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Stochastic Adaptive Control (02421)

Lecture 11
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Lecture Plan

@ ARX models
@ ARX prediction + control
© ARX estimation

@ ARX model validation
+ adaptive control

® ARMAX control

® ARMAX estimation
+ adaptive control
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@ Systems and control theory

@ Stochastic systems + Kalman filtering
© SS estimation (recursive) + control
@ SS control

® SS estimation (batch)

® SS estimation (recursive)

@® SS nonlinear control

Design

w

Identification

—

Controller

System

T

2 DTU Compute

Stochastic Adaptive Control 22.4.2025



Today’s Agenda

® | east-squares estimation
® Maximum likelihood estimation

® Cramér-Rao lower bound
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Least-squares estimation
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System =
System
xip1 = A(0)xr + B(0)ur + G(0)vy, (1)
yr = C(0)xy + D(O)ur + F(0)ey, (2)
Stochastic vectors
z ~ N(mo(6), Po(9)), ve ~ N(0, 1), e~ N(0,I) (3)

Note: The process and measurement noise are standard normal such that
we can linearize wrt. 6 in the recursive formulation
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Least-squares parameter estimation problem =
State prediction

141 = A%y + Buy, Lo = mo (4)
Output prediction
¢ = CZy + Duy (5)
Residuals
€& =Yt — Ut (6)

Least-squares parameter estimation problem
0 = arg min Jy (0; Yy ), In(0;YN) = Zet €t (7)
[4

This problem is nonlinear in the parameters, @, and the solutlon must be
approximated numerically, e.g., using Matlab’s fmincon.

How would you estimate the parameters that only affect /' and G?

Think about it for yourself for one minute and then discuss with the person
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Matlab’s fmincon
Syntax
x = fmincon(fun,x0,A,b)
x = fmincon(fun ,x0,A,b,Aeq, beq)
x = fmincon(fun,x0,A,b,Aeq,beq,Ib, ub)
x = fmincon(fun,x0,A,b,Aeq,beq,|b,ub,nonlcon)
x = fmincon(fun,x0,A,b,Aeq,beq,Ib,ub,nonlcon, options)
x = fmincon(problem)
[x,fval] = fmincon(__)
[x,fval ,exitflag ,output] = fmincon(__)
[x,fval ,exitflag ,output,lambda,grad, hessian] = fmincon(___)
Description
Nonlinear programming solver.
Finds the minimum of a problem specified by
c(z) <0
ceq(z) =0
min f(z) such that A-x<b (8)
® Aeq -z = beq
b <z < ub,

b and beq are vectors, A and Aeq are matrices, c¢(x) and ceq(x) are functions that return vectors,
and f(x) is a function that returns a scalar. f(x), c(x), and ceq(x) can be nonlinear functions.
%, Ib, and ub can be passed as vectors or matrices; see Matrix Arguments.

Link: https://de.mathworks.com/help/optim/ug/fmincon.html
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https://de.mathworks.com/help/optim/ug/fmincon.html

Matlab’s fmincon: Least-squares objective function

O©OONOOHE WN -
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function JN = least_squares_objective_function(theta, Y, U, m0, p)

end

% Create system matrices (provided by the user)
[A, B, C, D] = p.create_system_matrices(theta, p);

% Initial state
xhatt = m0;

% Objective function
JN = 0;

for t = 1:N+1 % (the real t is actually 0:N)
% Manipulated input and output
ut = U(:, t);
yt =Y(:, t);

% Predict output and residual
yhatt Cxxhatt + Dxut;
epsilont yt — yhatt;

% Predict state
xhattpl = Axxhatt + Bxut;

% Add to objective function
JN = JN + 0.5%(epsilont "xepsilont);

% Update states
xhatt = xhattpl;
end
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Likelihood

Multiplication rule

M

P(A,B) = P(AIB)P(B),  P(4,B|C)= P(A|B,C)P(BIC)  (9)
Probability density function

p(yNanyla .. 7y0‘9) :p(yN‘yN*h v 7y079)p(?/N717 o 7y0|0) (10)

Likelihood

N
L(0) = plyn,yn—1,---,y0l0) = p(wol®) [] p(velye-1, .- 90,0)  (11)
t=1

Log-likelihood

N
In £(6) = Inp(yol) + > _ mp(yely—1, - -, o, 0) (12)
t=1
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Likelihood for normally distributed variables
Probability density of normal distribution

1 1 _
O exp (5 Prhie) (19
\/(27T)ny det Py,t|t—1 2 ’
Residuals
€& =Yt — gt\t—l (14)

Logarithm of probability density of normal distribution

n 1 1 _
lnp(yt’yt—la -5 Y0, 9) = _?y In 27 — 5 Indet Py,t|t—1 Py tlt— 1€

(15)
Log-likelihood

(N + 1)n 1Y _
) =" mar— -3 (Indet P, gy + € Py, jer)  (16)
t=0
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Maximum likelihood estimation
Maximum likelihood estimation
0 = argmax  L(0) (17)
6
Equivalent formulation
f = argmin  Jy(6), Jn(0) = —L(6) (18)
0

