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02421 - Introduction
Today’s Agenda

• Least-squares estimation
• Maximum likelihood estimation
• Cramér-Rao lower bound
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Least-squares estimation
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02421 - Least-squares estimation
System

System

xt+1 = A(θ)xt + B(θ)ut + G(θ)vt, (1)
yt = C(θ)xt + D(θ)ut + F (θ)et, (2)

Stochastic vectors

x0 ∼ N(m0(θ), P0(θ)), vt ∼ N(0, I), et ∼ N(0, I) (3)

Note: The process and measurement noise are standard normal such that
we can linearize wrt. θ in the recursive formulation
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02421 - Least-squares estimation
Least-squares parameter estimation problem
State prediction

x̂t+1 = Ax̂t + But, x̂0 = m0 (4)
Output prediction

ŷt = Cx̂t + Dut (5)
Residuals

ϵt = yt − ŷt (6)
Least-squares parameter estimation problem

θ̂ = arg min
θ

JN (θ; YN ), JN (θ; YN ) = 1
2

N∑
t=0

ϵT
t ϵt (7)

This problem is nonlinear in the parameters, θ, and the solution must be
approximated numerically, e.g., using Matlab’s fmincon.

How would you estimate the parameters that only affect F and G?

Think about it for yourself for one minute and then discuss with the person
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02421 - Least-squares estimation
Matlab’s fmincon
Syntax

x = fmincon ( fun , x0 , A, b )
x = fmincon ( fun , x0 , A, b , Aeq , beq )
x = fmincon ( fun , x0 , A, b , Aeq , beq , lb , ub )
x = fmincon ( fun , x0 , A, b , Aeq , beq , lb , ub , non lcon )
x = fmincon ( fun , x0 , A, b , Aeq , beq , lb , ub , nonlcon , o p t i o n s )
x = fmincon ( problem )
[ x , f v a l ] = fmincon (___)
[ x , f v a l , e x i t f l a g , output ] = fmincon (___)
[ x , f v a l , e x i t f l a g , output , lambda , grad , h e s s i a n ] = fmincon (___)

Description
Nonlinear programming solver.
Finds the minimum of a problem specified by

min
x

f(x) such that


c(x) ≤ 0

ceq(x) = 0
A · x ≤ b

Aeq · x = beq
lb ≤ x ≤ ub,

(8)

b and beq are vectors, A and Aeq are matrices, c(x) and ceq(x) are functions that return vectors,
and f(x) is a function that returns a scalar. f(x), c(x), and ceq(x) can be nonlinear functions.
x, lb, and ub can be passed as vectors or matrices; see Matrix Arguments.
Link: https://de.mathworks.com/help/optim/ug/fmincon.html
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02421 - Least-squares estimation
Matlab’s fmincon: Least-squares objective function

1 f u n c t i o n JN = l e a s t _ s q u a r e s _ o b j e c t i v e _ f u n c t i o n ( theta , Y, U, m0, p )
2 % Crea te system m a t r i c e s ( p r o v i d e d by the u s e r )
3 [ A, B, C , D] = p . c r ea t e _sy s t em_ma t r i c e s ( theta , p ) ;
4
5 % I n i t i a l s t a t e
6 x h a t t = m0;
7
8 % O b j e c t i v e f u n c t i o n
9 JN = 0 ;

10
11 f o r t = 1 :N+1 % ( the r e a l t i s a c t u a l l y 0 :N)
12 % Manipu la ted i n p u t and output
13 ut = U( : , t ) ;
14 y t = Y ( : , t ) ;
15
16 % P r e d i c t output and r e s i d u a l
17 y h a t t = C∗ x h a t t + D∗ ut ;
18 e p s i l o n t = yt − y h a t t ;
19
20 % P r e d i c t s t a t e
21 xhat tp1 = A∗ x h a t t + B∗ ut ;
22
23 % Add to o b j e c t i v e f u n c t i o n
24 JN = JN + 0 . 5 ∗ ( e p s i l o n t ’ ∗ e p s i l o n t ) ;
25
26 % Update s t a t e s
27 x h a t t = xhat tp1 ;
28 end
29 end
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Maximum likelihood estimation

