

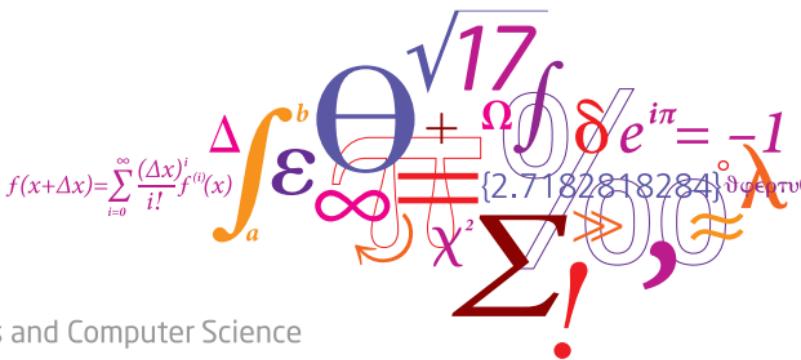
Stochastic Adaptive Control (02421)

Lecture 7

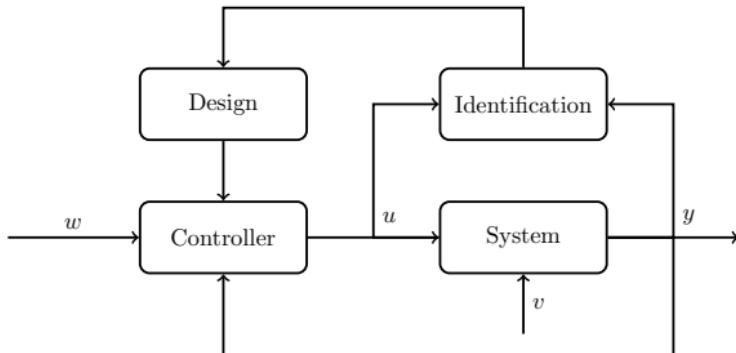
Tobias K. S. Ritschel

Assistant Professor

Section for Dynamical Systems, DTU Compute



- ① ARX models
- ② ARX prediction + control
- ③ ARX estimation
- ④ ARX model validation
+ adaptive control
- ⑤ ARMAX control
- ⑥ ARMAX estimation
+ adaptive control
- ⑦ Systems and control theory
- ⑧ Stochastic systems + Kalman filtering
- ⑨ SS estimation (recursive) + control
- ⑩ SS control
- ⑪ SS estimation (batch)
- ⑫ SS estimation (recursive)
- ⑬ SS nonlinear control



Systems Theory

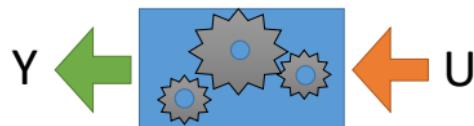
- Continuous- and discrete-time internal and external models
- Linearization
- Discretization
- Transformations, stability, reachability, and observability

Dynamical systems

We describe dynamical systems in two ways:

Internal Models

- States of the system
- Differential equations



External Models

- Transfer functions
- Zeros and poles

Focus in this course

- Discrete-time state space models
- Discrete-time external models

Nonlinear/continuous-time systems

- Linearize
- Discretize

Dynamical Systems: ODE and Algebraic Equation (Internal)

State space model

$$x(t_0) = x_0, \quad (1a)$$

$$\dot{x}(t) = \frac{\partial x}{\partial t}(t) = f(x(t), u(t); \theta) = A(\theta)x(t) + B(\theta)u(t) \quad (1b)$$

Analytical solution

$$\begin{aligned} x(t) &= x_0 + \int_{t_0}^t f(x(\tau), u(\tau); \theta) d\tau \\ &= e^{A(\theta)(t-t_0)}x_0 + \int_{t_0}^t e^{A(\theta)(\tau-t_0)}B(\theta)u(\tau) d\tau. \end{aligned} \quad (2)$$

