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Lecture Plan

@ ARX models
@ ARX prediction + control
© ARX estimation

@ ARX model validation
+ adaptive control

® ARMAX control

® ARMAX estimation
+ adaptive control
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@ Systems and control theory

@ Stochastic systems + Kalman filtering
© SS estimation (recursive) + control
@ SS control

® SS estimation (batch)

® SS estimation (recursive)

@® SS nonlinear control

Design

w

Identification

—

Controller

System

T
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Today’s Agenda

® |inear quadratic regulator

® Linear quadratic-Gaussian regulator
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Optimal Control - Quadratic cost functions
System

Tpy1 = Az + Bug + vg,

o ~ N(mg, Pg),
yr = Cxy, + ey,

C ~ N(O, RQ),
Deviation from reference and control usage

k=0

N—-1
J=E [Z (i — wi) T Qy (i — wi) + uf Quuy | }“]

Deviation from reference and initial control

N-1
J=E [Z (e — wi) T Qy Yk — wi) + (ue — u0)" Quuy — ug) | F

] (3)
k=0
Deviation from reference and control rate-of-movement

N—1
J=F [Z (yr — wi) T Qy(yr — wi) + (ug — wpr—1)" Qu(ug — up_1) | f]
=0

(4)
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VE ~ N(O, Rl), (13)
v L e Lz (1b)



Optimal Control - Linear Quadratic Regulator
Important: Specify which data/information that is available

Assume perfect state information (yx = xy)

N-1
J=E lx%QoxN -+ Z (ngll'k + quguk)]

k=0
Split the equation at time ¢

t—1

J=E [Z (Ingxk + qu?“k)

k=0

+E

N-1
aNQorn + Y (:Elexk + uf@QUk)]
f=t

The first term is independent of uy, ..., un_1
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Optimal Control - minimum and definition

Assume that [(z,u) has a unique minimum with respect to u for all x, and
let u%(z) denote the value of u where this minimum is attained. Then,

min B [I(z, 0)] = E (@, ()] = E [min I(z,u)] (8)

Apply result

Uty UN —1

N-1
min E [I%QoxN + Z (%ngxk —i—quzuh)] = E[Vt(fﬂt)} 9)

k=t
where
N-1
Vi(zy) = " m%LI]lV ) E [x%@ox]\/ + Z (mf@lxk + quQUk) | :ct] (10)
T k=t
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Optimal Control - Dynamic Programming

Repeat to obtain the Bellman equation

Vi(zt) = qulin E {«T?let +uf Qoug + Vi1 (z441) | $t]

= HllthD ol Quay + uf Qouy + E[Viy (wis1) | 24
End-point condition (t = N)
Vn(zn) = min B {IB%QOJCN | UCN} = 2yQozN
The solution to this end value problem is a quadratic function
_.T
V(@) =y Sy + s

Sy is non-negative definite

8 DTU Compute Stochastic Adaptive Control

=
—
=

M

(11a)
(11b)

(12)

(13)

8.4.2025



=
—
=

Optimal Control - Dynamic Programming =
It is true fort = N
Vn(zn) = 23 Qozn (14)
Proof by induction: Assume that it holds for ¢ + 1 and show that it holds
for t
By assumption
Vir1(ze41) = ol Sepawepn + st (15)
Substitute x¢11 = Axy + Buy + vy where vy ~ N(0, Ry)
E Vi1 (we1) | @) = (Awp + Bue)' Spp1 (Azy + Buy) (16)
+ Tr(Sp+1R) + St41 (17)
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Optimal Control - Dynamic Programming

Insert result from previous slide
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Vi(xy) = n%}tn x?let + utTqut + (Azy + But)TStH (Axzy + Buy) (18)

+ Tr(Se41R1) + se41
Minimum
uy = —Lyxy
Control gain
Li = (Q2+ BYS;11B) ' BTS; 1A
Collect terms

Vi(zy) = 2 (AT Si1A + Q1 — LE(Q2 + BT Si41B) Ly)
+ Tr(Sip1R1) + 541
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Optimal Control - Dynamic Programming

Vi(x¢) is quadratic

Sy = ATSi 1A+ Q1 — LT (Q2 + BT Sy 11 B) Ly (24a)
St = TI'(SH_1R1) + St+1 (24b)

We still need to show that S; is non-negative definite

Rearrange terms
Si = (A= BL)" Si11(A— BLy) + L{ QoL + Q1 (25)

If S¢+1 is non-negative definite, then S; is also non-negative definite
(due to the properties of Q1 and Q2)
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Optimal Control - Dynamic Programming =

Original equation and control gain

Sy =ATS; 1A+ Q1 — LI (Qy + BT S, .1 B) Ly, (26)
Ly = (Q2+ B"S;11B) BT S, 4 (27)

