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02421 - Introduction
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02421 - Introduction
Today’s Agenda

• Linear quadratic regulator
• Linear quadratic-Gaussian regulator
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Linear quadratic regulator
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02421 - Linear quadratic regulator
Optimal Control - Quadratic cost functions
System

xk+1 = Axk + Buk + vk, x0 ∼ N(m0, P0), vk ∼ N(0, R1), (1a)
yk = Cxk + ek, ek ∼ N(0, R2), vk ⊥ ek ⊥ xk (1b)

Deviation from reference and control usage

J = E
[

N−1∑
k=0

(yk − wk)T Qy(yk − wk) + uT
k Quuk | F

]
(2)

Deviation from reference and initial control

J = E
[

N−1∑
k=0

(yk − wk)T Qy(yk − wk) + (uk − u0)T Qu(uk − u0) | F
]

(3)

Deviation from reference and control rate-of-movement

J = E
[

N−1∑
k=0

(yk − wk)T Qy(yk − wk) + (uk − uk−1)T Qu(uk − uk−1) | F
]
(4)
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02421 - Linear quadratic regulator
Optimal Control - Linear Quadratic Regulator

Important: Specify which data/information that is available

Assume perfect state information (yk = xk)

J = E
[
xT

N Q0xN +
N−1∑
k=0

(
xT

k Q1xk + uT
k Q2uk

)]
(5)

Split the equation at time t

J = E
[

t−1∑
k=0

(
xT

k Q1xk + uT
k Q2uk

)]
(6)

+ E
[
xT

N Q0xN +
N−1∑
k=t

(
xT

k Q1xk + uT
k Q2uk

)]
(7)

The first term is independent of ut, . . . , uN−1
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02421 - Linear quadratic regulator
Optimal Control - minimum and definition

Assume that l(x, u) has a unique minimum with respect to u for all x, and
let u0(x) denote the value of u where this minimum is attained. Then,

min
u(x)

E [l(x, u)] = E
[
l(x, u0(x))

]
= E

[
min

u
l(x, u)

]
(8)

Apply result

min
ut,...,uN−1

E
[
xT

N Q0xN +
N−1∑
k=t

(
xT

k Q1xk + uT
k Q2uk

)]
= E

[
Vt(xt)

]
(9)

where

Vt(xt) = min
ut,...,uN−1

E
[
xT

N Q0xN +
N−1∑
k=t

(
xT

k Q1xk + uT
k Q2uk

)
| xt

]
(10)
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02421 - Linear quadratic regulator
Optimal Control - Dynamic Programming

Repeat to obtain the Bellman equation

Vt(xt) = min
ut

E
[
xT

t Q1xt + uT
t Q2ut + Vt+1(xt+1) | xt

]
(11a)

= min
ut

xT
t Q1xt + uT

t Q2ut + E [Vt+1(xt+1) | xt] (11b)

End-point condition (t = N)

VN (xN ) = min
uN

E
[
xT

N Q0xN | xN

]
= xT

N Q0xN (12)

The solution to this end value problem is a quadratic function

Vt(xt) = xT
t Stxt + st (13)

St is non-negative definite
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02421 - Linear quadratic regulator
Optimal Control - Dynamic Programming

It is true for t = N

VN (xN ) = xT
N Q0xN (14)

Proof by induction: Assume that it holds for t + 1 and show that it holds
for t

By assumption

Vt+1(xt+1) = xT
t+1St+1xt+1 + st+1 (15)

Substitute xt+1 = Axt + But + vt where vt ∼ N(0, R1)

E [Vt+1(xt+1) | xt] = (Axt + But)T St+1 (Axt + But) (16)
+ Tr(St+1R1) + st+1 (17)
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02421 - Linear quadratic regulator
Optimal Control - Dynamic Programming
Insert result from previous slide

Vt(xt) = min
ut

xT
t Q1xt + uT

t Q2ut + (Axt + But)T St+1(Axt + But) (18)

+ Tr(St+1R1) + st+1 (19)

Minimum

ut = −Ltxt (20)

Control gain

Lt = (Q2 + BT St+1B)−1BT St+1A (21)

