
e The outcome of this chapter is that the student

—will be able to model the perdurants of domains.
— Not just for a particular domain instance,
—but a possibly infinite set of domain instances'.

By this we mean: You are not just analysing a specific domain, say the one manifested around the corner from where you are, but any instance, anywhere in the world, which satisfies what you have described.

Domain Science & Engineering 372 © Dines Bjorner, October 20, 2022

6.1 Part Behaviours — An Analysis
6.1.1 Behaviour Definition Analysis

e Parts co-exist;

—they do so endurantly as well as perdurantly:
—endure and perdure.

 Part perdurants, i.e., behaviours, interact with their surroundings,
that is, with other behaviours.

e This is true for both natural and man-made parts.

* The present domain modelling method is mainly focused on
man-made parts, that is artefacts.

* So our next analysis will take its clues from artefactual parts.

* We can, roughly, analyse part behaviours into three kinds.

© Dines Bjarner, October 20, 2022 373 The TU Wien Lectures, Fall 2022

* Proactive Behaviours: Behaviour B; offers to synchronise and
communicate values — internal non-deterministically with either
of a definite number of distinct part sort behaviours B,, B, ..., B.:

B(i)(args) =
(... ch[{i,a} | 'a_val;...; B(i)(args’))
] (... ch[{i,b}]!b_val;...; B(i)(args”))

| (chl{i,c}]!c.val;...; B(i)(args”))

The tail-recursive invocation of B; indicates a possible “update” of
behaviour B; arguments. More on this later.

Domain Science & Engineering 374 © Dines Bjorner, October 20, 2022

* Responsive Behaviours: Behaviour B; external
non-deterministically expresses willingness to synchronisation
with and accept values from either of a definite number of distinct
part sort behaviours B,, B, ..., B.:

B(i)(args) =
(... let av =chl[{i,a}]? in ... B(i)(args’) end)
(... let bv = ch[{i,b}] ? in ... ; B(i)(args”) end)

(let cv = chl[{i,c}]? in ... ; B(i)(args”’) end)

© Dines Bjarner, October 20, 2022 375 The TU Wien Lectures, Fall 2022

* Mixed Behaviours: Or behaviours, more generally, “are” an
internal non-deterministic “mix” of the above:

B(i)(args) =
((... ch[{i,a}]!'a_val; ... ; B(i)(args’))
] (... ch[{i,b}]!b_val;...; B(i)(args”))

] (ch[{i,c}]!c_val;...; B(i)(args”)))
..let av=chl[{i,a}] ? in ... B(i)(args’) end)
(... let bv = ch[{i,b}] ? in ... ; B(i)(args”) end)

|
~
—~

(let cv = ch[{i,c}]? in ... ; B(i)(args”’) end))

Domain Science & Engineering 376 © Dines Bjorner, October 20, 2022

e The “bodies” of the B; behaviour definitions, i.e., “...”, may
contain interactions with [yet other] behaviours.
Schematically for example:

ch[{i,x}]! x_val

{ch[{i,z}]!z.val|z:{z1,z2,...,zm} }

let yv = ch[{i,y}]? in ... end

let zv =[] {ch[{i,z}]? | z{z1,z2,...,zm} } in ... end

Etcetera. The full force of CSP with RSL is at play!

© Dines Bjarner, October 20, 2022 377 The TU Wien Lectures, Fall 2022

6.1.2 Channel Analysis

e This is the first of two treatments of the concept of channels;
the present treatment is informal, motivational,
the second treatment, Sect. 6.2 (right next!), is more formal.

* The CSP concept of channel
is to be our way of expressing the “medium”
in which behaviours interact.

— Channels is thus an abstract concept.

— Please do not think of it as a physical,
an IT (information technology) device.

— As an abstract concept it is defined in terms of,
roughly, the laws, the semantics, of CSP [32].

— We write ‘roughly’ since the CSP
we are speaking of, is “embedded” in RSL.

Domain Science & Engineering 378 © Dines Bjorner, October 20, 2022

6.2 Domain Channel Description

* We simplify the general treatment of channel declarations.

— Basically all we can say, for any domain,

—1is that any two distinct part behaviours

— may need to communicate.

— Therefore we declare a vector of channels

—indexed by sets of two distinct part identifiers.
value

discover_channels: Unit — Unit
discover _channels() =

% channel { ch[{ij,ik}] | ij,ik:Ul - {ij,ik}C uid, A ijzik } M *
— Initially we shall leave the type of messages over channels
further undefined.

— As we, laboriously, work through the definition of behaviours,
we shall be able to make M precise.

© Dines Bjarner, October 20, 2022 379 The TU Wien Lectures, Fall 2022

6.3 Behaviour Definition Description

 Behaviours have to be described.

— Behaviour definitions are in the form of function definitions and
are here expressed in RSL
relying, very much, on its CSP component.

— Behaviour definitions describe
the type of the arguments
the function, i.e., the behaviour, for which it is defined,
that is, which kind of values it accepts.

— Behaviour definitions further describe
e Thus there are two elements to a behaviour definition:

—the behaviour signature and
— the behaviour body

definitions.