Negative log-likelihood function

N —|— 1)n _
JIn(0) = ( W+ ny In27m + = Z (ln det Py 44— + Gz’Py7t1‘t,1€t) (19)

Key differences to least-squares objective function
@ Determinant of covariance is penalized

@ Residuals are weighted by the inverse of the covariance
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Kalman filter equations

Measurement update (vectors)

Gtje—1 = CZyp—1 + Duy,
€ = Yt — Ytjt—1,

Tyt = Tyfg—1 T Ke€e

Measurement update (matrices)

Time update

13 DTU Compute

P
ny,t|t—1 = Pt\t—10T>

_ —1
Kt = P:Uy,t|t—1Py’t|t,17

_ T
Py = Pyp1 — ’{tpzy,th‘,fl

wtlt—1 = CPt|t710T + Ra,

Zyy1ye = AZyy + Buy,
Py = APt\tAT + R

Stochastic Adaptive Control
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Matlab’s fmincon: Negative log-likelihood objective function

14

(theta, Y, U, m0, PO,

and Kalman gain

"x(Pyttml\epsilont));

1 function JN = maximum_likelihood_objective_function
2 % Create system matrices (provided by the user)
3 [A, B, G, C, D, F] = p.create_system_matrices(theta, p);
4

5 % Initial state and covariance

6 xhatttml = mO0;

7 Pttm1 = PO;

8

9 % Objective function

10 JN = 0.5xnumel(Ybar)xlog(2%pi);

11

12 for t = 1:N+1 % (the real t is actually 0:N)
13 % Manipulated input and output

14 ut = U(:, t);

15 yt =Y(:, t);

16

17 % Predicted output and covariance, residual,
18 yhatttml = Csxhatttml + Dxut;

19 Pyttm1l = CxPttm1xC’' + R2;

20 epsilont = yt — yhatttml;

21 kappat = Pttm1xC'/Pyttm1;

22

23 % Measurement update

24 xhattt = xhatttml + kappat*epsilont;

25 Ptt = Pttml — kappat*xC*Pttml;

26

27 % Time update

28 xhatttpl = Axxhattt + Bxut;

29 Pttpl = AxPtt*A’ + R1;

30

31 % Add to objective function

32 JN = JN + 0.5%(log(det(Pyttml)) + epsilont
33

34 % Update states

%TU Compute xhatttml = xhattpl; Pttml = Pttpl;
36 end

37 end

Stochastic Adaptive Control
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Cramér-Rao lower bound =
Lower bound on individual parameter variances?
Cov(0) = F~* (29)
where A > B means that A — B is positive semidefinite.
Fisher's information matrix
&]N 8JN
Typically, maximum likelihood estimators are efficient, which means that
equality holds in the bound
8my T -1 amy 1 8PY 18PY
F.,.=|——] P - P 1
7 (aai) Y o0, T2t \Y e Y a6y (D

' Theorem 4.4 in the book by A. van den Bos, 2007. Parameter estimation for scientists

and engineers. Wiley.
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The prediction problem: Compact notation (recap) =
Compact notation
xo Yo uo vo €0
1 Y1 ul v1 el
XN = , YN = , Un = , VN = ) En = ) (32)
TN YN UN UN EN
r I 0 0
A B 0 G 0
Toy = . Tou= : . Loy = : : (33)
LAl AN-'p ... B o0 AN-lg ... G o
r C D 0
CA CB D cG 0
q’yw: : s Fyu: : - - ) FyU: : - - s
LcaN caN-lp ... ¢cB D caN-lg ... cG o
(34)
F
F
Fye = . ) RV =1, (35)
L F
XN =®zz20 + TouUN + Taw VN, VN ~ N(0, Ry ), (36)
YN = Pyzzo + TyuUN + Ty VN + Tye EN, ENn ~ N(0,REg) (37)

*The superscript N on the matrices and the dependencies on the parameters, 0, have been omitted for brevity of notation.
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Distribution of prediction

Distribution of output prediction
YN ~ N(my, Py)
Mean
my = E[YN] = (I)ymmg + FyuUN
Covariance
_ _ T T T
Py = COV(YN) = (I)ya;PO(I)yx + FvaVFyv -+ FyeREFye

Negative log-likelihood function (multiplication rule not used)

In(@)=—InL(6;YN) = (N+21)ny In(27) + %lndet Py
1 _
+ §(YN —my)T Py Yy — my)
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Linear algebra hints

Problem: PY\epsilon might give imprecise results (and a warning)

Use an LDL factorization (Py = LDLT)

LZ =, Z=DL"X,
DY = Z, Yy =LTX,
LTX =Y
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