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Lecture Plan

@ ARX models
@ ARX prediction + control
© ARX estimation

@ ARX model validation
+ adaptive control

® ARMAX control

® ARMAX estimation
+ adaptive control
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@ Systems and control theory

@ Stochastic systems + Kalman filtering
© SS estimation (recursive) + control
@ SS control

® SS estimation (batch)

® SS estimation (recursive)

@® SS nonlinear control

Design

w

Identification

—

Controller

System

T
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Today’s Agenda

® Multivariate probability theory
® Stochastic state space models
® Discretization

® State estimation

® Projection theorem

® Kalman filter
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Stochastic Vectors
Vector-valued random variables

xz[Xl,...,Xn}T

cdf: Fx(x) =Pr(X1 <z1,..., X, < zp,)
marginal cdf: Fx,(z1) = Pr(X; <)

1st and 2nd order moments
T
m, = E[X] = [E[X1],...,E[X,]|
P, = PT = Cov(X) = E[(X — m,)(X —m,)T] = 0
Positive semi-definiteness (=) means that 7 P,z > 0.

Covariance matrices are diagonalizable, e.g., for n = 2

p_ [ Var(X7) COV(X17X2)1
r COV(XQ,Xl) Var(Xg)
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Mathematical properties of Moments: 1st and 2nd =
Let A and m be a constant matrix and vector
Expectations
E[X+ m] =E[X] +m (7)
E[AX] = AE[X] (8)
E[X + Y] = E[X] + E[Y] (9)
E[XT AX] = Tr(A Cov(X)) + E[X]T AE[X] (10)
Covariances
Cov(X) = E[XXT] — EX]E[X]" (11)
Cov(X +m) = Cov(X) (12)
Cov(AX) = A Cov(X)AT (13)
Cov(X +Y) = Cov(X) + Cov(Y) + Cov(X,Y) 4+ Cov(X,Y)T | (14)
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Vector Covariance and Variance =
Further covariances
Cov(X, ) = E[(X — m,)(Y — m,)"] (15)
Cov(X, X) = Cov(X) = P, (16)
Cov(Y,X) = Cov(X,Y)T (17)
Cov(AX,Y) = ACov(X,Y) (18)
Cov(X, AY) = Cov(X,Y)AT (19)
Cov(X+V,Y) = Cov(X,Y) + Cov(V,Y) (20)
Principal directions of the variance (PCA)
[A, V] = eig(Pr) (21)
P.V; = \V; (22)

The columns in V indicate the main directions of the variation and the
elements of A indicate the associated variance
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Stochastic State-Space Models =
Discrete-time system
Tp+1 = Az + Bug + Gug, v ~ N(uy, R1) (23a)
yr = Cxp + Duy + Feg, e ~ N(fie, R2) (23b)
Mean and covariance
pk1 = Apg + Bug + Gy, po = E[xg], (24a)
P = APLAT + GR\GT, Py = Cov(x) (24b)

Note that u; is deterministic.

How do the different terms on the right-hand side of (23a) affect
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Continuous-Time Stochastic Processes (SDE)

Continuous-time system

o(t) = f(t,x(t),u(t)) (27)
First attempt at stochastic differential equation
o(t) = f(t,x(t),u(t)) + g(t, x(t), u(t))v(t) (28)

Process noise

® u(t) L v(s) for any t # s (independence)

® y(t) is continuous and has bounded variance
® E[v(t)] = 0 (zero-mean)

Theorem 4.1 in Chapter 3 of the book "Stochastic Control Theory" by
Astrom (1970): E[v2(t)] =0
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Continuous-Time Stochastic Processes (SDE)

Stochastic difference equation
x(t+ At) — x(t) = f(t,z(t)) At + g(t, z(t))v(t) At 4+ o( At). (29)

Replace v(t)At with Aw(t) = w(t + At) — w(t), which has stationary
independent zero-mean increments (Wiener process)

