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02421 - Introduction
Today’s Agenda

• Stationary Kalman filter
• Kalman filter errors
• Recursive parameter estimation
• Prediction
• General predictive control
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Stationary Kalman filter
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02421 - Stationary Kalman filter
Stationary Kalman Filters

Stationary covariance of the predictive Kalman filter

P p
∞ = AP p

∞AT + R1 − AP p
∞CT (CP p

∞CT + R2)−1CP p
∞AT (1)

Stationary covariance of the ordinary Kalman filter

P o
∞ = AP o

∞AT + R1 − (AP o
∞AT + R1)CT

(C(AP o
∞AT + R1)CT + R2)−1C(AP o

∞AT + R1) (2)

Relation between stationary covariances

P p
∞ = AP o

∞AT + R1

(P o
∞)−1 = (P p

∞)−1 + CT R−1
2 C

(3)
(4)
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02421 - Stationary Kalman filter
Stationary Kalman Filter - The Riccati Equation

Discrete Riccati equation

Xt+1 = AXtA
T + R1 − AXtC

T (CXtC
T + R2)−1CXtA

T (5)

Discrete algebraic Riccati equation (DARE)

X = AXAT + R1 − AXCT (CXCT + R2)−1CXAT (6)

• If (A, C) is observable, a positive semi-definite solution X exists for each X0

• If (A, C) is observable, (A, R) is reachable (RRT = R1), R1 ⪰ 0, and R2 ≻ 0,
the solution is unique and independent of X0 and A−KC is asymptotically stable
(its eigenvalues are strictly within the unit circle)

Hint: Use Matlab’s idare function
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Kalman filter errors
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02421 - Kalman filter errors
Kalman Errors
Estimation errors (if the model is correct)

x̃t|t = xt − x̂t|t, x̃t|t ∼ N(0, Pt|t),
x̃t|t−1 = xt − x̂t|t−1, x̃t|t−1 ∼ N(0, Pt|t−1),

ϵt = yt − Cx̂t|t−1, ϵt ∼ N(0, CPt|t−1CT + R2)

(7)
(8)
(9)

The innovation errors are white (ϵs ⊥ ϵt for s ̸= t) and can be used for
1 model validation (i.e., validating estimates of A, B, . . .)

2 system representation

3 fault detection

Discrete-time systems for estimation errors

x̃t+1|t+1 = (I − κt+1C)(Ax̃t|t + vt) − κt+1et+1, (10)
x̃t+1|t = (A − KtC)x̃t|t−1 − Ktet + vt (11)

The relation between the Kalman gains is Kt = Aκt
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02421 - Kalman filter errors
Example of Prediction Error
Discrete-time system

xt+1 = 0.5xt + vt, vt ∼ N(0, 0.1), (12)
yt = xt + et, et ∼ N(0, 0.5) (13)

Prediction error
ϵt ∼ N(0, 0.625) (14)

Empirical mean and variance
E[ϵt] = −0.0047, Var(ϵt) = 0.6218 (15)

Empirical autocorrelation indicates that ϵt is white
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02421 - Kalman filter errors
Theory - Overview of Kalman filter Assumptions

The Kalman filter is designed for systems in the form

xt+1 = Axt + But + vt, (16)
yt = Cxt + et (17)

It assumes the following noise distributions
1 x0 ∼ N(x̂0, P0)

2 vt ∼ N(0, Pv), white

3 et ∼ N(0, Pe), white

4 Cov(vt, et) = 0

5 vt, et ⊥ xs, s ≤ t

In lecture 12, we will relax some of these assumptions
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Recursive parameter estimation
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02421 - Recursive parameter estimation
Augmented system: Parameter model
Parameter model

θt+1 = θt + Hηt, ηt ∼ N(0, I) (18)

Augmented system

xt+1 = A(θ)xt + B(θ)ut + G(θ)vt, vt ∼ N(0, I), (19)
θt+1 = θt + Hηt, ηt ∼ N(0, I), (20)

yt = C(θ)xt + D(θ)ut + F (θ)et, et ∼ N(0, I) (21)

