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02421 - Introduction
Today’s Agenda

• Multivariate probability theory
• Stochastic state space models
• Discretization
• State estimation
• Projection theorem
• Kalman filter
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Multivariate probability theory
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02421 - Multivariate probability theory
Stochastic Vectors
Vector-valued random variables

X =
[
X1, . . . , Xn

]T
(1)

cdf: FX(x) = Pr(X1 ≤ x1, . . . , Xn ≤ xn, ) (2)
marginal cdf: FX1(x1) = Pr(X1 ≤ x1) (3)

1st and 2nd order moments

mx = E[X] =
[
E[X1], . . . ,E[Xn]

]T
(4)

Px = P T
x = Cov(X) = E[(X − mx)(X − mx)T ] ⪰ 0 (5)

Positive semi-definiteness (⪰) means that xT Pxx ≥ 0.

Covariance matrices are diagonalizable, e.g., for n = 2

Px =
[

Var(X1) Cov(X1, X2)
Cov(X2, X1) Var(X2)

]
(6)
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02421 - Multivariate probability theory
Mathematical properties of Moments: 1st and 2nd
Let A and m be a constant matrix and vector

Expectations

E[X + m] = E[X] + m

E[AX] = AE[X]
E[X + Y] = E[X] + E[Y]
E[XT AX] = Tr(A Cov(X)) + E[X]T AE[X]

(7)
(8)
(9)

(10)

Covariances

Cov(X) = E[XXT ] − E[X]E[X]T

Cov(X + m) = Cov(X)
Cov(AX) = A Cov(X)AT

Cov(X + Y) = Cov(X) + Cov(Y) + Cov(X, Y) + Cov(X, Y)T

(11)
(12)
(13)
(14)
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02421 - Multivariate probability theory
Vector Covariance and Variance
Further covariances

Cov(X, Y) = E[(X − mx)(Y − my)T ]
Cov(X, X) = Cov(X) = Px

Cov(Y, X) = Cov(X, Y)T

Cov(AX, Y) = A Cov(X, Y)
Cov(X, AY) = Cov(X, Y)AT

Cov(X + V, Y) = Cov(X, Y) + Cov(V, Y)

(15)
(16)
(17)
(18)
(19)
(20)

Principal directions of the variance (PCA)

[Λ, V] = eig(Px) (21)
PxVi = λiVi (22)

The columns in V indicate the main directions of the variation and the
elements of Λ indicate the associated variance
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Stochastic state space models
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02421 - Stochastic state space models
Stochastic State-Space Models
Discrete-time system

xk+1 = Axk + Buk + Gvk, vk ∼ N(µv, R1) (23a)
yk = Cxk + Duk + Fek, ek ∼ N(µe, R2) (23b)

Mean and covariance

µk+1 = Aµk + Buk + Gµv, µ0 = E[x0],
Pk+1 = APkAT + GR1GT , P0 = Cov(x0)

(24a)
(24b)

Note that uk is deterministic.

How do the different terms on the right-hand side of (23a) affect
the distribution of the states over time?

Think about it for yourself for one minute and
then discuss with the person next to you for one minute.

Stationary mean and covariance

µ∞ = Aµ∞ + Bu∞ + Gµv,

P∞ = AP∞AT + GR1GT

(25a)
(25b)

Stationary auto-covariance (if A has full-rank and the eigenvalues lie within
the unit circle)

rx,∞(τ) = Aτ P∞ (26)
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02421 - Stochastic state space models
Continuous-Time Stochastic Processes (SDE)

Continuous-time system

ẋ(t) = f(t, x(t), u(t)) (27)

First attempt at stochastic differential equation

ẋ(t) = f(t, x(t), u(t)) + g(t, x(t), u(t))v(t) (28)

Process noise
• v(t) ⊥ v(s) for any t ̸= s (independence)
• v(t) is continuous and has bounded variance
• E[v(t)] = 0 (zero-mean)

