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02421 - Introduction
Lecture Plan
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02421 - Introduction
Today’s Agenda

• Advanced topics in Kalman filtering
• Nonlinear Kalman filtering
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Advanced topics in Kalman filtering
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02421 - Advanced topics in Kalman filtering
Kalman Filter: The Standard System

The Kalman filter is derived for the system

xt+1 = Axt + But + vt vt ∼ N(0, R1), (1)
yt = Cxt + Dut + et et ∼ N(0, R2), (2)

Cov(vt, et) = 0, et, vt white ⊥ xs s ≤ t (3)

The noises are independent of the state history and each other
1 x0 ∼ N(x̂0, P0)

2 vt ∼ N(0, R1), white

3 et ∼ N(0, R2), white

4 Cov(vt, et) = 0

5 vt, et ⊥ xs, s ≤ t
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02421 - Advanced topics in Kalman filtering
Kalman Filter: Deviations from the Standard Assumptions

We will now consider systems where one of these assumptions do not apply
1 Non-zero mean process disturbances

2 Non-zero mean output disturbances

3 Colored (non-white) process noise

4 Colored (non-white) output noise

5 Noise correlated with the state

6 Correlated noises
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02421 - Advanced topics in Kalman filtering
Uncertain Offset in the Process

System with stochastic process offset

xt+1 = Axt + But + Gdt + vt, (4)
yt = Cxt + Dut + et (5)

Process offset

dt+1 = dt + wt (6)

System in standard form[
xt+1
dt+1

]
=
[
A G
0 I

] [
xt

dt

]
+
[
B
0

]
ut +

[
vt

wt

]
, (7)

yt =
[
C 0

] [xt

dt

]
+ Dut + et (8)
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02421 - Advanced topics in Kalman filtering
Uncertain Offset in the Output

System with stochastic measurement offset

xt+1 = Axt + But + vt, (9)
yt = Cxt + Dut + Hdt + et (10)

Output offset

dt+1 = dt + wt (11)

System in standard form[
xt+1
dt+1

]
=
[
A 0
0 I

] [
xt

dt

]
+
[
B
0

]
ut +

[
vt

wt

]
, (12)

yt =
[
C H

] [xt

dt

]
+ Dut + et (13)
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02421 - Advanced topics in Kalman filtering
Coloured Noise

White noise (discrete-time):
In discrete time, a white noise signal ϵt has zero mean, finite variance, and
it is uncorrelated in time: ϵt ⊥ ϵs for s ̸= t

If the noise wt of a system is colored (non-white), it can be described as a
system of white noises (ηt, ξt)

zt+1 = Awzt + ηt, (14)
wt = Cwzt + ξt (15)
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02421 - Advanced topics in Kalman filtering
Coloured Process Noise
System with colored process noise

xt+1 = Axt + But + vt, (16)
yt = Cxt + Dut + et (17)

Process noise

zt+1 = Avzt + ηt, (18)
vt = Cvzt + ξt (19)

System in standard form[
xt+1
zt+1

]
=
[
A Cv

0 Av

] [
xt

zt

]
+
[
B
0

]
ut +

[
ξt

ηt

]
, (20)

yt =
[
C 0

] [xt

zt

]
+ Dut + et (21)
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02421 - Advanced topics in Kalman filtering
Coloured Output Noise

System with colored measurement noise

xt+1 = Axt + But + vt, (22)
yt = Cxt + Dut + et (23)

Measurement noise

zt+1 = Aezt + ηt, (24)
et = Cezt + ξt (25)

System in standard form[
xt+1
zt+1

]
=
[
A 0
0 Ae

] [
xt

zt

]
+
[
B
0

]
ut +

[
vt

ηt

]
, (26)

yt =
[
C Ce

] [xt

zt

]
+ Dut + ξt (27)
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02421 - Advanced topics in Kalman filtering
Correlation with State History

System

xt+1 = Axt + But + Gwt, (28)
yt = Cxt + Dut + ηt (29)

wt and ηt are correlated with the states

wt = Hxt + vt, vt ∼ N(0, R1), xt ⊥ vt, (30)
ηt = Fxt + et, et ∼ N(0, R2), xt ⊥ et (31)

System in standard form

xt+1 = (A + GH)xt + But + Gvt, (32)
yt = (C + F )xt + Dut + et (33)
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02421 - Advanced topics in Kalman filtering
Kalman filter: Correlated noise
System with correlated process and measurement noise

xt+1 = Axt + But + vt, vt ∼ N(0, R1), (34)
yt = Cxt + Dut + et, et ∼ N(0, R2), (35)