Output equation

$$y(t) = g(x(t), u(t); \theta) = C(\theta)x(t) + D(\theta)u(t) \quad (3)$$

Steady state (x^*, u^*)

$$f(x^*, u^*; \theta) = 0. \quad (4)$$

Dynamical systems: ODE (External)

Inhomogeneous N -th order linear time-invariant external model

$$\sum_{k=0}^N \alpha_k \frac{\partial^k y}{\partial t^k} = \sum_{k=0}^M \beta_k \frac{\partial^k u}{\partial t^k}, \quad \alpha_k, \beta_k \in \mathbb{R} \quad (5)$$

Analytical solution

$$y(t) = h(t) * u(t) = \int_{-\infty}^{\infty} h(s)u(t-s) \, ds, \quad (6)$$

$h(t)$ is the impulse response

Laplace transformed variables

$$Y(s) = H(s)U(s), \quad U(s) = \mathcal{L}(u(t)), \quad (7)$$

where

$$\begin{aligned}
 H(s) &= \mathcal{L}(h(t)) = \int_{-\infty}^{\infty} h(s)e^{-st} \, ds \\
 &= C(\theta) (sI - A(\theta))^{-1} B(\theta) + D(\theta).
 \end{aligned}$$

(8)

Time and Frequency Domain

Continuous-time time-domain

 t

$$y(t) = h(t) * u(t)$$

$$\frac{dy}{dt}(t) = sY(s)$$

 $s = a + iw$

$$Y(s) = H(s)U(s)$$

$$H(s) = \frac{\sum_{k=0}^M \beta_k s^k}{\sum_{k=0}^N \alpha_k s^k}$$

Discrete-time time-domain

$$t_k = kT_s$$

$$y_k = H_d(q)u_k$$

$$u_k = u(t_k) = u(kT_s)$$

$$u_{k-1} = q^{-1}u_k$$

Continuous-time frequency-domain

 $s = a + iw$

$$Y(s) = H(s)U(s)$$

Discrete-time frequency-domain

$$z = e^{T_s s}$$

$$Y(z) = H_z(z)U(z)$$

$$H_d(q) = H_z(q)$$

where T_s is the sampling time

Linearization

Linearize around steady state (x^*, u^*)

$$f(x^*, u^*; \theta) = 0 \quad (9)$$

Linearization (truncated Taylor expansion)

$$\dot{x} = f(x^*, u^*; \theta) + \frac{\partial f}{\partial x}(x^*, u^*; \theta)(x - x^*) + \frac{\partial f}{\partial u}(x^*, u^*; \theta)(u - u^*), \quad (10a)$$

$$y = g(x^*, u^*; \theta) + \frac{\partial g}{\partial x}(x^*, u^*; \theta)(x - x^*) + \frac{\partial g}{\partial u}(x^*, u^*; \theta)(u - u^*) \quad (10b)$$

Linearization

Deviation variables

$$X = x - x^*, \quad (11a)$$

$$U = u - u^*, \quad (11b)$$

$$Y = y - y^*, \quad y^* = g(x^*, u^*; \theta) \quad (11c)$$

System matrices

$$A(\theta, x^*, u^*) = \frac{\partial f}{\partial x}(x^*, u^*; \theta), \quad B(\theta, x^*, u^*) = \frac{\partial f}{\partial u}(x^*, u^*; \theta), \quad (12a)$$

$$C(\theta, x^*, u^*) = \frac{\partial g}{\partial x}(x^*, u^*; \theta), \quad D(\theta, x^*, u^*) = \frac{\partial g}{\partial u}(x^*, u^*; \theta) \quad (12b)$$