Theorem 4.1 in Chapter 3 of the book "Stochastic Control Theory" by
Åström (1970): E[v2(t)] = 0
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02421 - Stochastic state space models
Continuous-Time Stochastic Processes (SDE)

Stochastic difference equation

x(t + ∆t) − x(t) = f(t, x(t))∆t + g(t, x(t))v(t)∆t + o(∆t). (29)

Replace v(t)∆t with ∆w(t) = w(t + ∆t) − w(t), which has stationary
independent zero-mean increments (Wiener process)

∆x(t) = f(t, x(t))∆t + g(t, x(t))∆w(t) + o(∆t). (30)

Take the limit ∆t → 0

dx(t) = f(t, x(t)) dt + g(t, x(t)) dw(t) (31)

x(t) = x(t0) +
∫ t

t0
f(τ, x(τ)) dτ +

∫ t

t0
g(τ, x(τ)) dw(τ) (32)
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02421 - Stochastic state space models
Continuous-Time Stochastic Processes (SDE)

The two first conditional moments of the difference process

E
[
∆x(t)

∣∣ x(t)
]

= f(t, x(t))∆t + o(∆t) (33a)

Var
(
∆x(t)

∣∣ x(t)
)

= g2(t, x(t))∆t + o(∆t) (33b)

Variance of process noise increment

E
[
∆w2(t)

]
= ∆t (34)

Note that the variance is proportional to ∆t and not ∆t2

Distribution of process noise increment (increment of Wiener process)

∆w(t) = w(t + ∆t) − w(t) ∼ N(0, ∆t) (35)
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02421 - Stochastic state space models
Linear Stochastic Differential Equations
Linear stochastic differential equations

dx(t) = (A(t)x(t) + B(t)u(t)) dt + G(t) dw(t), x(t0) ∼ N(m0, P0) (36)

A(t) and B(t) are continuous functions of time

State expectation

E[x(t)] = E[x0] + E
[∫ t

t0
A(τ)x(τ) + B(τ)u(τ) dτ

]
+ E

[∫ t

t0
G(τ) dw(τ)

]
(37)

= E[x0] +
∫ t

t0
A(τ)E[x(τ)] + B(τ)u(τ) dτ = mx(t) (38)

Expected value

ṁx(t) = Amx(t) + B(t)u(t), mx(t0) = m0. (39)
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02421 - Stochastic state space models
Linear Stochastic Differential Equations

State-transition matrix

∂Φ(t; t0)
∂t

= A(t)Φ(t; t0), Φ(t0; t0) = I. (40)

Auto-covariance of x (s ≥ t)

R(s, t) = Cov(x(s), x(t)) = Φ(s, t)P (t) (41)

Covariance

Ṗ (t) = A(t)P (t) + P (t)AT (t) + G(t)GT (t), P (t0) = P0, (42)
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Discretization
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02421 - Discretization
Linear stochastic differential equation
Linear continuous-time state space model

dx(t) = (Ax(t) + Bu(t)) dt + G dw(t), dw(t) ∼ N(0, I dt), (43a)
y(t) = Cx(t) + Du(t) + Fe(t), e(t) ∼ N(me, Re) (43b)

Zero-order-hold parametrization of manipulated inputs

u(t) = uk, t ∈ [tk, tk+1[ (44)

Approximation of process noise (not rigorous)

dw(t) = w̃(t) dt, w̃(t) ∼ N(0, I) (45)

Analytical solution

x(tk+1) = eA(tk+1−tk)x(tk) +
∫ tk+1

tk

eA(tk+1−τ)Bu(tk) dτ + v(tk), (46a)

y(tk) = Cx(tk) + Du(tk) + Fe(tk), e(tk) ∼ N(me, Re) (46b)
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02421 - Discretization
Zero-order-hold parametrization and approximation

Discrete-time process noise

v(tk) =
∫ tk+1

tk

eA(tk+1−τ)Gw̃(τ) dτ (47a)

Mean

E[v(tk)] =
∫ tk+1

tk

eA(tk+1−τ)GE[w̃(τ)] dτ = 0 (48)
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02421 - Discretization
Zero-order-hold parametrization and approximation