Domain Science & Engineering 380 © Dines Bjorner, October 20, 2022

6.3.1 Behaviour Sighatures
6.3.1.1 General

* Function, F, signatures consists of two textual elements:

—the function name and
—the function type:

valuefF: A - B,orF:a:A— B

—where A and B are the types of

+ function (“input”) arguments, respectively
+ function (“output”) values for such arguments.

—The first form F: A — B is what is normally referred to as the
form for function signatures.

—The second form: F: a:A — B “anticipates” the general for for
function F invocation: F(a).

© Dines Bjarner, October 20, 2022 381 The TU Wien Lectures, Fall 2022

6.3.1.2 Domain Behaviour Signatures

* A schematic form of part (p) behaviour signatures is:

b: bi:Bl-me:Mer—svl:StaV*—-mvl:MonV*—prgl:PrgV* channels Unit

e We shall motivate the general form of part behaviour, B,
signatures, “step-by-step”:

Domain Science & Engineering 382 © Dines Bjorner, October 20, 2022

bi:Bl:
me:Mer:
svl:StaV*:

mvli:MonV*;

prgl:PrgV*:
channels:

Unit;

the [chosen]| name of part p behaviours.

The function signature is expressed in the Schonfinkel /Curr
style — corresponding to the invocation form F(u)(v)...(w)

a general value and the type of part p unique identifier

a general value and the type of part p mereology

a general (possibly empty) list of values and types of part p’s
(possibly empty) list of static attributes

a general list of names of types of part p’s

(possibly empty) list of monitorable attributes

a general list of values and types of part p’s

(possibly empty) list of programmable attributes

are usually of the form: {ch[{i,j}]|(i,j)el(me)} and express the s1
of channels over which behaviour Bs interact with other beha
designates the single value ()

ZMoses Schonfinkel (1888-1942) was a Russian logician and mathematician accredited with having invented combinatory logic [https://en.wikipedia.org/wiki/Moses_Schonfinkel]. Haskell B. Curry (1900-1982)

was an

American

© Dines

Bjorner, October 20, 2022

mathematician and logician known for his work in combinatory logic [https://en.wikipedia.org/wiki/Haskell_Curry]

383 The TU Wien Lectures, Fall 2022

In detail:

a.Behaviour name: In each domain description there are many
sorts, B, of parts. For each sort there is a generic behaviour, whose
name, here b. is chosen to suitably reflect B.

B. Currying is here used in the pragmatic sense of grouping “same
kind of arguments”, i.e., separating these from one-another, by
means of the —s.

y. The unique identifier of part sort B is here chosen to be BI. Its
value is a constant.

0. The mereology is a usually constant. For same part sorts it may be
a variable.

Domain Science & Engineering 384 © Dines Bjorner, October 20, 2022

Example 65. Variable Mereologies:

* For a road transport system where we focus on the transport the
mereology is a constant.

* For a road net where we focus on the development of the road net:
building new roads: inserting and removing hubs and links, the
mereology is a variable.

e Similar remarks apply to canal systems
www.imm.dtu.dk/ "dibj/2021/Graphs/Rivers-and-Canals.pdf,
pipeline systems [8], container terminals [14], assembly line
systems [15], etc. =

© Dines Bjarner, October 20, 2022 385 The TU Wien Lectures, Fall 2022

€. Static attribute values are constants. The use of static attribute
values in behaviour body definitions is expressed by an identifier
of the stvl list of identifiers.

C. Monitorable attribute values are generally, ascertainable, i.e.,
readable, cf. Sect. 5.4.3.1 on Slide 287. Some are biddable, can be
changed by a, or the behaviour, cf. Sect. 5.4.3.2 on Slide 288, but
there is no guarantee, as for programmable attributes, that they
remain fixed.

— The use of a|ny] monitorable attribute value in behaviour body
definitions is expressed by a read A from _P(mv,bi) where mv is
an identifier of the mvl list of identifiers and bi is the unique part
identifier of the behaviour definition in which the read occurs.

—The update of a biddable attribute value in behaviour body
definitions is expressed by a update P with A(bi,mv,a).

Domain Science & Engineering 386 © Dines Bjorner, October 20, 2022

1. Programmable attribute values are just that. They vary as
specified, i.e., “programmed”, by the behaviour body definition.
Tail-recursive invocations of behaviour B; “replace” relevant
programmable attribute argument list elements with “new”
values.

0. channels: I(me) expresses a set of unique part identifiers different
from bi, hence of behaviours, with which behaviour b(i) interacts.

1. The Unit of the behaviour signature is a short-hand for the
behaviour either reading the value of a monitorable attribute,
hence global state o, or performing a write, i.e., an update, on o.

© Dines Bjarner, October 20, 2022 387 The TU Wien Lectures, Fall 2022

6.3.1.3 Action Signatures

* Actions come in any forms:
135. Some take no arguments, say action_a(), but read the global
state component o, and

136. others also take no arguments, say action b(), but update the
global state component o.

137. Some take an argument, say, action c(c), but do not “touch” a
global state component,

138. while others both take an argument and deliver a value, say
action d(d) and also do not “touch” a global state component.

