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Lecture Plan

@ ARX models
@ ARX prediction + control
© ARX estimation

@ ARX model validation
+ adaptive control

® ARMAX control

® ARMAX estimation
+ adaptive control
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@ Systems and control theory

@ Stochastic systems + Kalman filtering
© SS estimation (recursive) + control
@ SS control

® SS estimation (batch)

® SS estimation (recursive)

@® SS nonlinear control

Design
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Controller

System
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Today’s Agenda

® Pole-zero control
® Recursive extended least-squares (RELS)

® Estimation of time-varying parameters
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Pole-zero control
Relax the objective of following the setpoint

-~ _ ok Bm(q71>

. Am(g™t) o

Minimize
Ytk — Witk or Ap(q ek — Bm(g Hwy

Cost function
-1 -1 2
Jsr=E [(Am(q JWesk — Bun(a ™ )wy) }
ARMAX model
A(qfl)yt = qka(qfl)ut + C(qfl)et

Optimal control law

Diophantine equation
Am(@™H)C(a™) = AlgHGrla™) + g "Spa™ )
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Pole-zero control

Stationary closed-loop system
A (g s = ¢ "Bin(gwi + Grlg ey,
B(q " Am(g " ur = Alg ) Bl we — Se(q™ Ve

The pole-zero controller has the following shortcomings

@ Undamped zeros (zeros outside of the unit circle)

6 DTU Compute Stochastic Adaptive Control

=
—
=

M

—~
o~
~— ~—

12.3.2025



7

DTU Compute

Recursive estimation

Stochastic Adaptive Control

=
—
=

M

12.3.2025



RELS - Recursive Extended Least Squares

ARMAX model

Al Ny = ¢ "BlgHu + Clg Ve,

T
yr = ¢p 0+ ey,
¢t = [_ytflv s TYtngy Ut—ks - - o Ut—np—ks €t—1, - - -
T
0=lar,...,an,,b0,...,0pn,,C1,...,Cn.]

Least squares estimator (approximate e; by ¢; in ¢)

e =y — 61 01,
ét = ét—l + Pioyet,
Pyt =P+ dudf
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Time-varying estimation - first example

M

ARX model

Alq Yy = B(t,q g + e, (16)
bl(t) = b1+ b1t (17)

Treat time-varying coefficient as two coefficients with their own inputs

Yt = nge + (&3 (18)

07 = [al ag -+ ap, bip b1 by - by, (19)

o = [_yt—l ~Yt—2 0 ~Ytong Ut—1 tU1 U2 e ut‘”b}
(20)
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Time-varying estimation
For deterministic time varying systems, rearrange the parameters
T
Yt = ¢; 0 + e

b =a+ B8 =[I fO)] m

o

w=of o105

+ e

For piece-wise linear parameters, rearrange the parameters

Y = ¢?9t + ey,
Op=o; + (t —=T3)B;, T; <t< T,

(67

we=of of-T)] |3

"‘Gt

)
%
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Time-varying systems

M

System with general time-varying parameters

Orr1 = f(t,0r,v1) (27)

® The methods discussed so far cannot estimate the time-varying dynamics and were
not designed to do it

® |n practice, the problem is that the correction factor diminishes over time

P =0 (28)
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Time-varying systems - Forgetting methods: Resetting =
Reset the covariance after some time, t;
P,=P>P, 1, 0, =0, (29)
The appropriate restarting time depends on the application
For instance, restart at fixed intervals
t; = Ni (30)

This can be useful for periodic systems
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Time-varying systems - Forgetting methods: Constant Gain

Another method: Keep the correction term large

For instance, keep the correction term x constant

ét = ét—l + Keg
ét = (I — H¢z)(§t — K€t

Alternatively, keep the variance constant

P=P

ét = ét—l + K€t

o P
1+ ¢f Py
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Time-varying systems - Forgetting methods: Exponential =
Forgetfulness

Another approach: Forget a little bit all the time (exponential forgetfulness)

A 1
=3 ;)\t e =M1+ 56,? (36)

The recursion is similar to the previous methods

.
€& =Y — ¢y 01,

(37)
0; = 0;—1 + Prgrer, (38)
Pl =Py + didy (39)
The forgetting factor A can be expressed in terms of a horizon, N,
1
A=1—— 4
i (40)
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Time-varying systems - Fortescue's Method =
Improve with a time-varying forgetting factor depending on the prediction
error, €;
1 e
N=1———t 41
t N() J2St ( )

Ny is the approx. horizon over which the parameter is roughly constant
Recursion

€=y — A1 0 42

(42)
st =14+ ¢ P_1¢y (43)
P19y

Ky = 44

! At + 5t (44)

ét = ét—l + Kiey (45)
1

P=(I- K@?)Pt_l;t (46)
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Time-varying systems - Fortescue’s Method

If the variance is unknown, we can introduce an estimate

1 €
AM=1———
N()T‘tst
1 e% 9
re="Ti—1+ | — —Tt-1 ), o = €
t\ st
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Time-varying systems - Model Estimators

Introduce model of parameters

9,5.;,.1 = 9,5 + v, Vg ~ N(O, R10'2)
Yt = QSZ@t + €t, €t ~ N(O, 0'2)

Estimate parameters using the Kalman filter

Data update

ét|t = ét\t—l + P10t (ye — ¢?ét|t—1)
~1 ~1 T
Pt|t = Pt|t—1 + ¢y

Time update

Or 1t = Ot
Pi1jp = Py + Ra
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