Covariance

Cov(v(tk)) = E[v(tk)vT (tk)] (49)

= E
[ ∫ tk+1

tk

eA(tk+1−τ)Gw̃(τ) dτ

∫ tk+1

tk

w̃T (s)GT eAT (tk+1−s) ds

]
(50)

=
∫ tk+1

tk

∫ tk+1

tk

eA(tk+1−τ)GE
[
w̃(τ)w̃T (s)

]
GT eAT (tk+1−s) dτ ds (51)

=
∫ tk+1

tk

eA(tk+1−τ)GE
[
w̃(τ)w̃T (τ)

]
GT eAT (tk+1−τ) dτ (52)

=
∫ tk+1

tk

eA(tk+1−τ)GGT eAT (tk+1−τ) dτ (53)
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02421 - Discretization
Stochastic discrete-time state space models
Linear discrete-time stochastic state space model

xk+1 = Adxk + Bduk + vk, vk ∼ N(0, R1), (54)
yk = Cdxk + Dduk + ek, ek ∼ N(0, R2) (55)

System matrices in the state equation[
Ad Bd

0 I

]
= exp

([
A B
0 0

]
Ts

)
,[

Ad R̃1
0 A−T

d

]
= exp

([
A GGT

0 −AT

]
Ts

)
, R1 = R̃1AT

d[
A−1

d R̃T
1

0 AT
d

]
= exp

([
−A GGT

0 AT

]
Ts

)
, R1 = AdR̃T

1

(56)

(57)

(58)

System matrices in the measurement equation

Cd = C, Dd = D, R2 = FReF T (59)
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02421 - Discretization
Proof of discretization
Exponential form

M =
[
X Y
0 Z

]
= exp

([
F G
0 H

]
t

)
= exp(Kt) (60)

Differential form
Ṁ = KM, M(t0) = I (61)

Individual differential equations
Ẋ = FX, X(t0) = I, (62)
Ẏ = FY + GZ, Y (t0) = 0, (63)
Ż = HZ, Z(t0) = I (64)

Solutions
X = eF (t−t0)X(t0) = eF (t−t0), (65)
Z = eH(t−t0)Z(t0) = eH(t−t0), (66)

Y = eF (t−t0)Y (t0) +
∫ t

t0
eF (t−τ)GeH(τ−t0)Z(t0) dτ =

∫ t

t0
eF (t−τ)GeH(τ−t0) dτ
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02421 - Discretization
Proof of discretization

Let F = A, H = −AT , G = GGT , t0 = tk, and t = tk+1 (tk+1 − tk = Ts)

X = eATs = Ad, (67)

Z = e−AT Ts = A−T
d , (68)

Y =
∫ tk+1

tk

eA(tk+1−τ)GGT eAT (tk+1−τ) dτ e−AT Ts = R̃1 = R1AT
d (69)

The proof of the other approach is similar, but has one more step:
A change of variables in the integral
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State estimation
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02421 - State estimation
Filters and Estimation

Objective: Obtain estimate, x̂t, of the signal xt based on measurements

Y0:N =
[
y0 y1 · · · yN

]
(70)

and a state-output relation, e.g.,

yt = Cxt + et (71)

Different types of estimation

1 Smoothing (t < tN ): Use both past and future
data to estimate the states

2 Filtering: (t = tN ): Estimate the current states
based on current and past data

3 Prediction: (t > tN ): Predict future states
based on past data
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02421 - State estimation
Filter Theory

Stochastic discrete-time system

xt+1 = Axt + But + vt, x0 ∼ N(m0, P0), vt ∼ N(0, R1), (72)
yt = Cxt + et, et ∼ N(0, R2) (73)

We will only consider filtering in this lecture
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02421 - State estimation
Filter Theory - The Good Estimate

Core concepts of filter design

1 Characteristics of the signal and noise

2 Observation model (relation between y, x, e)

3 Criterion (what is a good estimate)

4 Restrictions (what information is available)

Characteristics: Nature of the states, dynamics, and noises

Observation: Relation between the output, y, the state x, and the noise

The criterion: A good estimate minimizes the expected squared deviation

E[||x − x̂||2] (74)