9 DTU Compute Stochastic Adaptive Control 22.4.2025



02421 - Maximum likelihood estimation
Likelihood
Multiplication rule

P (A, B) = P (A|B)P (B), P (A, B|C) = P (A|B, C)P (B|C) (9)

Probability density function

p(yN , yN−1, . . . , y0|θ) = p(yN |yN−1, . . . , y0, θ)p(yN−1, . . . , y0|θ) (10)

Likelihood

L(θ) = p(yN , yN−1, . . . , y0|θ) = p(y0|θ)
N∏

t=1
p(yt|yt−1, . . . , y0, θ) (11)

Log-likelihood

ln L(θ) = ln p(y0|θ) +
N∑

t=1
ln p(yt|yt−1, . . . , y0, θ) (12)
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02421 - Maximum likelihood estimation
Likelihood for normally distributed variables
Probability density of normal distribution

p(yt|yt−1, . . . , y0, θ) = 1√
(2π)ny det Py,t|t−1

exp
(

−1
2ϵT

t P −1
y,t|t−1ϵt

)
(13)

Residuals

ϵt = yt − ŷt|t−1 (14)

Logarithm of probability density of normal distribution

ln p(yt|yt−1, . . . , y0, θ) = −ny

2 ln 2π − 1
2 ln det Py,t|t−1 − 1

2ϵT
t P −1

y,t|t−1ϵt

(15)

Log-likelihood

L(θ) = −(N + 1)ny

2 ln 2π − 1
2

N∑
t=0

(
ln det Py,t|t−1 + ϵT

t P −1
y,t|t−1ϵt

)
(16)
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02421 - Maximum likelihood estimation
Maximum likelihood estimation
Maximum likelihood estimation

θ̂ = arg max
θ

L(θ) (17)

Equivalent formulation

θ̂ = arg min
θ

JN (θ), JN (θ) = −L(θ) (18)

Negative log-likelihood function

JN (θ) = (N + 1)ny

2 ln 2π + 1
2

N∑
t=0

(
ln det Py,t|t−1 + ϵT

t P −1
y,t|t−1ϵt

)
(19)

Key differences to least-squares objective function
1 Determinant of covariance is penalized

2 Residuals are weighted by the inverse of the covariance
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02421 - Maximum likelihood estimation
Kalman filter equations
Measurement update (vectors)

ŷt|t−1 = Cx̂t|t−1 + Dut,

ϵt = yt − ŷt|t−1,

x̂t|t = x̂t|t−1 + κtϵt

(20)
(21)
(22)

Measurement update (matrices)

Py,t|t−1 = CPt|t−1CT + R2,

Pxy,t|t−1 = Pt|t−1CT ,

κt = Pxy,t|t−1P −1
y,t|t−1,

Pt|t = Pt|t−1 − κtP
T
xy,t|t−1

(23)
(24)
(25)

(26)

Time update
x̂t+1|t = Ax̂t|t + But,

Pt+1|t = APt|tA
T + R1

(27)
(28)
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02421 - Maximum likelihood estimation
Matlab’s fmincon: Negative log-likelihood objective function

1 f u n c t i o n JN = m a x i m u m _ l i k e l i h o o d _ o b j e c t i v e _ f u n c t i o n ( theta , Y, U, m0, P0 , p )
2 % Crea te system m a t r i c e s ( p r o v i d e d by the u s e r )
3 [ A, B, G, C , D, F ] = p . c r e a t e_ sy s t e m_mat r i c e s ( theta , p ) ;
4
5 % I n i t i a l s t a t e and c o v a r i a n c e
6 xhatttm1 = m0;
7 Pttm1 = P0 ;
8
9 % O b j e c t i v e f u n c t i o n

