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Lecture Plan

@ ARX models
@ ARX prediction + control
© ARX estimation

@ ARX model validation
+ adaptive control

® ARMAX control

® ARMAX estimation
+ adaptive control
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@ Systems and control theory

@ Stochastic systems + Kalman filtering
© SS estimation (recursive) + control
@ SS control

® SS estimation (batch)

® SS estimation (recursive)

@® SS nonlinear control
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Today’s Agenda

® Advanced topics in Kalman filtering

® Nonlinear Kalman filtering
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Kalman Filter: The Standard System

The Kalman filter is derived for the system

Tiy1 = Axy + Bug + v v ~ N(0, Ry),
yt = Cxy + Duy +e; g ~ N(0, Ra),

Cov(v,er) =0, eg, vy white L xg s<t
The noises are independent of the state history and each other
@ v ~ N(io, Po)
@ v ~ N(0,Ry), white
©c; ~ N(0, Rz), white
O Cov(vi,er) =0

Oui,er L, s<t
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Kalman Filter: Deviations from the Standard Assumptions =

We will now consider systems where one of these assumptions do not apply
@ Non-zero mean process disturbances

@ Non-zero mean output disturbances

© Colored (non-white) process noise

O Colored (non-white) output noise

@ Noise correlated with the state

@ Correlated noises
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Uncertain Offset in the Process
System with stochastic process offset

Trr1 = Axy + Buy + Gdy + vy,
yr = Caxy + Dug + ¢4

Process offset
diy1 = di + wy

System in standard form

Te41| A G Tt B
Ty
=|C 0 D
Yt { } d, + Dug + e
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Uncertain Offset in the Output
System with stochastic measurement offset

Ti41 = Axy + Bup + vy,
Yt =Cuxy+ Duy + Hdy + ¢

Output offset
div1 = dy + wy

System in standard form

Tep1| A O] |y B Vg
[dt+1‘| a [0 I‘| dt + 0 Ut+ Wy ’
Tt
=|C H + Duy +
Yt { } d, Ut T+ €¢
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Coloured Noise
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White noise (discrete-time):
In discrete time, a white noise signal €; has zero mean, finite variance, and
it is uncorrelated in time: ¢ L €5 for s # ¢

If the noise w; of a system is colored (non-white), it can be described as a
system of white noises (7, &)

ziy1 = Awze + 1, (14)
wy = Cy2t + & (15)
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Coloured Process Noise =

System with colored process noise

Tt4+1 = Al‘t + But + V¢, (16)
yt = Cay + Dug + & (17)
Process noise
21 = Az + 1, (18)
Vvt = Cth -+ ft (19)

System in standard form

Te41| A Cv Tt B ft
L’tﬂ] B lo Av] 2t Tlo| ™™ ne|’ (20)
Yt = [C O} Z: + Dus + ey (21)
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Coloured Output Noise =

System with colored measurement noise

Ti41 = Axt + But + v, (22)
yr = Cap + Dug + ¢ (23)
Measurement noise
Zi1 = Aezp + M4, (24)
et = Cezt + &4 (25)

System in standard form

Tei1| A 0 Tt B Ut
lztﬂ] N lo Ae] 2t * 0 et [7715‘| ' (26)
w=[C CJ || +Dut& (27)
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Correlation with State History

System

Ter1 = Axy + Buy + Gy,
yr = Cxy + Dug + 1y

wy and 7, are correlated with the states

wy = Hxy + vy, Ut NN(O,Rl), Ty L vy,
m = Fay + ey, €tNN(0,R2), Ty L oeg

System in standard form

T4l = (A + GH).%} + Buy + Guy,
Ye = (C+ F)zy + Duy + ¢4
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Kalman filter: Correlated noise
System with correlated process and measurement noise

Tiy1 = Axy + Bug + v, v ~ N(0, Ry),
Yt :Cﬂft+D’U,t+€t, (& NN(O,RQ),
Cov(vt, er) = Ria, e, vp white L zg, s<t

Measurement update
Ty = Ty + kit (yr — Cyyq — Duy),
Pt|t =(1- F»’tC)Pﬂt—b
Kt = Pyy1CT (CPyy1C" + Ry) ™!
Time update
Top1e = A2y + Buy + M(yr — Cyp — Duy),
= (A - MC)2y, + (B — MD)uy + My,

Py = (A= MC)P(A— MC)" + Ry — MRy, M = RysR;"
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Derivation of Kalman filter: Correlated noise =
Original system
T = Az + Bug + v + M (ye — ye) (43)
= Az + Buy + v + M(yt — Cxy — Duy — €t) (44)

:(A—MC)xt—l-(B—MD)ut—i-Myt—f—ﬁt,fit:vt—Met (45)

Define the covariance of 7; and e; to be zero

Rig = E[tre] ] = E[(v; — Mes)el'] = Rig — MRy = 0 (46)
= M = Rp»R; ", (47)
Ry = E[5,57] = Ry — RioRy ' RY, (48)

Kalman filter for systems with correlated noise: Original data update with
new time update

i‘t-i-l‘t = (A — MC)i'ﬂt + (B — MD)’U/t + Myt, (49)
Py = (A — MC)Py(A - MC)" + Ry (50)
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Predictive Kalman filter: Correlated noise
System with correlated process and measurement noise