Linear time invariant (LTI) system

$$\dot{X} = A(\theta, x^*, u^*)X + B(\theta, x^*, u^*)U, \quad (13a)$$

$$Y = C(\theta, x^*, u^*)X + D(\theta, x^*, u^*)U \quad (13b)$$

Discretization

Discretization: Sampling of Continuous Systems

Sampling

$$x_k = x(t_0 + T_s k), \quad y_k = y(t_0 + T_s k) \quad (14)$$

Zero-order hold (ZOH) parametrization: Piecewise constant input, u

$$u(t) = u_k, \quad kT_s \leq t < (k+1)T_s \quad (15)$$

Shannon's Sampling Theorem: If the highest frequency of the system is w_0 , then a sampling frequency of at least the double is needed for reconstruction

$$w_s \geq 2w_0, \quad w_s = \frac{2\pi}{T_s} \quad (16)$$

Choosing based on desired samples per rise time:

$$T_s = t_r/N_r, \quad N_r \in [2, 4] \quad (17)$$

Discretization of state space models

Analytical solution for continuous-time state space models

$$x(t_{k+1}) = e^{A(\theta)(t_{k+1}-t_k)} x(t_k) + \int_{t_k}^{t_{k+1}} e^{A(\theta)(t_{k+1}-\tau)} B(\theta) u(\tau) d\tau, \quad (18a)$$

$$y(t_k) = C(\theta)x(t_k) + D(\theta)u(t_k). \quad (18b)$$

Discrete-time state space models

$$x_{k+1} = A_d(\theta, T_s)x_k + B_d(\theta, T_s)u_k, \quad (19)$$

$$y_k = C(\theta)x_k + D(\theta)u_k \quad (20)$$

Discrete-time matrices

$$A_d(\theta, T_s) = e^{A(\theta)T_s}, \quad B_d(\theta, T_s) = \int_0^{T_s} e^{A(\theta)\tau} B(\theta) d\tau \quad (21)$$

Matrix exponential

$$\begin{bmatrix} A_d(\theta, T_s) & B_d(\theta, T_s) \\ 0 & I \end{bmatrix} = \exp \left(\begin{bmatrix} A(\theta) & B(\theta) \\ 0 & 0 \end{bmatrix} T_s \right) \quad (22)$$

Discretization of transfer function models

Continuous-time transfer function model (frequency domain)

$$y(s) = H(s)u(s), \quad H(s) = \frac{b_0 s^n + b_1 s^{n-1} + \cdots + b_n}{s^n + a_1 s^{n-1} + \cdots + a_n} \quad (23)$$

Discretization with Z-transform (use look-up tables)

$$H_z(z) = (1 - z^{-1}) \mathcal{Z} \left(\frac{H(s)}{s} \right), \quad z \in \mathbb{C} \quad (24)$$

Discrete-time transfer function model (frequency domain)

$$y(z) = H_z(z)u(z) = \frac{\bar{b}_0 z^n + \bar{b}_1 z^{n-1} + \cdots + \bar{b}_n}{z^n + \bar{a}_1 z^{n-1} + \cdots + \bar{a}_n} u(z) \quad (25)$$

Discrete-time transfer function model (time domain) - recall that

$$H_d(q) = H_z(q)$$

$$y_t = H_d(q)u_t = \frac{\bar{b}_0 + \bar{b}_1 q^{-1} + \cdots + \bar{b}_n q^{-n}}{1 + \bar{a}_1 q^{-1} + \cdots + \bar{a}_n q^{-n}} u_t \quad (26)$$

Discrete-time transfer function model (time domain) - difference equations

$$y_t + \bar{a}_1 y_{t-1} + \cdots + \bar{a}_n y_{t-n} = \bar{b}_0 u_t + \bar{b}_1 u_{t-1} + \cdots + \bar{b}_m u_{t-n} \quad (27)$$

Transforms, stability, reachability, observability, etc.

