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Lecture Plan

@ ARX models
@ ARX prediction + control
© ARX estimation

@ ARX model validation
+ adaptive control

® ARMAX control

® ARMAX estimation
+ adaptive control

=
—
=

M

@ Systems and control theory

@ Stochastic systems + Kalman filtering
© SS estimation (recursive) + control
@ SS control

® SS estimation (batch)

® SS estimation (recursive)

@® SS nonlinear control

Design

w

Identification

—

Controller

System

T
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Today’s Agenda

Systems Theory

® Continuous- and discrete-time internal and external models
® | inearization

® Discretization

® Transformations, stability, reachability, and observability
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Dynamical Systems: External and Internal Models
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We describe dynamical systems in two ways:

Internal Models
® States of the system

e Differential equations

External Models
® Transfer functions

® Zeros and poles

Focus in this course
® Discrete-time state space models

® Discrete-time external models
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Nonlinear/continuous-time systems
® Linearize

® Discretize
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Dynamical Systems: ODE and Algebraic Equation (Internal) =

State space model

z(to) = zo, (1a)

(t) = ?;(t) = [(x(t), u(t);0) = A(0)z(t) + B(O)u(t) (1b)

Analytical solution

x(t) = xo + tf(a;(T),u(T); 0)dr

to

t
= A0 t—t) gy 1 [ AOT—t0) B()u(T) dr. (2)
to

Output equation

f(z*,u*;6)=0. (4)
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Dynamical systems: ODE (External)

Inhomogeneous N-th order linear time-invariant external model

Zakatk Zﬁkatk, alﬁBkER
Analytical solution
y(t) = / h(s)u(t — s)ds,

h(t) is the impulse response

Laplace transformed variables
Y(s)=H(s)U(s),  U(s) = L(u(t)),

where

H(s) = / h(s)e ' ds
=C(0)(sI — A(0)) " B(9) + D().
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Time and Frequency Domain

Continuous-time time-domain

t

y(t) = h(t) * u(?)
dy
3 (8 =sY(s)

Discrete-time time-domain

tr = kT

Yk = Ha(q)uk

up = u(ty) = uw(kTy)
Up—1 = q Uk

where T is the sampling time
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Continuous-time frequency-domain

s=a-+iw
Y(s)=H(s)U(s)
M
> Brs”
H(s) = 75—
3 sk
k=0

Discrete-time frequency-domain
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Linearization

Linearize around steady state (x*,u*)
f(z*,u*;0) =0

Linearization (truncated Taylor expansion)

]
=

M

(9)

x_f(mauae)_{_ax( 7Ua9)(x_x)+au( 7ua‘9)(u_u)7 (103)
y=g(a" u6) + SL (@ us0)(w — a7) + 2L (", w i 0) (u — ) (10b)
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Linearization
Deviation variables

X =x—1",
U=u-—u",
Y=y-y, y"=g(z*,u";0)

System matrices

A2ty = Dt o), B = Y
C(Q,m*,u*)—gg( *Lu;0), D(@,m*,u*)—gg
x U

Linear time invariant (LTI) system

X = A0, 2", u*)X + B(0, 2", u")U,
Y =C0,z%,u")X + D0, 2", u*)U
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(11c)
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(12b)
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Discretization: Sampling of Continuous Systems =
Sampling
x = x(to + Tsk), Yk = y(to + Tsk) (14)
Zero-order hold (ZOH) parametrization: Piecewise constant input, u
u(t) = ug, ETs <t < (k+1)T (15)

Shannon’s Sampling Theorem: If the highest frequency of the system is
wp, then a sampling frequency of at least the double is needed for
reconstruction

_271'

wg > 2wy, Ws = T (16)
Choosing based on desired samples per rise time:
Ts = tr/Nra N, € [2a4] (17)
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Discretization of state space models
Analytical solution for continuous-time state space models

tet1

':C(thrl) _ eA(e)(tk-H—tk)x(tk) + eA(@)(tk+1—T)B(9)u<7_) dr,

y(te) = C(O)z(t) + D(0)u(ty)-

Discrete-time state space models

xpy1 = Ag(0, Ts)zy, + Ba(0, Ts)uy,
yr = C(0)xy, + D(0)ug

Discrete-time matrices
Ts
A0, T) =T B0, = [ MO B(6)ar
0

Matrix exponential

Ad0,T) Bd@Ts)]:equA(") B(@)] Tg)
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Discretization of transfer function models
Continuous-time transfer function model (frequency domain)

o bos" 4 bys" 4 4 by

M

=H H 23
) = Hishuls), H(s) = " T E I gy
Discretization with Z-transform (use look-up tables)
H
Ha(z) = (1— z—l)z(is)), zeC (24)