Ax(t) = f(t,z(t)) At + g(t, z(t)) Aw(t) + o(At). (30)

Take the limit At — 0

da(t) = f(t, z(t)) dt + g(t, z(t)) dw(t) (31)
o(t) = olto) + [ frx@)art [ gratm)an) (32
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Continuous-Time Stochastic Processes (SDE) =
The two first conditional moments of the difference process
E[Aw(t) | x(t)} = f(t,z(t)) At + o(At) (33a)
Var (Az(t) | 2(t)) = g2(t, 2(£) At + o(At) (33b)
Variance of process noise increment
E|Aw?(t)| = At (34)
Note that the variance is proportional to At and not At?
Distribution of process noise increment (increment of Wiener process)
Aw(t) = w(t + At) —w(t) ~ N(0, At) (35)
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Linear Stochastic Differential Equations

M

Linear stochastic differential equations
da(t) = (A(t)a(t) + Bu(t)) dt + G(t) dw(t), (ko) ~ N(mo, Ro) (36)
A(t) and B(t) are continuous functions of time

State expectation

E[z(t)]:]E[xo]+E{ tA(T)x(THB(T)u(T)dTFE[ tG(T)dw(T)]

! ! (37)

= E[zo] + t: A(T)E[z(7)] + B(T)u(r) drT = my(t) (38)
Expected value

oalt) = Ama(t) + BOu(t),  ma(to) = mo. (39)
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Linear Stochastic Differential Equations

State-transition matrix

DD (t; to)

TR A(t)®(t; to), D(to;to) = 1.

Auto-covariance of x (s > t)
R(s,t) = Cov(z(s),z(t)) = ®(s,t)P(t)
Covariance

P(t) = A(t)P(t) + P(AT(t) + GG (1),  P(to) = P,
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Linear stochastic differential equation
Linear continuous-time state space model

Q.
S
=
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Il

(Az(t) + Bu(t))dt + Gdw(t), dw(t) ~ N(0,1dt), (43a)
y(t) = Cx(t) + Du(t) + Fe(t), e(t) ~ N(me, Re)  (43b)

Zero-order-hold parametrization of manipulated inputs
u(t) = ug, t € [tg, tey1] (44)
Approximation of process noise (not rigorous)
dw(t) = w(t) dt, w(t) ~ N(0,1) (45)

Analytical solution

t

tpgr) = A=) 4 [ A= By(ty) dr + v(ty),  (46a)
tx

y(tr) = Cx(tk) + Du(ty) + Fe(tr), e(te) ~ N(me, Re) (46b)
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Zero-order-hold parametrization and approximation =
Discrete-time process noise
tkt1
o) = [ MG () dr (472)
tg
Mean
Bt g -
E[o(ty)] :/ eAlte1=7) GE[@(r)] dr = 0 (48)
tg
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Zero-order-hold parametrization and approximation =
Covariance
Cov(v(t)) = Elv(ty)o” ()] (49)

= ]E[/tk+1 GA(tk+1_T)Glz)(T) dr /tkH wT(s)GTeAT(tk“_S) ds| (50)
173

173

[l / At - G [wmaﬁ’(s)] GTet e drds  (51)
tr tk
t
= / k+1 eA(tk+1_T)G]F‘ [w(T)@T(T)] GTeAT(tk+1_T) dT (52)
tk
_ /tk+1 eA(tk+1_T)GGT€AT(tk+1_T) dr (53)
tg

18 DTU Compute Stochastic Adaptive Control 25.3.2025



Stochastic discrete-time state space models =
Linear discrete-time stochastic state space model

Tp41 = Agxy + Bauy + vy, v ~ N(0, Ry), (54)
yr = Cqxy, + Dquy, + ey, ex ~ N(0, Ra) (55)