Intermediate results

LT(Q2+ BYS;;1B)L; = LT BT S, ;1 A, (28)
L{ = A"S;:1B(Q2 + B" Si14B) 7, (29)
LIQ,L; + LI BTS; . \BL; — ATS;;1BL; = 0, (30)
Sy = ATS, WA+ Q1 — LIBTS, 1A+ LT QoL (31)
+ LI'BTS,,1BL; — AT S;,1BL; (32)
Final result

Sy = (A—BL)TS, 1(A— BL) + LT QoL + Q1 (33)
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Optimal Control - Dynamic Programming =
Optimal control law
wp = —Lyxy (34)
Optimal control gain
Ly = (Q2+ B"S111B) ' BT 5,14 (35)

The matrix S; is
Sy = (A— BL)TS;11(A—BL;) + LT QoL + Qy (36)
End condition

Sy = Qo (37)

How does L; depend on z;, how would you implement the controller in
practice, and how could you simplify the implementation?

Think about it for yourself for one minute and then discuss with the person
next to you for two minutes.
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LQR - Linear Quadratic Regulator w. complete state info

Finite-horizon LQR

S v o1 | Q1 Qu2| |7k
Jy=E E x U , x¢ ~ N(mg, P,
t [k:t { ; k} [QTQ QJ [ukll t (o 1)
Tyl = Az + Buy + v, V ~ N(O,Rl)

Optimal control law

w = —Lizy = —(BTS11B+ Q2) (B Si A+ Qly)y

Optimal state weight

Sy = ATS 1A+ Q1 — ATS 1 B(BTSi 1B + Q2) ' BT S 11 A

Stynt1 =0
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LQR - Closed-loop analysis (complete state info)

System
Tiy1 = Axy + Bug + vy,
Yt = Cxy + Dug + e
Closed-loop description (u; = —Lixt)

Ti41 = (A — BLt)IL’t + Ve = Aclirt + Vt,
yr = (C — DLy)xy = Cyxy + €

State mean/variance
E[z:] = AqE[zi-1], Elxo] = mo,
Cov(x¢) = Aq Cov(zi_1)AL + Ry, Cov(zo) = Py
Output mean/variance
E[y:] = CaElz],
Cov(ys) = Cq Cov(z)CL + Ry

C
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LQR - stationary control

Infinite horizon LQR (N = c0) is a stationary controller

Discrete algebraic Ricatti equation (DARE)

Soo = ATS A+ Q1 — ATS B(BTS,.B + Q1) BT S A, (51)
Loo = —(BTSeB + Q2) (BT S A + Q12) (52)

This applicable iff (A, B) is at least stabilizable (controllable, reachable)

If (4, Q1) is observable, then the DARE has a unique positive semi-definite
solution, and A — BL is asymptotically stable
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LQR - complete/incomplete state information
More general form of the Bellman equation (F; € {z¢, Y, Yi—1})

1N
Vi(Ft)=_ min E lz I (g, uy) | Ft]

Uty Ut N it

=min E[ly(ze, up) + Visr (Fer) [ F]
Using the same derivation, the LQR control law becomes
Uy = —LtE [l‘t ’ ft] s
Ly = (B'Si41B + Q2) (BT St11 A + Qu2),
Sy =ATSi A+ Q1 — LtT(BTStHB + Q2) Ly,
St4n+1 =10
Control law for incomplete state information
up = — LBl | Y] = —Lti’ﬂta
Ut = —LtIE[xt ‘ th—l] = _Lt:%t\t—l
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Optimal linear quadratic Gaussian observer-based controller
We have discussed both controllers and observers/state estimation

M

@ LQR: Optimal state control based on perfect state and system knowledge

® Kalman filter: Optimal state estimation based on perfect system knowledge

When full state knowledge is not possible, we combine the controller with
an observer

The optimal observer-based controller is the linear quadratic Gaussian
controller (LQG)

N g Q1 Q2| |xk
in E T 61
ut7~I-1-'}111«1;1+N [ ;;5 lulg [le Qz] [Uk] | ] ( )
Tht1 = Az + Bug + Vg, UV~ N(O, Rl), (62)
yr = Cag +eg, ex~ N(0,Rz), Cov(vg, ex) = Ri2 (63)

The controller and observer can be designed independently (the separation
principle)
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LQG - Duality and Stationarity =
Control vs. observation - two sides of the same coin
Consider quadratic optimal control (LQ) and quadratic optimal observers
(Kalman filter)
Optimal gains
L = (A"Sp11B + Qu2)(BT Sps1B + Q) ™, (64)
K; = (AP,CT + Ry5)(CP,CT + Ry) ™" (65)