139. Et cetera!

Domain Science & Engineering 388 © Dines Bjorner, October 20, 2022

type A, B,C, D, ...

value
135. action_a: Unit — read o A
136. action_b: Unit — write 0 B
13/7. action_c: C — Unit
138. action.d: D — E Unit
139.

* An example of 137 are the CSP output: ch|...]!c, and
e an example of 138 are the CSP input: let e = ch[...]? in ... end.

© Dines Bjarner, October 20, 2022 389 The TU Wien Lectures, Fall 2022

6.3.2 Behaviour Invocation

* The general form of behaviour invocation is shown below.

— The invocation follows the “Currying” of the behaviour type
signature.

— [Normally one would write all this on one line: b(i)(m)(s)(m)(p)
=.]

behaviour_name
(unique_identifier)
(mereology)
(static_values)
(monitorable_attribute_names)
(programmable_variables) =
... body ...

* When first “invoked”:

Domain Science & Engineering 390 © Dines Bjorner, October 20, 2022

value
discover_ behaviour_signature: P — RSL-Text
discover_behaviour_signature(p) =
% behaviour_name:
Uld — Mereo — StaVL — MonVL — ProVL — channels Unit
behaviour_name
(uid-B(p))
(mereo_B(p))
(types_to_values(static_attribute_types(p)))
(mon_attribute types(p))
(types_to_values(programmable_attribute_types(p))) = *
pre: is B(p) A is_ manifest(p)

discover_ behaviour_signatures: Unit — RSL-Text
discover_behaviour_signatures() =
{ discover_ behaviour _signature(p) | p € o A is_manifest(p) }

© Dines Bjarner, October 20, 2022 391 The TU Wien Lectures, Fall 2022

6.3.3 Behaviour Definition Bodies

e We remind the student of Sect. 6.1.1 on Slide 372.

e The general, “mixed”, form of behaviour definitions
was given as:

|

N
A/-\A/-\A

N

Domain Science & Engineering 392 © Dines Bjorner, October 20, 2022

e We can express the same

— by separating the alternatives

— into invocations of separately defined behaviuors.

B(i)(args) =
[1 Bin,(i)(args)
nm..)
(..
0 Bxng(i)(args)
0 ..)

e where

— the internal don-deterministically invoked behaviours Bin;(i)(args) and

— the external don-deterministically invoked behaviours Bin,(i)(args)

e are then separately defined:

Bin;(i)(args) = (... Binj(i)(args’))
Bxn(i)(args) = (... Bxn,(i)(args”))

© Dines Bjarner, October 20, 2022 393 The TU Wien Lectures, Fall 2022

6.3.4 Discover Behaviour Definition Bodies

e In other words,

— for current lack of a more definitive methodology
—for “discovering” the bodies of behaviour definitions

))'

— we resort to “...

value
discover_behaviour_definition: P — RSL-Text
discover_behaviour_definition(p) = ...

discover_behaviour_definitions: Unit — RSL-Text
discover_behaviour_definitions() =
{ discover behaviour definition(p) | p € 0 A is_manifest(p) }

Domain Science & Engineering 394 © Dines Bjorner, October 20, 2022

Example 66. Automobile Behaviour:

Signatures
140. automobile:
(a) there is the usual “triplet” of arguments: unique identifier,
mereology and static attributes;

(b) then there are two programmable attributes: the automobile
position (cf. Item 90 on Slide 267), and the automobile history
(cf.Item 127c on Slide 342);

(c) and finally there are the input/output channel references
allowing communication between the automobile and the hub
and link behaviours.

141. Similar for

(a) link and
(b) hub behaviours.

© Dines Bjarner, October 20, 2022 395 The TU Wien Lectures, Fall 2022

* We omit the modelling of monitorable attributes (...).

value

140a,140a automobile: ai:Al — ((__,uis):AM) — ...

140b — (apos:APos x ahist:AHist)

140c in out {ch[{ai,ui}]|ai:Al,ui:(HI|LI) - aieais A ui € uis} Unit
141a link: li:LI — (his,ais):LM — LQ — ...

141a — (LY xL_Hist)

141a in out {ch[{li,ui} ||li:LI,ui:(Al|HI)-set - ai€ais A li €lisUhis} Unit
141b hub: hi:HI — ((_,ais):HM) — HQ ...

141b — (HXxH_Host)

141b in out {ch|{ai,ui}]|hi:Hl,ai:Al - ai€ais A hi € uis} Unit

Domain Science & Engineering 396 © Dines Bjorner, October 20, 2022

Definitions: Automobile at a Hub
142. We abstract automobile behaviour at a Hub (hi).

(a) Either the automobile remains in the hub,
(b) or, internally non-deterministically,
(c) leaves the hub entering a link,
(d) or, internally non-deterministically,
(e) stops.