System matrices in the state equation

[ﬁ‘f Tl = exp ( 0 ﬂ zz) , (56)
A R: :AG@’ -

[ Od AC;T = exp ( 0 —AT] TS> , Ry = R1 AT (57)
A_l‘Rf in4 GGT -

[ 3 A%; = exp ( 0 AT ] Ts> , Ry = AdeT (58)

System matrices in the measurement equation

Cc,=C, D, = D, Ry = FR.FT (59)
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Proof of discretization
Exponential form

M = [)0( lZ/] = exp ([g ]ij] t) = exp(K't) (60)

Differential form

M

M=KM, Mty =1I (61)
Individual differential equations
X =FX, X(to) =1, (62)
Y =FY +GZ, Y (to) = 0, (63)
Z=HZ, Z(tg) =1 (64)
Solutions
X = Pt X (9) = eF'(t=10) (65)
Z = =) 7(15) = el (t=t0) (66)

t t
Y = Y (1) + [ NG 7 (1) dr = [ OGN dr
t t
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Proof of discretization

M

Llet F=A H=-AT, G=GGT, tg =ty, and t =t 1 (tpr1 —tp = Ts)

X =il = Ayg, (67)
_AT _

Z=eNT = AT (68)

Y = s A=) QT AT th41-7) qr o= ATTs — Ri = RlAdT (69)
tk

The proof of the other approach is similar, but has one more step:
A change of variables in the integral
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Filters and Estimation
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Objective: Obtain estimate, Z¢, of the signal z; based on measurements

Yon = |0 Y1
and a state-output relation, e.g.,
yr = Cay + e
Different types of estimation

@ Smoothing (¢ < tn): Use both past and future
data to estimate the states

@ Filtering: (¢t = ty): Estimate the current states
based on current and past data

© Prediction: (¢ > txn): Predict future states
based on past data
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Filter Theory

Stochastic discrete-time system

Ti41 = Axy + Bug + vy, xg ~ N(mo, R),
yr = Cay + ey,

We will only consider filtering in this lecture
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Filter Theory - The Good Estimate

M

Core concepts of filter design

@ Characteristics of the signal and noise
@ Observation model (relation between y, z, €)
© Criterion (what is a good estimate)

O Restrictions (what information is available)

Characteristics: Nature of the states, dynamics, and noises
Observation: Relation between the output, ¥, the state =, and the noise

The criterion: A good estimate minimizes the expected squared deviation
TP
Efl|z — 2] (74)
Restrictions: What data, Y, is available (filter, predict, or smoothe?)
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The filter problem: A good estimator
The law of total expectation

Elg(z)] = Ey [E[g(2)[Y]]

Introduce “inner” objective function

Inner objective function
Jin = ElzTz — 272 — 272 + 27 2|,
=E[zT2|Y] - 2TE[z|Y] — E[z|Y]T2 + 272
Optimal estimate
Vidin =22 — 2E[z|Y] = 0,
& = E[z]Y]
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Filter Theory - Projection Theorem

M

Normally distributed vector

R .

Projection theorem: The conditional distribution XY ~ N (mgy, Pyy) is

Meyly = My + nyPy_l(y —my), (84)
Py, =Py — nyP;Pg;/, (85)
X-41Y (86)
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Filter Theory - Projection Theorem =
| X My P, P
Z_[Y NNQWJ’[P% PyD’ 0
& =mg + PoyP, (y — my) (88)
—1pT
Py, = P, — PoyP; 'PL (89)

Assume that X and Y are scalar.
@ What happens if we measure exactly the value we expected?
@® What happens if the measurement is an outlier?
© What if X and Y are uncorrelated?
O Can P, become negative?
@ What happens as P, or P, approach zero?