Riccati equations
Sy =ATS, W A+Q1 — LI(BYS, 1B+ Q2)L;, Sni1=0, (66)
Py = ARAT + R, — K, (CP,CT + Ry)KL, Py is given (67)
Algebraic Riccati Equations (Stationary case)
S =A"SA+ Q1 - (A"SB+ Qu2)(B"SB+ Q) (BT SA+ Q1,), (68)
P = APA" + Ry — (APC" + Ry13)(CPC" + Ry) ' (CPA" + R],) (69)
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Sketch of proof of separation principle

M

Separation principle:
Independently designed optimal controller and observer design is optimal

System

Ti41 = Axy + Buy + vy, (70)
yr = Cay + e (71)

Closed-loop system (predictive Kalman filter)

Tt4+1 . A —BLt Tt + I 0 V¢ (72)
j‘t+1‘t KtC A— Ktc — BLt {Iét‘tfl 0 Kt (&7

L; and K; are LQR and Kalman filter gains

21 DTU Compute Stochastic Adaptive Control 8.4.2025



=
—
=

Sketch of proof of separation principle
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The LQR control law is the same for complete and partial state information

Consequently, we only need to prove that the Kalman filter is optimal for
the LQR control law

System estimation error (T = Tt — 4¢—1)
A— BL BL I 0
~iUtJrl _ t t ~1't+1 + Vg (73)
L)t 0 A—- K C Lt|t—1 I —Ki| |e
The estimation error is independent of the control gain and true state
The system matrix is triangular: Its eigenvalues only depend on the

eigenvalues of A — BL; and A — K;C

22 DTU Compute Stochastic Adaptive Control 8.4.2025



=
—
=

Linear-quadratic Gaussian regulator

M

How would you implement an LQG controller in practice?

Think about it for yourself for one minute and then discuss with the person
next to you for one minute.
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Closed loop LQG - Predictive

Closed-loop system: LQG controller based on predictive Kalman filter

Tt41 A— BLt BLt Tt I 0 (%7
- = - + 74
|fQ+1|t] [ 0 A= KiC| | Tyt I —Ki| |e (74)

M

Li+1 Ut
=Ag | +G 75
< Ll’tt—l €t] (75)
Closed-loop mean and covariance
myp1 = Agmyg — 0 (iff asym. stable) | (76)

P, Py
Po P

Ry = diag(R,, R.) (78)

Sii1 = AaSi AL + GRGT — [ ] (iff asym. stable) | (77)

Stationary covariance (Ricatti equation for the predictive Kalman filter)
Py = AP AT + Ry — Koo (CP5CT + Ry) KL (79)
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Closed loop LQG - Predictive
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Closed-loop system: LQG controller based on predictive Kalman filter

Tt41 _ A—BLt BLt Tt + 1 0 (%7
Ty 0 A= KO | Ty I —Ki| |e

Tt+1 Ut
=Aq |- 81
l |Ftt—1 €t] (81)

—~~
[}
o

~

+G

Closed-loop input and output mean and covariance

up = —Lylypp g (82)
] LT

= —Ly(xy — xt\t—l) ~ N [_Lt Lt] my, [_Lt Lt] Xy .7 ) (83)

t

C

yo = Cay ~ N ([c 0] me, [C 0] %, {0

D = N(Cmy+,CP,;CT) | (84)

Stationary: Z ~ N(0, Px)
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Closed loop LQG - Ordinary =

Closed-loop system: LQG controller based on ordinary Kalman filter

T4l A— BLt BLt :| |: Tt :| |: 1 0 :| |:’Ut:|
- = - 85
|:$t+lt+1:| |: 0 A— HtCA .’L'tlt + I —kC — Kt €t ( )

yy [ 2t } e H (86)

i’tlt €t

Closed-loop mean and covariance

miy1 = Agmy — 0 (iff asym. stable) | (87)
P,
Py
R; = diag(R., Re) (89)

2 \é‘tj\

i1 = AaXi AL + GRGT — [ ] (iff asym. stable) | (88)

Stationary covariance (Riccati equation for the ordinary Kalman filter)
Py = (I — koo C) (AP AT + R (I — kuoC)T + Koo Rokoo (90)
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Closed loop LQG - Ordinary
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Closed-loop system: LQG controller based on ordinary Kalman filter

Tt4+1 _ A— BLt BLt Tt + I 0 Ut (91)
£t+l|t+1 0 A— IitCA i‘t\t I —kC —Kt €t

—aa| (©)

- | +G
Tyt

Closed-loop input and output mean and covariance

Uy = _Ltﬁ\jt\t (93)
] 7

= —Lt(!L‘t - xt|t> ~ N [—Lf Lt] mg, [_Lt Lf:l Zt LT , (94)

t

C

yi = C, ~N<[C 0] me, [C 0] S, [O

D = N(Cmyy,CP,,CT) | (95)

Stationary: € N(0, Py).
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