142 automobile(ai)(aai,uis)(...)(apos:atH(fli,hi,tli),ahist) =

142a automobile_remains_in_hub(ai)(aai,uis)(...)(apos:atH(fli,hi,tli),ahist)

142b T
142c automobile leaving hub(ai)(aai,uis)(...)(apos:atH(fli,hi,tli),ahist)
142d]

142e automobile stop(ai)(aai,uis)(...)(apos:atH(fli,hi,tli),ahist)

© Dines Bjarner, October 20, 2022 397 The TU Wien Lectures, Fall 2022

143.[142a] The automobile remains in the hub:

(a) the automobile remains at that hub, “idling”,
(b) informing (“first”) the hub behaviour.

143 automobile_remains_in_hub(ai)(aai,uis)(...)(apos:atH(fli,hi,tli),ahist) =
143 let T = record TIME() in

143b chlaihi]! T;

143a automobile(ai)(aai,uis)(...)(apos,upd_hist(t,hi)(ahist))

143 end

143a upd_hist: (TIMEXxI) — (AHist|LHist|HHist) — (AHist|LHist|HHist)
143a upd_hist(t,i)(hist) = hist T [i — (T} hist(i)]

Domain Science & Engineering 398 © Dines Bjorner, October 20, 2022

144.[142c]| The automobile leaves the hub entering a link:

(a) tli, whose “next” hub, identified by thi, is obtained from the
mereology of the link identified by tli;

(b) informs the hub it is leaving and the link it is entering,

(c) “whereupon” the vehicle resumes (i.e., “while at the same time”
resuming) the vehicle behaviour positioned at the very
beginning (0) of that link.

144 automobile leaving hub(ai)(aai,uis)(...)(apos:atH(fli,hi,tli),ahist) =
144a (let ({fhi,thi},ais) = mereo_L(retr_L(tli)(c)) in assert: fhi=hi

144b (chl|aihi]! | chlaitli]!T);

144c automobile(ai)(aai,uis)(...)

144c (onL(tli,(hi,thi),0),upd_hist(t,tli)(upd_hist(t,hi)(ahist))) end)

© Dines Bjarner, October 20, 2022 399 The TU Wien Lectures, Fall 2022

145.[142e] Or the automobile “disappears — off the radar” !
145 automobile_stop(ai)(aai,uis),(...)(apos:atH(fli,hi,tli),ahist) = stop

e Similar behaviour definitions can be given for automobiles on a
link, for links and for hubs.

* Together they must reflect, amongst other things:

—the time continuity of automobile flow,
— that automobiles follow routes,

—that automobiles, links and hubs together adhere to the
intentional pull expressed earlier,

— et cetera.

* A specification of these aspects must be proved to adhere to these
properties.

Domain Science & Engineering 400 © Dines Bjorner, October 20, 2022

6.4 Domain Behaviour Initialisation

* For every manifest part it must be described how its behaviour is
initialised.
Example 67 . The Road Transport System Initialisation: We “wrap
up” the main example of this primer:
 We omit treatment of monitorable attributes.
146. Let us refer to the system initialisation as an action.
147. All links are initialised,
148. all hubs are initialised,

149. all automobiles are initialised,
150. etc.

© Dines Bjarner, October 20, 2022 401 The TU Wien Lectures, Fall 2022

value
146. rts_ initialisation: Unit — Unit

146. rts initialisation() =

147. { link(uid_L(l))(mereo_L(l))(attr_LEN(l),attr_LQ(l))(attr_L_Traffic(l),attr_LX(
148. || { hub(uid _H(l))(mereo H(l))(attr HQ(l))(attr H Traffic(l),attr HX(l))| h:H -
1409. || { automobile(uid_A(a))(mereo_A(a))(attr_RegNo(a))(attr_APos(a)) | a:A -
150.

* We have here omitted possible monitorable attributes.
* We refer to

—Is: Item 36 on Slide 153,
— hs: Item 37 on Slide 153, and
—as: [tem 38 on Slide 153 m

Domain Science & Engineering 402 © Dines Bjorner, October 20, 2022

6.5 Discrete Dynamic Domains

* Up till now our analysis & description of a domain,

— has, in a sense, been static:
—1in analysing a domain we considered its entities
—to be of a definite number.
 In this section we shall consider the case
where the number of entities change:
— where new entities are created
— and existing entities are destroyed,
— that is:

+ where new parts, and hence behaviours, arise, and
+ existing parts, and hence behaviours, cease to exist.

© Dines Bjarner, October 20, 2022 403 The TU Wien Lectures, Fall 2022

6.5.1 Create and Destroy Entities

* In the domain we can expect that its behaviours
create and destroy entities.

Example 68 . Creation and Destruction of Entities:
e In the road transport domain
—new hubs, links and automobiles
may be inserted into the road net, and
—existing links, hubs and automobiles
may be removed from the road net.
* In a container terminal domain [5, 14]

—new containers are introduced, old are discarded;

— new container vessels are introduced, old are discarded;
—new ship-to-shore cranes are introduced, old are discarded;
— et cetera.

