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02421 - Introduction
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02421 - Introduction
Today’s Agenda

• MA, ARMA, and ARMAX models
• Prediction
• Generalized minimum variance (GMV) control

3 DTU Compute Stochastic Adaptive Control 14.3.2025



MA, ARMA, and ARMAX models
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02421 - MA, ARMA, and ARMAX models
The Moving-Average (MA) Process

MA(n) process

yt = et +
n∑

k=1
cket−k, c0 = 1 (1)

{et} is a white-noise process (independent and Gaussian with variance σ2)
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02421 - MA, ARMA, and ARMAX models
The Moving-Average (MA) Process

Shift operator, q

q−1yt = yt−1, (2)

MA(n) process (compact notation)

yt = C(q−1)et, (3)

Polynomial

C(q−1) = 1 +
n∑

k=1
ckq−k (4)
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02421 - MA, ARMA, and ARMAX models
The Moving-Average (MA) Process

Properties of finite-order MA processes

• Always stationary
• Invertible if the zeros of C lie within the unit circle

Invertibility: The innovations can be represented as functions of past
observations

7 DTU Compute Stochastic Adaptive Control 14.3.2025



02421 - MA, ARMA, and ARMAX models
The Moving-Average (MA) Process

Auto-covariance of MA(n) process

γ(k) =
{

σ2
(
ck + c1ck+1 + · · · + cn−kcn

)
, |k| = 0, . . . , n,

0, |k| > n
(5)

Variance (constant)

σ2
y = γ(0) = σ2

(
1 +

n∑
k=1

c2
k

)
(6)
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02421 - MA, ARMA, and ARMAX models
The ARMA Process

ARMA(m,n) process

yt +
m∑

k=1
akyt−k = et +

n∑
k=1

cket−k (7)

{et} is a white-noise process
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02421 - MA, ARMA, and ARMAX models
The ARMA Process

ARMA(m,n) process (compact notation)

A(q−1)yt = C(q−1)et (8)

Polynomials

A(q−1) = 1 +
m∑

k=1
akq−k, C(q−1) = 1 +

n∑
k=1

ckq−k (9)

Transfer function: C(q−1)
A(q−1)
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02421 - MA, ARMA, and ARMAX models
ARMA – Stationary mean

Stationary mean (E[yt] = ȳ)

E
[

m∑
k=0

akyt−k

]
= E

[
n∑

k=0
cket−k

]
, (10)

m∑
k=0

akE[yt−k] =
n∑

k=0
ckE[et−k] = 0, (11)

m∑
k=0

akȳ =
(

m∑
k=0

ak

)
ȳ = 0 (12)

If A(1) =
m∑

k=0
ak ̸= 0

ȳ = 0 (13)

11 DTU Compute Stochastic Adaptive Control 14.3.2025



02421 - MA, ARMA, and ARMAX models
ARMA – Stationary cross-covariance

Covariance (lag 0)

Cov
(

m∑
k=0

akyt−k, et

)
= Cov

(
n∑

k=0
cket−k, et

)
= c0 Cov(et, et) = c0σ2

(14)

Use that Cov(yt−k, et−j) = 0 for k > j

Cov
(

m∑
k=0

akyt−k, et

)
= a0 Cov(yt, et) = a0γye(0) (15)

Covariance (lag 0)

γye(0) = c0
a0

σ2
ε (16)
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02421 - MA, ARMA, and ARMAX models
ARMA – Stationary cross-covariance
Covariance (lag 1)

Cov
(

m∑
k=0

akyt−k, et−1

)
= Cov

(
n∑

k=0
cket−k, et−1

)
(17)

= c1 Cov(et−1, et−1) = c1σ2 (18)

Use that Cov(yt−k, et−j) = 0 for k > j

Cov
(

m∑
k=0

akyt−k, et−1

)
= a0 Cov(yt, et−1) + a1 Cov(yt−1, et−1) (19)

= a0γye(1) + a1γye(0) (20)

Covariance (lag 1)

γye(1) = c1
a0

σ2 − a1
a0

γye(0) (21)

Continue up to et−n to obtain γye(k) for k = 0, . . . , n
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02421 - MA, ARMA, and ARMAX models
ARMA – Stationary cross-covariance
Covariance

Cov
(

m∑
k=0

akyt−k, yt−j

)
= Cov

(
n∑

k=0
cket−k, yt−j

)
, j = 0, . . . , m (22)

Use γ(−k) = Cov(yt, yt−k) = Cov(yt−k, yt) = γ(k) to form a linear system

a0 a1 a2 · · · am−1 am

a1 a0 + a2 a3 · · · am 0
a2 a1 + a3 a0 + a4 · · · 0 0
a3 a2 + a4 a1 + a5 · · · 0 0
...

...
...