Restrictions: What data, Y , is available (filter, predict, or smoothe?)
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02421 - State estimation
The filter problem: A good estimator
The law of total expectation

E[g(x)] = EY [E[g(x)|Y ]] (75)

Introduce “inner” objective function

J = E[∥x − x̂∥2] (76)
= E[(x − x̂)T (x − x̂)] (77)
= EY [E[(x − x̂)T (x − x̂)|Y ]] = EY [Jin] (78)

Inner objective function

Jin = E[xT x − x̂T x − xT x̂ + x̂T x̂|Y ], (79)
= E[xT x|Y ] − x̂TE[x|Y ] − E[x|Y ]T x̂ + x̂T x̂ (80)

Optimal estimate

∇x̂Jin = 2x̂ − 2E[x|Y ] = 0, (81)
x̂ = E[x|Y ] (82)
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Projection theorem
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02421 - Projection theorem
Filter Theory - Projection Theorem

Normally distributed vector

Z =
[
X
Y

]
∼ N

([
mx

my

]
,

[
Px Pxy

P T
xy Py

])
(83)

Projection theorem: The conditional distribution X|Y ∼ N(mx|y, Px|y) is

mx|y = mx + PxyP −1
y (y − my), (84)

Px|y = Px − PxyP −1
y P T

xy, (85)
X − x̂ ⊥ Y (86)
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02421 - Projection theorem
Filter Theory - Projection Theorem

Z =
[
X
Y

]
∼ N

([
mx

my

]
,

[
Px Pxy

P T
xy Py

])
, (87)

x̂ = mx + PxyP −1
y (y − my) (88)

Px|y = Px − PxyP −1
y P T

xy (89)

Assume that X and Y are scalar.
1 What happens if we measure exactly the value we expected?

2 What happens if the measurement is an outlier?

3 What if X and Y are uncorrelated?

4 Can Px|y become negative?

5 What happens as Px or Py approach zero?

Think about it for yourself for one minute and
then discuss with the person next to you for five minutes.
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02421 - Projection theorem
Filter Theory - Proof of Projection Theorem

Probability density functions

fX,Y (x, y) = 1
(2π)nx+ny

√
det(Pz)

e− 1
2 (z−mz)T P −1

z (z−mz), (90)

fY (y) = 1
(2π)ny

√
det(Py)

e− 1
2 (y−my)T P −1

y (y−my) (91)

Probability density function of conditional normal distribution

fX|Y (x|y) = fX,Y (x, y)
fY (y) (92)

=
√

det(Py)
(2π)nx det(Pz)e− 1

2 (z−mz)T P −1
z (z−mz)+ 1

2 (y−my)T P −1
y (y−my)

= κe− 1
2 α (93)
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02421 - Projection theorem
Filter Theory - Proof of Projection Theorem
Schur complement

D = Px − PxyP −1
y P T

xy (94)
Use Woodbury matrix identity on P −1

z

P −1
z =

[
D−1 −D−1PxyP −1

y

−P −1
y P T

xyD−1 P −1
y + P −1

y P T
xyD−1PxyP −1

y

]
(95)

Determinant

det(Pz) = det(Py) det(D) ⇔ det(Py)
det(Pz) = 1

det(D) (96)

Factor

κ =
√

det(Py)
(2π)nx det(Pz) = 1√

(2π)nx det(D)
(97)

Exponent
α = (z − mz)T P −1

z (z − mz) − (y − my)T P −1
y (y − my) (98)

= [x − (mx + PxyP −1
y (y − my))]T D−1[x − (mx + PxyP −1

y (y − my)]
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02421 - Projection theorem
Filter Theory - Proof of Projection Theorem

Mean and covariance of conditional distribution

E[X|Y ] = mx|y = mx + PxyP −1
y (y − my) (100)

Cov(X|Y ) = Px|y = D = Px − PxyP −1
y P T

xy (101)

Covariance (are the variables independent?)

