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02421 - Introduction
Lecture Plan

1 ARX models
2 ARX prediction + control
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4 ARX model validation

+ adaptive control
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7 Systems and control theory

8 Stochastic systems + Kalman filtering

9 SS estimation (recursive) + control

10 SS control

11 SS estimation (batch)

12 SS estimation (recursive)

13 SS nonlinear control
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02421 - Introduction
Today’s Agenda

• Cautious controllers
• Dual adaptive controllers
• Suboptimal dual adaptive controllers
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Example system
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02421 - Example system
Known Systems and Control

ARX model with 1-step delay

A(q−1)yt = B(q−1)ut−1 + et, et ∼ N(0, σ2) (1)

Cost function

J = E
[

N∑
i=1

(yt+i − wt+i)2
]

(2)

Example: MV0 controller (N = 1)

ut−1 = 1
B

wt − S

B
yt−1 = 1

B
wt − q(1 − A)

B
yt−1 (3)

yt = wt + et (4)
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02421 - Example system
Known Systems and Control
Alternative form: System

yt = ϕT
t θ + et = b0ut−1 + φT

t ϑ + et (5)
ϕT

t = (−yt−1, −yt−2, . . . , ut−1, ut−2, . . .), θT = (a1, a2, . . . , b0, b1, . . .)
(6)

φT
t = (−yt−1, −yt−2, . . . , 0, ut−2, . . .), ϑT = (a1, a2, . . . , 0, b1, . . .) (7)

Alternative form: Controller

ut−1 = 1
b0

wt − φT
t ϑ

b0
(8)

yt = wt + et (9)

Relation between ϕ and φ

φ = ϕ − diag(l)ϕ, ϑ = θ − diag(l)θ (10)
lT = (0, 0, . . . , 1, 0, . . .) (11)

The nonzero entry corresponds to the position of b0 and ut−1
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02421 - Example system
Adaptive control - Method Overview
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02421 - Example system
Adaptive Control - CE Control (Explicit)
Certainty equivalent self-tuner: Use the parameter estimate as the true
parameters

yt = ϕT
t θ + ϵt, θ → θ̂ (12)

Update parameter estimate

ϵt = yt − ϕT
t θ̂t−1, (13)

st = 1 + ϕT
t Pt−1ϕt, (14)

Kt = Pt−1ϕt

st
, (15)

θ̂t = θ̂t−1 + Ktϵt, (16)
Pt = Pt−1 − KtstK

T
t (17)

Redesign the control law

ut = 1
b̂0

wt − φT
t ϑ̂

b̂0
(18)
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Cautious controllers
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02421 - Cautious controllers
Adaptive Control - Cautious Control
Cautious adaptive control: Take estimation uncertainty into account

Conditional cost function

J = E[(yt+1 − wt+1)2|Yt] (19)
= (E[yt+1 − wt+1|Yt])2 + Var(yt+1 − wt+1|Yt) (20)

Uncertainty of parameter estimate

θ̂t ∼ N(θ, Pt) (21)
b̂0,t = lT θ̂t (22)
pb,t = lT Ptl (23)

Control law

ut =
b̂2

0,t

b̂2
0,t + pb,t

(
wt+1 − φT

t θ̂

b̂0,t

− φT
t Ptl

b̂2
0,t

)
(24)
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02421 - Cautious controllers
Adaptive Control - Cautious Control

If Pt → 0, cautious control is equivalent to certainty equivalent control

ut =
b̂2

0,t

b̂2
0,t + pb,t

(
wt+1 − φT

t θ̂

b̂0,t

− φT
t Ptl

b̂2
0,t

)
→ ut = wt+1 − φT

t θ̂

b̂0,t

(25)

If θ̂t → θ, certainty equivalent control is equivalent to the known control
1 Pt → 0 : Cautious = CE ̸= known

2 θ̂t → θ : Cautious ̸= CE = known

3 Pt → 0, θ̂t → θ : Cautious = CE = known
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02421 - Cautious controllers
Adaptive Control - Cautious Control - Usage

Cautious controller

ut =
b̂2

0,t

b̂2
0,t + pb,t

(
wt+1 − φT

t θ̂

b̂0,t

− φT
t Ptl

b̂2
0,t

)
(26)

• Turn-off phenomenon: Control is dampened due to high uncertainty of b0

• Consequence: Less information about b0 for the next estimate, i.e., the uncertainty
increases

• Turn-off usually occurs if b0 or the control signal is small
• Conclusion: The cautious controller is useful for systems with constant or almost

constant parameters, but unsuitable for general time-varying systems
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Dual adaptive controllers
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02421 - Dual adaptive controllers
Adaptive Control - Optimal Dual Control

Dual control: Conditional expectation of the cost

J = min
Ut

E
[

N∑
i=1

(yt+i − wt+i)2
]