Domain Science & Engineering 404 © Dines Bjorner, October 20, 2022

* In a retailer domain [16]

—new customers are introduced, old are discarded;
—new retailers are introduced, old are discarded;
—new merchandise is introduced, old is discarded;
— et cetera.

e In a financial system domain

—new customers are introduced, old are discarded;
—new banks are introduced, old are discarded;
—new brokers are introduced, old are discarded;
—et ceteram

© Dines Bjarner, October 20, 2022 405 The TU Wien Lectures, Fall 2022

* The issue here is:

— When hubs and links are inserted or removed
+ the mereologies of “neighbouring” road elements change,
+ and so does the mereology of automobiles.
— When automobiles are inserted or removed
+ The mereology of road elements
+ have to be changed
+ to take account of the insertions and removals,
+ and so does the mereology of automobiles.
— And, some domain laws must be re-expressed:
+ The domain part state, o, must be updated?,
« and so must the unique identifier state, uid *.

.Cf. Sect. 4.7.2 on Slide 155
Cf. Sect. 5.2.4 on Shde 194

Domain Science & Engineering 406 © Dines Bjorner, October 20, 2022

6.5.1.1 Create Entities

e It is taken for granted here that there are behaviours,
one or more, which take the initiative to and carry out
the creation of specific entities.

Let us refer to such a behaviour as the “creator”.

* To create an entity implies the following three major steps
— [A.—C.] the step wise creation of the part
and initialisation of the transduced behaviour, and

— [D.] the adjustment of all such part behaviours that might have
their mereologies and attributes updated to accept such requests
from creators.

© Dines Bjarner, October 20, 2022 407 The TU Wien Lectures, Fall 2022

A. To decide on the part sort — in order to create that part — that is

—to obtain a unique identifier — one hitherto not used;
—to obtain a mereology, one

+ according to the general mereology for parts of that sort,
+ and how the part specifically is to “fit” into its surroundings;

—to obtain an appropriate set of attributes:

+ again according to the attribute types for that part sort
+ and, more specifically, choosing initial attribute values.

— This part is then “joined” to o> and
—its unique identifier “joined” to uid,°.

s(the global part state), Cf. Sect. 4.7.2 on Slide 155
s(the global unique identifier state), Cf. Sect. 5.2.4 on Slide 194

Domain Science & Engineering 408 © Dines Bjorner, October 20, 2022

B. Then to transcendentally deduce that part into a behaviour:

—initialised (according to Sect. 6.3.1) with

+ the unique identifier,
+ the mereology, and
+ the attribute values
— This behaviour is then invoked and “joined” to the set of current
behaviours, cf. Sect. 6.4 on Slide 400 —i.e., just above!

C. Then, finally, to “adjust” the mereologies of topologically or
conceptually related parts,

—that is, for each of these parts to update:
— their mereology and possibly some
— state and state space

arguments of their corresponding behaviours.

© Dines Bjarner, October 20, 2022 409 The TU Wien Lectures, Fall 2022

D. The update of the mereologies
of already “running” behaviours requires the following:

—that, potentially all, behaviours offers to accept
—mereology update requests from the “creator” behaviour.

e The latter means, practically speaking,

—that each part/behaviour

— which may be subject to mereology changes
— externally non-deterministically

— expresses an offer to accept such a change.

Example 69 . Road Net Administrator:

e We introduce the road net behaviour — based on the road net
composite part, RN.

Domain Science & Engineering 410 © Dines Bjorner, October 20, 2022

151. The road net has a programmable attribute: a road net
(development & maintenance) graph.’

* The road net graph consists of a quadruple:

—a map that for each hub identifier records “all” the
information that the road net administrator deems necessary®
for the maintenance and development of road net hubs;

—a map that for each link identifier records “all” the
information” that the road net administrator deems necessary
for the maintenance and development of road net links;

—and a map from the hub identifiers to the set of identifiers of
the links it is connected to, and

—the set of all automobile identifiers.

'The presentation of the road net Behaviour, rn, is simplified.
sWe presently abstract from what this information is.
'See footnote 8.

© Dines Bjarner, October 20, 2022 411 The TU Wien Lectures, Fall 2022

152. This graph is commensurate with the actual topology of the road
net.

type

151. G = (HI-»H_Info) x (LI zpL_Info) x (HI -»LI-set) x Al-set
value

151. attr G:RN — G

axiom

151. V (hi_info,li_info,map,ais):G -

151. dom map =dom hi_info = his A Urng map = dom li_info =lis A
152. VY hi:HI- hi e dom hi_info =

152. let h:H-h € o A uid H(h)=hi in

152. let (lis’,...) = mereo_H(h) in lis’ = map(hi)

152. ais C ais A ...

152. end end

Domain Science & Engineering 412 © Dines Bjorner, October 20, 2022

e Please note the fundamental difference between

—the road net (development & maintenance) graph and
— the road net.

e The latter pretends to be “the real thing”.

* The former is “just” an abstraction thereof!

© Dines Bjarner, October 20, 2022 413 The TU Wien Lectures, Fall 2022

153. The road net mereology (“bypasses”) the hub and link aggregates,
and comprises a set of hub identifiers and a set of link identifiers —
of the road net!'’.

type

153. H Mer = Al-set x Ll-set

153. mereo_RN: RN — RNMer

axiom

153. V rts:RTS-let (_lis) = mereo_H(obs_RN(rts)) in lis C lis end

value

wThis is a repeat of the hub mereology given in Item 65 on Slide 214.