T4l :A{L‘t—l—But—i-Ut, v € N(O,Rl),
yr = Cxy + Dug + e, e, € N(0, Ry),
Cov(vt, er) = Ry, e, vp white L zg, s<t

Predictive Kalman filter

Teia = AZyr1 + Bup + Kie(yr — C2yp—1 — Duy),
Piy1p = APy AT + Ry — K(APy;_1C" + Ryy)”,
K; = (APy;1C" + R13)(CPyy 1 CT + Ry) ™

Relationship between gains

Kt:(A—MC)K,t-f-M
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Correlated Noise - Derivation (Predictive)

Conditional distribution

[:C;H] Vi ~E ([A:ﬁtt_l + Buy
t

Ciyy_1 + Duy| " |CPy_1 AT + Rly  CPpy_1CT + Ry

[Apt|t—1AT + R APy_1CT 4+ Rip

)

(58)
Predictive distribution
Te41|Ye ~ N( 2oy, Pryage) (59)
Use projection theorem
i't+1|t = A‘%t‘tfl —+ BUt =+ Kt(yt — C'%ﬂtfl — D’U/t), (60)
Piap = APt\t—lAT + R — Kt(APﬂt—lCT + Rya)", (61)
K; = (APy;_1C" + R12)(CPy1CT + Ro) ™! (62)
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Correlated Noise - A Special Case

Perfect correlation between process noise and measurement noise
v = Gey, R = GR,GT, Ris = GRs
Stationary predictive Kalman filter
Py =0, Ko=G
Proof: Predictive variance and gain if Py;_; =0
Pyi1p = Ry — KiRYy, K; = RiaRy!

Substitute R; and Ri2

Py = GRyGT — Ky(GRy)" =0, K;=GRyR;' =G

This proves that P,, =0 and K., = G is a solution
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(64)

(65)

(66)

If (A— GC, R;) is reachable and Ry > 0, it is the only solution (from the

theory of Riccati equations)
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Linearization

Nonlinear system

Tt41 = f(ft, Ut, Ut)7 Ut ~ N(mm Rv), (67)
Yt = g(fEt, Ut, Gt), €t ~ N(ma Re) (68)

Linearize right-hand side functions

ooy (o 0F) + o = 7)o+ 20 (g — ) + 0 (v — o),
(69)
« x99 o, 99 w09 .
g(xe, ug, ve) =~ gy, uy, ep) + %(xt —x) + %(Ut —ug) + %(Ut —vy)
(70)
The Jacobian matrices are evaluated in the linearization point, e.g.,
of of . . .
o = %(‘rtvuhvt) (71)
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Linearization
Deviation variables

}/t:yt y;f:g(x:,u:,e:),

*
Ey=e— ¢

*
— YUt

*
‘/t:,ut_vta

*
thwt_xtv

*
Ut = Ut — Uy,
Linearized system

Xip1 = @41 — 9Uf+1 = f(we,up,vp) — f(l";skau;:szﬁ)

= A Xy + BU + Gy V4,
- y;( = g(l‘tv U, et)
— CtXt + DtUt + FtEt

Y;fzyt _g(mrauZaer)

System matrices

*
Ct - 8$(xt7ut7 t

er), Dy =

8u($fvufa€f)a Ht

f , o+ . Of (v of
At:a—m(xt,ut,vt), Bt:%(xtvutvvt)a Gy = av(xt’ut’vt)
dg dg 99

8e(xt7ut76t)
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Linearized Kalman filter

Measurement update

Vo1 = CiXyy—1 + DyUy, (80)
Xt\t = Xt|t—1 + ke (Ve — i/t|t—1)’ (81)
Kt = Pt\tflctT(CtPt\tflCtT + Re)7, (82)
Pt\t = Pt\t—l - KtCtTPﬂt—l (83)
Time update
Xt+1|t = AtXﬂt + B:Ut, (84)
Py = APy Al + R,y (85)
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Extended Kalman filter: Measurement update

Linearization point
* oA * —
Ty = Ttt—1, Uy = Ug, € = Me
Deviation variables
Xt|t—1 = 0, Ut = O, V;g =Vt — My, Et = €t — M,
Y:— Y;t\t—l =Yt — Yt-1,
9 ~ * ~ * * * %
Y;t\t—l =1~ Y% =0 = Gp1=y = g(wy, ug, ef)

Measurement update

@t\t—l = g(ft\t—la Ug, Me),
By = g1 + 5t (Yt — Jope—1);
Kt = Pt\t—lctT(CtPt\t—lctT +R)7,
Pt\t = Pt\t—l - Féth,TPﬂt—l

The Jacobian matrix Cy is evaluated in Z;_1, u, and m,
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Extended Kalman filter: Time update =
Linearization point
Ty = Ty, up = ug, vy = My, € = Me (94)

Deviation variables

Xt|t =0, U =0, Vi = vg — my, E; = e; — me, (95)

Xt+1|t = i’t+1|t - l’:ﬂ = ft+1|t — flay,up,vf) =0 (96)

Time update
i't-i-l\t = f(fﬂt, Ut, mv)7 (97)
Py = APy Al + R, (98)

The Jacobian matrix A; is evaluated in Ty, ut, and my,

In general, nonlinear Kalman filters are not optimal
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