= EYt

[
min

Ut

E
[

N∑
i=1

(yt+i − wt+i)2
∣∣∣∣∣ Yt

]]
(27)

If the parameter uncertainty is Gaussian, the conditional expectation is
Gaussian (even if yt is not)

ξt = [φt−1, θ̂t, Pt] (28)

contains the necessary information

If not Gaussian, it becomes computationally challenging to compute the
hyper space and storage requirements increase
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02421 - Dual adaptive controllers
Adaptive Control - Optimal Dual Control

Bellman equation

V (ξt, t) = min
ut−1

E[(yt − wt)2 + V (ξt+1, t)|Yt−1] (29)

The last (N ’th) step is identical to the cautious controller

V (ξN , N) = min
uN−1

E[(yN − wN )2|YN−1] (30)

= (φT
N−1θN − wN )2 + σ2 + φT

N−1PN φN−1 −
b̂0,N wN − φT

N−1(b̂0,N θ̂N + PN l)
b̂2

0,N − pb,N

(31)

substituting into V (ξN−1, N − 1), the second last control can be computed,
and so on

This is similar to the LQR – however, it does not have an analytical solution
and must be solved numerically
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02421 - Dual adaptive controllers
Adaptive Control - Optimal Dual control

Fundamental paradox of adaptive control
1 Control objective: Small signals (control action)

2 Estimation: Large signals (probing action)

For the optimal N -step dual control problem, the solution is a compromise
between these goals
1 Improved long-term estimation accuracy; sacrificing short-term loss

2 Probing adds active learning to the method

Cautious control (N = 1): The probing effects diminishes and any learning
is "accidental"

Issue with dual control: Curse of dimensionality – the computational cost
increases drastically with increasing hyperspace dimension and horizon
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Sub-optimal dual adaptive controllers
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02421 - Sub-optimal dual adaptive controllers
Adaptive Control - Sub-Optimal Dual control

As optimal dual control is impractical, sub-optimal dual controllers exist.
They are based on the cautious controller and fix the issue with turn-off

Various approaches
1 Constrain the uncertainty

2 Extend the loss function

3 Serial expansion of the loss function

4 Add perturbation signals to the control
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02421 - Sub-optimal dual adaptive controllers
Sub-Optimal Dual Control - Constrained One-step Controller

Constrained one-step controller (minimum distance to zero control)

ut =
{

uc if |uc| ≥ |ul|
ul sign(uc) if |uc| < |ul|

(32)

uc is the cautious controller input and ul is a lower limit determined by us

The constraints do not prevent turn-off, but add extra perturbation when it
happens
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02421 - Sub-optimal dual adaptive controllers
Sub-Optimal Dual Control - Constrained Uncertainty

Alternatively, constrain the uncertainty

Tr(P −1
t+1) ≥ M (33)

or constrain only pb

pb,t+1 ≤
{

γb̂2
0,t+1 if pb,t ≤ b̂2

0,t

αpb,t otherwise
(34)
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02421 - Sub-optimal dual adaptive controllers
Sub-Optimal Dual control - extended loss function

Add uncertainty to the cost function

J = E[(yt+1 − wt+1)2 + ρf(Pt+1)] (35)

f can be formulated in many ways
1 f(Pt+1) = pb,t+1

2 f(Pt+1) = R2
pb,t+1

pb,t

3 f(Pt+1) = − det(Pt)
det(Pt+1)

4 f(Pt+1) = −ϵ2
t+1

This might lead to multiple local minima, and numerical optimization is
required. Alternatively, use a second order serial expansion (e.g., a Taylor
expansion)
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02421 - Sub-optimal dual adaptive controllers
Sub-Optimal Dual control - Extended Loss Function - Example
Third version of f

J = E
[

(yt+1 − wt+1)2 − ρ
det(Pt)

det(Pt+1)

∣∣∣∣ Yt

]
(36)

Ratio between determinants
det(Pt)

det(Pt+1) = 1 + ϕT
t+1Ptϕt+1 (37)

Analytical control law

ut =
b̂0(wt+1 − φT

t+1ϑ̂t) + ρ(Ptl)T φt+1

b̂2
0 − ρpb,t

(38)

Depending on ρ, we get specific controllers
1 ρ = 0: the CE controller

2 ρ = −1: the cautious controller

3 ρ > 0: an active learning controller
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02421 - Sub-optimal dual adaptive controllers
Sub-Optimal Dual control - Probing

Add probing/perturbation signal

ut = uc
t + ux

t (39)

Possible probing/perturbation signals include
1 PRBS

2 DOX: Design of excitation signal

They can be applied both at certain points in time (low uncertainty) or
constantly
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02421 - Sub-optimal dual adaptive controllers

Questions?
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