

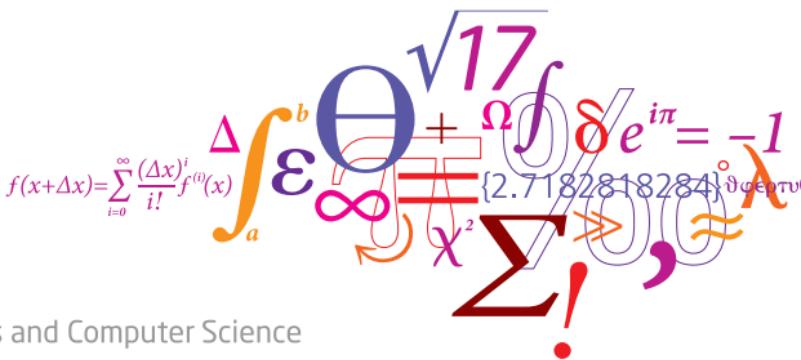
Stochastic Adaptive Control (02421)

Lecture 6

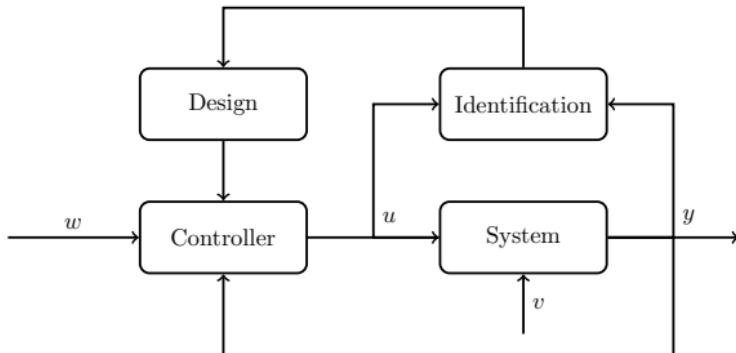
Tobias K. S. Ritschel

Assistant Professor

Section for Dynamical Systems, DTU Compute



- ① ARX models
- ② ARX prediction + control
- ③ ARX estimation
- ④ ARX model validation
+ adaptive control
- ⑤ ARMAX control
- ⑥ ARMAX estimation
+ adaptive control
- ⑦ Systems and control theory
- ⑧ Stochastic systems + Kalman filtering
- ⑨ SS estimation (recursive) + control
- ⑩ SS control
- ⑪ SS estimation (batch)
- ⑫ SS estimation (recursive)
- ⑬ SS nonlinear control



- Pole-zero control
- Recursive extended least-squares (RELS)
- Estimation of time-varying parameters

Pole-zero control

Pole-zero control

Relax the objective of following the setpoint

$$\tilde{w}_t = q^{-k} \frac{B_m(q^{-1})}{A_m(q^{-1})} w_t \quad (1)$$

Minimize

$$y_{t+k} - \tilde{w}_{t+k} \quad \text{or} \quad A_m(q^{-1})y_{t+k} - B_m(q^{-1})w_t \quad (2)$$

Cost function

$$J_t = \mathbb{E} \left[\left(A_m(q^{-1})y_{t+k} - B_m(q^{-1})w_t \right)^2 \right] \quad (3)$$

ARMAX model

$$A(q^{-1})y_t = q^{-k}B(q^{-1})u_t + C(q^{-1})e_t \quad (4)$$

Optimal control law

$$u_t = \frac{C(q^{-1})B_m(q^{-1})}{B(q^{-1})G_k(q^{-1})} w_t - \frac{S_k(q^{-1})}{B(q^{-1})G_k(q^{-1})} y_t \quad (5)$$