Collect terms

Vt(xt) = xT
t (AT St+1A + Q1 − LT

t (Q2 + BT St+1B)Lt)xt (22)
+ Tr(St+1R1) + st+1 (23)
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02421 - Linear quadratic regulator
Optimal Control - Dynamic Programming

Vt(xt) is quadratic

St = AT St+1A + Q1 − LT
t (Q2 + BT St+1B)Lt (24a)

st = Tr(St+1R1) + st+1 (24b)

We still need to show that St is non-negative definite

Rearrange terms

St = (A − BLt)T St+1(A − BLt) + LT
t Q2Lt + Q1 (25)

If St+1 is non-negative definite, then St is also non-negative definite
(due to the properties of Q1 and Q2)
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02421 - Linear quadratic regulator
Optimal Control - Dynamic Programming
Original equation and control gain

St = AT St+1A + Q1 − LT
t (Q2 + BT St+1B)Lt, (26)

Lt = (Q2 + BT St+1B)−1BT St+1A (27)

Intermediate results

LT
t (Q2 + BT St+1B)Lt = LT

t BT St+1A, (28)
LT

t = AT St+1B(Q2 + BT St+1B)−1, (29)
LT

t Q2Lt + LT
t BT St+1BLt − AT St+1BLt = 0, (30)

St = AT St+1A + Q1 − LT
t BT St+1A + LT

t Q2Lt (31)
+ LT

t BT St+1BLt − AT St+1BLt (32)

Final result

St = (A − BLt)T St+1(A − BLt) + LT
t Q2Lt + Q1 (33)
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02421 - Linear quadratic regulator
Optimal Control - Dynamic Programming
Optimal control law

ut = −Ltxt (34)
Optimal control gain

Lt = (Q2 + BT St+1B)−1BT St+1A (35)
The matrix St is

St = (A − BLt)T St+1(A − BLt) + LT
t Q2Lt + Q1 (36)

End condition
SN = Q0 (37)

How does Lt depend on xt, how would you implement the controller in
practice, and how could you simplify the implementation?

Think about it for yourself for one minute and then discuss with the person
next to you for two minutes.
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02421 - Linear quadratic regulator
LQR - Linear Quadratic Regulator w. complete state info

Finite-horizon LQR

Jt = E
[

t+N∑
k=t

[
xT

k uT
k

] [
Q1 Q12
QT

12 Q2

] [
xk

uk

] ]
, xt ∼ N(m0, P0) (38)

xk+1 = Axk + Buk + vk, vk ∼ N(0, R1) (39)

Optimal control law

ut = −Ltxt = −(BT St+1B + Q2)−1(BT St+1A + QT
12)xt (40)

Optimal state weight

St = AT St+1A + Q1 − AT St+1B(BT St+1B + Q2)−1BT St+1A

St+N+1 = 0
(41)
(42)
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02421 - Linear quadratic regulator
LQR - Closed-loop analysis (complete state info)
System

xt+1 = Axt + But + vt, (43)
yt = Cxt + Dut + et (44)

Closed-loop description (ut = −Ltxt)

xt+1 = (A − BLt)xt + vt = Aclxt + vt, (45)
yt = (C − DLt)xt = Cclxt + et (46)

State mean/variance

E[xt] = AclE[xt−1], E[x0] = m0, (47)
Cov(xt) = Acl Cov(xt−1)AT

cl + R1, Cov(x0) = P0 (48)

Output mean/variance

E[yt] = CclE[xt], (49)
Cov(yt) = Ccl Cov(xt)CT

cl + R2 (50)
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02421 - Linear quadratic regulator
LQR - stationary control

Infinite horizon LQR (N = ∞) is a stationary controller

Discrete algebraic Ricatti equation (DARE)

S∞ = AT S∞A + Q1 − AT S∞B(BT S∞B + Q2)−1BT S∞A,

L∞ = −(BT S∞B + Q2)−1(BT S∞A + Q12)
(51)
(52)

This applicable iff (A, B) is at least stabilizable (controllable, reachable)

If (A, Q1) is observable, then the DARE has a unique positive semi-definite
solution, and A − BL is asymptotically stable
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02421 - Linear quadratic regulator
LQR - complete/incomplete state information
More general form of the Bellman equation (Ft ∈ {xt, Yt, Yt−1})

