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Lecture Plan

@ ARX models
@ ARX prediction + control
© ARX estimation

@ ARX model validation
+ adaptive control

® ARMAX control

® ARMAX estimation
+ adaptive control
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@ Systems and control theory

@ Stochastic systems + Kalman filtering
© SS estimation (recursive) + control
@ SS control

® SS estimation (batch)

® SS estimation (recursive)

@® SS nonlinear control

Design

w

Identification

—

Controller

System

T
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Today’s Agenda

® Stationary Kalman filter

® Kalman filter errors

® Recursive parameter estimation
® Prediction

® General predictive control

3 DTU Compute

Stochastic Adaptive Control

=
—
=

M

1.4.2025



4

DTU Compute

Stationary Kalman filter

Stochastic Adaptive Control

=
—
=

M

1.4.2025



Stationary Kalman Filters

Stationary covariance of the predictive Kalman filter

PP = APP AT + Ry — APL.CT(CPECT + Ry)tCPE AT

Stationary covariance of the ordinary Kalman filter

PS = AP2 AT 4+ Ry — (AP AT + Ry)CT
(C(APS AT + R))CT + Ry)'C(AP2 AT 4 Ry)

Relation between stationary covariances

PP = AP2 AT + Ry
(PL) ' =(PR) '+ CTRy'C
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Stationary Kalman Filter - The Riccati Equation

M

Discrete Riccati equation
X1 = AX AT + Ry — AX,.CT(CX,CT + Ry) 'O X, AT (5)
Discrete algebraic Riccati equation (DARE)
X =AXAT + Ry — AxcT(CcxCT + Ry)~tex AT (6)

o If (A, C) is observable, a positive semi-definite solution X exists for each X

e If (4, C) is observable, (A, R) is reachable (RRT = R;), Ry = 0, and Ry = 0,
the solution is unique and independent of Xy and A— KC' is asymptotically stable
(its eigenvalues are strictly within the unit circle)

Hint: Use Matlab's idare function
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Kalman Errors
Estimation errors (if the model is correct)

M

ii’t|t =Ty — i’t\t; 5t|t ~ N(0, Pt|t)7 (7)
Tyjp—1 = Tt — Tyjp—1, Tyje—1 ~ N (0, Pyy—1), (8)
e = ye — Oy 1, e~ N(0,CPy1CT + Ry) | (9)

The innovation errors are white (es L € for s # t) and can be used for
@ model validation (i.e., validating estimates of A4, B, ...)
@ system representation

© fault detection

Discrete-time systems for estimation errors

Zepapprr = (L — k1 C)(AZyy + vr) — Kegr€et1, (10)
jt+1|t = (A — Ktc)'%ﬂtfl — Ktet + Ut (11)

The relation between the Kalman gains is K; = Axy
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Example of Prediction Error
Discrete-time system

i1 = 0.524 + vy, vy ~ N(0,0.1),

Yt = Tt + e, er ~ N(0,0.5)
Prediction error
e ~ N(0,0.625)

Empirical mean and variance

Ele] = —0.0047, Var(e;) = 0.6218

Empirical autocorrelation indicates that ¢; is white

Sample Autocorrelation Function

Sample AL

T 0 PR R

s 2 7 s 8 0 2 14 6 1 £ ) .
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Theory - Overview of Kalman filter Assumptions

The Kalman filter is designed for systems in the form

riy1 = Axy + Bug + vy,
yr = Czy + ¢
It assumes the following noise distributions
@ o ~ N(&o, o)
A v, ~ N(0,P,), white
Oe: ~ N(0, P,), white
O Cov(vg,et) =0
Ou,er Lzg, s<t

In lecture 12, we will relax some of these assumptions
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Augmented system: Parameter model
Parameter model

041 =0 + Hy, ne ~ N(0,1)

Augmented system

Tt41 = A(H)ZL‘t + B(Q)Ut + G(Q)Ut, Vg ~~ N(O, I),
9t+1:0t+H77t7 ntNN(O,I),
yr = C(0)xy + D(0)us + F(0)ey, et ~ N(0,1)

Compact notation

et ) nt )

lA(G):ct + B(O)uy + G(H)vt]

Tip1 = f(Zg,ue,0),  f(@g,ug, 0p)

)

0 + Hny
yt = 9(Te,ur er),  g(Te,ur, e) = C(0)xy + D(0)uy + F(0)ey
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Linearized system