Diophantine equation

$$A_m(q^{-1})C(q^{-1}) = A(q^{-1})G_k(q^{-1}) + q^{-k}S_k(q^{-1}) \quad (6)$$

Stochastic Adaptive Control

Stationary closed-loop system

$$A_m(q^{-1})y_t = q^{-k}B_m(q^{-1})w_t + G_k(q^{-1})e_t, \quad (7)$$

$$B(q^{-1})A_m(q^{-1})u_t = A(q^{-1})B_m(q^{-1})w_t - S_k(q^{-1})e_t \quad (8)$$

The pole-zero controller has the following shortcomings

- ① Undamped zeros (zeros outside of the unit circle)

Recursive estimation

ARMAX model

$$A(q^{-1})y_t = q^{-k}B(q^{-1})u_t + C(q^{-1})e_t, \quad (9)$$

$$y_t = \phi_t^T \theta + e_t, \quad (10)$$

$$\phi_t = [-y_{t-1}, \dots, -y_{t-n_a}, u_{t-k}, \dots, u_{t-n_b-k}, e_{t-1}, \dots, e_{t-n_c}]^T, \quad (11)$$

$$\theta = [a_1, \dots, a_{n_a}, b_0, \dots, b_{n_b}, c_1, \dots, c_{n_c}]^T \quad (12)$$

Least squares estimator (approximate e_i by ϵ_i in ϕ)

$$\epsilon_t = y_t - \phi_t^T \hat{\theta}_{t-1}, \quad (13)$$

$$\hat{\theta}_t = \hat{\theta}_{t-1} + P_t \phi_t \epsilon_t, \quad (14)$$

$$P_t^{-1} = P_{t-1}^{-1} + \phi_t \phi_t^T \quad (15)$$

Time-varying parameters

Time-varying estimation - first example

ARX model

$$A(q^{-1})y_t = B(t, q^{-1})u_t + e_t, \quad (16)$$

$$b_1(t) = b_{1,0} + b_{1,1}t \quad (17)$$

Treat time-varying coefficient as two coefficients with their own inputs

$$y_t = \phi^T \theta + e_t \quad (18)$$

$$\theta^T = [a_1 \ a_2 \ \cdots \ a_{n_a} \ b_{1,0} \ b_{1,1} \ b_2 \ \cdots \ b_{n_b}] \quad (19)$$

$$\phi^T = [-y_{t-1} \ -y_{t-2} \ \cdots \ -y_{t-n_a} \ u_{t-1} \ tu_{t-1} \ u_{t-2} \ \cdots \ u_{t-n_b}] \quad (20)$$

Time-varying estimation

For deterministic time varying systems, rearrange the parameters

$$y_t = \phi_t^T \theta_t + e_t \quad (21)$$

$$\theta_t = \alpha + f(t)\beta = \begin{bmatrix} I & f(t) \end{bmatrix} \begin{bmatrix} \alpha \\ \beta \end{bmatrix} \quad (22)$$

$$y_t = \begin{bmatrix} \phi_t^T & \phi_t^T f(t) \end{bmatrix} \begin{bmatrix} \alpha \\ \beta \end{bmatrix} + e_t \quad (23)$$

For piece-wise linear parameters, rearrange the parameters

$$y_t = \phi_t^T \theta_t + e_t, \quad (24)$$

$$\theta_t = \alpha_i + (t - T_i)\beta_i, \quad T_i \leq t \leq T_{i+1}, \quad (25)$$

$$y_t = \begin{bmatrix} \phi_t^T & \phi_t^T(t - T_i) \end{bmatrix} \begin{bmatrix} \alpha_i \\ \beta_i \end{bmatrix} + e_t \quad (26)$$

System with general time-varying parameters

$$\theta_{t+1} = f(t, \theta_t, v_t) \quad (27)$$

- The methods discussed so far cannot estimate the time-varying dynamics and were not designed to do it
- In practice, the problem is that the correction factor diminishes over time

$$P_t \rightarrow 0 \quad (28)$$

Reset the covariance after some time, t_i

$$P_{t_i} = P_i > P_{t_i-1}, \quad \hat{\theta}_{t_i} = \hat{\theta}_{t_i-1} \quad (29)$$