Domain Science & Engineering 414 © Dines Bjorner, October 20, 2022

154. The road net [administrator]| behaviour,
155. amongst other activities (...)
156. internal non-deterministically decides upon

(a) either a hub insertion,
(b) or a link insertion,

(c) or a hub removal,

(d) or a link removal;

* These four sub-behaviours each resume being the road net
behaviour.

© Dines Bjarner, October 20, 2022 415 The TU Wien Lectures, Fall 2022

value

154. rn: RNI - RNMer — G — in,out{ch[{i,j} |l{i,i}Cuid)}
154. rn(rni)(rnmer)(g) =

155. .

156a. []insert_hub(g)(rni)(rnmer)

156b. []insert_ link(g)(rni)(rnmer)

156¢c. []remove_hub(g)(rni)(rnmer)

156d. []remove link(g)(rni)(rnmer)

Domain Science & Engineering 416 © Dines Bjorner, October 20, 2022

157. These road net sub-behaviours require information about

(a) a hub to be inserted: its initial state, state space and [empty]
traffic history, or

(b) a link to be inserted: its length, initial state, state space and
lempty] traffic history, or

(c) a hub to be removed: its unique identifier, or

(d) a link to be removed: its unique identifier.

type

157. Info == nHInfo | nLInfo | oHInfo | oLInfo
157. nHInfo:: HY x H() x H_Traffic

157. nLinfo:: LEN x LY x LC) x L Traffic
157. oHInfo :: HI

157. olLIinfo: Ll =

© Dines Bjarner, October 20, 2022 417 The TU Wien Lectures, Fall 2022

Example 70. Road Net Development: Hub Insertion:
* Road net development alternates between design,
— based on the road net (development & maintenance) graph, and
e actual, “real life”, construction

—taking place in the real surroundings of the road net.

Domain Science & Engineering 418 © Dines Bjorner, October 20, 2022

158. If a hub insertion then the road net behaviour,
based on the hub and link information and the road net layout
in the road net (development & maintenance) graph selects

(a) an initial mereology for the hub, h_mer,
(

(c) an initial hub state space, hw, and

b) an initial hub state, ho, and

(d) an initial, i.e., empty hub traffic history;

159. updates its road net (development & maintenance) graph with
information about the new hub,

160. and results in a suitable grouping of these.

© Dines Bjarner, October 20, 2022 419 The TU Wien Lectures, Fall 2022

value

158. design_new_hub: G — (nHInfoxG)
158. design new hub(g) =

158a. let h_mer:HMer = M, (g),

158b. ho:HY = S, (g),

158c. hw:HQ = O;,,(g),

158d. h_traffic = [],

159. g’ = MS0;,(g) in

160. ((h_mer,ho,hw,h_traffic),g’) end

* We leave open, in I[tems 158a-158c, as to what
the initial hub mereology, state and state space should be
initialised, i.e., the My, S;;, O;, and MSO;;, functions.

Domain Science & Engineering 420 © Dines Bjorner, October 20, 2022

161. To insert a new hub the road net administrator

(a) first designs the new hub,
(b) then selects a hub part
(c) which satisfies the design,
whereupon it updates the global states
(d) of parts o,
(e) of unique identifiers, and
(f) of hub identifiers —

in parallel, and in parallel with
162. initiating a new hub behaviour

163. and resuming being the road net behaviour.

© Dines Bjarner, October 20, 2022 421

The TU Wien Lectures, Fall 2022

161. insert_hub: GXRNIXRNMer — Unit

161. insert _hub(g,rni,rnmer) =

161a. let ((h.-merho,hw,h traffic),g’) = design new_hub(g) in
161b. leth:H-h¢o -

161c. mereo_H(h)=h_mer A ho=attr HX(h) A

161c. hw=attr HQ(h) A h_traffic=attr_HTraffic(h) in
161d. o0 :=0U{h}

161e. || uid, := uid, U {uid_H(h)}

161f. || his := his U {uid_H(h)}

162. || hub(uid H(h))(attr HX(h),attr HQ(h),attr HQ(h))
163. || rn(rni)(rnmer)(g’)

161. endend =

Domain Science & Engineering 422 © Dines Bjorner, October 20, 2022

Example 71 . Road Net Development: Link Insertion:

164. If a link insertion then the road net behaviour
based on the hub and link information and the road net layout
in the road net (development & maintenance) graph selects

(a) the mereology for the link, h_mer!l,

(b) the (static) length (attribute),
(c) an initial link state, lo,
(d) an initial link state space lw, and
(e) and initial, i.e., empty, link traffic history;
165. updates its road net (development & maintenance) graph
with information about the new link,

166. and results in a suitable grouping of these.

uthat is, the two existing hub identifiers between whose hubs the new link is to be inserted

© Dines Bjarner, October 20, 2022 423 The TU Wien Lectures, Fall 2022

value

164. design_new_link: G — (nLInfoxG)
164. design new link(g) =

164a. let LLmer:LMer = M;(g),

164b. le:LEN = £;;(g),
164c. lo:LY = S;i(g),

164d. lw:LQ = O,(g),
164e. |_hist:L_Hist =[]
165. g"G=MLSO;(g)in

166. ((L_mer,le,lo,lw,l hist),g’) end

* We leave open, in Items 164a-164d, as to what
the initial link mereology, state and state space should be
initialised.

