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Lecture Plan

@ ARX models
@ ARX prediction + control
© ARX estimation

@ ARX model validation
+ adaptive control

® ARMAX control

® ARMAX estimation
+ adaptive control
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@ Systems and control theory

@ Stochastic systems + Kalman filtering
© SS estimation (recursive) + control
@ SS control

® SS estimation (batch)

® SS estimation (recursive)

@® SS nonlinear control

Design

w

Identification

—

Controller

System

T
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Today’s Agenda

e MA, ARMA, and ARMAX models
® Prediction

® Generalized minimum variance (GMV) control
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The Moving-Average (MA) Process

MA(n) process

n
Yr=et+ D Crer_p, co=1 (
k=1

{e;} is a white-noise process (independent and Gaussian with variance o2)
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The Moving-Average (MA) Process

Shift operator, ¢

q 'y = 1,

MA(n) process (compact notation)

Yt = C(q_l)eta

Polynomial

Clg =1+ aq™”
k=1

6 DTU Compute

Stochastic Adaptive Control

=
—
=

M

14.3.2025



The Moving-Average (MA) Process

Properties of finite-order MA processes

® Always stationary

® |nvertible if the zeros of C lie within the unit circle

Invertibility: The innovations can be represented as functions of past
observations
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The Moving-Average (MA) Process

Auto-covariance of MA(n) process

v(k) = UQ(Ck +ciCry1 + - —l—cn,kcn), k| =0,...,n,
07 ’k‘ >n

Variance (constant)
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The ARMA Process

ARMA(m,n) process
m n
Y Y bk = e+ Y Crei
k=1 k=1

{e+} is a white-noise process
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The ARMA Process

ARMA(m,n) process (compact notation)

Alg Dy =Clg He

Polynomials

Alg ) =1+ arg ™, Clg ) =1+> aq "
k=1 k=1

Transfer function:

q
A(g™)
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ARMA - Stationary mean

Stationary mean (E[y;] = %)

E [Z akyt—k‘| =E [Z Cket—k‘| )
k=0 k=0

> arElye—k] = > ckElei—x] =0,
k=0

k=0

> ary = (Z%) y=0
k=0 k=0

If A(1) = ]ﬁoak 20

N
I
[a)
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ARMA - Stationary cross-covariance

Covariance (lag 0)
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m n
Cov (Z ARYi—ks et> = Cov (Z CLei—k, et> = ¢ Cov(ey, e) = coo?

k=0 k=0

Use that Cov(yi—k,er—;) =0 for k > j

m
Cov (Z akYt—k, €t> = ao Cov(yt, er) = aovye(0)
k=0

Covariance (lag 0)
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ARMA - Stationary cross-covariance =

Covariance (lag 1)

Cov (Z AkYt—ks 6’t—1> = Cov <Z CkEt—ks €t—1> (17)

k=0 k=0
= Cov(et—1,61-1) = c10? (18)

Use that Cov(yi—k,er—;) =0 for k > j

Cov <Z aYt—k, 6t—1> = ao Cov(ys, e;—1) + a1 Cov(yi—1,e1-1)  (19)

k=0
= aO’er(l) + alVye(O) (20)
Covariance (lag 1)
Cl1 o aj
e(l) = —0 — —79(0 21
Yye(1) aoa ao’Yy() (21)

Continue up to e;—, to obtain yy.(k) for k =0,...,n
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ARMA - Stationary cross-covariance =
Covariance
m n
COV <Z ApYt—k, yt—j) = COV <Z CkEt—L, yt—j) ) .] = 07 cee, M (22)
k=0 k=0
Use v(—k) = Cov(ys, y1—k) = Cov(yi—k, y:) = (k) to form a linear system
[ ao a as o ame1 ap] [ v0) 7 T bo ]
ay ag + as as R o 0 ~(1) b1
as a1 + as ap+ayg - 0 0 ~v(2) b
as as + ay ay+as - 0 0 7(3) — | b3
Gm—1 Am-2+ 0m  Gm—3 T ao 0 ’Y(m - 1) bin—1
L am Am—1 am—2 -+ a1 aol L y(m) 1 L bm |
(23)
n
bj = Z ckYye(k — J)
k=j

Custom Matlab routine: trfvar.m
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Advanced External Model structures
ARMAX

M

Alg ye = Bla Hue + Cla Ve (24)
Stationary mean (E[y] = y, uy = u)

m ¢ n
E [Z akyt—k] =E [Z brpus—k + Z Cket—k] ) (25)
k=0 k=0 k=0
m J4 n n
> akBly—i] =Y bru—p + Y cuBles—k] =Y bty (20)
k=0 k=0 k=0 k=0
m m ¢ ¢
Z akgj = (Z CLk) Q = Z bkut,k = (Z bk> U (27)
k=0 k=0 k=0 k=0

If A(1) = kgoak £0

B(1)
y=—->=u 28
Y= A0 (28)
The covariance is the same as for ARMA models
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pen-loop simulation

For each time, t (ap = 1)
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@ Evaluate y; as a function of y,_; for j = 1,...,ng, us—g—; for j =0,...,n4, and

er—j for j=0,...,n

Yo = bouy—p + -+ + by, Ut—f—n, + Co€t + -+ Cp €t—n,

—a1Yt—1 — - — Ap,Yt—n,

Example code

16

% Extract noise and outputs

Yt = y(t — (1:na)); % na = numel(A) —
Ut = u(t — (0:nb)); % nb = numel(B) —
Et = e(t — (0:nc)); % nc = numel(C) —