Cov(X − mx|y, Y ) = Cov(X, Y ) − PxyP −1
y Cov(Y, Y ) (102)

= Pxy − PxyP −1
y Py = 0 (103)

As X and Y are Gaussian, they are independent
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Kalman filter
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02421 - Kalman filter
State estimation

Stochastic discrete-time system

xt+1 = Axt + But + vt, x0 ∼ N(x̂0, P0), vt ∼ N(0, R1), (104)
yt = Cxt + et, et ∼ N(0, R2) (105)

vt ⊥ xs for all s ≤ t and et ⊥ xs for all s

Mean and covariance of joint distribution[
xt

yt

]
|Yt−1 ∼ N

([
×
×

]
,

[
× ×
× ×

])
, Yt =

[
Yt−1
yt

]
(106)

Conditional state distributions

xt|Yt−1 ∼ N(x̂t|t−1, Pt|t−1) (107)
xt|Yt = xt|yt, Yt−1 ∼ N(x̂t|t, Pt|t) (108)
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02421 - Kalman filter
State estimation: A recursion
Measurement equation

yt = Cxt + et, et ∼ N(0, R2), et ⊥ xs (109)

Mean

E[yt|Yt−1] = CE[xt|Yt−1] + E[et|Yt−1] = Cx̂t|t−1 (110)

Covariance

Cov(yt|Yt−1) = C Cov(xt|Yt−1)CT + C Cov(xt, et|Yt−1)
+ Cov(et, xt|Yt−1)CT + Cov(et|Yt−1) = CPt|t−1CT + R2 (111)

Cross-covariance

Cov(yt, xt|Yt−1) = C Cov(xt|Yt−1) + C Cov(xt, et|Yt−1) (112)
= CPt|t−1 (113)

Conditional distribution[
xt

yt

]
|Yt−1 ∼ N

([
x̂t|t−1

Cx̂t|t−1

]
,

[
Pt|t−1 Pt|t−1CT

CPt|t−1 CPt|t−1CT + R2

])
(114)
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02421 - Kalman filter
State Estimation 4: The Current Estimate

Conditional distribution

xt|yt, Yt−1 = xt|Yt ∼ N(x̂t|t, Pt|t) (115)

Use projection theorem

x̂t|t = x̂t|t−1 + Pt|t−1CT (CPt|t−1CT + R2)−1(yt − Cx̂t|t−1), (116)
Pt|t = Pt|t−1 − Pt|t−1CT (CPt|t−1CT + R2)−1CPt|t−1 (117)
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02421 - Kalman filter
State Estimation 5: Prediction Estimate
State equation

xt+1 = Axt + But + vt, vt ∼ N(0, R1), vt ⊥ xs for all s ≤ t (118)

Mean

E[xt+1|Yt] = AE[xt|Yt] + BE[ut|Yt] + E[vt|Yt] (119)
= Ax̂t|t + But (120)

Covariance

Cov(xt+1|Yt) = A Cov(xt|Yt)AT + Cov(vt|Yt) + A Cov(xt, vt|Yt) (121)
+ Cov(vt, xt|Yt)AT = APt|tA

T + R1 (122)

Prediction estimate

x̂t+1|t = Ax̂t|t + But, (123)
Pt+1|t = APt|tA

T + R1 (124)
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02421 - Kalman filter
Filter Theory - Kalman Filter
Data/measurement-update (inference)

x̂t|t = x̂t|t−1 + κt(yt − Cx̂t|t−1),
κt = Pt|t−1CT (CPt|t−1CT + R2)−1,

Pt|t = Pt|t−1 − κtCPt|t−1

(125)
(126)
(127)

Time-update (prediction)

x̂t+1|t = Ax̂t|t + But, x̂0|0 = x̂0,

Pt+1|t = APt|tA
T + R1, P0|0 = P0

(128)
(129)

How do the measurements, yt, affect the covariances and the Kalman gain?
Is it intuitive that it is that way, and can we use it to our advantage?