Domain Science & Engineering 424 © Dines Bjorner, October 20, 2022

167.To insert a new link the road net administrator

(a) first designs the new link,
(b) then selects a link part
(c) which satisfies the design,
whereupon it updates the global states
(d) of parts, o,
(e) of unique part identifiers, and
(f) of link identifiers —
in parallel, and in parallel with
168. initiating a new link behaviour and

169. updating the mereologies and possibly the state and the state
space attributes of the connected hubs.

© Dines Bjarner, October 20, 2022 425 The TU Wien Lectures, Fall 2022

value

167. insert link: G — Unit

167. insert link(rni,l) =

167a. let ((LLmer,le,lo,lw,l traffic_hist),g’) = design_new_link(g) in
167c. letl:L-120 - mereo_L(l)=l_mer A

167c. le=attr LEN(l) A lo=attr LY (1) A

167c. lw=attr LO(l) A L traffic_hist=attr HTraffic(l) in
167d. o: =0 U{l}

167e. || uid, := uid, U {uid_L(l)}

167f. || lis:=list U {}

168. link(uid_L(l))(L_mer)(le,lw)(lo,|_traffic)
169. || ch[{rni,hil}]! updH(M;/(g),Xii(g).Qi(g))
169. ch[{rni,hi2}]!

167. end end =

* We leave undefined the mereology and the state o and state space
w update functions.

Domain Science & Engineering 426 © Dines Bjorner, October 20, 2022

6.5.1.2 Destroy Entities
e The introduction to Sect. 6.5.1.1 on Slide 406
on the creation of entities
—outlined a number of creation issues ([A, B, C, D]).
 For the destruction of entities
— description matters are a bit simpler.
e [t is, almost, simply a matter
—of designating, by its unique identifier,
—the entity: part and behaviour to be destroyed.
e Almost !

—The mereology of the destroyed entity
—must be such that the destruction
—does not leave “dangling” references !

© Dines Bjarner, October 20, 2022 427 The TU Wien Lectures, Fall 2022

Example 72. Road Net Development: Hub Removal:

170.If a hub removal then the road net design_remove_hub behaviour,
based on the road net (development & maintenance) graph,
calculates the unique hub identifier of the “isolated” hub to be
removed — that is, is not connected to any links,

171. updates the road net (development & maintenance) graph, and

172. results in a pair of these.

value

170. design_remove_hub: G — (HIxQG)

170. design_remove_hub(g) as (hi,g’)

170. let hi:HI-hi € his A let (_lis) = mereo _H(retr_part(hi)) in lis={} end in
171. let g’ = M,,(hi,g) in

172. (hi,g’) end end

Domain Science & Engineering 428 © Dines Bjorner, October 20, 2022

173. To remove a hub the road net administrator

(a) first designs which old hub is to be removed

(b) then removes the designated hub,
whereupon it updates the global states

(c) of parts o,

(d) of unique identifiers, and

(e) of hub identifiers —

in parallel, and in parallel with
174. stopping the old hub behaviour

175. and resuming being a road net behaviour.

© Dines Bjarner, October 20, 2022 429 The TU Wien

Le

ctures, Fall 2022

value

173. remove_hub: G — RNl - RNMer — Unit
173. remove_hub(g)(rni)(rnmer) =

173a. let (hi,g’) = design_remove_hub(g) in
173b. let h:H-uid H(h)=hi A ... in

173c. o:=o0\ {h}

173d. || uid, :=uid; \ {hi}

173e. || his := his \ {hi}

174. ch[{rni,hi}]! mkStop()

175. rn(rni)(rnmer)(g’)

173. end end =

Domain Science & Engineering 430 © Dines Bjorner, October 20, 2022

6.5.2 Adjustment of Creatable and Destructable Behaviours

* When an entity

—1s created or destroyed

—its creation, respectively destruction

— affects the neurologically related parts and their behaviours.
+ their mereology
+ and possibly their programmable state attributes
+ need be adjusted.

— And when entities are destroyed
their behaviours are stopped !

— These entities are “informed” so by the creator/destructor entity
— as was shown in Examples 70-72.

* The next example will illustrate how such ‘affected’ entities
handle such creator/destructor communication.

© Dines Bjarner, October 20, 2022 431 The TU Wien Lectures, Fall 2022

Example 73 . Hub Adjustments:

176.

177.

178.
179.

180.
181.

We have not yet illustrated hub (nor link) behaviours.

Now we have to!

The mereology of a hub is a triple:

the identification of the set of automobiles that may enter the hub,
the identification of the set of links that connect to the hub,

and the identification of the road net.