Cov(vt, et) = R12, et, vt white ⊥ xs, s ≤ t (36)

Measurement update

x̂t|t = x̂t|t−1 + κt(yt − Cx̂t|t−1 − Dut), (37)
Pt|t = (1 − κtC)Pt|t−1, (38)

κt = Pt|t−1CT (CPt|t−1CT + R2)−1 (39)

Time update

x̂t+1|t = Ax̂t|t + But + M(yt − Cx̂t|t − Dut), (40)
= (A − MC)x̂t|t + (B − MD)ut + Myt, (41)

Pt+1|t = (A − MC)Pt|t(A − MC)T + R1 − MR12, M = R12R−1
2 (42)
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02421 - Advanced topics in Kalman filtering
Derivation of Kalman filter: Correlated noise
Original system

xt+1 = Axt + But + vt + M(yt − yt) (43)
= Axt + But + vt + M(yt − Cxt − Dut − et) (44)
= (A − MC)xt + (B − MD)ut + Myt + ṽt, ṽt = vt − Met (45)

Define the covariance of ṽt and et to be zero

R̃12 = E[ṽte
T
t ] = E[(vt − Met)eT

t ] = R12 − MR2 = 0 (46)
⇒ M = R12R−1

2 , (47)
R̃1 = E[ṽtṽ

T
t ] = R1 − R12R−1

2 RT
12 (48)

Kalman filter for systems with correlated noise: Original data update with
new time update

x̂t+1|t = (A − MC)x̂t|t + (B − MD)ut + Myt, (49)
Pt+1|t = (A − MC)Pt|t(A − MC)T + R̃1 (50)
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02421 - Advanced topics in Kalman filtering
Predictive Kalman filter: Correlated noise

System with correlated process and measurement noise

xt+1 = Axt + But + vt, vt ∈ N(0, R1), (51)
yt = Cxt + Dut + et, et ∈ N(0, R2), (52)

Cov(vt, et) = R12, et, vt white ⊥ xs, s ≤ t (53)

Predictive Kalman filter

x̂t+1|t = Ax̂t|t−1 + But + Kt(yt − Cx̂t|t−1 − Dut), (54)
Pt+1|t = APt|t−1AT + R1 − Kt(APt|t−1CT + R12)T , (55)

Kt = (APt|t−1CT + R12)(CPt|t−1CT + R2)−1 (56)

Relationship between gains

Kt = (A − MC)κt + M (57)
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02421 - Advanced topics in Kalman filtering
Correlated Noise - Derivation (Predictive)

Conditional distribution[
xt+1
yt

]
|Yt−1 ∼ E

([
Ax̂t|t−1 + But

Cx̂t|t−1 + Dut

]
,

[
APt|t−1AT + R1 APt|t−1CT + R12
CPt|t−1AT + RT

12 CPt|t−1CT + R2

])
(58)

Predictive distribution

xt+1|Yt ∼ N(x̂t+1|t, Pt+1|t) (59)

Use projection theorem

x̂t+1|t = Ax̂t|t−1 + But + Kt(yt − Cx̂t|t−1 − Dut), (60)
Pt+1|t = APt|t−1AT + R1 − Kt(APt|t−1CT + R12)T , (61)

Kt = (APt|t−1CT + R12)(CPt|t−1CT + R2)−1 (62)

16 DTU Compute Stochastic Adaptive Control 29.4.2025



02421 - Advanced topics in Kalman filtering
Correlated Noise - A Special Case
Perfect correlation between process noise and measurement noise

vt = Get, R1 = GR2GT , R12 = GR2 (63)

Stationary predictive Kalman filter

P∞ = 0, K∞ = G (64)

Proof: Predictive variance and gain if Pt|t−1 = 0

Pt+1|t = R1 − KtR
T
12, Kt = R12R−1

2 (65)

Substitute R1 and R12

Pt+1|t = GR2GT − Kt(GR2)T = 0, Kt = GR2R−1
2 = G (66)

This proves that P∞ = 0 and K∞ = G is a solution

If (A − GC, R1) is reachable and R2 ≻ 0, it is the only solution (from the
theory of Riccati equations)
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Nonlinear Kalman filtering
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02421 - Nonlinear Kalman filtering
Linearization
Nonlinear system

xt+1 = f(xt, ut, vt), vt ∼ N(mv, Rv), (67)
yt = g(xt, ut, et), et ∼ N(me, Re) (68)