Compact notation

x̄t =
[
xt

θt

]
, v̄t =

[
vt

ηt

]
, (22)

x̄t+1 = f(x̄t, ut, v̄t), f(x̄t, ut, v̄t) =
[
A(θ)xt + B(θ)ut + G(θ)vt

θt + Hηt

]
, (23)

yt = g(x̄t, ut, et), g(x̄t, ut, et) = C(θ)xt + D(θ)ut + F (θ)et (24)
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02421 - Recursive parameter estimation
Linearized system
Linearize around x̄∗, u∗, v̄∗ = 0, and e∗ = 0

f(x̄t, ut, v̄t) ≈ f(x̄∗, u∗, v̄∗) + ∂f

∂x̄
(x̄t − x̄∗) + ∂f

∂u
(ut − u∗) + ∂f

∂v̄
(v̄t − v̄∗),

(25)

g(x̄t, ut, et) ≈ g(x̄∗, u∗, e∗) + ∂g

∂x̄
(x̄t − x̄∗) + ∂g

∂u
(ut − u∗) + ∂g

∂e
(et − e∗)

(26)

The Jacobian matrices are evaluated in the linearization point, e.g.,
∂f
∂x̄ = ∂f

∂x̄ (x̄∗, u∗, v̄∗)

Offsets

d∗ = f(x̄∗, u∗, v̄∗) − ∂f

∂x̄
x̄∗ − ∂f

∂u
u∗ − ∂f

∂v̄
v̄∗, (27)

r∗ = g(x̄∗, u∗, e∗) − ∂g

∂x̄
x̄∗ − ∂g

∂u
u∗ − ∂g

∂e
e∗ (28)
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02421 - Recursive parameter estimation
Jacobians

Jacobians

Ā = ∂f

∂x̄
=
[
A S

I

]
, B̄ = ∂f

∂u
=
[
B
]

, Ḡ = ∂f

∂v̄
=
[
G

H

]
, (29)

C̄ = ∂g

∂x̄
=
[
C M

]
, D̄ = ∂g

∂u
= D, F̄ = ∂g

∂e
= F (30)

Jacobians wrt. parameters

S·i = ∂A

∂θi
x∗ + ∂B

∂θi
u∗ + ∂G

∂θi
v∗,

M·i = ∂C

∂θi
x∗ + ∂D

∂θi
u∗ + ∂F

∂θi
e∗

(31)

(32)

All matrices are evaluated in θ∗
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02421 - Recursive parameter estimation
Linearized system
Linearized system

x̄t+1 = Āx̄t + B̄ut + Ḡv̄t + dt, (33)
yt = C̄x̄t + D̄ut + F̄ et + rt (34)

Offset models

dt+1 = dt, d0 ∼ N(d∗, 0), (35)
rt+1 = rt, r0 ∼ N(r∗, 0) (36)

Further augmented systemx̄t+1
dt+1
rt+1

 =

Ā I
I

I


x̄t

dt

rt

+

B̄
ut +

Ḡ
 v̄t, (37)

yt =
[
C̄ 0 I

] x̄t

dt

rt

+ D̄ut + F̄ et (38)
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02421 - Recursive parameter estimation
Extended Kalman filter: Measurement update
Predicted output

ŷt|t−1 = Cx̂t|t−1 + Dut (39)

Filtered estimates

x̂t|t = x̂t|t−1 + κx,t(yt − ŷt|t−1),

θ̂t|t = θ̂t|t−1 + κθ,t(yt − ŷt|t−1)

(40)

(41)

Kalman gains

κx,t =
(

Pxx,t|t−1C
T + Pxθ,t|t−1M

T
)(

CPxx,t|t−1C
T + CPxθ,t|t−1M

T

+ MPθx,t|t−1C
T + MPθθ,t|t−1M

T + F F
T
)−1

,

κθ,t =
(

Pθx,t|t−1C
T + Pθθ,t|t−1M

T
)(

CPxx,t|t−1C
T + CPxθ,t|t−1M

T

+ MPθx,t|t−1C
T + MPθθ,t|t−1M

T + F F
T
)−1

,

(42)

(43)

(44)

(45)

Covariances

Pxx,t|t = Pxx,t|t−1 − κx,t

(
CPxx,t|t−1 + MPθx,t|t−1

)
,

Pxθ,t|t = Pxθ,t|t−1 − κx,t

(
CPxθ,t|t−1 + MPθθ,t|t−1

)
,

Pθθ,t|t = Pθθ,t|t−1 − κθ,t

(
CPxθ,t|t−1 + MPθθ,t|t−1

)
(46)

(47)

(48)