Consider the factor terms of transfer functions:

$$H(s) = \frac{B(s)}{A(s)} = \frac{b_0 s^n + b_1 s^{n-1} + \cdots + b_n}{s^n + a_1 s^{n-1} + \cdots + a_n} = K_0 \frac{\prod_i (s - z_i)}{\prod_i (s - p_i)} \quad (28)$$

$$H_d(q) = \frac{B_d(q^{-1})}{A_d(q^{-1})} = \frac{b_0 + b_1 q^{-1} + \cdots + b_{n_b} q^{-n_b}}{1 + a_1 q^{-1} + \cdots + a_{n_a} q^{-n_a}} = K_{d,0} \frac{\prod_i (q - z_{d,i})}{\prod_i (q - p_{d,i})}$$

Transfer function properties

Zeros: $H(z_i) = 0$, (29)

Poles: $|H(p_i)| = \infty$, (30)

DC-gain: $H(s = 0), H_z(z = 1) = H_d(q = 1)$ (31)

Poles of external models = eigenvalues of internal models

$$\mathcal{C}(A) = A(s) \quad (32)$$

Instability criteria

Continuous: $0 < \text{Re}(p_c)$ (33a)

Discrete: $1 < |p_d|$ (33b)

Poles of discrete- (p_d) and continuous-time (p_c) systems are related

$$p_d = e^{p_c T_s} \quad (34)$$

Number of zeros m and poles n

Continuous: $m \leq n$ (35)

Discrete:
$$\begin{cases} m = n - 1 & \text{(for } D = 0\text{)} \\ m = n & \text{otherwise} \end{cases}$$
 (36)

Zeros of discrete- (p_d) and continuous-time (p_c) systems are related

$$z_d = e^{z_c T_s} (37)$$

Zero-pole cancellation

$$z_i = p_i \quad \Rightarrow \quad H(s) = \frac{s - z_i}{(s - p_i)(s - p_1)} = \frac{1}{(s - p_1)} (38)$$

Transforms - Similarity Transform and Diagonal Transform

Change internal state variables

$$z_t = \Upsilon x_t, \quad (39)$$

$$z_{t+1} = \Upsilon A \Upsilon^{-1} z_t + \Upsilon B u_t, \quad (40)$$

$$y_t = C \Upsilon^{-1} z_t + D u_t \quad (41)$$

The external model is unaffected by the transformation

$$H(q) = C \Upsilon^{-1} (qI - \Upsilon A \Upsilon^{-1})^{-1} \Upsilon B + D = C(qI - A)^{-1} B + D \quad (42)$$

Example: Diagonal transform

$$\Lambda = Q^{-1} A Q = \begin{bmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{bmatrix} \quad (43)$$

The columns of Q are the right eigenvectors of A

Transform external to internal models

External system

$$y_t + a_1 y_{t-1} + \cdots + a_n y_{t-n} = b_0 u_t + b_1 u_{t-1} + \cdots + b_n u_{t-n} \quad (44)$$

Transfer function

$$H(q) = \frac{B(q^{-1})}{A(q^{-1})} = \frac{b_0 + b_1 q^{-1} + \cdots + b_n q^{-n}}{1 + a_1 q^{-1} + \cdots + a_n q^{-n}} = \sum_{i=0}^{\infty} h_i q^{-i} \quad (45)$$

Minimal representation: An internal model with minimum number of states, e.g., the 4 canonical forms

Transforms - Canonical forms

Controller canonical form

$$A_c = \begin{bmatrix} -a_1 & \cdots & -a_{n-1} & -a_n \\ 1 & \cdots & 0 & 0 \\ \ddots & & \vdots & \vdots \\ 0 & \cdots & 1 & 0 \end{bmatrix} \quad B_c = \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix} \quad (46)$$

$$C_c = [b_1 - b_0 a_1, b_2 - b_0 a_2, \dots, b_n - b_0 a_n] \quad D_c = b_0 \quad (47)$$