The appropriate restarting time depends on the application

For instance, restart at fixed intervals

$$t_i = Ni \quad (30)$$

This can be useful for periodic systems

Another method: Keep the correction term large

For instance, keep the correction term κ constant

$$\hat{\theta}_t = \hat{\theta}_{t-1} + \kappa \epsilon_t \quad (31)$$

$$\tilde{\theta}_t = (I - \kappa \phi_t^T) \hat{\theta}_t - \kappa e_t \quad (32)$$

Alternatively, keep the variance constant

$$P_t = P \quad (33)$$

$$\hat{\theta}_t = \hat{\theta}_{t-1} + \kappa \epsilon_t \quad (34)$$

$$\kappa_t = \frac{P \phi_t}{1 + \phi_t^T P \phi_t} \quad (35)$$

Time-varying systems - Forgetting methods: Exponential Forgetting

Another approach: Forget a little bit all the time (exponential forgetfulness)

$$J_t = \frac{1}{2} \sum_{i=1}^t \lambda^{t-i} \epsilon_i^2 = \lambda J_{t-1} + \frac{1}{2} \epsilon_t^2 \quad (36)$$

The recursion is similar to the previous methods

$$\epsilon_t = y_t - \phi_t^T \hat{\theta}_{t-1}, \quad (37)$$

$$\hat{\theta}_t = \hat{\theta}_{t-1} + P_t \phi_t \epsilon_t, \quad (38)$$

$$P_t^{-1} = \lambda P_{t-1}^{-1} + \phi_t \phi_t^T \quad (39)$$

The forgetting factor λ can be expressed in terms of a horizon, N_∞

$$\lambda = 1 - \frac{1}{N_\infty} \quad (40)$$

Time-varying systems - Fortescue's Method

Improve with a time-varying forgetting factor depending on the prediction error, ϵ_t

$$\lambda_t = 1 - \frac{1}{N_0} \frac{\epsilon_t^2}{\sigma^2 s_t} \quad (41)$$

N_0 is the approx. horizon over which the parameter is roughly constant

Recursion

$$\epsilon_t = y_t - \phi_t^T \hat{\theta}_{t-1} \quad (42)$$

$$s_t = 1 + \phi_t^T P_{t-1} \phi_t \quad (43)$$

$$K_t = \frac{P_{t-1} \phi_t}{\lambda_t + s_t} \quad (44)$$

$$\hat{\theta}_t = \hat{\theta}_{t-1} + K_t \epsilon_t \quad (45)$$

$$P_t = (I - K_t \phi_t^T) P_{t-1} \frac{1}{\lambda_t} \quad (46)$$

If the variance is unknown, we can introduce an estimate

$$\lambda_t = 1 - \frac{1}{N_0} \frac{\epsilon_t^2}{r_t s_t} \quad (47)$$

$$r_t = r_{t-1} + \frac{1}{t} \left(\frac{\epsilon_t^2}{s_t} - r_{t-1} \right), \quad r_0 = \epsilon_0^2 \quad (48)$$

Introduce model of parameters

$$\theta_{t+1} = \theta_t + v_t, \quad v_t \sim N(0, R_1 \sigma^2) \quad (49)$$

$$y_t = \phi_t^T \theta_t + e_t, \quad e_t \sim N(0, \sigma^2) \quad (50)$$

Estimate parameters using the Kalman filter

Data update

$$\hat{\theta}_{t|t} = \hat{\theta}_{t|t-1} + P_{t|t-1} \phi_t (y_t - \phi_t^T \hat{\theta}_{t|t-1}) \quad (51)$$

$$P_{t|t}^{-1} = P_{t|t-1}^{-1} + \phi_t \phi_t^T \quad (52)$$

Time update

$$\hat{\theta}_{t+1|t} = \hat{\theta}_{t|t} \quad (53)$$

$$P_{t+1|t} = P_{t|t} + R_1 \quad (54)$$

Questions?