C, D, and F are evaluated in θ̂t|t−1 and M is evaluated in x̂t|t−1 and θ̂t|t−1
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02421 - Recursive parameter estimation
Extended Kalman filter: Time update

Predicted estimates
x̂t+1|t = Ax̂t|t + But,

θ̂t+1|t = θ̂t|t,

(49)
(50)

Covariances

Pxx,t+1|t = APxx,t|tA
T + APxθ,t|tS

T

+ SPθx,t|tA
T + SPθθ,t|tS

T + GGT ,

Pxθ,t+1|t = APxθ,t|t + SPθθ,t|t,

Pθθ,t+1|t = Pθθ,t|t + HHT

(51)
(52)
(53)
(54)

A, B, and G are evaluated in θ̂t|t and S is evaluated in x̂t|t and θ̂t|t
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Prediction
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02421 - Prediction
The prediction problem: State prediction
System

xt+1 = Axt + But + Gvt, vt ∼ N(0, R1), (55)
yt = Cxt + Dut + Fet, et ∼ N(0, R2) (56)

State predictions
x1 = Ax0 + Bu0 + Gv0, (57)
x2 = Ax1 + Bu1 + Gv1 = A(Ax0 + Bu0 + Gv0) + Bu1 + Gv1 (58)

= A2x0 +
[
AB B

] [u0
u1

]
+
[
AG G

] [v0
v1

]
, (59)

x3 = Ax2 + Bu2 + Gv2 (60)

= A

(
A2x0 +

[
AB B

] [u0
u1

]
+
[
AG G

] [v0
v1

])
+ Bu2 + Gv2 (61)

= A3x0 +
[
A2B AB B

] u0
u1
u2

+
[
A2G AG G

] v0
v1
v2

 (62)
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02421 - Prediction
The prediction problem: State and output predictions
N -step state and output prediction

xN = AN x0 +
[
AN−1B AN−2B · · · B

]
u0
u1
...

uN−1

 (63)

+
[
AN−1G AN−2G · · · G

]
v0
v1
...

vN−1

 , (64)

yN = CAN x0 +
[
CAN−1B CAN−2B · · · CB D

]


u0
u1
...

uN−1
uN

 (65)

+
[
CAN−1G CAN−2G · · · CG 0

]


v0
v1
...

vN−1
vN

+ F eN (66)
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02421 - Prediction
The prediction problem: N-step predictions

N -step state and output predictions x0
x1
...

xN

 =

 I
A

...
AN

 x0 +

 0
B 0
...

. . .
. . .

AN−1B · · · B 0

u0
u1
...

uN

 +

 0
G 0
...

. . .
. . .

AN−1G · · · G 0

 v0
v1
...

vN

 , (67)

 y0
y1
...

yN

 =

 C
CA

...
CAN

 x0 +

 D
CB D

...
. . .

. . .
CAN−1B · · · CB D

u0
u1
...

uN

 +

 0
CG 0

...
. . .

. . .
CAN−1G · · · CG 0

 v0
v1
...

vN


(68)

+

F
F

. . .
F

 e0
e1
...

eN

 (69)
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02421 - Prediction
The prediction problem: Compact notation
Compact notation

XN =

 x0
x1
...

xN

 , YN =

 y0
y1
...

yN

 , UN =

u0
u1
...

uN

 , VN =

 v0
v1
...

vN

 , EN =

 e0
e1
...

eN

 , (70)

ΦN
xx =

 I
A

...
AN

 , ΓN
xu =

 0
B 0
...

. . .
. . .

AN−1B · · · B 0

 , ΓN
xv =

 0
G 0
...

. . .
. . .

AN−1G · · · G 0

 , (71)

ΦN
yx =

 C
CA

...
CAN

 , ΓN
yu =

 D
CB D

...
. . .

. . .
CAN−1B · · · CB D

 , ΓN
yv =

 0
CG 0

...
. . .