Observer canonical form

$$A_o = \begin{bmatrix} -a_1 & 1 & \cdots & 0 \\ \vdots & & \ddots & \\ -a_{n-1} & 0 & \cdots & 1 \\ -a_n & 0 & \cdots & 0 \end{bmatrix} \quad B_o = \begin{bmatrix} b_1 - b_0 a_1 \\ b_2 - b_0 a_2 \\ \vdots \\ b_n - b_0 a_n \end{bmatrix} \quad (48)$$

$$C_o = [1, 0, \dots, 0] \quad D_o = b_0 \quad (49)$$

Transforms - Canonical forms

Controllability canonical form

$$A_{co} = \begin{bmatrix} 0 & \cdots & 0 & -a_n \\ 1 & \cdots & 0 & -a_{n-1} \\ \ddots & & & \vdots \\ 0 & \cdots & 1 & -a_1 \end{bmatrix} \quad B_{co} = \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix} \quad (50)$$

$$C_{co} = (h_1, h_2, \dots, h_n) \quad D_{co} = h_0 \quad (51)$$

Observability canonical form

$$A_{ob} = \begin{bmatrix} -a_1 & \cdots & -a_{n-1} & -a_n \\ 1 & \cdots & 0 & 0 \\ \ddots & & \vdots & \vdots \\ 0 & \cdots & 1 & 0 \end{bmatrix} \quad B_{ob} = \begin{bmatrix} h_1 \\ h_2 \\ \vdots \\ h_n \end{bmatrix} \quad (52)$$

$$C_{ob} = (1, 0, \dots, 0) \quad D_{ob} = h_0 \quad (53)$$

Relations between canonical forms

$$A_c = A_o^T, \quad A_{co} = A_{ob}^T, \quad (54)$$

$$B_c = C_o^T, \quad B_{co} = C_{ob}^T, \quad (55)$$

$$B_o = C_c^T, \quad B_{ob} = C_{co}^T, \quad (56)$$

$$D_c = D_o = D_{co} = D_{ob} = b_0 = h_0 \quad (57)$$

Transforms - Direct realization

General external model

$$y_t + a_1 y_{t-1} + \cdots + a_{n_a} y_{t-n_a} = b_0 u_t + b_1 u_{t-1} + \cdots + b_{n_b} u_{t-n_b} \quad (58)$$

State

$$x_t = \begin{bmatrix} -y_{t-1} & \cdots & -y_{t-n_a} & u_{t-1} & \cdots & u_{t-n_b} \end{bmatrix} \quad (59)$$

Non-minimal internal model

$$A_d = \left[\begin{array}{ccccccccc} -a_1 & \cdots & -a_{n_a-1} & -a_{n_a} & -b_1 & \cdots & -b_{n_b-1} & -b_{n_b} \\ 1 & & 0 & 0 & 0 & \cdots & 0 & 0 \\ \ddots & & \vdots & \vdots & \vdots & & \vdots & \vdots \\ 0 & & 1 & 0 & 0 & \cdots & 0 & 0 \\ 0 & \cdots & 0 & 0 & 0 & \cdots & 0 & 0 \\ \hline 0 & \cdots & 0 & 0 & 1 & & 0 & 0 \\ \vdots & & \vdots & \vdots & \ddots & & \vdots & \vdots \\ 0 & \cdots & 0 & 0 & 0 & & 1 & 0 \end{array} \right], \quad B_d = \begin{bmatrix} -b_0 \\ 0 \\ \vdots \\ 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}, \quad (60)$$

$$C_d = (a_1, \dots, a_{n_a}, b_1, \dots, b_{n_b}),$$

$$D_d = b_0 \quad (61)$$

Controllability and reachability

Definition

A system is said to be controllable, if it is possible to move the system from an arbitrary state value to the origin in finite time.

Definition

A system is said to be reachable, if it is possible to move the system from one arbitrary state value to another arbitrary state in finite time.