Think about it for yourself for one minute and
then discuss with the person next to you for one minute.
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02421 - Kalman filter
Example: Pseudocode - Kalman Filter/Simulation
Implementation
Initial values: x0|−1, P0|−1, x0
—————————————————————————
for t = 0, . . . , N

Measurement from true system:
yt = Measurement(xt, et)
————————————————————————
Data update:
[x̂t|t, Pt|t, κt] = DataUpdate(yt, x̂t|t−1, Pt|t−1; C, R2)
————————————————————————
Compute control:
ut = Actuator(x̂t|t)
Apply control:
xt+1 = Simulator(xt, ut, vt)
————————————————————————
Time update:
[x̂t+1|t, Pt+1|t] = TimeUpdate(x̂t|t, Pt|t, ut; A, B, R1)

end
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02421 - Kalman filter
Example: Estimation of constant
Estimate scalar constant

xt+1 = xt, (130)
yt = xt + et, et ∈ N(0, r2) (131)

Define qt = p−1
t

κt = pt

pt + r2
= 1

1 + r2qt
, (132)

pt+1 = (1 − κt)pt =
(

1 − 1
1 + r2qt

)
pt = r2qt

1 + r2qt
pt = r2

1 + r2qt
, (133)

qt+1 = 1
pt+1

= 1 + r2qt

r2
= qt + 1

r2
= q0 + t + 1

r2
, (134)

x̂t+1 = x̂t + κt(yt − x̂t) (135)

If q0 = 0 (p0 = ∞),

x̂t+1 = x̂t + 1
1 + t

(yt − x̂t) or x̂t = 1
t

t−1∑
i=0

yi (136)
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02421 - Kalman filter
Two different forms of the Kalman filter

Ordinary Kalman filter[
x̂t|t
Pt|t

]
→
[

x̂t+1|t
Pt+1|t

]
→
[

x̂t+1|t+1
Pt+1|t+1

]
︸ ︷︷ ︸

Ordinary Kalman Filter

(137)

Predictive Kalman filter[
x̂t|t−1
Pt|t−1

]
→
[

x̂t|t
Pt|t

]
→
[

x̂t+1|t
Pt+1|t

]
︸ ︷︷ ︸

Predictive Kalman Filter

(138)
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Ordinary Kalman filter
Time-update (prediction)

x̂t+1|t = Ax̂t|t + But, x̂0|0 = x̂0, (139)
Pt+1|t = APt|tA

T + R1, P0|0 = P0 (140)
Data-update (inference)

x̂t|t = x̂t|t−1 + κt(yt − Cx̂t|t−1), (141)
κt = Pt|t−1CT (CPt|t−1CT + R2)−1, (142)

Pt|t = Pt|t−1 − κtCPt|t−1 (143)
Ordinary Kalman filter

x̂t|t = (I − κtC)(Ax̂t−1|t−1 + But−1) + κtyt,

Pt|t = APt−1|t−1AT + R1 − κtC(APt−1|t−1AT + R1),
κt = (APt−1|t−1AT + R1)CT (C(APt−1|t−1AT + R1)CT + R2)−1

(144)
(145)
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Predictive Kalman filter
Time-update (prediction)

x̂t+1|t = Ax̂t|t + But, x̂0|0 = x̂0, (147)
Pt+1|t = APt|tA

T + R1, P0|0 = P0 (148)

Data-update (inference)

x̂t|t = x̂t|t−1 + κt(yt − Cx̂t|t−1), (149)
κt = Pt|t−1CT (CPt|t−1CT + R2)−1, (150)

Pt|t = Pt|t−1 − κtCPt|t−1 (151)

Predictive Kalman filter

x̂t+1|t = (A − KtC)x̂t|t−1 + But + Ktyt,

Pt+1|t = APt|t−1AT + R1 − KtCPt|t−1AT ,

Kt = Aκt = APt|t−1CT (CPt|t−1CT + R2)−1

(152)
(153)
(154)
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Questions?
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