% Compute new outputs
y(t) = BxUt’ + CxEt’ — A(2:end)x*Yt’;

DTU Compute

1;
1;
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Closed-loop simulation =
For each time, t (ap = 1)

@ Evaluate y; as a function of y,_; for j =1,...,nq, up_p—; for j =0,...,my, and
er—; for j=0,...,nc
Yt = bour— + -+ + bp, Ut—k—n, + Co€t + -+ Cp Cton,
—A1Yt—1 — T A Yt—n, (30)
@ Evaluate u; as a function of wy_; for j =0,...,nq, y4—; for j =0,...,n,, and
u—j forj=1,...,n,
up = (qowe + -+ 4+ Gy Wi, — S0Yt — ** — Sn.Yt—n.
= PIU—1 = T, Ut—n, ) /To (31)
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Closed-loop simulation

Example code
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% Extract noise and outputs

Yt = y(t — (1:na)); %
Ut u(t — (0:nb)); %
Et e(t — (0:nc)): %

% Compute new outputs

na = numel(A) — 1;
nb = numel(B) — 1;
nc = numel(C) — 1;

y(t) = BxUt’' — A(2:end)*Yt' + CxEt’;

% Extract noise and outputs

Yt = y(t — (0:ns)); %
Ut = u(t — (1:nr)); %
Wt = w(t — (0:nq)); %

% Compute new inputs

u(t) = (QxWt' — SxYt’

DTU Compute

ns = numel(S) 1;
nr = numel(R) 1;
ng = numel(Q) 1;

— R(2:end)*Ut") /R(1);
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Prediction in the ARMA Structure
ARMA process

Diophantine equation
Clg™") = Al )Gmlg™ ") +a ™ Smle™)
m-step prediction based on the solution to the Diophantine equation

_Clh) = Sm(a™")
Yttm = met-i-m = Gm(q " )etrm + Wet

Prediction and error

o Suld) Sala ) (AT Smleh)
Yt+m|t = Alg 1) €t = A1) (C(ql)yt> = 70((1,1) Yt,

gt+m|t = Gn, (qil )et-‘rm

4+ and 7 are independent

This approach requires that C'(¢!) is inversely stable
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Prediction in the ARMAX structure
System
Alg e = ¢ *Blg ue + Cg Ve

k is the control delay

m-step prediction

1
j = (B¢ HGm(g! e+ S (gt
Ytrm|t C(q,l)( (@ )Gmlq ) utym—k + Smla )ye),

Jesmlt = Gm(q ersm
Diophantine equation
C(q_l) = A(q_l)Gm(q_l) + q_mSm(q_1>

The order of G, and S, are m — 1 and max(n, — 1,n. — m) and
Gn(0)=1

21 DTU Compute Stochastic Adaptive Control

=
—
=

M

(37)

14.3.2025



Proof of ARMAX prediction =
Rewrite future output using the Diophantine equation
C(g!
Yt+m = CEq_linm (41)
Al )Gm(a™") + ¢ ™Smlgh)
= m 42
Clg™) o 42
Gmla™") 1 Sm(g™")
=——"A m 4
C(qfl) (q )yt+ + C(qil) Ut ( 3)
Substitute system description
Gm(q_l) -1 -1 Sm(q_l)
= A7 1\ m— m 44
Yt+m C(qil) (B(q )ut-‘r kTt C(q )et+ ) + C(qfl) Yi ( )
1 -1 —1 1 —1
= 1) (Gm@ BE Vtetmer + Sn(a™ue) + Gl etim
(45)
= Gtmlt + Ytrmlt (46)
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Generalized Minimum Variance Strategy
ARMAX model

Alg Dy =a"Blg " ur + Clq™ e
Cost function
Jp = E[@t — ) + Pﬂ?]

Filtered variables

By(q1
U = Hy(q)yr = -2 Yt
L@ =G
~ Bw(q_l)
Wy = Hy(q)wr = Aw(qfl)wt’
~ Bu(q_l)
i = Hulg)u = 0y

p > 0 is a regularization parameter

Ay(O) = Aw(o) = Au(o) = Bu(o) =1
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Generalized Minimum Variance Strategy =
Control law (¢! is omitted for brevity)
By, S P
[AUBG + aC’Bu} u = A, [C/Twwt — A—yyt}, o= b (53)

G and S are solutions to the Diophantine equation

By(g O ") =Ay(a HA(G NG ) +q *S(h),  (54)

G(0) = By(0), ord[G] = k — 1 and
ord[S] = max(ng + na, — 1,14, +nc — k)

Note: The Diophantine equation is independent of the control filter %
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Generalized Minimum Variance Strategy

Stationary closed-loop system

By
|BALBy + aAB,Ay|yr = ¢ * =2 BA Ay, + RA e (55)

A
[BALB, + aAB, Ay |u; = %AAuAywt — SAues (56)
R = [A4,BG +aCB,] (57)

We can affect the closed-loop poles using the control filter because it
doesn’t affect the Diophantine equation
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GMV - Special cases
PZ-control

Hy(q) = Am(q™"), Hulq) =Bm(¢™"), Hulg)=1, p=0 (58)

Variant of MVj control

MV, control:

Hyq) =1, Hulq)=1, Hy(q9)=1-¢ ' p#0 (60)

MVs3 control:

Hy(q) = Hy(q)=1, p=0
(61)
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MV3 control
ARMAX model

Control law
A.B S
BGu; = C=" o, — —
“="B a4, B
Stationary closed-loop system
B B
—kPPm e
= — G—
Yt = (q A, wt + A, et
B AB,, SB.
“=Ba, "t BA
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