Discrete-time transfer function model (frequency domain)

I_)()Zn + 512’"—1 + -+ Bn
— H, - 2
) = Ho(u(e) = WM

Discrete-time transfer function model (time domain) - recall that
Ha(q) = H-(q)

_botbig b
L+agt+--+aqg™
Discrete-time transfer function model (time domain) - difference equations

yr = Ha(q)ut uy (26)

Y +a1yi—1 + - -+ aQpYi—n = (_)()ut + l_)lut_l + -+ l_)mut_n (27)
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Poles and Zeros =
Consider the factor terms of transfer functions:
B bos™ + bis" L4 ... 1 b IL(s — z:
H(s) = (s) _ 208 T 0s : + T On :KOM (28)
A(s)  s"+as" 4 H4ap IL;(s — pi)
By(q7t bo+big 4+ +b,qg ™ 11, ;
Halq) = d(Q_l) _bo+ 1Q_1 +--+ an—n ~ Kug i(q — 24,)
Aglg7t)  14aigt 4+ +ap,q " IL;(q — pa,)
Transfer function properties
Zeros: H(z;) =0, (29)
Poles: |H(p;)| = oo, (30)
DC-gain: H(s =0),H.(z =1)=Hy(g=1) (31)
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Poles
Poles of external models = eigenvalues of internal models
C(A) = A(s) (32)
Instability criteria
Continuous: 0 < Re(p,) (33a)
Discrete: 1 < |py| (33b)
Poles of discrete- (pg) and continuous-time (p.) systems are related
pa = el (34)
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Zeros

Number of zeros m and poles n

Continuous: m < n
m=n—1 (for D=0)

m=n otherwise

Discrete: {

Zeros of discrete- (pg) and continuous-time (p.) systems are related

zq = %75

Zero-pole cancellation

S — 2z _ 1
zi=p; = H(s)= (s —pi)(s —p1) N (s —p1)

19 DTU Compute Stochastic Adaptive Control

=
=
=

M

22.3.2025



Transforms - Similarity Transform and Diagonal Transform 3=
Change internal state variables

Zt = Ta;t, (39)
zr1 = YAY 'z + Y Buy, (40)
yr = CY 'z + Dy (41)

The external model is unaffected by the transformation
H(q)=CY Yql —=YAY Y ' YB4+D=C(qI —A)™'B+D (42)

Example: Diagonal transform

M O -0
0 X -+ O

A=Q'AQ=|. | . : (43)
0 0 - A\

The columns of @ are the right eigenvectors of A
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Transform external to internal models

M

External system
Ye +a1yi—1 + -+ apYi—n = bous + brug_1 + - -+ + bpus_yp (44)
Transfer function

Blg™')  bo+big 4+ bpg "
Al 1+aigt 4+ +ang™

H(q) = ~S b (45)
=0

Minimal representation: An internal model with minimum number of
states, e.g., the 4 canonical forms
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Transforms - Canonical forms

Controller canonical form

—ai -+ —Aap-1 —an
1 - 0 0
A, =
o - 1 0
Ce = [b1 — boai, by — boas, . .., by — boay)
Observer canonical form
—a; 1 - 0
Ag=|
—apq1 0 - 1
—a, 0

CO:[1707"' 70]

22 DTU Compute

1
0
Bc = |.
0
D, = bO
b1 — bo&l
b2 — boag
Bo = .
bn — boan
Do = bO
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Transforms - Canonical forms

Controllability canonical form

0 - 0 —an

1 -+ 0 —ay_
Aco: !