Vt(Ft) = min
ut,...,ut+N

E
[

t+N∑
k=t

Ik(xk, uk) | Ft

]
(53)

= min
ut

E [It(xt, ut) + Vt+1(Ft+1) | Ft] (54)

Using the same derivation, the LQR control law becomes

ut = −LtE [xt | Ft] , (55)
Lt = (BT St+1B + Q2)−1(BT St+1A + Q12), (56)
St = AT St+1A + Q1 − LT

t (BT St+1B + Q2)Lt, (57)
St+N+1 = 0 (58)

Control law for incomplete state information

ut = −LtE[xt | Yt] = −Ltx̂t|t, (59)
ut = −LtE[xt | Yt−1] = −Ltx̂t|t−1 (60)
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Linear quadratic-Gaussian regulator
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02421 - Linear quadratic-Gaussian regulator
Optimal linear quadratic Gaussian observer-based controller
We have discussed both controllers and observers/state estimation
1 LQR: Optimal state control based on perfect state and system knowledge

2 Kalman filter: Optimal state estimation based on perfect system knowledge

When full state knowledge is not possible, we combine the controller with
an observer

The optimal observer-based controller is the linear quadratic Gaussian
controller (LQG)

min
ut,...,ut+N

E
[

t+N∑
k=t

[
xk

uk

]T [
Q1 Q12
Q12 Q2

] [
xk

uk

]
| F

]
, (61)

xk+1 = Axk + Buk + vk, vk ∼ N(0, R1), (62)
yk = Cxk + ek, ek ∼ N(0, R2), Cov(vk, ek) = R12 (63)

The controller and observer can be designed independently (the separation
principle)
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02421 - Linear quadratic-Gaussian regulator
LQG - Duality and Stationarity
Control vs. observation - two sides of the same coin

Consider quadratic optimal control (LQ) and quadratic optimal observers
(Kalman filter)

Optimal gains

LT
t = (AT St+1B + Q12)(BT St+1B + Q2)−1, (64)

Kt = (APtC
T + R12)(CPtC

T + R2)−1 (65)

Riccati equations

St = AT St+1A + Q1 − LT
t (BT St+1B + Q2)Lt, SN+1 = 0, (66)

Pt+1 = APtA
T + R1 − Kt(CPtC

T + R2)KT
t , P0 is given (67)

Algebraic Riccati Equations (Stationary case)

S = AT SA + Q1 − (AT SB + Q12)(BT SB + Q2)−1(BT SA + QT
12), (68)

P = APAT + R1 − (APCT + R12)(CPCT + R2)−1(CPAT + RT
12) (69)
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02421 - Linear quadratic-Gaussian regulator
Sketch of proof of separation principle

Separation principle:
Independently designed optimal controller and observer design is optimal

System

xt+1 = Axt + But + vt, (70)
yt = Cxt + et (71)

Closed-loop system (predictive Kalman filter)[
xt+1
x̂t+1|t

]
=

[
A −BLt

KtC A − KtC − BLt

] [
xt

x̂t|t−1

]
+

[
I 0
0 Kt

] [
vt

et

]
(72)

Lt and Kt are LQR and Kalman filter gains
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02421 - Linear quadratic-Gaussian regulator
Sketch of proof of separation principle

The LQR control law is the same for complete and partial state information

Consequently, we only need to prove that the Kalman filter is optimal for
the LQR control law

System estimation error (x̃t|t−1 = xt − x̂t|t−1)[
xt+1
x̃t+1|t

]
=

[
A − BLt BLt

0 A − KtC

] [
xt+1
x̃t|t−1

]
+

[
I 0
I −Kt

] [
vt

et

]
(73)

The estimation error is independent of the control gain and true state

The system matrix is triangular: Its eigenvalues only depend on the
eigenvalues of A − BLt and A − KtC
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02421 - Linear quadratic-Gaussian regulator
Linear-quadratic Gaussian regulator

How would you implement an LQG controller in practice?