Linearize right-hand side functions

f(xt, ut, vt) ≈ f(x∗
t , u∗

t , v∗
t ) + ∂f

∂x
(xt − x∗

t ) + ∂f

∂u
(ut − u∗

t ) + ∂f

∂v
(vt − v∗

t ),
(69)

g(xt, ut, vt) ≈ g(x∗
t , u∗

t , e∗
t ) + ∂g

∂x
(xt − x∗

t ) + ∂g

∂u
(ut − u∗

t ) + ∂g

∂v
(vt − v∗

t )
(70)

The Jacobian matrices are evaluated in the linearization point, e.g.,

∂f

∂x
= ∂f

∂x
(x∗

t , u∗
t , v∗

t ) (71)
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02421 - Nonlinear Kalman filtering
Linearization
Deviation variables

Xt = xt − x∗
t , Yt = yt − y∗

t , y∗
t = g(x∗

t , u∗
t , e∗

t ), (72)
Ut = ut − u∗

t , Vt = vt − v∗
t , Et = et − e∗

t (73)

Linearized system

Xt+1 = xt+1 − x∗
t+1 = f(xt, ut, vt) − f(x∗

t , u∗
t , v∗

t ) (74)
= AtXt + BtUt + GtVt, (75)

Yt = yt − y∗
t = g(xt, ut, et) − g(x∗

t , u∗
t , e∗

t ) (76)
= CtXt + DtUt + FtEt (77)

System matrices

At = ∂f

∂x
(x∗

t , u∗
t , v∗

t ), Bt = ∂f

∂u
(x∗

t , u∗
t , v∗

t ), Gt = ∂f

∂v
(x∗

t , u∗
t , v∗

t ),

Ct = ∂g

∂x
(x∗

t , u∗
t , e∗

t ), Dt = ∂g

∂u
(x∗

t , u∗
t , e∗

t ), Ht = ∂g

∂e
(x∗

t , u∗
t , e∗

t )

(78)

(79)
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02421 - Nonlinear Kalman filtering
Linearized Kalman filter

Measurement update

Ŷt|t−1 = CtX̂t|t−1 + DtUt, (80)
X̂t|t = X̂t|t−1 + κt(Yt − Ŷt|t−1), (81)

κt = Pt|t−1CT
t (CtPt|t−1CT

t + Re)−1, (82)
Pt|t = Pt|t−1 − κtC

T
t Pt|t−1 (83)

Time update

X̂t+1|t = AtX̂t|t + BtUt, (84)
Pt+1|t = AtPt|tA

T
t + Rv (85)

21 DTU Compute Stochastic Adaptive Control 29.4.2025



02421 - Nonlinear Kalman filtering
Extended Kalman filter: Measurement update
Linearization point

x∗
t = x̂t|t−1, u∗

t = ut, e∗
t = me (86)

Deviation variables

X̂t|t−1 = 0, Ut = 0, Vt = vt − mv, Et = et − me, (87)

Yt − Ŷt|t−1 = yt − ŷt|t−1, (88)
Ŷt|t−1 = ŷt|t−1 − y∗

t = 0 ⇒ ŷt|t−1 = y∗
t = g(x∗

t , u∗
t , e∗

t ) (89)

Measurement update

ŷt|t−1 = g(x̂t|t−1, ut, me),
x̂t|t = x̂t|t−1 + κt(yt − ŷt|t−1),
κt = Pt|t−1CT

t (CtPt|t−1CT
t + Re)−1,

Pt|t = Pt|t−1 − κtC
T
t Pt|t−1

(90)
(91)
(92)
(93)

The Jacobian matrix Ct is evaluated in x̂t|t−1, ut, and me
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02421 - Nonlinear Kalman filtering
Extended Kalman filter: Time update

Linearization point

x∗
t = x̂t|t, u∗

t = ut, v∗
t = mv, e∗

t = me (94)

Deviation variables

X̂t|t = 0, Ut = 0, Vt = vt − mv, Et = et − me, (95)
X̂t+1|t = x̂t+1|t − x∗

t+1 = x̂t+1|t − f(x∗
t , u∗

t , v∗
t ) = 0 (96)

Time update
x̂t+1|t = f(x̂t|t, ut, mv),
Pt+1|t = AtPt|tA

T
t + Rv

(97)
(98)

The Jacobian matrix At is evaluated in x̂t|t, ut, and mv

In general, nonlinear Kalman filters are not optimal
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02421 - Nonlinear Kalman filtering

Questions?
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