...
...

am−1 am−2 + am am−3 · · · a0 0
am am−1 am−2 · · · a1 a0





γ(0)
γ(1)
γ(2)
γ(3)

...
γ(m − 1)

γ(m)


=



b0
b1
b2
b3
...

bm−1
bm


(23)

bj =
n∑

k=j

ckγye(k − j)

Custom Matlab routine: trfvar.m
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02421 - MA, ARMA, and ARMAX models
Advanced External Model structures
ARMAX

A(q−1)yt = B(q−1)ut + C(q−1)et (24)

Stationary mean (E[yt] = ȳ, ut = ū)

E
[

m∑
k=0

akyt−k

]
= E

[
ℓ∑

k=0
bkut−k +

n∑
k=0

cket−k

]
, (25)

m∑
k=0

akE[yt−k] =
ℓ∑

k=0
bkut−k +

n∑
k=0

ckE[et−k] =
n∑

k=0
bkut−k, (26)

m∑
k=0

akȳ =
(

m∑
k=0

ak

)
ȳ =

ℓ∑
k=0

bkut−k =
(

ℓ∑
k=0

bk

)
ū (27)

If A(1) =
m∑

k=0
ak ̸= 0

ȳ = B(1)
A(1) ū (28)

The covariance is the same as for ARMA models
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02421 - MA, ARMA, and ARMAX models
Open-loop simulation

For each time, t (a0 = 1)
1 Evaluate yt as a function of yt−j for j = 1, . . . , na, ut−k−j for j = 0, . . . , nb, and

et−j for j = 0, . . . , nc

yt = b0ut−k + · · · + bnb
ut−k−nb

+ c0et + · · · + cnc
et−nc

− a1yt−1 − · · · − ana
yt−na

(29)

Example code
1 % E x t r a c t n o i s e and ou tpu t s
2 Yt = y ( t − ( 1 : na ) ) ; % na = numel (A) − 1 ;
3 Ut = u ( t − ( 0 : nb ) ) ; % nb = numel (B) − 1 ;
4 Et = e ( t − ( 0 : nc ) ) ; % nc = numel (C) − 1 ;
5
6 % Compute new outpu t s
7 y ( t ) = B∗Ut ’ + C∗Et ’ − A( 2 : end ) ∗Yt ’ ;
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02421 - MA, ARMA, and ARMAX models
Closed-loop simulation

For each time, t (a0 = 1)
1 Evaluate yt as a function of yt−j for j = 1, . . . , na, ut−k−j for j = 0, . . . , nb, and

et−j for j = 0, . . . , nc

yt = b0ut−k + · · · + bnb
ut−k−nb

+ c0et + · · · + cncet−nc

− a1yt−1 − · · · − anayt−na (30)

2 Evaluate ut as a function of wt−j for j = 0, . . . , nq, yt−j for j = 0, . . . , ns, and
ut−j for j = 1, . . . , nr

ut =
(
q0wt + · · · + · · · qnq

wt−nq
− s0yt − · · · − sns

yt−ns

− r1ut−1 − rnr
ut−nr

)
/r0 (31)
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02421 - MA, ARMA, and ARMAX models
Closed-loop simulation

Example code
1 % E x t r a c t n o i s e and ou tpu t s
2 Yt = y ( t − ( 1 : na ) ) ; % na = numel (A) − 1 ;
3 Ut = u ( t − ( 0 : nb ) ) ; % nb = numel (B) − 1 ;
4 Et = e ( t − ( 0 : nc ) ) ; % nc = numel (C) − 1 ;
5
6 % Compute new outpu t s
7 y ( t ) = B∗Ut ’ − A( 2 : end ) ∗Yt ’ + C∗Et ’ ;
8
9 % E x t r a c t n o i s e and ou tpu t s

10 Yt = y ( t − ( 0 : ns ) ) ; % ns = numel (S) − 1 ;
11 Ut = u ( t − ( 1 : nr ) ) ; % nr = numel (R) − 1 ;
12 Wt = w( t − ( 0 : nq ) ) ; % nq = numel (Q) − 1 ;
13
14 % Compute new i n p u t s
15 u ( t ) = (Q∗Wt’ − S∗Yt ’ − R ( 2 : end ) ∗Ut ’ ) /R(1 ) ;
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Prediction
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02421 - Prediction
Prediction in the ARMA Structure
ARMA process

A(q−1)yt = C(q−1)et (32)

Diophantine equation

C(q−1) = A(q−1)Gm(q−1) + q−mSm(q−1) (33)

m-step prediction based on the solution to the Diophantine equation

yt+m = C(q−1)
A(q−1)et+m = Gm(q−1)et+m + Sm(q−1)

A(q−1) et (34)

Prediction and error

ŷt+m|t = Sm(q−1)
A(q−1) et = Sm(q−1)

A(q−1)

(
A(q−1)
C(q−1)yt

)
= Sm(q−1)

C(q−1) yt, (35)

ỹt+m|t = Gm(q−1)et+m (36)