The hub behaviour external non-deterministically ([]) alternates
between

doing “own work”,

or accepting a stop “command” from the road net administrator,
or

or accepting mereology & state update information,

or other.

ain Science & Engineering 432 © Dines Bjorner, October 20, 2022

type

176. HMer = Al-set x LI-set x RNI
value

176. mereo_H: H — HMer

177. hub: hi:HI — (auis,lis,rni):HMer — hw:HQ — (ho:HYX.xht:HTraffic) —

177. {ch[hi,ui]|ui:(RNIJAl) - ui=rniVui € auis} Unit
177. hub(hi)(hm:(auis,lis,rni))(hw)(ho,ht) =
178.

179. []let mkStop() = ch[hi,rni]? in stop end
180. []let mkUpdH(hm’,ho’,ho’) = ch[{rni,hi}]? in
180. hub(hi)(hm’)(hw’)(ho’,ht) end

181.

 Observe from formula Item 179 that the hub behaviour ends,

e whereas “from” Item 180 it tail recurses! m

© Dines Bjarner, October 20, 2022 433 The TU Wien Lectures, Fall 2022

6.5.3 Summary on Creatable & Destructable Entities

e We have sketched how we may model
the dynamics of creating and destroying entities.
— It is, but a sketch.
— We should wish for a more methodological account.

—So, that is what we are working on — amongst other issues — at
the moment.

Domain Science & Engineering 434 © Dines Bjorner, October 20, 2022

6.6 Domain Engineering: Description and Construction

* There are two meanings to the term ‘Domain Engineering’.

—the construction of descriptions of domains, and
— the construction of domains.

— Most sections of Chapters 46
are “devoted” to the former;

—the previous section, Sect. 6.5 to the latter.

© Dines Bjarner, October 20, 2022 435 The TU Wien Lectures, Fall 2022

6.7 Domain Laws

TO BE WRITTEN

Domain Science & Engineering 436 © Dines Bjorner, October 20, 2022

6.8 A Domain Discovery Procedure, lll

The predecessors of this section are Sects. 4.8.2 on Slide 159 and 5.7
on Slide 361.

6.8.1 Review of the Endurant Analysis and Description Process

e The discover_.... functions below were defined in Sects. 4.8.2 on Slide 159 and 5.7
on Slide 361.

value
endurant_analysis_and_description: Unit — Unit
endurant_analysis_and_description() =
discover_sorts(); [Page 160]
discover _internal_endurant_qualities() [Page 363]

* We are now to define a perdurant_analysis_and_description procedure —

e to follow the above endurant_analysis_and_description procedure.

© Dines Bjarner, October 20, 2022 437 The TU Wien Lectures, Fall 2022

6.8.2 A Domain Discovery Process, |l

* We define the perdurant_analysis_and_description procedure

— in the reverse order of that of Sect. 5.7 on Slide 361),
— first the full procedure,
—then its sub-procedures.

A Domain Endurant Analysis and Description Process

value

perdurant_analysis_and_description: Unit — Unit

perdurant_analysis_and_description() =
discover _state(); axiom ... | Note (a)]
discover_channels(); axiom ... [Note (b)]
discover_behaviour_signatures(); axiom ... | Note (c)]
discover_behaviour_definitions(); axiom ... [Note (d) |
discover _initial_system() axiom ... | Note (e)]

Domain Science & Engineering 438 © Dines Bjorner, October 20, 2022

* Notes:

— (a) The States: 0 and ui,

« We refer to Sect. 4.7.2 on Shde 155 and Sect. 5.2.4 on Shde 194.

+ The state calculation, as shown on Page 150, must be
replicated, i.e., re-discovered, in any separate domain analysis
& description.

+ The purpose of the state, i.e., o, is to formulate appropriate

axiomatic constraints and domain laws.
— (b) The Channels:

« We refer to Sects. 6.1.2 on Slide 377 and 6.2 on Slide 378.

+ Thus we indiscriminately declare a channel for each pair of
distinct unique part identifiers
whether the corresponding pair of part behaviours,
if at all invoked, communicate or not.

© Dines Bjarner, October 20, 2022 439 The TU Wien Lectures, Fall 2022

— (c) Behaviour Signatures:

+ We refer to Sect. 6.3.1.2 on Slide 381.

+ We find it more productive to first settle on the signatures of
all behaviours — careful thinking has to go into that —

+ before tackling the far more time-consuming work on defining
the behaviours:

— (d) Behaviour Definitions:

+ We refer to Sect. 6.3.3 on Slide 391.
— (e) The Running System:

+ We refer to Sect. 6.4 on Slide 400.

Domain Science & Engineering 440 © Dines Bjorner, October 20, 2022

6.9 Summary

Perdurants: Analysis & Description: Method Tools

Name Introduced

Discovery Functions

discover_channels page 378
discover_behaviour_signatures page 390
discover_behaviour_definitions page 393
discover_initial_system page 400

perdurant_analysis_and_description page437/

 Please consider Fig. 4.1 on Slide 64.

—This chapter has covered the right of Fig. 4.1.

© Dines Bjarner, October 20, 2022 441 The TU Wien Lectures, Fall 2022