Think about it for yourself for one minute and then discuss with the person
next to you for one minute.
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02421 - Linear quadratic-Gaussian regulator
Closed loop LQG - Predictive
Closed-loop system: LQG controller based on predictive Kalman filter[

xt+1
x̃t+1|t

]
=

[
A − BLt BLt

0 A − KtC

] [
xt

x̃t|t−1

]
+

[
I 0
I −Kt

] [
vt

et

]

= Acl

[
xt+1
x̃t|t−1

]
+ G

[
vt

et

] (74)

(75)

Closed-loop mean and covariance

mt+1 = Aclmt → 0 (iff asym. stable)

Σt+1 = AclΣtA
T
cl + GR̄1GT →

[
Px P∞
P∞ P∞

]
(iff asym. stable)

R̄1 = diag(Rv, Re)

(76)

(77)

(78)

Stationary covariance (Ricatti equation for the predictive Kalman filter)

P∞ = AP∞AT + R1 − K∞(CP∞CT + R2)KT
∞ (79)
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02421 - Linear quadratic-Gaussian regulator
Closed loop LQG - Predictive

Closed-loop system: LQG controller based on predictive Kalman filter[
xt+1
x̃t+1|t

]
=

[
A − BLt BLt

0 A − KtC

] [
xt

x̃t|t−1

]
+

[
I 0
I −Kt

] [
vt

et

]
(80)

= Acl

[
xt+1
x̃t|t−1

]
+ G

[
vt

et

]
(81)

Closed-loop input and output mean and covariance

ut = −Ltx̂t|t−1

= −Lt(xt − x̃t|t−1) ∼ N

( [
−Lt Lt

]
mt,

[
−Lt Lt

]
Σt

[
−LT

t

LT
t

] )
,

yt = Cxt ∼ N

([
C 0

]
mt,

[
C 0

]
Σt

[
C
0

])
= N(Cmx,t, CPx,tC

T )

(82)

(83)

(84)

Stationary: x̃ ∼ N(0, P∞)
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02421 - Linear quadratic-Gaussian regulator
Closed loop LQG - Ordinary
Closed-loop system: LQG controller based on ordinary Kalman filter[

xt+1
x̃t+1|t+1

]
=

[
A − BLt BLt

0 A − κtCA

] [
xt

x̃t|t

]
+

[
I 0

I − κC −κt

] [
vt

et

]
= Acl

[
xt

x̃t|t

]
+ G

[
vt

et

] (85)

(86)

Closed-loop mean and covariance

mt+1 = Aclmt → 0 (iff asym. stable)

Σt+1 = AclΣtA
T
cl + GR̄1GT →

[
Px P̄∞
P̄∞ P̄∞

]
(iff asym. stable)

R̄1 = diag(Rv, Re)

(87)

(88)

(89)

Stationary covariance (Riccati equation for the ordinary Kalman filter)

P̄∞ = (I − κ∞C)(AP̄∞AT + R1)(I − κ∞C)T + κ∞R2κ∞ (90)
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02421 - Linear quadratic-Gaussian regulator
Closed loop LQG - Ordinary

Closed-loop system: LQG controller based on ordinary Kalman filter[
xt+1

x̃t+1|t+1

]
=

[
A − BLt BLt

0 A − κtCA

] [
xt

x̃t|t

]
+

[
I 0

I − κC −κt

] [
vt

et

]
(91)

= Acl

[
xt

x̃t|t

]
+ G

[
vt

et

]
(92)

Closed-loop input and output mean and covariance

ut = −Ltx̂t|t

= −Lt(xt − x̃t|t) ∼ N

( [
−Lt Lt

]
mt,

[
−Lt Lt

]
Σt

[
−LT

t

LT
t

] )
,

yt = Cxt ∼ N

([
C 0

]
mt,

[
C 0

]
Σt

[
C
0

])
= N(Cmx,t, CPx,tC

T )

(93)

(94)

(95)

Stationary: x̃ ∈ N(0, P̄∞).
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02421 - Linear quadratic-Gaussian regulator

Questions?

28 DTU Compute Stochastic Adaptive Control 8.4.2025


	02421 - Introduction
	02421 - Linear quadratic regulator
	02421 - Linear quadratic-Gaussian regulator