10 JN = 0.5∗ numel ( Ybar ) ∗ l o g (2∗ p i ) ;
11
12 f o r t = 1 :N+1 % ( the r e a l t i s a c t u a l l y 0 :N)
13 % Manipu la ted i n p u t and output
14 ut = U( : , t ) ;
15 y t = Y ( : , t ) ;
16
17 % P r e d i c t e d output and c o v a r i a n c e , r e s i d u a l , and Kalman g a i n
18 yhatttm1 = C∗ xhatttm1 + D∗ ut ;
19 Pyttm1 = C∗Pttm1∗C ’ + R2 ;
20 e p s i l o n t = yt − yhatttm1 ;
21 kappat = Pttm1∗C’ / Pyttm1 ;
22
23 % Measurement update
24 x h a t t t = xhatttm1 + kappat ∗ e p s i l o n t ;
25 Ptt = Pttm1 − kappat ∗C∗Pttm1 ;
26
27 % Time update
28 x h a t t t p 1 = A∗ x h a t t t + B∗ ut ;
29 Pttp1 = A∗ Ptt ∗A’ + R1 ;
30
31 % Add to o b j e c t i v e f u n c t i o n
32 JN = JN + 0 . 5 ∗ ( l o g ( det ( Pyttm1 ) ) + e p s i l o n t ’ ∗ ( Pyttm1\ e p s i l o n t ) ) ;
33
34 % Update s t a t e s
35 xhatttm1 = xhat tp1 ; Pttm1 = Pttp1 ;
36 end
37 end
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Cramér-Rao lower bound
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02421 - Cramér-Rao lower bound
Cramér-Rao lower bound
Lower bound on individual parameter variances1

Cov(θ̂) ⪰ F −1 (29)

where A ⪰ B means that A − B is positive semidefinite.

Fisher’s information matrix

Fij = E
[

∂JN

∂θi
(θ; YN )∂JN

∂θj
(θ; YN )

]
(30)

Typically, maximum likelihood estimators are efficient, which means that
equality holds in the bound

Fij =
(

∂mY

∂θi

)T

P −1
Y

∂mY

∂θj
+ 1

2 Tr
(

P −1
Y

∂PY

∂θi
P −1

Y

∂PY

∂θj

)
(31)

1Theorem 4.4 in the book by A. van den Bos, 2007. Parameter estimation for scientists
and engineers. Wiley.
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02421 - Cramér-Rao lower bound
The prediction problem: Compact notation (recap)
Compact notation

XN =

 x0
x1
...

xN

 , YN =

 y0
y1
...

yN

 , UN =

u0
u1
...

uN

 , VN =

 v0
v1
...

vN

 , EN =

 e0
e1
...

eN

 , (32)

Φxx =

 I
A

...
AN

 , Γxu =

 0
B 0
...

. . .
. . .

AN−1B · · · B 0

 , Γxv =

 0
G 0
...

. . .
. . .

AN−1G · · · G 0

 , (33)

Φyx =

 C
CA

...
CAN

 , Γyu =

 D
CB D

...
. . .

. . .
CAN−1B · · · CB D

 , Γyv =

 0
CG 0

...
. . .

. . .
CAN−1G · · · CG 0

 ,

(34)

Γye =

F
F

. . .
F

 , RV = I, (35)

XN = Φxxx0 + ΓxuUN + ΓxvVN , VN ∼ N(0, RV ), (36)
YN = Φyxx0 + ΓyuUN + ΓyvVN + ΓyeEN , EN ∼ N(0, RE) (37)

*The superscript N on the matrices and the dependencies on the parameters, θ, have been omitted for brevity of notation.
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02421 - Cramér-Rao lower bound
Distribution of prediction
Distribution of output prediction

YN ∼ N(mY , PY ) (38)

Mean

mY = E[YN ] = Φyxm0 + ΓyuUN (39)

Covariance

PY = Cov(YN ) = ΦyxP0ΦT
yx + ΓyvRV ΓT

yv + ΓyeREΓT
ye (40)

Negative log-likelihood function (multiplication rule not used)

JN (θ) = − ln L(θ; YN ) = (N + 1)ny

2 ln(2π) + 1
2 ln det PY (41)

+ 1
2(YN − mY )T P −1

Y (YN − mY ) (42)
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02421 - Cramér-Rao lower bound
Linear algebra hints

Problem: PY\epsilon might give imprecise results (and a warning)

Use an LDL factorization (PY = LDLT )

LZ = ϵ, Z = DLT X, (43)
DY = Z, Y = LT X, (44)

LT X = Y (45)
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02421 - Cramér-Rao lower bound

Questions?
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