Linearize around z*, u*, v* =0, and e* =0

=
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- = —* ok ok 0 = —% 0 * 9
e 0) =~ @) 4 0 (@ =%+ (g — )+ P —),
(25)
— —*% % % 8 = —% 8 * 8 *
(T, u, ep) = g(T*,u*,e*) + %(mt —I") + az(ut —u*) + £(6 —e")
(26)
The Jacobian matrices are evaluated in the linearization point, e.g.,
a—i = 6£($ u*, v*)
Offsets
* —k *k  —k af % * 8f
d* = f(z*,u",v") — 8x$ 5% " Bg? (27)

83: ou 86
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Jacobians
Jacobians
—_g_AS —_%_B —_%_G
A_ax_l I]’ B_au_ ] G_(%_ H]
- Og - Jg - Odg
C’—ﬁ—[C M|, D=3l=D, F=3=F
Jacobians wrt. parameters
g _ 0A o 0B +8£
=50, Tag," T o
oC 8D oF
M,; = 39ix 26, —i—a—ge

All matrices are evaluated in 6*
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Linearized system
Linearized system

Typ1 = AZy + Buy + Gy + d,
yt:C_'it—i—Dut—i—Fet—Frt

Offset models
dir1 = dy,
Tt+1 = Tty
Further augmented system
Tig1 A

dit1
Tt+1

1
1

Tt

do ~ N(d*,0),
ro ~ N(r*,0)

yt:[C_’ 0 I} d;| + Duy + Fey
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Extended Kalman filter: Measurement update

Predicted output

Filtered estimates

Kalman gains

Gtjt—1 = C24p—1 + Dut

Byp = Beje—1 T Kat (Yt — Tepe—1),

o0 = O¢je—1 + ro,e (Ut — Geje—1)

T T T T
Ka,t = (Pm,t,\t—lc + Pro,tjt—1 M )(Cpxm,t,\t—lc + CPrg tjt—1 M

-1
+ JLIPgJ’t‘t_lcT + I\/IPegyt‘t_lMT + FFT) ,

T T T T
Kot = (Pea;,t\t—lc + Pgg t)t—1M )(CPM,WAC + CPyg gjt—1 M

—1
+ MPyy 41y 1CT + MPyy 1y M7+ FFT) )

Covariances

Prot)t = Pewt|t—1 — Fa,t (Cpmm,t\tfl + Adp@x,ﬂtfl) )
Pro,t|t = Pro,t|t—1 — Ka,t (CPze,ﬂt—l + ]‘4P99,t\t—1) )

Poo t1t = Poo,t|t—1 — Kot (CchQ‘t\t—l + MPGQ,tIt—l)

C, D, and F are evaluated in ét|t—1 and M is evaluated in it\t—l and ét\t—l
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Extended Kalman filter: Time update

Predicted estimates

By = A%y + Buy,

Or 1)t = O

Covariances

Prviv1t = Ame,ﬂtAT =+ APxQ,t|tST

+ 5P6x,t|tAT + Spee,ﬂtST +GGT,
Prgir11t = APro st + SPo ity
Poo i1t = Poose + HHT

A, B, and G are evaluated in étlt and S is evaluated in Z;; and ét‘t
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The prediction problem: State prediction
System
2441 = Axy + Buy + Gy, ve ~ N(0, Ry),
yr = Cxy + Duy + Fey, et ~ N(0, R2)
State predictions

11 = Axg + Bug + Gy,
xo = Ax1 + Buy + Guy = A(Axg + Bug + Gug) + Buy + Guy

0 Vo
V1 ’

:A2x0+[AB B} 1

Z + a6 ¢

:A(A2x0+[AB B] Z(l’ +[AG G} [Z?D+Bu2+c;v2
UQ Vo
:A3xo+[A2B AB B} w +[A2G AG G} v
U2 ]
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The prediction problem: State and output predictions
N-step state and output prediction

uo
ul
wN:ANwo—&—[AN*lB AN-2p ... B]
LUN—1
- v
V1
+[AN*1G AN=2G ... G} o,
LUN—1
uo
ul
ynv = CANzo + [CAN-1B  CAN-2B ... CB D] :
UN—-1
unN
V0
v1
+[cAN=tG cAN=2G ... CG 0 | + Fen
UN-—1
UN
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The prediction problem: N-step predictions

N-step state and output predictions

r oo
x1

LYN

rrI
A

AN
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AN-'p ... B o0
r D
CB D
xo +
lLcAN-1p ... CB
E eo
F el
+ .
L F eN

uo
ul

LUN

0
G 0
AN-1lg ... G o
0
caG 0
+
cAN-lg ... caG
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)
v1

UN
vo
v1
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The prediction problem:

Compact notation

Compact notation

0 Yo uo vo €0
1 Y1 w1l v1 €1
XN = ) YN = ) Un = . ) VN = ) En =
TN YN UN VN eEN
rr 0 0
A B 0 el 0
N N N
Lrr = : v Doy = : .. v Doy = : ’
LaN AN-1p B 0 AN-1g G 0
r c D r o
CA CB D fele] 0
N N N
yx — : ) Fyu = : - ’ Fy" . -
LcaN cAN-1B CB D LcaN—1g caG
re Ry R2
F Ry Ro
N N
Tye = , Ry = ,Rp =
L F Ry L Ro
N N N N
XN =P, 70 + Ty UN + Ty Vs VN ~ N(0, Ry),

YN

N N N N
@ r0+ T, Unv+T VN + T EN,

EN ~ N(0,RE)
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General Linear Control Theory =
System
Tiy1 = Axy + Bug +d (76)
Control law
u; = — Ly + wy (77)
Design control gain, L, and w; such that
® the system is stable
® the disturbance is mitigated
® the setpoint/reference/tracking target is followed
Closed-loop system
Ti4+1 = (A — BL)CCt + Bwt +d (78)
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Optimal control - General predictive control

Optimal control problem

min  Jy, Jyv=E[Yy - Wn)TQy(Yn — Wx) +ULQUN]  (79)

Un

Write out the objective function

In =E[(Yy — WN)TQ,(Yn — W) + UEQ.UN] (80)
=E[YyQyYn — WHQ, YN — YEQ,Wy + WEQ, Wy + UL QuUn]

(81)

= E[YFQ, YN — 2WEQ,YN + WEQ,WN + UK QuUN] (82)

= E[YEQ,Yn] — 2WEQ,E[YN] + WEQ,Wx + UkQuUx (83)

Expectation of quadratic form
E[YYQ,Yn] = E[YN]TQ,E[YN] + Tr(Q, Cov(Yy)) (84)

*We omit the superscript N on the matrices for brevity of notation.
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Output expectation and variance

Expectation

E[YN] = QymE[xo} + FyuUN + Fva[VN] + FyeE[EN]
= q)yx]E[aj‘o} + FyuUN

Deviation from expectation
YN — E[YN] = (I)yx(x() - E[xo]) + FyvVN + FyeEN
Covariance

Cov(Yy) = E[(Yiy — E[YN])(Yn — E[Yn])7]
= 0, E[(z0 — E[zo])(zo — Elzo)) 7|0},

+ Fva[VNV]%’]FgU + ryeE[ENE]TV]F;Fe 4.

= éywpoqﬁgc + rvaVr;} + ryeRErge

Important observation: Cov(Yy) is independent of Uy
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Optimal control - General predictive control
Disregard terms that are independent of Uy

Jn = B[YEQ,Yn] — 2WEQ,E[YN] — WEQ, Wi + ULQ.Uy
= E[Yn]'Q,E[YN] + Tr(Q, Cov(Yn))
—2WEQE[YN] + WEQ,WN + UkLQuUN
=E[Y)'QE[YN] — 2WEQ,E[YN] + Uk QuUx + const.

Insert expectation

JN = ((I)yxE[xO] + FyuUN)TQy((I)yzE[%] + 11yuUN)
- QWJ%;Qy((I)wa[fO] + Iy Un) + UﬁQuUN + const.
= ﬁrquyFyUUN + QE[‘rU]T(I)Z;:QyFyuUN

=
—
=

M

(96)
(97)
(98)

+ Efzo)" @), Qy®yeElzo] — 2WXQyTyuUn + UxQuUy + const. (99)
= UY (P1.QuTyu + Qu) U + 2 (B[] — W) QT U + const.
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Optimal control - General predictive control

Gradient of objective function
T
Vin =2 (T5,Qulp + Qu) U +2 (9, Elwo] - W)" QL) (101)
=2 (P].QuTyu + Qu) Un + 2T7,Qy (ByBlwg) - Wy)  (102)
The gradient is zero for the optimal solution
VJIy =0 (103)

Optimal solution

Unv=- (FZ“QyFy“ * Q“>_1 LyuQy (PyeElzo] — W) (104)
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General predictive control: Prediction and control horizons

M

Closed-loop predictive control

w=1[I 0 - 0]Uy (105)

Uy is updated at every time instance

Shrinking horizon (Fixed end point)

Receding horizon

Inifinite herizon
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