. . .
CAN−1G · · · CG 0

 ,

(72)

Γye =

F
F

. . .
F

 , R
N
V =

R1
R1

. . .
R1

 , R
N
E =

R2
R2

. . .
R2

 , (73)

XN = ΦN
xxx0 + ΓN

xuUN + ΓN
xvVN , VN ∼ N(0, R

N
V ),

YN = ΦN
yxx0 + ΓN

yuUN + ΓN
yvVN + ΓN

yeEN , EN ∼ N(0, R
N
E )

(74)

(75)
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General predictive control
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02421 - General predictive control
General Linear Control Theory

System

xt+1 = Axt + But + d (76)

Control law

ut = −Lxt + wt (77)

Design control gain, L, and wt such that
• the system is stable
• the disturbance is mitigated
• the setpoint/reference/tracking target is followed

Closed-loop system

xt+1 = (A − BL)xt + Bwt + d (78)
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02421 - General predictive control
Optimal control - General predictive control
Optimal control problem

min
UN

JN , JN = E[(YN − WN )T Qy(YN − WN ) + UT
N QuUN ] (79)

Write out the objective function

JN = E[(YN − WN )T Qy(YN − WN ) + UT
N QuUN ] (80)

= E[Y T
N QyYN − W T

N QyYN − Y T
N QyWN + W T

N QyWN + UT
N QuUN ]

(81)
= E[Y T

N QyYN − 2W T
N QyYN + W T

N QyWN + UT
N QuUN ] (82)

= E[Y T
N QyYN ] − 2W T

N QyE[YN ] + W T
N QyWN + UT

N QuUN (83)

Expectation of quadratic form

E[Y T
N QyYN ] = E[YN ]T QyE[YN ] + Tr(Qy Cov(YN )) (84)

*We omit the superscript N on the matrices for brevity of notation.
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02421 - General predictive control
Output expectation and variance
Expectation

E[YN ] = ΦyxE[x0] + ΓyuUN + ΓyvE[VN ] + ΓyeE[EN ] (85)
= ΦyxE[x0] + ΓyuUN (86)

Deviation from expectation

YN − E[YN ] = Φyx(x0 − E[x0]) + ΓyvVN + ΓyeEN (87)

Covariance

Cov(YN ) = E[(YN − E[YN ])(YN − E[YN ])T ] (88)
= ΦyxE[(x0 − E[x0])(x0 − E[x0])T ]ΦT

yx (89)
+ ΓyvE[VN V T

N ]ΓT
yv + ΓyeE[EN ET

N ]ΓT
ye + · · · (90)

= ΦyxP0ΦT
yx + ΓyvRV ΓT

yv + ΓyeREΓT
ye (91)

Important observation: Cov(YN ) is independent of UN
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02421 - General predictive control
Optimal control - General predictive control
Disregard terms that are independent of UN

JN = E[Y T
N QyYN ] − 2W T

N QyE[YN ] − W T
N QyWN + UT

N QuUN (92)
= E[YN ]T QyE[YN ] + Tr(Qy Cov(YN )) (93)
− 2W T

N QyE[YN ] + W T
N QyWN + UT

N QuUN (94)
= E[Y ]T QyE[YN ] − 2W T

N QyE[YN ] + UT
N QuUN + const. (95)

Insert expectation

JN = (ΦyxE[x0] + ΓyuUN )T Qy(ΦyxE[x0] + ΓyuUN ) (96)
− 2W T

N Qy(ΦyxE[x0] + ΓyuUN ) + UT
N QuUN + const. (97)

= UT
N ΓT

yuQyΓyuUN + 2E[x0]T ΦT
yxQyΓyuUN (98)

+ E[x0]T ΦT
yxQyΦyxE[x0] − 2W T

N QyΓyuUN + UT
N QuUN + const. (99)

= UT
N

(
ΓT

yuQyΓyu + Qu

)
UN + 2 (ΦyxE[x0] − WN )T QyΓyuUN + const.

(100)
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02421 - General predictive control
Optimal control - General predictive control

Gradient of objective function

∇JN = 2
(
ΓT

yuQyΓyu + Qu

)
UN + 2

(
(ΦyxE[x0] − WN )T QyΓyu

)T
(101)

= 2
(
ΓT

yuQyΓyu + Qu

)
UN + 2 ΓT

yuQy (ΦyxE[x0] − WN ) (102)

The gradient is zero for the optimal solution

∇JN = 0 (103)

Optimal solution

UN = −
(
ΓT

yuQyΓyu + Qu

)−1
ΓT

yuQy (ΦyxE[x0] − WN ) (104)
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02421 - General predictive control
General predictive control: Prediction and control horizons

Closed-loop predictive control

ut =
[
I 0 · · · 0

]
UN (105)

UN is updated at every time instance
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02421 - General predictive control

Questions?
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