ŷt and ỹt are independent

This approach requires that C(q−1) is inversely stable
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02421 - Prediction
Prediction in the ARMAX structure
System

A(q−1)yt = q−kB(q−1)ut + C(q−1)et (37)

k is the control delay

m-step prediction

ŷt+m|t = 1
C(q−1)(B(q−1)Gm(q−1)ut+m−k + Sm(q−1)yt), (38)

ỹt+m|t = Gm(q−1)et+m (39)

Diophantine equation

C(q−1) = A(q−1)Gm(q−1) + q−mSm(q−1) (40)

The order of Gm and Sm are m − 1 and max(na − 1, nc − m) and
Gm(0) = 1
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02421 - Prediction
Proof of ARMAX prediction
Rewrite future output using the Diophantine equation

yt+m = C(q−1)
C(q−1)yt+m (41)

= A(q−1)Gm(q−1) + q−mSm(q−1)
C(q−1) yt+m (42)

= Gm(q−1)
C(q−1) A(q−1)yt+m + Sm(q−1)

C(q−1) yt (43)

Substitute system description

yt+m = Gm(q−1)
C(q−1) (B(q−1)ut+m−k + C(q−1)et+m) + Sm(q−1)

C(q−1) yt (44)

= 1
C(q−1)

(
Gm(q−1)B(q−1)ut+m−k + Sm(q−1)yt

)
+ Gm(q−1)et+m

(45)
= ŷt+m|t + ỹt+m|t (46)
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Generalized minimum variance control
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02421 - Generalized minimum variance control
Generalized Minimum Variance Strategy
ARMAX model

A(q−1)yt = q−kB(q−1)ut + C(q−1)et (47)

Cost function

Jt = E
[

(ỹt − w̃t)2 + ρũ2
t

]
(48)

Filtered variables

ỹt = Hy(q)yt = By(q−1)
Ay(q−1)yt, (49)

w̃t = Hw(q)wt = Bw(q−1)
Aw(q−1)wt, (50)

ũt = Hu(q)ut = Bu(q−1)
Au(q−1)ut (51)

ρ > 0 is a regularization parameter

Ay(0) = Aw(0) = Au(0) = Bu(0) = 1 (52)
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02421 - Generalized minimum variance control
Generalized Minimum Variance Strategy

Control law (q−1 is omitted for brevity)[
AuBG + αCBu

]
ut = Au

[
C

Bw

Aw
wt − S

Ay
yt

]
, α = ρ

b0
(53)

G and S are solutions to the Diophantine equation

By(q−1)C(q−1) = Ay(q−1)A(q−1)G(q−1) + q−kS(q−1), (54)

G(0) = By(0), ord[G] = k − 1 and
ord[S] = max(na + nay − 1, nby + nc − k)

Note: The Diophantine equation is independent of the control filter Bu
Au
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02421 - Generalized minimum variance control
Generalized Minimum Variance Strategy

Stationary closed-loop system[
BAuBy + αABuAy

]
yt = q−k Bw

Aw
BAuAywt + RAyet (55)[

BAuBy + αABuAy

]
ut = Bw

Aw
AAuAywt − SAuet (56)

R =
[
AuBG + αCBu

]
(57)

We can affect the closed-loop poles using the control filter because it
doesn’t affect the Diophantine equation
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02421 - Generalized minimum variance control
GMV – Special cases
PZ-control

Hy(q) = Am(q−1), Hw(q) = Bm(q−1), Hu(q) = 1, ρ = 0 (58)

Variant of MV0 control

Hy(q) = 1, Hw(q) = Bw(q−1)
Aw(q−1) , Hu(q) = 1, ρ = 0 (59)

MV1a control:

Hy(q) = 1, Hw(q) = 1, Hu(q) = 1 − q−1, ρ ̸= 0 (60)

MV3 control:

Hy(q) = Ae(q−1)
Be(q−1) , Hw(q) = Ae(q−1)Bm(q−1)

Be(q−1)Am(q−1) , Hu(q) = 1, ρ = 0

(61)
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02421 - Generalized minimum variance control
MV3 control
ARMAX model

A(q−1)yt = q−kB(q−1)ut + C(q−1)et (62)

Cost function

Jt = E
[(

Ae(q−1)
Be(q−1)yt+k − Ae(q−1)Bm(q−1)

Be(q−1)Am(q−1)wt

)2]
(63)

Control law

BGut = C
AeBm

BeAm
wt − S

Be
yt (64)

Stationary closed-loop system

yt = q−k Bm

Am
wt + G

Be

Ae
et (65)

ut = ABm

BAm
wt − SBe

BAe
et (66)
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02421 - Generalized minimum variance control

Questions?

29 DTU Compute Stochastic Adaptive Control 14.3.2025


	02421 - Introduction
	02421 - MA, ARMA, and ARMAX models
	02421 - Prediction
	02421 - Generalized minimum variance control