Reachability \Rightarrow controllability, not the reverse

An n -state system is reachable if and only if the reachability matrix W_c has full rank ($k \geq n$)

$$W_c(k) = \begin{bmatrix} B & AB & A^2B & \dots & A^{k-1}B \end{bmatrix} \quad (62)$$

The reachability Gramian is given by $\Sigma_k^c = W_c(k)W_c^T(k)$

k -step input sequence (not unique)

$$x_k = A^k x_0 + W_c(k) U_{k-1}, \quad (63)$$

$$U_{k-1} = \begin{bmatrix} u_{k-1} & u_{k-2} & \cdots & u_0 \end{bmatrix}^T \quad (64)$$

brings the system from any x_0 to a desired state, \bar{x}

Sequence with minimal control usage

$$\min_{u_{k-1}, \dots, u_0} \sum_{j=0}^{k-1} u_j^T u_j \quad (65a)$$

Solution

$$U_{k-1}^* = W_c^T(k) (\Sigma_k^c)^{-1} [\bar{x} - A^k x_0] \quad (66)$$

Continuous-time system

$$\dot{x} = Ax + Bu, \quad (67)$$

Reachability Gramian

$$\dot{\Sigma}^c = A\Sigma^c + \Sigma^c A^T + BB^T \quad (68a)$$

$$\Sigma^c(t_0) = 0. \quad (68b)$$

The system is reachable if Σ^c is invertible for any $t \geq t_0$

Note: For continuous-time systems, reachability \Leftrightarrow controllability

Observability and constructability

Definition:

A system is observable if any initial state can be estimated using only the information from the following outputs and inputs.

Definition:

A system is constructable if, for any possible evolution of the state and control variables, the current state can be estimated using only the information from outputs.

Observability \Rightarrow constructability, but the reverse is not true

An n -state system is observable if and only if the observability matrix W_o has full rank ($k \geq n$)

$$W_o(k) = \begin{bmatrix} C^T & (CA)^T & (CA^2)^T & \dots & (CA^{k-1})^T \end{bmatrix}^T \quad (69)$$

Observability Gramian: $\Sigma_k^o = W_o(k)W_o^T(k)$

Continuous-time system

$$\dot{x} = Ax + Bu, \quad (70a)$$

$$y = Cx + Du \quad (70b)$$

Observability Gramian

$$\dot{\Sigma}^o = A\Sigma^o + \Sigma^o A^T + C^T C \quad (71a)$$

$$\Sigma^o(t_0) = 0. \quad (71b)$$

The system is observable if Σ^o is invertible for any $t \geq t_0$

Several definitions of stability exist: e.g., marginal and asymptotic stability

Consider a steady state x_s of the system

- **Marginally stable:** x_s is said to be (marginally) stable if any solution trajectory $\{x(t), t \in [t_0, \infty]\}$ is bounded.
- **Asymptotically stable:** x_s is said to be asymptotically stable if any solution trajectory converges to x_s ($x(t) \rightarrow x_s$) as time progresses ($t \rightarrow \infty$).

A system which is not stable (i.e., not marginally stable) is unstable

A system is BIBO stable if the output is bounded for any bounded input

Note: Asymptotic stability \Rightarrow BIBO stability

A state space model is stable if and only if all of the following requirements are fulfilled

Continuous-time

Marginally stable:

- $\text{Re}\{\text{eig}(A)\} \leq 0$
- $\forall \text{Re}\{\text{eig}(A)_i\} = 0$, the AM=GM

Asymptotically stable:

- $\text{Re}\{\text{eig}(A)\} < 0$
- $|\text{eig}(A)| < 1$

Discrete-time

- $|\text{eig}(A)| \leq 1$
- $\forall |\text{eig}(A)_i| = 1$, the AM=GM

*AM = Algebraic multiplicity (# of identical eigenvalues)

**GM = geometric multiplicity (# of associated eigenvectors)

Steady state of nonlinear system

$$\dot{x} = f(x_s, u_s) = 0 \quad x_s = f(x_s, u_s), \quad (72)$$

Approximate behavior around steady state using linearization

$$A = \frac{\partial f}{\partial x}(x_s, u_s). \quad (73)$$

The system is locally stable (marginal or asymptotic) around the stationary point if the requirements on the previous slide are fulfilled

Questions?