Think about it for yourself for one minute and
then discuss with the person next to you for five minutes.
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Filter Theory - Proof of Projection Theorem

M

Probability density functions

1 1 T p—1
= —3(z=mz)" P (z—m2) 90
fxy(z,y) STy oy L , (90)
1 1 Tp—1
fy(y) = e~ 3(W=my)" Py (y—my) (91)
(2m)"w /det(Py)

Probability density function of conditional normal distribution

fxy(z,y)
f zly) = XX\ Y) 92
X|Y( ) fr(y) 2
=GB g TP ) ) TR ()
(2m)"= det(P;)
1
— /436750‘ (93)
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Filter Theory - Proof of Projection Theorem =
Schur complement
D =P, — PP, ' P}, (94)
Use Woodbury matrix identity on P, !
D1 -D'P,, P!
Pl = [ “1pT p-1 p-1 C1pT hA -1 (95)
—P,P,,D P+ PP, D™ Py Py
Determinant
det(P,) 1
det(P,) = det(P,) det(D LA
€ ( ) e ( y) e ( ) det(Pz) det(D) (96)
Factor
det (P, 1
K= b (97)
(2m)n= det(Ps) (2m)"= det(D)
Exponent
Q= (z—mz)TPz_l(z—mz) - (y—my)TPy_l(y—my) (98)

= o = (mq + Poy Py (y = my)]" D7 [z = (ma + Poy Py (y — my)]
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Filter Theory - Proof of Projection Theorem

Mean and covariance of conditional distribution

E[X|Y] = Myly = My + nyPy_l(y — my)
Cov(X|Y)=P,,=D =P, — nypy—lpg;

Covariance (are the variables independent?)

Cov(X —my,,Y) = Cov(X,Y) — Py P, ' Cov(Y,Y)
=Py — PyyP,'P, =0

As X and Y are Gaussian, they are independent
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State estimation

Stochastic discrete-time system

Tip1 = Azy + Bug + v, w9 ~ N(Zo, P), ve~ N(0,Ry),
yr = Cxy + ey, et ~ N (0, Ry)

vy L xg for all s <t ande; L x4 forall s
Mean and covariance of joint distribution

e (] 2 2) =

Conditional state distributions

o|Yi1 ~ N(Zyp—1, Prje—1)
ve|Yy = @elye, Vi1 ~ N(i’ﬂta Pt|t)
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State estimation: A recursion =
Measurement equation
yr = Cay + ey, et ~ N(0, Ry), er L xg (109)
Mean
ElyiYi1] = CE[z:|Yi ] + Eled|Yia] = C2yes (110)
Covariance

Cov(y|Yi-1) = CCOV(:Ct|Yt,1)CT + C Cov(wy, e Yi—1)
+ Cov(er, 24| Yi—1)CT + Cov(er|Yi—1) = CPyy_1CT + Ry (111)
Cross-covariance
Cov(ye, |Yi—1) = C Cov(x¢|Yi—1) + C Cov(zy, €4|Yi—1) (112)
—CPy s (113)

Conditional distribution

Tt jtlt—l Pt‘t—l Pt‘t—ICT
Yo N Gy | 114
L/t] i ([C%n—l} lCPtt—l CPy 1CT + Ry (114)
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State Estimation 4: The Current Estimate

Conditional distribution

Te|ye, Yio1 = 24|y ~ N (244, Pyyy)

Use projection theorem

By = Byp—1 + Pt|t—ICT(CPt|t—1CT + Ro) "y — Cy—r),
Py = Pyy—1 — Pt|t—ICT(CPt|t—ICT + RQ)_ICPt\t—l
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State Estimation 5: Prediction Estimate
State equation

Tiy1 = Axy + Bug + v, vy~ N(0,Ry), v Lagsforalls<t
Mean

Elze1[Yi] = AE[24|Yi] + BE[us[Yi] + Efve|Y{]
== A'f:t‘t + But

Covariance

Cov(z11|Y;) = A Cov(z|Y;) AT + Cov(v|Y:) + A Cov(zy, ve|Y;)
+ Cov(vy, :Ut|Yt)AT = APWAT + Ry