0 - 1 —a

CCO = (hlahQa te >hn)

Observability canonical form

—ap -+ —0Gp-1 —an
Aob = .
0 1 0

Co = (1,0,...,0)

23  DTU Compute

1
0
Bco = .
0
Dco = hO
hy
ho
Bob = .
hn
Dob = hO
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Transforms - Canonical forms

Relations between canonical forms
T
Ac = Ao ; Aco - Aob’
T
Bc = Co ) co - C
T T
B,=C,, CCO,

Dc:Do:Dco:Dob:bO:hO
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Transforms - Direct realization
General external model

M

Y +a1yi—1 + -+ AngYt—n, = botg +b1ug—1 + -+ by Uy, (58)
State
T = |=Yt—1 - —Yt-ng Ut—1 -°° Utfnb} (59)

Non-minimal internal model

[—a1 -+ —apn,—1 —aGn, —b1 -+ —bp,—1  —bn,] [—boT]
1 0 0 0 0 0 0
0 1 0 0 0 0 0
Aqd 0 0 0 ) o> Ba=1771 (60)
0 0 0 1 0 0 0
Lo .- 0 0 0 1 0 L 0 J
Cq=(a1,.--an,,b1,...,bny), Dg =bo (61)
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Controllability and reachability

Definition

A system is said to be controllable, if it is possible to move the system from
an arbitrary state value to the origin in finite time.

Definition

A system is said to be reachable, if it is possible to move the system from
one arbitrary state value to another arbitrary state in finite time.

Reachability = controllability, not the reverse

An n-state system is reachable if and only if the reachability matrix W, has
full rank (k > n)

We(k) =B AB A’B ... AF'p] (62)

The reachability Gramian is given by ¢ = W, (k)WZ (k)

26 DTU Compute Stochastic Adaptive Control 22.3.2025



Controllability and reachability - Control
k-step input sequence (not unique)
T = Akxo + We(k)Uk—1,
T
Ug—1= [qu Ug—2 - Uo}

brings the system from any x( to a desired state,

Sequence with minimal control usage

k—1
min Z uJTUj
Uk—1;---,U0 ‘

7=0

Solution

Uia = W) |7 — Abag)
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Controllability and reachability in continuous-time =
Continuous-time system
& = Az + Bu, (67)
Reachability Gramian
Ye = A% 4 %°AT + BBT (68a)
3¢ (to) = 0. (68b)

The system is reachable if 3¢ is invertible for any ¢t > #g

Note: For continuous-time systems, reachability < controllability
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Observability and constructability
Definition:
A system is observable if any initial state can be estimated using only the
information from the following outputs and inputs.
Definition:
A system is constructable if, for any possible evolution of the state and
control variables, the current state can be estimated using only the
information from outputs.
Observability = constructability, but the reverse is not true
An n-state system is observable if and only if the observability matrix W,
has full rank (k > n)
T
Wo(k) = [CT (CA)T (CAHT ... (CAPYT] (69)

Observability Gramian: %9 = W, (k)WZI (k)

29 DTU Compute Stochastic Adaptive Control 22.3.2025
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Observability and constructability - Continuous-Time

Continuous-time system

& = Ax + Bu,
y=Cx+ Du

Observability Gramian

Yo — Ax° + x0T L cTC
9 (tg) = 0.

The system is observable if 3¢ is invertible for any ¢ > tg
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Stability

M

Several definitions of stability exist: e.g., marginal and asymptotic stability

Consider a steady state x5 of the system

® Marginally stable: x, is said to be (marginally) stable if any solution trajectory
{z(t), t € [to, 0]} is bounded.

® Asymptotically stable: =z, is said to be asymptotically stable if any solution
trajectory converges to z; (z(t) — x5) as time progresses (t — 00).

A system which is not stable (i.e., not marginally stable) is unstable
A system is BIBO stable if the output is bounded for any bounded input

Note: Asymptotic stability = BIBO stability
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Stability of LTI Systems

M

A state space model is stable if and only if all of the following requirements
are fulfilled

Continuous-time Discrete-time

Marginally stable:
® Re{eig(4)} <0
* VRe{cig(A);} = 0, the AM=GM

® |eig(4)] <1
* V| eig(A);| = 1, the AM=GM

Asymptotically stable:
® Re{eig(A4)} <0 ® |eig(A)] <1

*AM = Algebraic multiplicity (# of identical eigenvalues)
**GM = geometric multiplicity (# of associated eigenvectors)
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Local Stability of Nonlinear Systems =
Steady state of nonlinear system
&= f(zs,us) =0 zs = f(xs,us), (72)
Approximate behavior around steady state using linearization
0
A= é(ms,us). (73)

The system is locally stable (marginal or asymptotic) around the stationary
point if the requirements on the previous slide are fulfilled
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