Prediction estimate

ft—i—llt = A:%ﬂt "‘ B’I,Lt,
Py = Apt\tAT + R’
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Filter Theory - Kalman Filter =
Data/measurement-update (inference)
Toje = Tope—1 + Ke(ye — Cyp—1), (125)
kit = Pyy_1CT(CPyy_1CT + Ry) ™Y, (126)
Pt\t = Pt\tfl - ’ftCPt\tfl (127)
Time-update (prediction)
ﬁt#»l‘t = Ai’t‘t =+ B'LLt7 .ﬁolo = i'(), (128)
Py = APWAT + Ry, Fojo = o (129)

How do the measurements, y;, affect the covariances and the Kalman gain?
Is it intuitive that it is that way, and can we use it to our advantage?

Think about it for yourself for one minute and
then discuss with the person next to you for one minute.
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Example: Pseudocode - Kalman Filter/Simulation
Implementation

Initial values: xqg_1, Pyj—1, To

fort=0,...,N
Measurement from true system:
y; = Measurement(xy, €;)

Data update:
[Z4¢, Py, ki) = DataUpdate(y, T4s—1, Pyjt—1; C, R2)

Compute control:

uy = Actuator (i)

Apply control:

xpy1 = Simulator(wy, ug, ve)

Time update:
[‘%t+1‘t7 Pt+1‘t} = TimeUpdate(:f:t|t, Pt|t7 Uts A, B, Rl)

end
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Example: Estimation of constant
Estimate scalar constant

Tt41 = T,
Yy =x¢+ep, e € N(0,72)

Define ¢; = p; !

Dt 1
Rt = = )
pr+re 1+ rog
1 raqt ro
= 1 — K = 1 —_———— = = s
P = Pt ( 1+ T2Qt> be 1+ T2Qtpt 14 roqq
1 14 7rogs 1 t+1
Gi+1 = = =¢+—=q + )
Pt+1 2 2 T2
Tpr = B+ Ke(ye — 2t)
If go =0 (po = 00),
1 =
7 = 7 _ — i or j - — 3
Tyl = Xt + T+ t(yt t) t= 3 2 Yi
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Two different forms of the Kalman filter

Ordinary Kalman filter

B | (T | [T
Pt|t Pt+1\t Pt+1|t+1

Ordinary Kalman Filter

Predictive Kalman filter

Zy—1 Ty Ty
— —
|]%€|t—1] lpﬂt] [Pt+1|t‘|

Predictive Kalman Filter
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Ordinary Kalman filter
Time-update (prediction)
By = AZyy + Buy, Zo)0 = o,
Py = APt|tAT+R1a FPojo = Fo
Data-update (inference)
By = Typp—1 + Fe(ye — Coyp—r),
Kt = Pt\t—lcT(CPﬂt—lCT +Ry)7',
Py = Pyy—1 — kiC Py
Ordinary Kalman filter

=
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(139)
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(141)
(142)
(143)

i‘t|t = (I — /%tC)(A.QAZ't_Ht_l + Butfl) + KUt
Py = APy, 1 AT + Ry — 5,C(AP,_1,1 A" + Ry),

ki = (AP_1p1 AT + R1)CT(C(AP,_1p1 AT + R1)CT + Ry) ™!

(144)
(145)
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Predictive Kalman filter
Time-update (prediction)

Zyp1)p = AZyy + Buy, Zojo = o,
T
Pt+1|t = APﬂtA + Ry, PO\O =F

Data-update (inference)

Toje = Bope—1 + Fe(ye — Cye—1),
Kt = Pt\tflcT(CPth‘,flCT +Ry) 7,
Pt\t = Pt\t—l - HtCPt\t—l

Predictive Kalman filter

Zoy1)e = (A — KyC)2yppy + Bug + Ky,
P = APt|t71AT + Ry — KtCPt\tflATv
Ki = Aky = APy;_1CT(CPyy1CT + Ry) ™
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